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The Reproducing Kernel Structure Arising from a
Combination of Continuous and Discrete Orthogonal

Polynomials into Fourier Systems
Luı́s Daniel Abreu

In memory of Joaquin Bustoz

Abstract. We study mapping properties of operators with kernels defined via a com-
bination of continuous and discrete orthogonal polynomials, which provide an abstract
formulation of quantum (q-) Fourier-type systems.We prove Ismail’s conjecture regard-
ing the existence of a reproducing kernel structure behind these kernels, by establishing
a link with Saitoh’s theory of linear transformations in Hilbert space. The results are
illustrated with Fourier kernels with ultraspherical, their continuous q-extensions and
generalizations. As a byproduct of this approach, a new class of sampling theorems is
obtained, as well as Neumann-type expansions in Bessel and q-Bessel functions.

1. Introduction

The Gegenbauer expansion of the two variable complex exponential in terms of the
ultraspherical polynomials

eixt = !(ν)

(
t
2

)−ν ∞∑

k=0
i k(ν + k)Jν+k(t)Cν

k (x)(1.1)

has the remarkable feature of being at the same time an expansion in a Neumann series
of Bessel functions. The usefulness of this expansion was made very clear in a paper
authored by Ismail and Zhang, where it was used to solve the eigenvalue problem for the
left inverse of the differential operator, on L2 spaces with ultraspherical weights [20].
The consideration of the q-analogue of this diagonalization problem led the authors to
extend Gegenbauer’s formula to the q-case. This task required the introduction of a new
q-analogue of the exponential, a two variable function denoted by Eq(x; t)which became
known in the literature as the curly q-exponential function, bearing the name from its
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notational convention. Ismail and Zhang’s formula is

Eq(x; i t) = t−ν(q; q)∞

(−qt2; q2)∞(qν+1; q)∞
(1.2)

×
∞∑

k=0
i kqk

2/4 (1− qk+ν)

(1− qν)
J (2)
ν+k(2t; q)Ck(x; qν |q).

The functions involved in this formula will be defined in Section 4. Since its introduction,
the function Eq was welcomed as a proper q-analogue of the exponential function, since
it was suitable to provide a satisfactory q-analogue of the Fourier theory of integral
transformations and series developments. This suitability was made concrete by Bustoz
and Suslov in [5], where the authors introduced the subject of q-Fourier series. Some
of the subsequent research activity has already been collected in a book [29]. Among
recent developments not yet included in this book, we quote the orthogonality relations
for sums of curly exponential functions [23], obtained using spectral methods, and the
construction of a q-analogue of theWhittaker–Shannon–Kotel’ nikov sampling theorem
[19]. The designation “Quantum” has appear often in recent literature on q-analysis, as
in the monographs [22] and [21]. This designation is very convenient, since q-special
functions are intimately connected with representations of quantum groups [6].
An abstract formulation designed to capture the essential properties of q-Fourier-type

systems was proposed in [15] and we proceed to describe it here. Letµ be a real measure
on the real line and {pn(x)} be a complete orthonormal system in L2(µ) and assume that
{rn(x)} is a discrete orthonormal system whose orthogonality relation is

∞∑

j=0
ρ(tj )rn(tj )rm(tj ) = δmn

and with dual orthogonality

∞∑

k=0
rk(tn)rk(tm) = δmn

ρ(tn)
.

Assume also that the system {rn(x)} is complete in L2(
∑

ρ(tj )δtj ). Now define a se-
quence of functions {Fn(x)} by

Fn(x) =
∞∑

k=0
rk(tn)pk(x)uk,(1.3)

where {uk} is an arbitrary sequence of complex numbers in the unit circle. The following
theorem is due to Ismail and comprises in an abstract form the fundamental fact behind
the theory of basic analogs of Fourier series on a q-quadratic grid [5].

Theorem A [15]. The system {Fn(x)} is orthogonal and complete in L2(µ).

To give an idea of what is involved in this statement, we sketch Ismail’s argument.
Since, by (1.3), rk(tn) are the Fourier coefficients of Fn in the basis {uk pk}, the use of



Reproducing Kernels OF3

Parseval’s formula gives
∫

Fn(x)Fm(x) dµ(x) =
∞∑

k=0
rk(tn)rk(tm) = δmn

ρ(xn)

and the orthogonality relation is proved. To show the completeness, choose f ∈ L2(µ)

and assume
∫
Fn(x) f (x) dµ(x) = 0 for all n. Again Parseval’s formula implies∑∞

k=0 fkrk(tm) = 0 for all m, where fk are the Fourier coefficients of f in the basis
{pk}. Now the completeness of {rk} implies fk = 0. Therefore f = 0 almost everywhere
in L2(µ).
In [16] (see also Section 24.2 of the monograph [21]), Ismail posed the problem of

studying the mapping properties of operators with kernels defined as above and conjec-
tured that there was a reproducing kernel Hilbert space structure behind these operators.
We will show that Ismail’s conjecture is true. Our approach will reveal a reproducing
kernel structure reminiscent of the well-known structure of the Paley–Wiener space of
functions bandlimited to a real interval. However, even in the case when the system
{Fn(x)} is the set of the complex exponentials, we obtain results that, as far as our
knowledge goes, seem to be new. When the system {Fn(x)} is the set of basis functions
of the q-Fourier series constructed with the function Eq(x; i t), we will obtain results
that complement the investigations done in [29] and [19]. In particular, it will be shown
that a sampling theorem related to the one derived in [19] lives in a reproducing kernel
Hilbert space and that the correspondent q-analogues of the Sinc function provide an
orthogonal basis for that space.
Before outlining the paper we want to make clear that the techniques we are using al-

ready exist in some antecedent form. In particular, Section 2 contains ideas from Ismail’s
theory of generalized q-Fourier series and from Saitoh’s theory of linear transformations
in Hilbert space. However, their particular combination here leads to new conclusions
and sheds new light in the emerging theory of q-Fourier series. It reveals an elementary
structure underlying many systems involving several special functions simultaneously.
The results in Section 2.2 and in Sections 3, 4 and 5 were never explicitly stated before.
This paper can be summarized as follows. The next section contains the description of

the reproducing kernel structure behind the abstract setting of Theorem A. An integral
transformation between two Hilbert spaces is defined in the context of Saitoh’s theory
of linear transformations, basis for both spaces are provided and the formula for the
reproducing kernel of the image Hilbert space is deduced. In this context a sampling
theorem appears, generalizing the one in [19]. The remaining sections consider three
applications of these results, using specific systems of orthogonal polynomials as well
asBessel functions and their generalizations. Thefirst application is associated to formula
(1.1) and systems of complex exponentials. The reproducing kernel in this case is written
in terms of Bessel functions. The second application is linked to (1.2) and to systems of
curly q-exponentials, and we write the reproducing kernel as a 2ϕ2 basic hypergeometric
function. These two examples explore the interplay between Lommel polynomials and
Bessel functions and the corresponding relations between their q-analogues. In the last
section we consider a construction of a general character, designed originally in the
papers [20], [17] and [15]. It allows us to extend the interplay between Bessel functions
and Lommel polynomials to a more general class of functions. Using this construction
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we will make a brief discussion about the application of our results to spaces weighted
by Jacobi weights and their q-analogues.

2. The Reproducing Kernel Structure

Let H be a class of complex valued functions, defined in a set X ⊂ C, such that H is a
Hilbert space with the norm of L2(X, µ). The function k(s, x) is a reproducing kernel
of H if:

(i) k(·, x) ∈ H for every x ∈ X;
(ii) f (x) = 〈 f (·), k(·, x)〉 for every f ∈ H , x ∈ X .

The space H is said to be a reproducing kernelHilbert space if it contains a reproducing
kernel. From a structural point of view, the correct approach to the study of our problem
is via Saitoh’s theory of linear transforms of Hilbert space.

2.1. Preliminaries on Saitoh’s Theory of Linear Transformations in Hilbert Space

This theory can be found in works by Saitoh [26], [27] and we proceed to give a brief
account of the results that we are going to use. An account of the results quoted in this
section can also be found in Higgins’ recent survey [13].
For each t belonging to a domain D, let Kt belong to H (a separable Hilbert space).

Then,
k(s, t) = 〈Ks, Kt 〉H

is defined on D × D and is called the kernel function of the map Kt . Now consider the
set of images of H by the transformation

(Kg)(t) = 〈g, Kt 〉H = f (t)

and denote this set of images by R(K ). The following theorem can be found in [26].

Theorem B. The kernel k(x, t) determines uniquely a reproducing kernel Hilbert
space for which it is the reproducing kernel. This reproducing kernel Hilbert space
is precisely R(K ) and it can have no other reproducing kernel.

Now, suppose that {Kt } (t ∈ D) is complete in H so that K is one-to-one. Then we
have

‖Kg‖R(K ) = ‖g‖H .

The following theorem, due to Higgins [12], will be critical to the remainder. We
will use only the following “orthogonal basis case”, a special case of the theorem
in [12]:

Theorem C. With the notations established earlier,wehave: If there exists {tn} (n ∈ D)

such that {Ktn } is an orthogonal basis, we then have the sampling expansion

f (t) =
∑

n∈D
f (tn)

k(t, tn)
k(tn, tn)
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in R, pointwise over D, and uniform over any compact subset of D for which ‖Kt‖ is
bounded.

2.2. The Reproducing Kernel for q-Fourier-Type Systems

In this section we will show the existence of a reproducing kernel structure behind the
abstract setting of Theorem A. The results will follow from the study of the mapping
properties of an integral transform whose kernel is obtained from the sequence of func-
tions {rk} and {pk}.

Theorem 1. There exists a kernel K (x, t) satisfying the requirements of Saitoh’s the-
ory of linear transformations, such that K (x, xn) = λn Fn(x), where {Fn(x)} is the
orthogonal sequence of functions in Theorem A and {λn} is a sequence of real numbers.

Proof. Our first technical problem comes from the fact that, when {rk} is a discrete
system of orthogonal polynomials with a determinate moment problem, then {rk(t)} ∈ l2
if and only if x is a mass point for the measure of orthogonality. For this reason the series

∞∑

k=0
rk(t)pk(x)uk

would diverge if t is not such a point (this is pointed out in Section 5 of [15]). Since we
want our kernel to be defined for every t , we will assume the existence of an auxiliary
system of functions {Jk(x)} ∈ l2 for every t real, and such that every function Jk
interpolates rk at the mass points {xn} in the sense that

Jk(xn) = λnrk
(
1
xn

)
(2.1)

for every k = 0, 1, . . . and n = 0, 1, . . . and some constant λn independent of k. Now
we can use the functions Jk(t) to define a kernel K (x, t) as

K (x, t) =
∞∑

k=0
Jk(t)pk(x)uk .(2.2)

Such a kernel is well defined and belongs to L2(µ), since it is a sum of basis functions
of L2(µ). From (1.3), (2.1) and (2.2) we have

K (x, xn) =
∞∑

k=0
Jk(xn)pk(x)uk

= λn

∞∑

k=0
rk

(
1
xn

)
pk(x)uk

= λn Fn(x).

Remark 1. Observe that Theorem1 andTheoremAwith tn = 1/xn show that K (x, xn)
is an orthogonal basis for the space L2(µ).
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Remark 2. In the abstract formulation it may not be clear why the constant λn must
be present. Actually the construction would work without it, but for technical reasons
that will become evident upon consideration of examples we prefer to use it. Otherwise,
careful bookkeeping of the normalization constants would be required in the remaining
sections.

Remark 3. It will be seen in the last section that a general constructive method is
available in order to find the function Jk under very natural requirements on the poly-
nomials rk .

Now define an integral transformation F by setting

(F f )(t) =
∫

f (x)K (x, t) dµ(x).

We will study this transform as a map whose domain is the Hilbert space L2(µ). En-
dowing the range of F with the inner product

〈F f, Fg〉F(L2(µ)) = 〈 f, g〉L2(µ),(2.3)

then F(L2(µ)) becomes a Hilbert space isometrically isomorphic to L2(µ) under the
isomorphism F . Using Saitoh’s theory with D = R, Kt = K (·, t), H = L2(µ) and
R(K ) = F(L2(µ)), we obtain at once:

Theorem 2. The transform F is aHilbert space isomorphismmapping the space L2(µ)

into F(L2(µ)). The space F(L2(µ)) is a Hilbert space with reproducing kernel given
by

k(t, s) =
∫
K (x, t)K (x, s) dµ(x).(2.4)

An interesting feature of this particular setting is that every function in F(L2(µ)) has
two different expansions: One is the sampling expansion naturally associated with the
reproducing kernel structure, the other is the expansion in the basis Jn(x). It should
be remarked that, in most of the previously known sampling expansions, these two
expansions were the same. These expansion results are summarized in the next theorem.

Theorem 3. Every function f of the form

f (x) =
∫
u(t)K (t, x) dµ(t)(2.5)

with u ∈ L2(µ), admits an expansion

f (t) =
∞∑

n=0
anJn(t),(2.6)

where the coefficients ak are given by

an = un〈u, pn(·)〉L2(µ)
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and a sampling expansion

f (x) =
∑

f (tn)
k(x, tn)
k(tn, tn)

.(2.7)

The sum in (2.7) converges absolutely. Furthermore, it converges uniformly in every set
such that ‖K (·, t)‖L2(µ) is finite.

Proof. We already know by default that {pn(x)} is a basis for L2(µ). It remains to
prove that {Jn(t)} is a basis for F(L2(µ)). Observe that

(Fpn)(t) =
∫

pn(x)K (x, t) dµ(x)

=
∞∑

k=0
Jk(t)uk

∫
pn(x)pk(x) dµ(x)

= Jn(t)un.

Since {pn(x)} is a basis for L2(µ) and F is an isomorphism between L2(µ) and
F(L2(µ)), then {Jn(x)} is a basis for F(L2(µ)). To prove the last assertion of the
theorem, observe that function f defined by (2.5) belongs to F(L2(µ)) and therefore
can be expanded in the basis {unJn(t)}. The Fourier coefficients of this expansion are

an = 〈 f, unJn(·)〉F(L2(µ)) = 〈Fu, F(pn(·))〉F(L2(µ)) = 〈u, pn(·)〉L2(µ),

where we have used (2.3) in the last identity. The sampling expansion follows from
applying Theorem C to our setting and using Remark 1.

Remark 4. The construction of this section has never appeared before in the literature,
but it is reminiscent of the reproducing kernel structure of the Paley–Wiener space. In
the classical situations (see, e.g., [8] and [24] for an account of these constructions with
several examples) generalizing this structure, there is an integral transform whose kernel
is defined as

K (x, t) =
∑

Sk(t)ek(x),(2.8)

where ek(x) is an orthogonal basis for the domain Hilbert space and Sk(t) is a sequence
of functions such that there exists a sequence {tn} satisfying the sampling property

Sk(tn) = anδn,k .(2.9)

As an instance, take Sk(t) = sinπ(t − k)/π(t − k) and ek(x) = eikx . Then (2.8) is

eitx =
∞∑

k=−∞

sinπ(t − k)
π(t − k)

eikx

and K (x, t) is the kernel of the Fourier transform. The corresponding reproducing kernel
Hilbert space is the Paley–Wiener space. The root of these ideas is in Hardy’s ground-
breaking paper [11]. For an application of this classical set-up to Jackson q-integral
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transforms and the third Jackson q-Bessel function, see [1]. In our construction we made
a modification of this classical setting: Instead of the sequence of functions Sk , with
the sampling property (2.9), we considered a sequence of functions {Jk}, interpolating
an orthogonal system {rk} in the sense of (2.1). And we have seen that the essential
properties of classical reproducing kernel settings are kept. However, this modification
allows us to recognize a class of reproducing kernel Hilbert spaces that were obscured
until now. This will become clear in the next section.

3. The Fourier System with Ultraspherical Weights

The nth ultraspherical (or Gegenbauer) polynomial of order ν is denoted byCν
n (x). These

polynomials satisfy the orthogonality relation
∫ 1

−1
Cν
n (x)C

ν
m(x)(1− x2)ν−1/2 dx =

(2ν)n
√

π!(ν + 1
2 )

n! (ν + n)!(ν)
δm,n,

and form a complete sequence in the Hilbert space L2[(−1, 1), (1 − x2)ν−1/2]. For
typographical convenience we will introduce the following notation for this Hilbert
space:

H ν = L2[(−1, 1), (1− x2)ν−1/2].

The Bessel function of order ν, Jν(x), is defined by the power series expansion

Jν(z) =
∞∑

n=0

(−1)n

n! !(ν + n + 1)

( z
2

)ν+2n
.(3.1)

The nth Lommel polynomial of order ν, denoted by hn,ν(x), is related to the Bessel
functions by the relation

Jν+k(x) = hk,ν
(
1
x

)
Jν(x) − hk−1,ν−1

(
1
x

)
Jν−1(x).(3.2)

The Lommel polynomials satisfy the discrete orthogonality relation
∞∑

k=0

1
( jν,k)2

hn,ν+1

(
± 1
jν,k

)
hm,ν+1

(
± 1
jν,k

)
= δnm

2(ν + n + 1)

and the dual orthogonality
∞∑

k=0
2(ν + n + 1)hk,ν+1

(
± 1
jν,n

)
hk,ν+1

(
± 1
jν,m

)
= ( jν,k)

2δnm .

They forma complete orthogonal system in the l2-spaceweighted by the discretemeasure
with respect to which they are orthogonal. We will use these two complete orthogonal
systems in our first illustration of the general results. Set

pk(x) =
√
k! (ν + k)

(2ν)k
Cν
k (x)
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and

rk(t) =
√
2(ν + n)hk,ν−1(t).

Consider also

Jk(t) =
√
2(ν + n)Jν+k(t).

Denote by jν,k the kth zero of the Bessel function of order ν. Substituting x = jν,n in
(3.2), the following interpolating property is obtained:

hk,ν−1

(
1
jν,n

)
= − Jν+k( jν,n)

Jν−1( jν,n)
.(3.3)

The interpolating property (3.3) will play the role of (2.1) with λn = −1/Jν−1( jν,n).
Consider also the sequence of complex numbers {un} defined as

uk = i k

and set

K ν(x, t) =
√
2

∞∑

k=0
i k(ν + k)

√
2k!

(2ν)k
Jν+k(t)Cν

k (x).

Now, Theorem 1 tells us that K ν(x, jν,n) is an orthogonal basis of the space H ν . More-
over, formula (1.1) implies

√
π

2t
K 1/2(x, t) = eixt

and, therefore, we can think of!(ν)(1/2t)νK ν(x, t) as a one-parameter generalization of
the complex exponential kernel that may beworth further study. In the special case ν = 1

2
we recover the well-known orthogonality and completeness of the complex exponentials
{eiπnx } in L2(−1, 1).
The transformation F is defined, for every f ∈ H ν , as

(F f )(t) =
∫ 1

−1
f (x)K ν(x, t)(1− x2)ν−1/2 dx

and Theorem 2 gives that the reproducing kernel of F(H ν) is

kν(t, s) =
∫ 1

−1
K ν(x, t)K ν(x, s)(1− x2)ν−1/2 dx .

When ν = 1
2 this becomes

k1/2(t, s) = π
√
ts
2

sin(t − s)
(t − s)

.

Since {
√
[k! (ν + k)/(2ν)k]Cν

n (t)} forms a basis of the space H ν , then also
{i n

√
2(ν + n)Jν+n(x)} = F{

√
[k!(ν + k)/(2ν)k]Cν

n (t)} is a basis of the space F (H ν).
In this situation Theorem 3 reads:
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Theorem 4. Let f be a function of the form

f (t) =
∫ 1

−1
u(x)K ν(x, t)(1− x2)ν−1/2 dx(3.4)

where u ∈ H ν . Then f can be written as

f (t) =
∞∑

n=0
an Jν+n(t)(3.5)

with the coefficients an given by

an = i n(ν + n)
√
2n!

(2ν)n

∫ 1

−1
u(x)Cν

n (x)(1− x2)ν−1/2 dx(3.6)

and also as the sampling formula

f (t) =
∞∑

n=0
f ( jν,n)

kν(t, jν,n)

kν( jν,n, jν,n)
.

Remark 5. Expansions of the type (3.5) are known as Neumann series of Bessel func-
tions (see Chapter 16 of [25]).

Remark 6. When ν = 1
2 the above sampling theorem states that every function of the

form

f (t) =
(
t
2

)−1/2 ∫ 1

−1
u(x)eixt dx,

with u ∈ L2[(−1, 1)], can be represented as

f (t) =
∞∑

n=0
f (2πn)

√
t
2πn

sin(t − 2πn)
(t − 2πn)

.

4. The q-Fourier System with q-Ultraspherical Weights

We proceed to describe the q-analogue of the previous situation. Choose a number q
such that 0 < q < 1. The now classical notational conventions from [9] and [21] for
q-infinite products and basic hypergeometric series will be used often.
The q-exponential function that we talked about in the introduction is defined in terms

of basic hypergeometric series as

Eq(x; t) = (−t; q1/2)∞
(qt2; q2)∞ 2ϕ1

(
q1/4eiθ , q1/4e−iθ

q1/2

∣∣∣∣∣ q
1/2, −t

)
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where x = cos θ . The continuous q-ultraspherical polynomials of order ν are denoted
by Cν

n (x; qν |q) and satisfy the orthogonality
∫ 1

−1
Cν
n (x; qν |q)Cν

m(x; qν |q)w(x; qν |q) dx

= (2πqν, qν+1; q)∞

(q, q2ν; q)∞

(1− qν)(q2ν; q)n

(1− qn+ν)(q; q)n
δm,n,

where the weight function w(x; β|q) is

w(cos θ; β|q) = (e2iθ , e−2iθ ; q)∞

sin θ(βe2iθ , βe−2iθ ; q))∞
(0 < θ < π).

The polynomials {Cν
n (x; qν |q)} form a basis of the Hilbert space H ν

q defined as

H ν
q = L2[(−1, 1), w(x; qν |q)].

The second Jackson q-Bessel function of order ν is defined by the power series

J (2)
ν (x; q) = (qν+1; q)∞

(q; q)∞

∞∑

k=0
(−1)n (x/2)ν+2n

(q; q)n(qν+1; q)n
qn(ν+n).

Since this is the only q-Bessel function to be used in the text, we will drop the superscript
for brevity of notation and write Jν(x; q) = J (2)

ν (x; q). The q-Lommel polynomials
associated to the Jackson q-Bessel function of order ν are denoted by hn,ν−1(x; q).
These polynomials were defined in [14] by means of the relation

qnν+n(n−1)/2 Jν+n(x; q) = hn,ν
(
1
x
; q

)
Jν(x; q) − hn−1,ν−1

(
1
x
; q

)
Jν−1(x; q).(4.1)

The q-Lommel polynomials satisfy the orthogonality relation

∞∑

k=1

Ak(ν + 1)
( jν,n(q))2

hn,ν+1

(
± 1
jν,n(q)

; q
)
hm,ν+1

(
± 1
jν,n(q)

; q
)

= qnν+n(n+1)/2

1− qn+ν+1 δnm,

and the dual orthogonality

∞∑

k=1

(1− qn+ν+1)

qnν+n(n+1)/2 hn,ν+1

(
± 1
jν,n(q)

; q
)
hm,ν+1

(
± 1
jν,n(q)

; q
)

= ( jν,n(q))2

Ak(ν + 1)
δnm .

Consider

pk(x) =
√

(1− qk+ν)(q; q)k

(1− qν)(q2ν; q)k
Ck(x; qν |q),

rk(t) =
√

(1− qk+ν)

(1− qν)
q−kν/2−k(k−1)/4hk,ν(2t; q),
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and

Jk(t) =
√

(1− qk+ν)

(1− qν)
qkν/2+k(k−1)/4 Jν+k(2t; q).

The parameters uk will be given by

uk = i k .

Denote by jν,k(q) the kth zero of Jν(x; q). Setting t = jν,k(q) in (4.1) we have the
interpolating property

hk,ν−1

(
1

jν,n(q)
; q

)
= −qkν+k(k−1)/2 Jν+k( jν,n(q); q)

Jν−1( jν,n(q); q)
.(4.2)

This means that in (2.1) we must take λn = −1/Jν−1( jν,n(q); q). In this context, the
kernel K (x, t) is given as

K ν
q (x, t) =

∞∑

k=0
i kqk(2ν+k−1)/4 (1− qk+ν)

(1− qν)

√
(q; q)k

(q2ν; q)k
Jν+k(2t; q)Ck(x; qν |q)

and the use of (1.2) gives, when ν = 1
2 ,

K 1/2
q (x, t) = (−qt2; q2)∞(qν+1; q)∞

(q; q)∞
tνEq(x; i t).(4.3)

The basis functions of the domain space are

Fn(x) = K ν
q (x, jν,k(q)).

When ν = 1
2 this gives that {Eq(x; i j1/2,n−1(q))} is orthogonal and complete in H ν

q . This
is the case of the q-Fourier series studied in [29]. Now define the transform

(Fν
q f )(t) =

∫ 1

−1
f (x)K ν

q (x, t)w(x; qν |q) dx(4.4)

for every f ∈ H ν
q . We have

i k
√

(1− qk+ν)

(1− qν)
qkν/2+k(k−1)/4 Jν+k(2t; q) = Fν

q

(√
(1− qk+ν)(q; q)k

(1− qν)(q2ν; q)k
Ck(x; qν |q)

)

and {Jν+n(t; q)}∞n=0 is a basis of the space Fν
q

(
H ν
q
)
. We can also state a q-Neumann

expansion theorem in q-Bessel functions.

Theorem 5. Let f be a function of the form

f (t) =
∫ 1

−1
u(x)K ν

q (x, t)w(x; qν |q) dx(4.5)
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where u ∈ H ν
q . Then f can be written as

f (t) =
∞∑

n=0
an Jν+n(t; q)

with the coefficients an given by

an = i n
(1− qk+ν)

(1− qν)

√
(q; q)k

(q2ν; q)k

∫ 1

−1
u(x)Cn(x; qν |q)w(x; qν |q) dx .

Oncemore we know by Theorem 2 that the space Fν
q

(
H ν
q
)
is a space with reproducing

kernel kν
q (t, s), given by

kν
q (t, s) =

∫ 1

−1
K ν
q (x, t)K ν

q (x, s)w(x; qν | q) dx .

When ν = 1
2 we can compute the reproducing kernel in an explicit form using the

following integral, evaluated in [18]:
∫ π

0
Eq(cos θ; α)Eq(cos θ; β)

(e2iθ , e−2iθ ; q)∞

(γ e2iθ , γ e−2iθ ; q)∞
dθ(4.6)

= 2π(γ, qγ, −αβq1/2; q)∞

(q, γ 2; q)∞(qα2, qβ2; q2)∞
2ϕ2

(
−q1/2α/β, −q1/2β/α

qγ, , −αβγ q1/2

∣∣∣∣ q, −αβγ q1/2
)

.

Theorem 6. The space F1/2q (H 1/2
q ) is a space with reproducing kernel k1/2q (t, s), given

by

kν
q (t, s) = 2π

[
(q3/2; q)

3/2
∞

(q; q)2∞

]2

× (q1/2, −tsq1/2; q)∞(ts)1/22ϕ2
(

−q1/2t/s, −q1/2s/t
q3/2, −tsq

∣∣∣∣ q, −tsq
)

.

Proof. Applying Theorem 2 and (4.3) we know that kν
q (t, s) is given by

kν
q (t, s) =

[
(qν+1; q)∞

(q; q)∞

]2
(−qt2, −qs2; q2)∞(ts)1/2

×
∫ 1

−1
Eq(x; i t)Eq(x; −is)w(x; qν |q) dx .

Make the substitutions x = cos θ , i t = α, is = β, and qν = γ in (4.6). Then (4.7)
follows.

As in the preceding sections we can formulate a sampling theorem.
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Theorem 7. Every function of the form (4.5) admits the expansion

f (x) =
∞∑

k=0
f (tk)

kν
q (x, tk)
kν
q (tk, tk)

(4.7)

where tk = jν,k(q)/2.

Remark 7. The functions kν
q (x, tk)/kν

q (tk, tk) are related to the functions Sincq(t, k)
from [19]. In [19] it is shown that there is a sampling theorem associated to the Sincq(t, k)
functions that can be written as an interpolating formula of the Lagrange type. The above
discussion shows what is the sampling theorem associated to the reproducing kernel
Hilbert space and its relation to the one obtained in [19].

Remark 8. By the proof of Theorem B (see [13]), the functions kν
q (x, tk)/kν

q (tk, tk)are
orthogonal in the space F1/2q (H 1/2

q ). This result is a q-analogue of the important fact,
proved by Hardy in [11], that the functions sinπ(t − k)/π(t − k) are orthogonal in the
classical Paley–Wiener space.

Remark 9. Important information concerning the zeros of the second Jacksonq-Bessel
function, that appear as sampling nodes in the expansion (4.7), was obtained very recently
by Walter Hayman in [10] using a method due to Bergweiler and Hayman [4]: the
asymptotic expansion

j2ν,k(q) = 4q1−2n−ν

{

1+
n∑

ν=1
bνqkν + O | q(n+1)k |

}

as k → ∞, with the constants bν depending on a and q, holds. Therefore, for large k, the
sampling nodes are exponentially separated in a similar way to that which was observed
in [1] and [2]. In the case where ν = ± 1

2 , the zeros were studied by Suslov [28].

5. A Generalization

Webegin this last section describing a formal approach generalizing the situations studied
in the previous two sections. This formal approach was initiated in [20] and [17] with
the purpose of finding functions to play the role of the Lommel polynomials in more
general situations, and was studied further in [15]. In the context studied in this paper, it
will be of particular relevance, since it gives a constructive method to find the functions
Jk satisfying (2.1). Let { fn,ν} be a sequence of polynomials defined recursively by
f0,ν(x) = 1, f1,ν(x) = x Bν and

fn+1,ν(x) = [x Bn+ν] fn,ν(x) − Cn+ν−1 fn−1,ν(x).

Assuming the positivity condition Bn+νBn+ν+1Cn+ν > 0 (n ≥ 0) and the convergence
of the series

∑∞
n=0 Cn+ν/Bn+νBn+ν+1, it can be shown, using facts from the general

theory of orthogonal polynomials, that the polynomials fn,ν are orthogonal with respect
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to a compact supported discrete measure and that the support points of this measure are
1/xn,ν , where the xn,ν are the zeros of an entire function J satisfying

Cν · · ·Cν+n−1J (x; ν + n) = J (x; ν) fn,ν
(
1
x

)
− J (x; ν − 1) fn−1,ν+1

(
1
x

)
.(5.1)

The dual orthogonality relation of the polynomials fn,ν(x) is

∞∑

n=0

Bν+1

2λn(ν + 1)
fn,ν+1

(
1
xν,k

)
fn,ν+1

(
1
xν, j

)
=

x2ν, j

Aj (ν + 1)
δj,k

for some constants Aj (ν + 1) and λn(ν + 1). (For the evaluation of these constants, as
well as other parts of the argumentmissed in this brief sketch, we recommend the reading
of Section 4 of [15].) From (5.1) and the above analysis we can obtain the interpolation
property

J (xn,ν; ν + k) = −J (xn,ν; ν − 1)
Cν · · ·Cν+n−1

fk−1,ν+1

(
1
xn,ν

)
.

Therefore, in the language of the second section we can set

Jk(t) =
√

λk(ν)
Bk+ν

Bν

J (t, k),

rk(t) =
√

λk(ν)
Bk+ν

Bν

fn,ν(t),

λn = −J (xn,ν; ν − 1)
Cν · · ·Cν+n−1

,

and define the kernel

K (x, t) =
∞∑

k=0
uk

√
λk(ν)

Bk+ν

Bν

J (t, k)pk(x),

where |uk | = 1 and {pn(x)} is an arbitrary complete orthonormal system in L2(µ).
As before, the kernel K (x, t) can be used to define an integral transformation between
two Hilbert spaces. We could now apply the machinery of Section 2 and provide a
reproducing kernel structure and a sampling theorem by means of an integral transform
with the above kernel. However, no simplification would occur on the absence of proper
addition formulas for the kernel K (x, t). Choosing families of orthogonal polynomials
fn,ν(t) and pn(x) in a way that such addition formulas exist is the topic of the second
problem in [16].
Operators weighted by the Jacobi weight function (1 − x)α(1 + x)β on the interval

[−1, 1] can be studied by using the Jacobi polynomials and the Wimp polynomials in
a similar fashion to that which was done in Section 4 of [20]. Reasoning as before, we
can use the resulting formulas to generalize the results in the third section to Fourier
systems with Jacobi weights, although no major simplification seems to occur. Results
very similar to those of Section 3 would follow, with an extra parameter; expansions in
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series of 1F1 replace the Neumann expansions and sampling theorems with sampling
points located at the zeros of these 1F1 can also be derived.
In Section 6 of [17], formula (6.13) is a generalization of (1.2). This formula involves

continuous q-analogues of the Jacobi polynomials defined via the Askey–Wilson poly-
nomials [3] and a q-exponential function with an extra variable. This more general and
complicated situation should be studied in a future work once more summation formu-
las are known. Also, following Ismail’s suggestion in Problem 24.2.1 of [21] may lead
to the discovery of other examples of structures fitting to the setting described in this
paper.
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