
DOI: 10.1007/s10288-003-0021-7

4OR 1: 243–255 (2003)

A note on a new variant of Murty’s ranking
assignments algorithm

Marta Pascoal1,2�, M. Eugénia Captivo3, and João Clímaco4,5

1 Centro de Informática e Sistemas
2 Departamento de Matemática, Universidade de Coimbra,Apartado 3008, 3001-454 Coimbra, Portugal

(e-mail: marta@mat.uc.pt)
3 DEIO-CIO, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2,

1749-016 Lisboa, Portugal (e-mail: mecaptivo@fc.ul.pt)
4 Instituto de Engenharia de Sistemas e Computadores – Coimbra, Rua Antero de Quental, 199,

3000-033 Coimbra, Portugal (e-mail: jclimaco@inescc.pt)
5 Faculdade de Economia da Universidade de Coimbra, Avenida Dias da Silva, 165,

3004-512 Coimbra, Portugal

Received: August 2002 / Revised version: March 2003

Abstract. In this paper a variant of Murty’s algorithm for ranking assignments ac-
cording to cost is presented. It is shown that the worst-case computational complex-
ity is better in this variant than in the original form of the algorithm. Computational
results comparing three methods for ranking assignments are reported. They show
that the behaviour of the new variant is also better in practice.

Key words: Graph theory, mathematical programming, combinatorics

AMS classification: 90C27, 05C85

1 Introduction

The assignment problem, is a well-known combinatorial problem, introduced in
1955 by Kuhn [10], who also proposed an algorithm to solve it. Since 1955 sev-
eral other algorithms for the assignment problem have been developed. A survey
including comparative tests was presented in [7].

As for other optimisation problems, the assignment problem can be generalized
to enumerate the first K assignments, for some K ∈ IN, that is, the K least cost
assignments, defining the so called ranking assignments problem. Listing solutions

� The research of Marta Pascoal was developed within CISUC and partially supported by the Por-
tuguese Ministry of Science and Technology (MCT), under PRAXIS XXI Project of JNICT.

4OR Quarterly Journal of the Belgian, French
and Italian Operations Research Societies

© Springer-Verlag 2003

244 M. Pascoal et al.

by order of cost is, for instance, used in the generation of alternative solutions, in
the resolution of constrained assignment problems and in multicriteria analysis.
Since, in general, several solutions have to be ranked, the efficiency of ranking
algorithms is extremely important. There are only two algorithms in the literature
for ranking assignments. The first was proposed by Murty in 1968 [12], while
in 1985/86 Hamacher and Queyranne suggested an alternative general algorithm
for ranking solutions of combinatorial problems [9], later specialized for bipartite
matchings by Chegireddy and Hamacher [6].

The purpose of this work is to present a variant of Murty’s algorithm, based on
the use of a specific order for analysing each k-th assignment, instead of imple-
menting Murty’s algorithm straightforwardly. Although appearing to be a simple
modification, it ends up in replacing the resolution of assignment problems by short-
est path problems, whenever an assignment is analysed. The result is an alternative
to the best complexity algorithm, by Chegireddy and Hamacher, with O(Kn3)

(considering a network with 2n nodes), improving the O(Kn4) time complexity of
the straightforward implementation of Murty’s algorithm. The computational ex-
periments here presented show that this variant outperforms the original algorithm,
and one implementation of the algorithm proposed by Chegireddy and Hamacher.

Section 2 gives a brief review of the assignment problem and refers an algorithm
to solve it. Section 3 begins with a presentation of the ranking assignments problem
and its algorithms, followed by a subsection where the new variant is developed.
Computational complexity order is studied. Section 4 shows results of experimental
tests for the three algorithms.

2 The assignment problem

Let (N , A) be a bipartite network where N = N1 ∪N2, with N1 and N2 disjoint
sets with n elements each, and where A = N1 ×N2. Elements in N are known as
nodes and elements in A as arcs of the network. In the following, nodes in N1, as
well as nodes in N2, will be denoted by 1, 2,…, n. A non negative integer cost cij

is associated with each arc (i, j) ∈ A.
The assignment problem arises when trying to pair, with minimum cost, each

node in N1 with a node in N2. Its linear programming formulation is:

min
∑

(i,j)∈A cij xij

s.t.
∑

j∈N2
xij = 1 , i ∈ N1∑

i∈N1
xij = 1 , j ∈ N2

xij ≥ 0 , (i, j) ∈ A .

A solution x to this problem is called an assignment and will be represented by
a = {(1, j1), . . . , (n, jn)} (also called assignment), where, for i ∈ {1, . . . , n}, xij ={

1 , if j = ji

0 , if j �= ji
. The cost of x is c(x) =∑

(i,j)∈A cij xij or c(a) =∑
(i,j)∈a cij .

A note on a new variant of Murty’s ranking assignments algorithm 245

The assignment problem can be seen as a minimum cost flow problem in a
bipartite network where the capacity upper bound is uij = 1, (i, j) ∈ A, the
supply is ri = 1, i ∈ N1, and the demand is rj = −1, j ∈ N2. Thus, one of the
algorithms known to solve it is the successive use of a shortest path algorithm. It
computes a shortest path from a super-source to a super-sink in a residual network
and then updates the flow along that path in 1 unit. This corresponds to associate a
node in N1 with another one in N2, therefore the best assignment can be obtained
computing n shortest paths. The complexity of this algorithm is O(nc(n)), where
c(n) denotes the number of operations to find a shortest path, thus O(n3) using a
label setting algorithm. Further details on this algorithm can be found in [11].

Given the flow x in (N , A), the residual network can be described as (N ′, A′)
such that:

1. N ′ = N ∪ {s, t}, with s, t �∈ N ;
2. A′ = {(s, i) : i ∈ N1 ∧ xij = 0,∀j ∈ N2} ∪ {(i, j) ∈ A : xij = 0} ∪
{(j, t) : j ∈ N2 ∧ xij = 0,∀i ∈ N1} ∪ {(j, i) ∈ Ar : xij = 1}, where
Ar = {(j, i) : (i, j) ∈ A} is the set of reverse arcs.

The cost of each (i, j), c′ij , is maintained if (i, j) ∈ A, is considered 0 for the new
arcs starting in s or incident in t , and c′ji = −cij if (j, i) ∈ Ar .

3 The ranking assignments problem

In this section the ranking assignments problem is defined, the algorithms for solv-
ing it are reviewed, one due to Murty and another due to Chegireddy and Hamacher
(further details about these algorithms can be found in [6, 12]). Finally, a variant
of Murty’s algorithm is presented.

The ranking assignments problem is a generalization of the assignment problem
where the aim is to compute the K least cost assignments, with K > 1, by non-
decreasing order of cost, that is, a1, . . . , aK , such that:

– c(ai) ≤ c(ai+1), for any i ∈ {1, . . . , K − 1};
– ai is determined immediately before ai+1, for any i ∈ {1, . . . , K − 1};
– c(aK) ≤ c(a), for any other assignment a �∈ {a1, . . . , aK}.

In [12] Murty proposed an algorithm to solve this problem. It demands that a routine
for solving the assignment problem is known and uses a set X, characterized by
storing candidates to a future k-th best assignment, where k ∈ {1, . . . , K}. Initially
X = {a1}. The least cost element is repeatedly picked up from X (being a certain
ak) and analysed in order to generate new “low cost” assignments, then stored in
X. The new candidates are found considering a partition of the set of assignments
in the network where ak was computed and solving an assignment problem for
every subset in that partition. The subsets to consider are obtained by forcing the
inclusion of some ak arcs (which can be done by avoiding the use of its tail and
head nodes) and forbidding others (for instance, replacing its cost by +∞).

246 M. Pascoal et al.

Consider a general k ≥ 1 and the k-th shortest assignment with the form
ak = {(i1, j1), . . . , (ir , jr), (t1, s1), . . . , (tn−r , sn−r)}.

Let us assume it is obtained as the best assignment when (i1, j1), . . . , (ir , jr) are
forced to be in ak and (m1, p1), . . . , (m�, p�) can’t belong to ak , that is:

– i1, . . . , ir were deleted from N1; j1, . . . , jr were deleted from N2, and
– (m1, p1), . . . , (m�, p�) were deleted from A.

After restoring this network, ak remaining arcs (t1, s1), . . . , (tn−r−1, sn−r−1) are
successively deleted, thus obtaining networks where no assignment was computed.
The assignment problem is solved in each of those networks and each solution is
stored in X. In sum, X stores the solutions of the following problems:

1. shortest assignment a such that (t1, s1) �∈ a,
2. shortest assignment a such that (t1, s1) ∈ a and (t2, s2) �∈ a,
…
n− r − 1. shortest assignment a such that (t1, s1), . . . , (tn−r−2, sn−r−2) ∈ a and

(tn−r−1, sn−r−1) �∈ a.

In the worst-case, Murty’s algorithm demands the resolution of n− 1 assignment
problems for each ak , k ∈ {1, . . . , K}, therefore, using the algorithm in Sect. 2, it
has O(Kn4) complexity.

Later Hamacher and Queyranne [9] presented a different method to rank solu-
tions of any combinatorial problem. Their method is a generalization of the algo-
rithms by Gabow [8] for ranking spanning trees and by Carraresi and Sodini [5] for
ranking simple paths. It uses a binary search tree procedure (so, a partition different
from Murty’s), based on the computation of the second best solution of the com-
binatorial problem. Chegireddy and Hamacher [6] used that algorithm to find the
K best perfect matchings, proposing several procedures for computing the second
best perfect matching in bipartite networks, that is, the second best assignment.

The algorithm of Chegireddy and Hamacher uses a set X, analogously to
Murty’s algorithm. The algorithm starts by computing the best and the second
best assignments, being the last one stored in X. After a1 is listed, the least cost
element in X is repeatedly selected and removed from that set, and then it is anal-
ysed. The elements chosen in X are a2, . . . , aK . Let ak be an assignment defined
as above, the least cost assignment obtained from aj , and let (te, se) be an arc in
ak but not in aj . Then, under the same computation conditions, two new problems
are solved:

– the second best assignment that contains (te, se);
– the second best assignment that does not contain (te, se).

Chegireddy and Hamacher proved that finding the second best assignment is equiv-
alent to find the shortest cycle in a residual network relatively to ak . One of their
suggestions consists in computing the shortest path from i to j , for each (i, j) ∈ ak

in the new network, and, denoting its cost by d(i, j), to select the path such that
d(i, j)+ cij is minimum. This demands solving at most n shortest path problems,

A note on a new variant of Murty’s ranking assignments algorithm 247

which is of O(n3) if using a label setting algorithm. Therefore, their algorithm has
O(Kn3) time complexity.

3.1 Variant of Murty’s algorithm for ranking assignments

In this subsection a new variant of Murty’s algorithm is presented. It differs from the
original because it is based on the use of a specific order for solving the successive
assignment problems when analysing each k-th assignment, allowing to improve
its complexity order.

Given a general ak , k ∈ {1, . . . , K}, the original Murty’s algorithm imposes
no specific order for solving the successive assignment problems. In the beginning
of this section a straightforward implementation of that algorithm was outlined,
where those problems were solved, from problems of dimension n− r to problems
of dimension 2. In the following the order of analysis will be reversed. In short,
it can be said that analysing ak = {(i1, j1), . . . , (ir , jr), (t1, s1), . . . , (tn−r , sn−r)},
may consist in storing in X each solution of the following problems:

1. shortest assignment a such that (t1, s1), . . . , (tn−r−2, sn−r−2) ∈ a and
(tn−r−1, sn−r−1) �∈ a,

. . .

n− r − 2. shortest assignment a such that (t1, s1) ∈ a and (t2, s2) �∈ a,
n− r − 1. shortest assignment a such that (t1, s1) �∈ a.

It should be noticed that the first problem’s solution is simply the least cost as-
signment in a network with N1 = {tn−r−1, tn−r}, N2 = {sn−r−1, sn−r}, and
A = N1 × N2 − {(tn−r−1, sn−r−1)}. Furthermore, in this case the dimension
of the successive problems is increasing, that is, given a minimum cost assignment
in a network, the next assignment to be determined is the best in a new network
that differs from the previous by the reinsertion of one pair of nodes and one ak arc.
Hereafter will be shown how some of the information may be used from a problem
to the following one, namely the way how a shortest assignment is computed based
on previous information and how nodes are restored in the network. The new variant
of Murty’s algorithm is summarized in Algorithm 1.

Algorithm 1 – Variant of Murty’s ranking assignments algorithm
a←− Minimum cost assignment in (N , A); X←− {a}
k←− 0
While ((X �= ∅) and (k < K)) Do

k←− k + 1
/* Minimum cost assignment in X, computed as the best such */
/* that (i1, j1), . . . , (ir , jr) ∈ ak and (m1, p1), . . . , (m�, p�) �∈ ak */

ak ←− {(i1, j1), . . . , (ir , jr), (t1, s1), . . . , (tn−r , sn−r)}
X←− X − {ak}
a′ ←− {(i1, j1), . . . , (ir , jr), (t1, s1), . . . , (tn−r−2, sn−r−2)}

/* Restore ak computation conditions */
Delete i1, . . . , ir , t1, . . . , tn−r−1 from N1 and j1, . . . , jr , s1, . . . , sn−r−1

248 M. Pascoal et al.

from N2
Delete (m1, p1), . . . , (m�, p�) from A

/* Initialize b with xstn−r = xtn−r sn−r = xsn−r t = 1 */
b←− {(tn−r , sn−r)}
For (h ∈ {1, . . . , n− r − 2}) Do

Restore tn−r−h in N1 and sn−r−h in N2
Restore arcs starting in tn−r−h and ending in sn−r−h in A exclu-
ding (tn−r−h, sn−r−h)

b←− Insert nodes tn−r−h and sn−r−h in assignment b

X←− X ∪ {a′ ∪ b}
Restore (tn−r−h, sn−r−h) in A
b←− {(tn−r−h, sn−r−h), . . . , (tn−r , sn−r)}
a′ ←− a′ − {(tn−r−h−1, sn−r−h−1)}

EndFor
Restore t1 in N1 and s1 in N2
Restore arcs starting in t1 and ending in s1 in A excluding (t1, s1)

b←− Insert nodes t1 and s1 in assignment b

X←− X ∪ {a′ ∪ b}
Restore (t1, s1) in A

EndWhile

Whenever an arc is reinserted, the least cost assignment b coincides with ak for
all non-deleted nodes, therefore we may simply consider that part of ak . Assume
now that b is a best assignment in a given (N1∪N2, A) and suppose i is added to N1
and i′ is added to N2. Suppose that some arcs are also added, which link i to nodes
in N2 and nodes in N1 to i′. Theorem 1 allows to conclude that to recalculate b,
that is, to compute the best assignment in the modified network, one may compute
one shortest path and update the flow in the network, analogously to what is done
in the algorithm outlined in Sect. 2 for the assignment problem. Lemma 1 (proved
in [1]) supports the proof of Theorem 1.

Lemma 1. Let b and b′ be two assignments in (N1∪N2, A), such that b′ is obtained
from b by updating the flow along the arcs of an s-t path p in the residual network
of (N1 ∪N2, A). Then c(b′) = c(b)+ c(p).

Theorem 1. Let x be the flow associated with the minimum cost assignment in
(N1 ∪N2, A). The minimum cost assignment in (N ′1 ∪N ′2, A′), where:

– N ′1 = N1 ∪ {i}, N ′2 = N2 ∪ {i′} and
– A′ = A ∪ {arcs starting in i or ending in i′},

can be obtained by computing the shortest path from s to t , and updating the
flow, in the residual network of (N ′1 ∪ N ′2, A′), with xiv = xui′ = 0, for any
(i, v), (u, i′) ∈ A′ −A.

Proof. Let b be the minimum cost assignment in (N1 ∪ N2, A) and b′ be the
assignment obtained after updating the flow along the arcs of the shortest path p′
from s to t in the residual network of (N ′1 ∪N ′2, A′).

Suppose b′ doesn’t have minimum cost, that is, there exists a b∗ such that
c(b∗) ≤ c(a), for any assignment a, and c(b∗) < c(b′).

A note on a new variant of Murty’s ranking assignments algorithm 249

Let p∗ be the s-t path in the residual network of (N ′1 ∪N ′2, A′) with (s, i) as
the first arc, (i′, t) as the last one, and intermediate arcs that belong, alternatively,
to b and b∗. Now it will be shown that c(b∗) = c(b) + c(p∗). Let b∗∗ be the
assignment obtained from b using p∗. If b∗∗ �= b∗ (otherwise that is proved) p∗
only affects a subassignment a of b, that is, b∗ = a∪d∗, and b∗∗ = a∪d∗∗, where
d∗ �= d∗∗ and d∗∗ is also a subassignment of b. Thus, c(b∗) = c(a) + c(d∗) and
c(b∗∗) = c(a)+ c(d∗∗). Since b is the best assignment in (N1 ∪N2, A), c(d∗) ≤
c(d∗∗), and, as b∗ is the best assignment in (N ′1 ∪N ′2, A′), then c(d∗∗) ≤ c(d∗).
So, c(d∗) = c(d∗∗) and by Lemma 1, c(b∗) = c(b∗∗) = c(b) + c(p∗), which
completes the proof.

Also, from Lemma 1, c(b′) = c(b) + c(p′). Since p′ was assumed to be the
shortest path from s to t , c(p∗) ≥ c(p′) and thus c(b∗) ≥ c(b′), contradicting the
assumption made.
�

Based on these results the minimum cost assignment can be recalculated as in
Procedure 1.1, when two new nodes are added to a given network.

Procedure 1.1. Insert nodes i and i′ in assignment b

p←− Shortest path from s to t in (N1 ∪N2, A)

If (πt < +∞) Then Update x in 1 unit of flow along arcs of p

The main advantage of the proposed variant, over the straightforward imple-
mentation of Murty’s algorithm, is the replacement of successive assignment prob-
lem resolutions by considering an initial assignment and then adding nodes and
arcs to the network, that is, solving shortest path problems and updating some arc
flows. In sum, the analysis of each ak consists in reoptimising each solution using
previous information, thus performing as many operations as when solving a sin-
gle assignment problem, instead of n − 1, as when applying the straightforward
implementation. Theorem 2 proves that, in fact, Algorithm 1 has the same worst-
case complexity as Chegireddy and Hamacher’s algorithm, instead of O(Kn4), the
complexity order of the original Murty’s algorithm.

Theorem 2. In a worst-case analysis, Algorithm 1 ranks the K least cost assign-
ments in O(Kn3) time complexity.

Proof. In the worst-case each assignment demands the computation of n shortest
paths, therefore the complexity of the proposed variant is O(Kn c(n)), with c(n)

the number of operations needed to find the shortest path. Despite of the existence
of arcs with negative cost, the shortest path problems can be solved by an auction
algorithm due to Bertsekas et al. [4], with O(n2) operations, thus Algorithm 1 has
O(Kn3) complexity.
�

250 M. Pascoal et al.

3.2 Example of the variant of Murty’s algorithm

Now Algorithm 1 is exemplified by using the network with cost matrix C =


0 0 2 2
1 3 0 4
0 6 1 0
3 3 2 0


. As it has been described the algorithm begins by solving the assign-

ment problem and X = {{(1, 2), (2, 3), (3, 1), (4, 4)}}. The unique element of X,
a1, is then selected and three new problems are solved (as shown in Fig. 1 and Table
1).

...................................
........
...........

......................... s

1

2

.........
...
.....3

.........
...
.....4

.........
...
.....1

2

3

.........
...
.....4

.........
...
.....t..

...
...

.....
.........
.........
.........
.........
.........
.........
.........
.........
.........
.................
..............

...
...
........
......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................
..............

.............

...
...
........
......

(a)

.........
...
.....s

1

...................................
........
...........

......................... 2

...................................
........
...........

......................... 3

...................................
........
...........

......................... 4

.........
...
.....1

2

.........
...
.....3

.........
...
.....4

...................................
........
...........

......................... t..
...

..
....
.........
....
.........
....
.........
....
....................
.............

..............
..............
..............
..................
............................

..............
..............
..................
..............

..........
..........
..........
..........
..........
.................
.............. ...

...
........
......

...
...
........
......

..
.........
.........
.........
.........
.........
.........
.........
.........
.................
..............

(b)

...................................
........
...........

......................... s

...................................
........
...........

......................... 1

...................................
........
...........

......................... 2

...................................
........
...........

......................... 3

...................................
........
...........

......................... 4

...................................
........
...........

......................... 1

...................................
........
...........

......................... 2

...................................
........
...........

......................... 3

...................................
........
...........

......................... 4

...................................
........
...........

......................... t..
...

...
.....

.........
....
.........
....
.........
....
.........
....
....................
.............

.........
.........
.........
.........
.........
.........
.........
.........
.........
.................
..............

..............
..............
..............
..................
..............

.....
..............
..............
..............
..................
...

...
........
......

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......................
..............

.............

..
...

.........
.........
.........
.........
.........
.........
.........
.........
.........
.................
..............

..
...
........
......

(c)

Fig. 1a–c. Minimum cost assignment ranking in (N , A): (a) Inserting 3 in N1 and 1 in N2, with
c31 = +∞, in assignment {(4, 4)}; (b) Inserting 2 in N1 and 3 in N2, with c23 = +∞, in {(3, 1), (4, 4)};
(c) Inserting 1 in N1 and 2 in N2, with c12 = +∞, in {(2, 3), (3, 1), (4, 4)}

Table 1. Ranking assignments – Analysing a1 = {(1, 2), (2, 3), (3, 1), (4, 4)}.
a1 computation conditions: No deleted arcs or nodes.
Deleted arcs: (1, 2), (2, 3), (3, 1), (4, 4).
Deleted nodes: 1, 2, 3 from N1, and 1, 2, 3 from N2

Arcs/nodes added Computed assignment Assignment stored in X c

(4, 4) to A
3 to N1, 1 to N2 {(3, 4), (4, 1)} {(1,2),(2,3),(3,4),(4,1)} 3

(3, 1) to A
2 to N1, 3 to N2 {(2, 1), (3, 3), (4, 4)} {(1,2),(2,1),(3,3),(4,4)} 2

(2, 3) to A
1 to N1, 2 to N2 {(1, 1), (2, 3), (3, 4), (4, 2)} {(1,1),(2,3),(3,4),(4,2)} 3

After that the set of candidates to a next-best assignment is
X = {{(1, 2), (2, 3), (3, 4), (4, 1)}, {(1, 2), (2, 1), (3, 3), (4, 4)},

{(1, 1), (2, 3), (3, 4), (4, 2)}}

A note on a new variant of Murty’s ranking assignments algorithm 251

with costs 3, 2 and 3, respectively. In the following step a2 = {(1, 2), (2, 1),

(3, 3), (4, 4)} is picked from X and an analysis, similar to the previous one, is
made, after restoring the conditions in (N1 ∪ N2, A) when a2 was determined.
In this case it consists in deleting (2, 3) from A, 1 from N1, and 2 from N2. The
problems solved when analysing a2 are shown in Table 2. So,

X = {{(1, 2), (2, 3), (3, 4), (4, 1)}, {(1, 1), (2, 3), (3, 4), (4, 2)},
{(1, 2), (2, 1), (3, 4), (4, 3)}, {(1, 2), (2, 4), (3, 1), (4, 3)}} .

Table 2. Ranking assignments – Analysing a2 = {(1, 2), (2, 1), (3, 3),

(4, 4)}.
a2 computation conditions: Arc (2, 3) deleted. Nodes 1 from N1, and 2 from
N2 deleted.
Deleted arcs: (1, 2), (2, 1), (3, 3), (4, 4).
Deleted nodes: 2, 3 from N1, and 1, 3 from N2.

Arcs/nodes added Computed assignment Assignment stored in X c

(4, 4) to A
3 to N1, 3 to N2 {(3, 4), (4, 3)} {(1,2),(2,1),(3,4),(4,3)} 3

(3, 3) to A
2 to N1, 1 to N2 {(2, 4), (3, 1), (4, 3)} {(1,2),(2,4),(3,1),(4,3)} 6

4 Computational experiments

In order to evaluate the performance of the new variant of Murty’s algorithm from an
empirical point of view, several computational experiments comparing it both with
its original version and with the one proposed by Chegireddy and Hamacher, have
been performed. In this section some of the results obtained in those experiments
are reported and analysed.

The algorithms have been implemented in C language originating codes MA (for
a straightforward implementation of Murty’s algorithm), CHA (for an implementa-
tion of Chegireddy and Hamacher’s algorithm), and VMA (for an implementation
of the new variant of Murty’s algorithm). The tests were performed on an AMD
Athlon with a 1.5 GHz processor and 512 Mbytes of RAM, running over Linux.
The three implementations followed the descriptions in Sect. 3. MA, CHA and VMA
were all coded using the same data structure for set X (a maximum storage of K

assignments was considered). Moreover, for solving shortest path problems (when
finding the best assignment in MA and VMA, and the 2nd best assignment in CHA) the
same label correcting algorithm, using a FIFO to store labeled nodes, was applied.
A lower worst-case complexity algorithm could have been used in the codes (for
instance a label setting one as suggested in [6]). However, label correcting algo-

252 M. Pascoal et al.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
n = 100

K

S
ec

on
ds

MA
CHA
VMA

0 2 4 6 8 10
0

5

10

15

20

25

30

35
n = 200

K

S
ec

on
ds

MA
CHA
VMA

Fig. 2. Test complete bipartite networks, n = 100 and n = 200

rithms have a good practical performance, moreover, for a proper comparison, all
three codes use the same routine to find a shortest path.

A first test-bed consisted of instances assign100, . . .,
assign600, drawn from the OR-library available at
http://mscmga.ms.ic.ac.uk/info.html, by Beasley [2] (see also
[3]). Those are complete bipartite network problems with n ∈ {100, . . . , 600}, and
for each of these dimensions K = 10 assignments were ranked. The correspondent
running time results are shown in the plots of Figs. 2, 3 and 4. VMA was the code
with best results, followed by CHA and then MA. That code shows an improvement
of about 88% relatively to MA CPU times and of 40% to 70% for CHA times. The
MA code has a quite big increase after analysing a1, specially for higher dimension
networks, while both CHA and VMA present CPU times linearly dependent on K .
One of the reasons why running times grow so quickly, when analysing a1, and
then selecting a2 in X, may be because this analysis implies solving an increasing
number of assignment problems for higher values of n. Besides, at most 10
assignments are stored in X.

Later a more exhaustive study of MA, CHA and VMA’s behaviour was made.
It used smaller complete bipartite networks with costs uniformly generated in
{0, . . . , 1000} and n ∈ {50, 100, 150, 200}, but more assignments were ranked
(K = 100). For each n, 10 problems were generated with different seeds. The
average CPU times obtained are shown in the plots of Figs. 5 and 6. The results
confirmed the relative behaviours of the three codes.

As expected from the theoretical analysis, MA had a performance worse than the
other two codes. As for CHA and VMA, in terms of computational requirements, the
overall analysis of each ak consists in finding two 2nd best assignments in CHA, and
one best assignment in VMA. Considering the worst-case, the 2nd best assignment
problem demands the computation of n−1 shortest paths in a network with 2(n−1)

nodes. On the other hand, VMA solves n shortest path problems in networks with
increasing dimensions, from 4 to 2n nodes. This might explain the best empirical

A note on a new variant of Murty’s ranking assignments algorithm 253

0 2 4 6 8 10
0

50

100

150

200

250

300
n = 300

K

S
ec

on
ds

MA
CHA
VMA

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450
n = 400

K

S
ec

on
ds

MA
CHA
VMA

Fig. 3. Test complete bipartite networks, n = 300 and n = 400

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900
n = 500

K

S
ec

on
ds

MA
CHA
VMA

0 2 4 6 8 10
0

500

1000

1500

2000

2500
n = 600

K

S
ec

on
ds

MA
CHA
VMA

Fig. 4. Test complete bipartite networks, n = 500 and n = 600

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
n = 50

K

S
ec

on
ds

MA
CHA
VMA

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40
n = 100

K

S
ec

on
ds

MA
CHA
VMA

Fig. 5. Complete bipartite networks, n = 50 and n = 100

254 M. Pascoal et al.

0 20 40 60 80 100
0

50

100

150

200

250
n = 150

K

S
ec

on
ds

MA
CHA
VMA

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900
n = 200

K

S
ec

on
ds

MA
CHA
VMA

Fig. 6. Complete bipartite networks, n = 150 and n = 200

performance of VMA relatively to CHA, although their theoretical complexities are
the same.

5 Conclusions

Despite of the practical interest in ranking assignments by order of cost, only an
algorithm proposed by Murty (with O(Kn4)) and another one due to Chegireddy
and Hamacher (with O(Kn3)) are known in the literature.

In this work a variant of Murty’s algorithm, which leads to a specific implemen-
tation of the former algorithm depending on the order used for analysing the arcs
of each ak , k ∈ {1, . . . , K}, was proposed. It was shown that this variant improves
the worst case complexity of the former algorithm to O(Kn3). Also, comparative
computational experiments were presented, which confirm its superiority in prac-
tice, both over the original Murty’s algorithm and the Chegireddy and Hamacher’s
algorithm.

References

1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows : Theory, algorithms and applications.
Prentice Hall, Englewood Cliffs, NJ

2. Beasley JE (1990) Linear programming on cray supercomputers. Journal of the Operational
Research Society 41(2): 133–139

3. Beasley JE (1990) Or-library: distributing test problems by electronic mail. Journal of the Oper-
ational Research Society 41(2): 1069–1072

4. Bertsekas D, Pallottino S, Scutellà M (1995) Polynomial auction algorithms for shortest paths.
Comp Opt Appl 4: 99–125

5. Carraresi P, Sodini C (1983) A binary enumeration tree to find K shortest paths. In: Proc. 7th Sym-
posium on Operations Research 45 in Methods of Operations Research. Athenäum/Hain/Hanstein,
pp 177–188

6. Chegireddy CR, Hamacher HW (1987) Algorithms for finding K-best perfect matchings. Discrete
Applied Mathematics 18: 155–165

A note on a new variant of Murty’s ranking assignments algorithm 255

7. Dell’Amico M, Toth P (2000) Algorithms and codes for dense assignment problems: the state of
the art. Discrete Applied Mathematics 100: 17–48

8. Gabow HN (1977) Two algorithms for generating weighted spanning trees in order. SIAM Journal
on Computing 6(1): 139–150

9. Hamacher HW, Queyranne M (1985/6) K-best solutions to combinatorial optimization problems.
(Annals of Operations Research, No. 4) Baltzer Science Publishers, pp 123–143

10. Kuhn HW (1955) The hungarian method for the assignment problem. Naval Research Logistics
Quarterly 2: 83–97

11. Lawler EL (1976) Combinatorial optimization: Networks and matroids. Holt Rinehart andWinston
12. Murty KG (1968) An algorithm for ranking all the assignments in increasing order of cost.

Operations Research 16: 682–687

