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Abstract. There is a symmetric nonnegative matrix A, subordinate to a given bipartite graph G
on n vertices, with eigenvalues �1��2� ···��n if and only if �1+�n�0, �2+�n−1�
0������m+�n−m+1�0, �m+1�0������n−m�0, in which m is the matching number of G.
Other observations are also made about the symmetric nonnegative inverse eigenvalue problem with
respect to a graph.

1� Nonnegative Inverse Eigenvalue Problems

The nonnegative inverse eigenvalue problem (NIEP) asks which collections of n
complex numbers (repeats allowed) occur as the eigenvalues of an n-by-n, entry-
wise nonnegative matrix. This problem has attracted considerable attention over
50+ years [7] and, despite many exciting partial results, remains quite unresolved.
The companion symmetric nonnegative inverse eigenvalue problem (SNIEP) in
which the realizing nonnegative matrix is required to be symmetric and the eigen-
values are (of course) real is also open and has also been the subject of attention e.g.
[2, 6], etc. The intermediate real nonnegative inverse eigenvalue problem (RNIEP)
asks which collections of n real numbers occur as the eigenvalues of an n-by-n
nonnegative matrix and is now known to be a properly different problem from the
SNIEP [6].

2� Graph Theoretic Versions

Mathematically, it is natural to consider graph theoretic versions (of the nonneg-
ative inverse eigenvalue problems), in which a non-edge requires a 0 entry in the
realizing matrix. Specifically, given a directed (undirected) graph G on n vertices,
which may be taken to be 	1�����n
, we say that an n-by-n matrix A=�aij� is
subordinate to G if aij �=0, i �=j, implies that �i�j� (resp. 	�i�j�
� is an edge of
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G. (The diagonal entries of A are free.) The nonnegative inverse eigenvalue prob-
lem relative toG (G-NIEP) then just asks which collections of n complex numbers
occur as the eigenvalues of a nonnegative matrix subordinate to the directed graph
G. The G-SNIEP and G-RNIEP are defined analogously. For example in the G-
SNIEP, G is undirected and the n numbers are real, while the realizing matrices
are symmetric. Because, we only require that the realizing matrix be subordinate
to G (rather than having graph exactly G), the solution to each of our problems is
always a closed set. The alternative versions of our problems, in which the realizing
matrix is required to have graph exactly G, are also of interest, but the topological
nature of the solution set can be quite subtle. The union of the solution sets of such
problems for graphs contained inG gives the solution to (one of) our problems for
G.

3� Bipartite Graphs and the G-SNIEP

An undirected graph G is bipartite if its vertices may be partitioned into two sets
(the ‘parts’) in such a way that all edges have a vertex in each part. The complete
bipartite graph for a given such partition has all allowed edges. An important
parameter of a (bipartite) graph is the matching numberm=m�G�: The maximum
number of vertex-disjoint edges ofG. For a bipartite graphG,m�G� is never more
than the smaller of the cardinalities of its two parts, and equality is attained for
complete (and other), bipartite graphs. All trees are bipartite, and it is a simple
exercise to see that whenG is a tree, the solutions to each of G-NIEP, G-SNIEP and
G-RNIEP are the same. Thus, when we solve the G-SNIEP, we also solve the other
two problems for trees. (Here, as usual and throughout, we identify as convenient,
an undirected graph with the directed graph having two oppositely directed edges
in place of each undirected edge.) The first instance of study of the G-SNIEP for
particular G’s (though not stated in these terms) seems to have been the content
of [3] in which paths (tridiagonal matrices) were considered. Paths are trees, and a
path on n vertices has matching number k if n=2k or n=2k+1, and the length
of the path (even or odd) played a role in the observations of [3].

4� Resolution of the G-SNIEP for Bipartite Graphs

If A is an n-by-n symmetric nonnegative matrix, we list the necessarily real eigen-
values of A as �1��2� ···��n. Of course, �1�0 (and �1+�n�0), but the
form of our solution is to give a complete set of inequalities on the �i’s given only
the information that A is subordinate to the bipartite graph G. Without knowing
the solution, it does not seem obvious that the solution should be describable via
simple, even linear, inequalities in the �i’s. However, we show that the solution
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may be presented as follows (for m=m�G��:





�1+�n �0
�2+�n−1 �0

���
�m+�n−m+1 �0

�m+1 �0
���

�n−m �0





(∗)

Of course, if n is even and m�G�= 1
2n, then the single � inequalities do not

appear. We first demonstrate the necessity of these inequalities.

LEMMA 1. Let G be a bipartite graph on n vertices with matching number m
and suppose that A is a symmetric nonnegative matrix subordinate to G. The
eigenvalues of A satisfy the inequalities (∗).
Proof. Write A as A=D+B, in which the diagonal entries of B are 0 and D is

a nonnegative diagonal matrix. From the definition of matching number, it follows
that, in the adjacency matrix of G, the maximum number of 1’s, no two of which
lie in the same row or column, is 2m�G�, e.g. [1, p. 44]. So, the maximum number
of nonzero entries of B, no two of which lie in the same row or column of B is no
more than 2m�G�. This means that any k-by-k submatrix of B, k>2m�G�, will
have zero determinant, and that rank �B��2m�G�. As B is similar to −B via the
signature matrix with 1’s in diagonal entries corresponding to one of the parts ofG
and −1’s in the other diagonal entries, we have

�n = −�1

�n−1 = −�2
���

�n−m+1 = −�m

�m+1 = 0
���

�n−m = 0

in which �1� ···��n are the eigenvalues of B. But, since D is positive
semidefinite, we have, via e.g. the Weyl inequalities [4, Ch. 4], that

�i��i�i=1�����n

in which �1� ···��n are the eigenvalues of A. It follows that the �i’s satisfy the
inequalities (∗). �

We next show that the inequalities (∗) are sufficient for the existence of a
symmetric nonnegative matrix subordinate to G.
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LEMMA 2. Let G be a bipartite graph on n vertices with matching number m
and suppose that �1� ···��n satisfy the inequalities (∗). Then there ex-
ists a nonnegative symmetric n-by-n matrix subordinate to G with eigenvalues
�1������n.
Proof. First note that for any two real numbers ��� such �+��0 there

is a 2-by-2 symmetric nonnegative matrix whose eigenvalues are � and �. Now,
consider a collection of edges of G that realize m�G�. Suppose, wlog, that they
are 	1�2
, 	3�4
�����	2m−1�2m
. Construct a 2-by-2 symmetric nonnegative
matrix with eigenvalues �1��n and call it A1����� construct a 2-by-2 symmetric
nonnegative matrix with eigenvalues �m��n−m+1 and call it Am. Further, let the 1-
by-1 matrix ��j� be Aj�j=m+1�����n−m. Now A1⊕···⊕Am⊕Am+1⊕
···⊕An−m is a symmetric nonnegative n-by-n matrix with eigenvalues �1������n

that is subordinate to G. �

Taking the two lemmas together, we have our principal result.

THEOREM 1. Let G be a bipartite graph on n vertices with matching number
m. There is a symmetric nonnegative n-by-n matrix subordinate to G and with
eigenvalues �1� ···��n if and only if �1� ···��n satisfy the inequalities (∗).
The inequalities (∗) imply, for example, the following.

COROLLARY 1. An n-by-n symmetric nonnegative matrix subordinate to the bi-
partite graph G has at most m�G� negative eigenvalues and at least n−m�G�
nonnegative eigenvalues.

For general symmetric n-by-n nonnegative matrices, it has been known since [7]
that theremay be asmany as n−1 negative eigenvalues (thus only the Perron root is
nonnegative). However, as the corollary indicates, a sparsity pattern may guarantee
more nonnegative eigenvalues. In fact, any sparsity pattern will guarantee more
nonnegative eigenvalues. Using the independence number of an undirected graph,
we may substantially broaden the corollary. The independence number i= i�G�
of an undirected graph G is the maximum number of vertices of G among which
there are no edges (i.e. the subgraph induced by this independent set of vertices has
no edges). It is a straightforward exercise that for bipartite G, i�G�=n−m�G�.
Our further observation is the following.

THEOREM 2. An n-by-n symmetric nonnegative matrix subordinate to the undir-
ected graph G has at least i�G� nonnegative eigenvalues.
Proof. Let A be a symmetric nonnegative matrix subordinate to G. Suppose,

wlog, that 	1�2�����i
 is an independent set of vertices of G realizing i�G�.
Then, the principal sub-matrix of A lying in rows and columns 	1�2�����i
 of A,
A�	1�����i
�, is a nonnegative diagonal matrix, which, therefore, has nonnegative
eigenvalues a1�a2� ···�ai. But, the interlacing inequalities [4, Ch. 4] show
that �1�a1, �2�a2������i�ai�0, in which �1� ···��n are the
eigenvalues of A. �
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We note that, unless G is the complete graph, i�G��2, so that any nonnegative
symmetric matrix with at least one off-diagonal 0 entry has at least two nonnegative
eigenvalues. Is there a converse to theorem 2, i.e. for each undirected graph G is
there a symmetric nonnegative matrix A, subordinate to G, that has only i�G�
nonnegative eigenvalues? or, is there a better statement in purely combinatorial
terms?
We again note that if G is a tree, then the inequalities (∗) also characterize the

solution to the G-NIEP and G-RNIEP as well.

QUESTION 1. It is interesting that, for bipartite graphs at least, the solution to
the G-SNIEP is not only convex and polyhedral but is describable by such simple
linear inequalities. Is the solution to the G-SNIEP always convex?, polyhedral?,
describable via the nonnegativity of sums of the �i’s? What about the G-NIEP and
G-RNIEP?

We close with another observation that follows from our work herein. In [5]
it was shown that for a tree T , the maximum multiplicity of an eigenvalue, in a
symmetric matrix whose graph is T , is the path cover number p�T� of T (the
fewest vertex disjoint paths of T that cover all the vertices of T , a single vertex
counting as a path). In our proof of Lemma 1 herein, it was noted that B, whose
graph may be taken to be any tree T , has n−2m�T� eigenvalues equal to 0. It
follows that for any tree T , we have the purely graph theoretic inequality

n−2m�T��p�T��

Though, the disparity can be large, equality often occurs, and this lower bound for
the path covering number does not seem readily apparent by purely graph theoretic
arguments.
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