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Abstract. Nonparametric inference for point processes is discussed by way histograms, which
provide a nice tool for the analysis of on-line data. The construction of histograms depends on a
sequence of partitions, which we take to be nonembedded. This is quite natural in what regards
applications, but presents some theoretical problems. In another direction, we drop the usual inde-
pendence assumption on the sample, replacing it by an association assumption. Under this setting, we
study the convergence of the histogram, in probability and almost surely which, under association,
depends on conditions on the covariance structure. In the final section we prove that the finite dimen-
sional distributions converge in distribution to a Gaussian centered vector with a specified covariance.
The main tool of analysis is a decomposition of second order moment measures.
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1. Introduction

Nonparametric inference for point processes has been developed by using methods
similar to those employed in classical functional estimation, where the estimators
are either histograms or kernel estimators. Although the kernel approach has be-
come increasingly popular as it produces smooth estimators, the use of histograms
still proves efficient in many situations. In addition, some recent variations on the
classical histogram help improve the convergence rates of such an estimator (see
Beirlant et al. [2]). Histograms have been used in estimation in several models
depending on point processes. Some examples include regression, as irdBensa’
[3], Palm distributions, as in Karr [23—-25] or &8 [29], mean local distributions

of composed random measures, as in Mendes Lopes [26] or Saleh [36, 37], or
density estimation, as in Ellis [11]. These references are not an account of the
existing literature, but rather a mention of examples illustrating each problem. For
a more complete list of publications on these subjects the interested reader is re-
ferred to one of the following monographs: Bosq [6], Bosq and Lecoutre [8], Bosq
and Nguyen [7] or Karr [23]. All the above-mentioned problems produce results
which exhibit a similarity. This similarity is due to the fact that these problems
may be addressed in a unified way by defining a convenient general framework,
reducing the estimation of the functions in each case to the estimation of a Radon—
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Nikodym derivative of the means of two given random measures. Some examples
as to how this framework may include some of the problems referred to above will
be given later. This general framework has been used in Bkasa Fabre [4],

Ellis [11], Ferrieux [13, 14], Jacob and Mendes Lopes [17], Jacob, Oliveira [19-21]
and Roussas [33-35]. Articles [19] and [21] are concerned with histograms, while
the others study kernel type estimators. Papers [11] and [33—-35] used a somewhat
narrower framework by imposing some special properties on the random measures,
namely, assuming one of them to be almost surely fixed. Jacob and Mendes Lopes
[17] deals with absolutely continuous random measures, thus reducing the problem
to an analysis of the random densities involved. Half of the articles cited study
estimation based on an independent sampling of the point process. Some results
for dependent sampling have been obtained by Bdresad Fabre [4] where the
kernel estimator is constructed under strong mixing. Suppressing the independ-
ence assumption, Roussas [33] and, more recently Ferrieux [13, 14] considered
kernel estimators based on associated samples. Roussas [34, 35] also studied kernel
estimates for associated random fields.

Here we will be concerned with histograms based associated compound point
processes. These models provide interesting examples for illustrative purposes. The
use of histograms relies on the choice of a sequence of partitions of the base space,
which typically is constructed by splitting some of the sets of a partition to obtain
the next one. This procedure produces embedded partitions which are convenient
as they allow the use of martingale tools for proving the required convergences.
This was used by the authors in [19]. However, this procedure is quite unnatural
from an applications point of view. For such cases, itis customary to require that the
sets in each partition are of same size, with respect to some reference measure. This
requirement, together with the embedding procedure, produces sets which decrease
quite fast. This fact may mean that the results thus obtained are of limited interest,
as the number of new observations needed to change to the next partition would be
very large. Nonembedded partitions have been used, for example, in AboweJaoud”
[1], Grenander [15] or Karr [23]. The conditions used typically link the number of
sets in each partition to the moments of the unknown distribution, as it is done in
Karr [23]. These authors [21] gave another solution to this problem, using the same
general framework as is done here, but for independent samples. The conditions
imposed depend only on the distribution or only on the sizes of the sets. As this
seems a more natural procedure to apply, the results in [21] will be the base for the
extension discussed here to associated samples.

2. Preliminaries

In order to define the framework more precisely &be a complete, separable
and locally compact metric space; IBtbe the ring of relatively compact Borel
subsets ofS; and let M be the space of nonnegative Radon measureS. gh
random measure is any function defined on some probability space with values in
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M measurable with respect to thealgebra induced by the topology of vague
convergence (we refer the reader to Daley and Vere-Jones [10], Kallenberg [22]
or Karr [23] for basic properties on random measures). In what follpwasd
are random measures which are supposed to be integrable, that is, the set functions
w(B) = En(B) andv(B) = E&(B) define elements oM, and these mean meas-
ures satisfy the absolute continuity relationg v. As it will be evident, we will
be interested in estimating a version of the Radon—Nikodym derivatiyehd We
will denote byl 4 the indicator function of the set.

We now indicate how some of the estimation problems mentioned above may
be included in the present framework. In each setting, we will be interested in the
interpretations of the Radon—Nikodym derivative/dv.

— (Ellis [11]) Density estimation: let be a measure o8 and taket = v a.s.,

n = 8x, whereX is a random variable with absolutely continuous distribution
with respect ta. Then di/dv is the density ofX with respect to.

— Regression: supposE is an almost surely nonnegative real random vari-
able andX is a random variable oB. Then, if¢ = 5§y andn = Ydy, the
conditional expectatioft(Y|X = s) is a version of g /dv.

— Thinning: supposé = Z,N:l 8x,, where theX,,, n € N, are random variables
onS, «,, n € N, are Bernoulli variables, conditionally independent given the
sequenceX,,, n € N, with parameterg(X,,), and puty = Zf’zl a;8x,. Then
p = du/dv is the thinning function giving the probability of suppressing each
point.

— Marked point processes: let= Zf\’: 18x,, 1, be a point process daix T such
that the margig = Zf’zl 8x, isitself a point process. B C T is measurable,
choosingw, = I 3(T},), andy = YV, a;8x,, we have

E¢(A x B) = / d—'u(s) E¢(ds x R).
A dU

Thus ¢ /dv is the marking function.

— Cluster point processes: suppadse- Z,N:l Z?’;l 8(x:.v,;) IS a point process
onSxSsuch thafy "~ 27;1 dy, ; is also a point process (for which it suffices
to assume that, for exampl®, andN,,, n € N are almost surely finite). The
process = Zf\’: 1 0x, identifies the cluster centers and the procegges=
ZlN: 19y, ; identify the points. The distribution af may be characterized by
a Markovian kernel of distributionér,, x € S) with means(u,, x € S)
such that, conditionally o = vazl 8y;» (Lxqs - -+ Lx,), It has distribution
Ty @ -+ ®my,. Definingn(A) = ¢(A x B), with B € B fixed, we have

du
E(X) = ux(B)
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v-almost everywhere.

— Markovian shifts: this is a special case of the previous example, \Whea
1 a.s.,i > 1. In reference to at the previous example, the conclusion is that
(Y1, ..., Y,) has distributionu,, ® - -- ® u,, (we replaced the double index
of theY variables by a single one as, for edclixed, there is only one such
variable). Then it would follow that

d_,u(x) = ux(B) =P(Y € B|X = x).
dv

So, as illustrated by the above examples, we will be concerned with the es-
timation of du/dv, based on a sampléty, 1), ... , (§,, n,)) of the random pair
(&, n). As already mentioned, we suppose the péifsn;),i = 1,...,n, to be
associated: given € N and any two coordinatewise nondecreasing functigns
defined onM?*, for which the covariance below exists, we have

Cov(f (51, m1s -+ s Ens 1)y 882, M1, -+ 5 &y 1)) 2 0.

(For ¢1,2, € M, we say thatt; <& if & — &1 € M). For basic results on
association, we refer the reader to Newman [27], and for association of random
measures to Burton and Waymire [9] or Evans [12]. An account of the relevant
results pertinent to our purposes may be found in Ferrieux [13, 14].

We note that the density estimation case and the regression case mentioned
above are not meaningful for the associated sampling. In fact, it is easily checked
that, whenever a point process has a fixed number of independent points, it cannot
be associated with itself. Thus, it is impossible to construct a sequence of associated
point processes with that same distribution. To check this, sugpeséy. Then it
is easily seen that Ce§, &£) = Eéx x)—Px®Py. More generally, it = >""_, 8x,,
for some independent random elemektswith distributionsPy,, not necessarily
equal, then

n

Cov(§, &) = Y (Edcx, x,) — Px, ® Py,)
i=1

AsESx, x,) Is a measure 08xSwith support included in the diagonal affg, ®
Py, is not supported by the diagonal (except in degenerate cases), we actually have
a signed measure.

It should also be noted that it is not clear whether there is any connection
betweenX;, ..., X, being associated angk,, ... ,dx, being associated. This
implies that there is probably no overlap with the work of Ellis [11] or Roussas
[33-35].

In order to define the histograms to be employed we need a sequence of par-
titions. For reasons that will be explained later we will tdikg, ¥ € N, to be a
sequence of partitions of a fixed compact BetZ S, instead of partitions of the
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entire space. On the followinfj represents a set belonging to some partifipn
We impose the following assumptions:

(PY foreachk e N, I1; C B;

(P2 for eachk € N, IT, is finite;

(P3) 6, = sup{diam(l): I € I1;} — O;
(P4) for eachk € Nandl € Iy, v(I) > O;
(PS5 maxen, v(I) — O.

Note that(P4)and(P5)introduce assumptions which are relative to the measure
v. In some cases we need ti{BY) and(P5) be satisfied with respect to some other
reference measurve meaning that we require(I) > 0, for everyl € I, k € N,
and maxem, A(I) — 0. The correct indication of this measure is of importance
when coupled with condition@1) and(M2), to be introduced later, where there
exists a measure playing a role of reference. We need these two reference measures
to be identical.

Before we proceed with the introduction of further assumptions, we may define
an approximation to (a suitable version of) lv. Givens € B, we denote by
I (s) the unique set of1; containing the point, and, for eactk € N, define the
function

_ p(l) _ (k(s))
g“”‘ggvaﬂ“”‘vm@»‘

In the case of embedded partitions, the convergenggetofsome version ofd/dv

is just a martingale result, which, however, is no longer available in our setting.
As is well known, if there exists a continuous versigrof the Radon—Nikodym
derivative g /dv, and if the sequence of partitiol,, £ € N, satisfie{P1)}+(P4),

the convergence

suplf(s) — gk(s)| — O

seB
holds. The fact that everything is happening within a compact set is crucial to the
proof of this uniform convergence. That is why we only consider partitions of a
fixed compact seB.

Based on the samplé&, n1), ... , (., 1n,)), define
1 1
$n=;;$i and Un=;;'7i- 1)
The histogram estimator of is then
n, n,
oy = 3 D ) = Dnlles) 2)

S En(D E,(Ii(s))



232 PIERRE JACOB AND PAULO EDUARDO OLIVEIRA

(as usual, we defing, (s) as zero whenever the denominator vanishes), where the
dependence of onn is to be made precise later. The convergencg,db some
version of gl /dv follows from the convergence of, — g, to zero. This latter con-
vergence was obtained, in the independent case, via a martingale result concerning
product measures of the tyfi&; ® ¢,, wheresq, & € {&, n} (see Lemma 3.1 in
[19]). Again, this was a consequence of the embedding of the partitions, no longer
available in the present framework. To circumvent this difficulty, we consider an
assumption concerning a decomposition of measures on the producSspacas

is done in [21]. We will say that a measureon Sx S satisfies conditiotfM) with
respect to the measuteon Sif m = m, + m, wherem, is a measure on, the
diagonal ofSx S, andm; is a measure 08xS\ A, such that

(M1) m; < v ® v and there exists a version of the Radon—Nikodym derivative
dmq/dv ® v which is bounded;

(M2) m, <« v*, wherev* is the measure on defined by liftingv, that is, such
thatv*(A*) = v(A) with A* = {(s,s) : s € A}, and there exits a continuous
versiony, of the Radon—Nikodym derivativest} /dv*.

Then the following result, which will play the role of the above-mentioned
martingale lemma in the independent case, holds.

THEOREM 2.1 [21]. Supposen is a measure orsx S that satisfies condition
(M) with respect tar and suppose the sequence of partitidfhs & € N, satisfies
(P1)—(P5) Then

S XD | s i)

Il V(I)

uniformly onB.
Proof. Using the decomposition included (i) we have two terms to examine,
corresponding taz;, andm,. Regarding the first term,

mi(I x I) B 1
2 oy e = Z(mf,x,”d‘@“) 11(s)

Il l1elly
< suplyals, 01 Y v 14(s)
s,teB Tell;
< suplya(s, t)| maxv(l) — 0.
s,teB el
As for the second term
ma(1 x I) map(I™)
2 o @ = 2 g i
1€l v l1elly v

l *
= > (V*U*) /I Y2 dv )h(s)

Il
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and the uniform convergence of this expressiop1@, s) is just another version of
the result giving the already mentioned convergence of the seqgence N. O

Note that(M) must be defined with respect to some measure. If we do not
mention any such measure, it will be understood that the measuréAs it was
stated after the introduction of conditio(B1)—(P5)what will be important is that
the reference measure is the same in both cases. Then, the convergence stated
in Theorem 2 still holds with the obvious modification on the definitionygf
becoming the Radon—Nikodym derivative /o with respect to the lifting of the
reference measure used.

We conclude this section by quoting a useful result, which makes possible the
separation of the variables in the expressfipn

LEMMA 2.2 [18]. Let X and Y be non-negative integrable random variables.
Then, fore > 0 small enough,

I5-25-+)c

E(Y)
e -1~ izw) w1 - 2w -
E(X) 4E(X) E(Y) 4E(X)

Using this Lemma, it follows that, far > 0 small enough,

[RG)  ais)
Hﬁ@%—&@ﬂ>d-—{§ﬂh“» UU“”)>8}C

C{WJ&@D—#M&@D\>EWQGD}U

& V2 (Ii(5)) }

3
4 p(I(9)) ©)

{E(@@»—vauwﬂ

3. Convergence of the Estimator

Having introduced all the definitions and preliminary results needed, we may now
investigate the convergence of the estimafprWe begin with the convergence

in probability, for which we state two versions. The second version extends to
an almost complete result which we will not state here for reasons that will be
explained later. In order to be more explicit about the dependence between the
different indices used, we will denote the set involved /iy, to emphasize the
dependence df onn, the size of the sample.
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THEOREM 3.1.Let B € B be compact and lef be a version ofii/dv con-
tinuous onB. Suppose the sequence of partitidig, k € N, satisfies conditions
(P1)—(P5)and that there exist measures* andm™" such that, for every € N,

1< 1 <
- z COV(%'[, E/) < mE,E and — E COV(ni, r’l) < m™h (4)
n : n .

i,j=1 i,j=1
with m%¢ andm™" both satisfyingM) with respect ta> and

n min v(I) — +o0. )
Tl
Then, for every € B, f,(s) converges in probability tg(s).
Proof. After separation of variables by using (3), we apply Chebyshev’s in-
equality. The term corresponding #deads to

I n
P <|ﬁ"(lk(”)(s)) — wUkmy ()| > M)

16 1 <

S E o) iJZ:lCov(ni<1k<n>(s)), 0 Tk (9))

< 16 ml ko () X T (9)) + m3 " (T (5) X iy ()
= e2nv(Li (s)) V(T (5)) ’

and this last expression converges to zero according to (5) and Theorem 2. The
other term is treated analogously after separation of variables. O

Note that in the preceding result, association implies that the covariance meas-
ures introduced are really measures and not just signed measures. We may relax
(4) by requiring only that the covariances involved to be bounde® ofihis will
mean a slower decrease rate of measures of the sets.

(6)

COROLLARY 3.2. Let B € B and let f be a version ofl./dv continuous onB.
Suppose there exist constanis ¢, > 0 such that

%él Cov (i:(B). 1;(B)) <e1. 0
Lo
=) Cov(&(B). £(B)) <ca (8)
)
I
nl/zlen;[ikr(ln) v(I) — 400, 9)

then £, (s) converges in probability tg'(s) v-almost everywhere iB.
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Proof. As in the proof of the theorem, we begin by applying Chebyshev’s in-
equality to find the upper bound in the middle line of (6). The 3gis(s) are, by
definition of the partitiond1,, subsets oB so, by association, this upper bound is
still bounded above by

16 1
e2n v2(Iken () 1

> Cov(ni(B). n;(B)),
=1

which converges to zero according to (7) and (9). O

Note that condition (7), for the cage= 6y, is rewritten as

1 n
. Z[P(Xi € iy, Xj € Iry) — P(X; € i) P(X; € Liiny)] <c1.
ij—1

This kind of sum appears in other situations as well when studying association.
In fact, a general condition for tightness of empirical processds’j@, 1] is the
uniform convergence of these expressions, as proved in Oliveira and Suquet [30,
31]. The discussion of the same problem, but in the s@gffe 1], also depends on
these expressions, as is done in Yu [40] and Shao and Yu [38].

The method used for proving Corollary 3.2 may be extended, requiring the
existence of higher order moments, to derive an almost complete result. We would
then be lead to use moment inequalities for sums of associated variables by Birkel
[5]. These would require a quite slow convergence rate of the sets used at each step
and, further, this convergence rate should be well tuned with the decrease rate of
the covariance structure of the sequengg®), n,(B), n € N. Thus, we would
have conditions with the same drawbacks as those already mentioned linking the
size of the sets to the moments of the unknown distribution, which we are trying
to avoid here. Another method to derive the almost complete convergence is based
on exponential inequalities. One such inequality for associated random variables
appeared in the literature while this after this article was submitted (see loannides
and Roussas [16]). This inequality really provide the means for an almost complete
result, but the conditions it requires are of a different sort and much stronger than
those we have been assuming in this article. Namely, for the use of loannides and
Roussas’s exponential inequality it would be necessary to assume that the point
processes were uniformly bounded, at least on the compaBt sethis article, we
have been using only moment conditions on the point processes. So, we choose no
to include an almost complete result and prove only an almost sure result. Instead
of using separation of variables based on Lemma 2.2, the crucial step towards an
almost sure theorem is to observe that we do not change the partition each time
a new observation is added to our sample, that is, we go on using the same sets
until the number of observations increases enough to justify the use of the next
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partition. This is what is implicitly included in conditions such us (5) or (9). We
will not investigate the differenceg, — g, but rather we rewritef, (s) as

Wiy () My (Tigny (8)) /it (L (5))

PO = ) Eullaan o) k(o)

So, in order to prove the almost sure convergencg, &), it is enough to prove
that both expressions, (Ix)(s))/u(Lkm) (s)) and&, (Ixw) (s)) /v(Ixm)(s)) converge
almost surely to 1. We will suppress the argumewhere confusion does not arise.
For the almost sure convergence, we need to identify where we really change from
one partition to the next one. For very small values:pthe construction of the
histogram estimatoy,, uses sets belonging 1d,. As the sample size increases,
that will mean we eventually will use, for constructirfg(s), sets fromll,. Define

t1 = 1 andr, the firstn for which we use, for the construction ¢f, sets ofl1,. As

n continues to increase, we will eventually base the constructiofy @ in sets
belonging toll,. We definer, as the sample size for which we use, for the first
times, sets from the partitiofy.

THEOREM 3.3.Let B € B be compact and lef be a version oflx/dv con-
tinuous and bounded away from zero 8n Suppose the sequence of partitions
I, k € N, satisfiefP1)—(P5) that there exist measures-* andm"", such that,
for everyn € N,

1< 1<
=) Cowé,&)<m® and =) Cowv(n,n;)<m™
" > (i, &) <m " > (i, mj) <m

i,j=1 i,j=1
with m*¢ andm™" both satisfyingM), and
t
tetl (10)
Ik

being bounded and

Y —————— <. (11)
I min;em, v(1)

Then, for every € B, f,(s) converges almost surely #X(s).

Proof. We shall show that, under the assumptions of the thedjen,))/
w(lymy) converges to 1 a.s. The term corresponding tie treated analogously.
The proof will follow the classical method: first we show the convergence along
the subsequence defined by the indige% < N, and then establish bounds for the
difference between these subsequences and the remaining terms of the sequence.
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The first step reduces to an application of Chebyshev’s inequality, as follows:

]P)< ﬁtk(lk) _ l‘ - 8)

V(i)
i—1

:p(l

73
<——— Cov(n; (I), n,; (I
) l_; i (Ie), 1, (1)

< 11 v2(I) m7 (I x L) +ma" (I x 1)
&2 trv(l) w2 (L) v(ly)
and this defines a convergent series, according to (11) and Theorem 2.1.

Suppose now that € [, t.1). According to the definition of;, it follows that
Ik(n) = I, SO that

ﬁn (Ik(n)) _ ﬁtk (Ik)
wllywy)  w(ly)

> i) — p(d)

> EtkM(Ik)>

n

(1 1\ ) —py) 1 ni (L) — (L)
= Pl e e —_—. 12
,; (n tk> wu(ly) n i:thil w(ly) (12)

The first term equalst, /n — D) (7, (1) /i (Ix) — 1). As # < n, the first factor is
bounded, and the other factor in this last expression converges almost surely to
0, as proved in the first step. As for the second term in (12), we have, by using
the generalization of the Kolmogorov inequality for associated variables proved by
Newman and Wright [28],

1 Xn: ni () — () - .
w(ly)

P max

w<n<tpp1 N |,
= + i=tp+1

n
<SP max | Y [ni(l) — nU0]| > eta(ly)
Ik Sn<tp1 Pt
2 Tre+1
<S5 5— Cov(n; (Ix), n; (1))
eztkzuz(k) i,/Z:;k !

< 244 1 V2(L) m" (I x L) +my" (I x 1)
g2 i () (L) v(lx)
which defines a convergent series according to (10), (11) and Theorem 2.1. So the

second term in (12) also converges almost surely to zero, and this concludes the
proof. O
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4. Finite-Dimensional Distributions

We now investigate the finite-dimensional asymptoticsf,of- g, properly nor-
malized. As in Jacob and Oliveira [21], in this section we will suppose ithHat
absolutely continuous with respect to some fixed honatomic measutes, with
Radon-Nikodym derivative, continuous on the compact st and that the sets

in each partition have equal measure. Denote by, the A measure of each set

in I (,). Obviously, will also be absolutely continuous with respectitand we

will denote by f, a version of the Radon—Nikodym derivative (1 which we

will suppose also to be continuous 8n Further, we will suppose that bott) and

fu are bounded away from zero dh Let us fixsy, ..., s, € B and denote by

I, ..., 1I,, the sets in partitiorT];(, containing each one of the given points.

To prove the convergence in distribution of the finite-dimensional distributions,
we will need a weak form of weak stationarity on the sample, expressed by the
conditions to be imposed on the decomposition of the covariance measures (13).
The proof is based on the method used in the proof of Theorem 9 in Oliveira and
Suquet [32], consisting in approximating the sums involved by the sums of suitably
defined blocks and showing that we may reason as if these blocks were independ-
ent. For this latter part, the main tool is the inequality proved in Theorem 16 in
Newman [27], regarding the characteristic functions of associated random vectors.
Before we proceed with the result regarding the finite-dimensional distributions of
the estimator, we state a lemma which is a suitable version of the inequality just
referred to.

LEMMA 4.1. LetY,, n € N, be associated random variables, ket N and let
ag, ..., o, € R, Foreachn € N, define

X, = ZakYk+n and 7n = Z lo | Yiin.
k=0 k=0

Then, for everyiy, ... ,u, € R,

m
Eé' YiauiXj _ 1_[ Ee“iXi < ZZ |ukul COV(Y](, Yl)| .
i=1 P

Proof. For eachn € N, define f,(y1, y2,...) = > i o®%Yitn and f,(y1,
2o o) = 2i_oll Virn ThEN fu(yi, y2, ) + Fu (01, y2, -+ ) = 2i_glon +
lee D yirn @ANA £, (1, V2, -+ 2) — fu1y Yoo .- ) = Dr_o(lo] — ) Yi+n, bOth are
coordinatewise increasing, as the coefficients of these linear combinations are non-
negative. Thus, we may apply Theorem 16 of Newman [27], which yields the
conclusion of this lemma. O
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For eachj, k € N, let us introduce the measures

1 &
Ojx = % Z Cov(¢wy, Sar), (13)
LU'=(j-Dk+1
where¢y; = & or &, = n for everyl € N, and analogously fot,;. De-

composition(M) defines measures which we will denote iy and m3"%,

where ¢y, & € {&, n}, and analogously for the corresponding Radon—Nikodym
derivatives.

In the course of the proof of the next theorem and lemmas we need to assume
that the sequencg, k € N, is such that the differenceg,; — #, are strictly
increasing. As this is true, at least for some subsequence, we will assume in the
sequel that this property is satisfied.

THEOREM 4.2. Suppose the sequence of partitidrg, £ € N, satisfies(P1)—
(P5) with respect to\, and

nhy, —> +00, (14)
hy,
h“ 1 (15)

For k € N, letm be the largest integer less than or equalittk. For each choice
of {1, &2 € {£, n}, suppose that the measu®s satisfy condition(M) with respect
to A and the Radon—Nikodym derivatives defined there satisfy

sup  sup )/f_ljiz(x)’ <cp < 00, (16)
J.k,neN, jk<n xeB '
1 m
lim = 12— gfLe2 yniformly onB 17
m—-+00 m Z Y2 jk 82,k y ) ( )
j=1
i 01,82 41,82 ;
lim g3%°% = g5 uniformly onB, (18)
k—+o00 7

for some functiongz’; and g5 continuous on B. Suppose further that for every

sequencd, € U IT; decreasing to a discrete set and every cons@nt 0,

1

/ —¢&(I,)dP — 0 (19)
{¢2(t>Cniy) Fin

for every choice, ¢, € {&, n}. Then, the random vector

nl/2 h;l/z(ﬁn(ln,l) - /’L(In,l), s vﬁn(ln,r) - I/L(In,r),
gn(ln,l) - U(In,l)a DRI gn(ln,r) - U(In,r)) (20)
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converges in distribution to a centered Gaussian random vector with covariance
matrix

(g5 " (s1,51) - 0 gi’"(sl,sl) 0 ]
r = 0 e gg)n(srv Sr) 0 tee gg)n(srv Sr)

gi’”(sl, s1) - 0 gi’g(sl,sl) 0

L 0 e gg’n(sr, sr) 0 e gg!g(sra Sr) _

The proof of this theorem follows several steps taking care of the approx-
imations needed to handle the dependence of the variables. In order to improve
readability, we will present this proof divided into four lemmas, followed by a final
step, presented as the proof of the theorem itself, gathering all the partial results.
Before embarking in the proof of the lemmas we give a brief description of the
step that is accomplished in each one of the following lemmas. Lemma 4.3 shows
that we only need to treat those valuesiafhich are multiples of the fixed integer
k. The variable introduced in the previous lemma is decomposed into the sum of
several dependent variables. The usual coupling technigue replaces these variables
with independent ones with the same distributions. Lemmas 4.4 and 4.5 justify the
use of this coupling by controlling the difference of the respective characteristic
functions. This control has to be accomplished in two steps due to the nature of
the variables treated. Finally, Lemma 4.6 shows that, after coupling, the Lindeberg
condition is satisfied, so the Central Limit Theorem holds.

In the course of the proof we will need some notation which will be used

throughout the lemmas. Let, ... ,c.,d1,...,d. € R be fixed and, for each
neN, i=1...,n,9g=1,...,r,define the random variables

T, = J%[Cq(si(liz,q) —v(ng)) +dg(i(Lng) — 11y )]
and

NI o P N I N

=7 ng Zy, 2, e Zi= 2w 2 T,

Foreachj =1,... ,mandg =1, ... ,r define
1 &
an,j = 7 Z an.,z'
I=(j—Dk+1

Then

1 mk 1 m
T! = —— T! = Ya ..
mk \/ﬂ ; mk,i \/E ; mk, j
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The variablez, is the linear combination of the coordinates of (20), required for
the application of the Craer-Wold Theorem, while the variabléﬁ{j correspond
to the blocks in which the sums are decomposed.

LEMMA 4.3. Suppose the assumptions of Theorem 4.2 are satisfied ahdbéet
fixed. Then, at least one of the following convergences hold:

lim |[Ee“? — Ee'*#m| =0 (21)
n—+00
or
lim |[Ee'“# — Eel*Zodt| =, (22)
n—+00

Proof. For fixedk and large enough, there is at most one change of partition
between the sample sizest and (m + 1)k. Suppose for the moment there are
no changes of partitions, or, if there is one corresponding to the samplg &ze
[mk, (m + k), thenmk <n < . In this case, we approximatg, by Z,,..

‘Eeiuzn _ Eeiuzmkl < E[|u| |Zn - kal]
< |I/t| Varl/z(Z,, - ka)

mk
< |M| [%Varl/z (Z(Zn,i - ka,i)) +

(%— - 75 ) (Z Zo. )
Var1/2 ( >z, )] . (23)

i=mk+1

We now prove that this sum converges to zero. The square of the first term is

mk
_Var (Z (Zn i mk i )

mk
= ; Z [COV(Z",i’ Zn,j) - COV(Zn,i’ ka,j)_

i,j=1
- COV(ka,ia Zn,j) + COV(ka,i, ka,j )] (24)
Expanding the first of these terms, we find
l r
nh Cq COV(E[(In,q)’ Ej (In,q/))+

" q.q'=1ij=1
+ quq/ COV(E[(In,q), n; (In,q/)) + dch/ COV(ﬂi(In,q), sj(ln,q/)) +
+ dqdq’ COV(ﬂi (In,q)’ n; (Iiz,q’))] . (25)
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Using the decompositio(M) the first term of this last expansion equals

mk Rk mi:i,mk(ln,q X Inq) m_kmé;:i,mk(ln-,q X Ing)

nhy Rk n Rk
Now,
£.&
ml,l,mk(lﬂ-,q X I q) < )‘(In,q))t(ln,q’) o
hmk =0 hn

by the assumptions on the partitions. The second term on the decomposition equals
0if g # ¢, asin this case the séf, x I, ,, does not intersect the diagonal of the
product space. Whap = ¢’, we find, by (18),

£.& §.&
My Lk Ung X Ing) M (L)

The remaining terms in (25) are treated analogously. Thus, rememberimgthat
— 1, we get,

— gg’s(sq, Sq)-

mk
Z COV(Z,,,[ s Zn,j)

ij=1

. 1
lim -

n—+oon

= Z (65 gg’s(sq, sq) + 2¢4d, gg’n(sq, sq) + dq2 gg’"(sq, sq))
qg=1

(note that we should consider two terms correspondinggt’b and ggf, but as

we only need their values on the diagonal, these terms coincide). The fourth term
in (24) is analogous to the one just discussed. The second and third are slightly
different, requiring the use of the sequengcd < N. In fact,

mk

1
— Z COV(Zn,i’ Z’"k!.i)
n ij=1

mk

1 r
- m Z Z [Cqu/ Cov(gi(ln,q), gj(lmkq’))'i‘

q,9'=1i,j=1

+ quq’ COV@:’(In,q), n; (Imk,q/)) + dch/ COV(U:’(In,q), Sj(lmk,q’)) +
+ dqdq’ COV(ﬂi(In,q), nj(lmk,q’))] .
We supposed that there was no change of partition betwgeand (m + 1)k or

thatmk <n < t; < (m 4+ Dk. In either case, it follows thak,, ,, = I, ., so the
convergence of this expression to

r

Z (65 gg’s(sq, 5q) + 2¢4d, gg’n(sq, Sq) + dq2 gg’"(sq, sq))
qg=1

follows as in the discussion of the first term in (24).
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So, adding up these terms, we finally get that

mk

1
ﬁ Var (;(zn,i - ka,i)) — 0.

We now proceed with the second term in (23). Again expanding its square, we
find

2 1 mk
( _ _> Z Cov(Zuk.is Zmk.j)

h
mk i j=1

2 r mk
v mk 1
(1— j;) i 22 ety COE k) &) +

q.q'=1i,j=1
+chq’ Cov(éi(lmk,q)’ nj(lmk,q/)) + dch/ Cov(ni(lmk,q)’ Ej(lmk,q/)) +

+ dqdq’ COV(U:’ (Imk,q)a n; (Imk,q’))] .

All the terms have now the same form as those in (25), so the above expression

converges to zero, a& — v/mk//n)?> — 0.
Finally, we investigate the third term in (23). Expanding its square, we find

1 n
- Z COV(Zn,i, Zn,j)
n

i,j=mk+1

1 < S
— Z Z [Cqu/ COV(Ei(In,q)a gj(ln,q’)) +

nhy q,q'=1i, j=mk+1
+ cqdy COV(E; (1ng), 1 (Ing) + dgcq COMM; (Lnq), & (Ln.q)) +
+dydy CoV(n; (1.g), i (Lng))].

However, all these terms converge to zero because of (15) and the nonnegativity of
the covariances, due to association of the variables. So, we have finally proved that
(21) holds.

It remains to check the case whef& <1, <n < (m + 1)k. Presently, we
approximate the characteristic functionf by that ofZ,,.1)x. The boundedness
used in (23) is modified here as follows. In the first two terms of (23), just replace
m by m + 1. This does not affect the arguments used in the subsequent discussion,
andl, , = Imi1k,q- Thus, the first two terms in (23) converge to zero. The third
term in (23) is replaced by

ﬁ Varl/z ( Z Zn,i) y

i=n+1

which converges to zero as was the case in the corresponding term in the analysis
carried previously whemk <n < t;, < (m + Dk. So, in this case, we also have
that (22) is satisfied. O
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LEMMA 4.4. Suppose the assumptions of Theorem 4.2 are satisfied akhdéet
fixed. Then,

n——+00

r
lim |EeltZm — ]‘[Eeiﬂik — 0.
g=1

Proof. We now work with the difference between,, = Y. 7! and the

q ~mk
same sum if the variableEl,, ... , 7!, were independent. For eaghe N, i =
1,...,n,g=1,...,r define the random variables

— 1
q
Tn,i = \/_h—n[lcqKéi(In,q) - V(In,q)) + |dq|(77i(1n,q) - M(In,q))]
and let
— 1
TZ == TZi
ﬁ i=1 ’
By Lemma 4.1,

r

i i, T4

]Eeluzmk _ | | Eeluka
q=1

= |Ee" 2o Tne — [ Ee"Tne| <2u? " Cou(T,. Ty
qg=1

mk>
q9#q’

This expression converges to zero, as is easily seen by expanding one of the cov-
ariance terms,

_ ., 1 mk . .
q q q q
CovuT,,,.T,,) = s E Cov(T s T o ;)
ij=1
mk

1
= > lleqgeq| CoVE Inkg) - & Uniq?)) +

mk hmk ;

J=1

+ |quq’| Cov(gi(lmk,q)’ n; (Imk,q’)) +
+ |dch’| Cov(ni(lmk,q), Sj(lmk,q’)) +
+ |dqdq/| Cov(ni(lmk,q)’ n; (Imk,q’))]‘
Using the decompositio(M), the first term on the right-hand side above equals
mi:imk(l’"k!q x Imk-,q’) mg:i,mk(lmk,q X Imk,q’)
hmk hmk
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This expression converges to zero, as was seen above, by taking into account that
g # q', so that for large enough, 1, ; N Lk, = 9. O

LEMMA 4.5. Suppose the assumptions of Theorem 4.2 are satisfied ahdbéet
fixed. Then,

lim sup HEe'"Tm _ HnEe Jatnei| < 242 Z(aq —al (26)
n—-+00 g=1j=1
where
al = c E(sq,sq) + 2|ch | g "(sq,sq) +d2 2545 54)
and
al = ngglf(sq’sq) +2|qu | gz;?(sq’sq) +d2 /?(sq’sq)

Proof. The sumsT,), = (1//m)Y_"_, Y, ; are now to be approximated by
independent summands. WiHfixed, we may reason as follows:

lL[ R Tnk — 1_[ l_[ Ee' v oy
g=1

g=1j=1

r m
. i_u_y4q
< Y[t — TTESH"0|.
g=1 j=1

Foreachj =1,... ,mandg =1, ... ,r define
ik
_ 1 J
q
Y,,= N >
I=(j—Dk+1

Then, an application of Lemma 4.1 yields

IuTmA — l_[Ee \/E Vﬂkf
o Z',ﬂ y? " ju_y4
= [Ee'vn &= ki — [ TEe' Vi e

1 — —
2 § : q q
J#J
mk

1
= ZCOV(T,“, n,)——ZCOV(Ymk,, Yoi ) | - (27)

ljl j=1
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Next,
1 mk
9 T4
ﬂ Z COV(Tn)i, Tn,j)
i,j=1
mk

1 2
= > " [e2 CoE (nig)- £ (Tnkg)) +

mk hmk =
+ |chq| Cov(éi(lmk,q)’ n; (Imk,q)) + |dch| COV(’?:’(Imk,q), éj(lmk,q)) +
+d2 CoVn; (Tnk.q)» 1 (k)]

and this expression convergesitq as was seen earlier. The remaining termin (22)
is discussed as follows by using decompositibf) :

COV(Ymk j? mk,j)

1 Jk
- k hmk Z [C2 Cov(él(lmk,q), éll(lmk,q)) —+
LU'=(j-Dk+1

+ |chq| Cov(él(lmk,q)’ 771’(Imk,q)) + |dch| COV(U[(Imk,q), éll(lmk’q)) +
+ qu Cov(nl(lmk,q)’ nl’(lmk,q))] .

Utilizing same arguments as above, this expression converges to
csyifk(sq, sq) + 2|chq|y§,fl.'?k(sq, Sq) + dij}f?k(sq, S¢)s
so that, by using (17),

lim ZCov(Ymk], Yoi;) = aj.

n—+o00 m
Thus, by relation (27), the inequality (26) follows. O

LEMMA 4.6. Suppose the assumptions of Theorem 4.2 are satisfied ahdmhet
g be fixed. Then,

lim / Y%, )2dP = 0.
n— 400 Var(z, -1 mk j) ) >sak\/7 k]

Proof. We now show that the Lindeberg conditions is satisfied by the triangular
arraym~Y/2y .. j=1,...,m.So, supposing the variables to be independent, a
Central Limit Theorem WI|| follow.

Repeating the arguments in the previous lemmas, is easily shown that

q
—Var Z b | — al

Zggf(sq, Sq) + 2¢4d, ng(Sq’ 8q) + d2 Z(Sq’ 8q)-
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In such a case Lindeberg condition reduces to

m

2]

(mkj) dap — 0.
=td

Y;Zk,/}”“k\/’z} m
The variablesy,, . are defined as sums of the variabE$ ;, I = (j — Dk +
1,...,jk, so we may apply Lemma 4 of Utev [39], which gives an upper bound
for the integral of the square of a sum in terms of the sum of the squares of the
variables, to this last integral to find the upper bound

m 1 jk
>0 = > i, dp

k q [T
j=1 Hzr vkt Tt |24 mk} mk I=(j—1k+1

zzf{q

J 1] (Jj Dk+1 mkl

)2 dP

mk

>ﬂf}
mk
2/ i (Tq,”) dP.
mk] >T mk

As k is fixed, the above sum has the same form as the one appearing in the proof
of Theorem 4.1 in Jacob and Oliveira [21] (see also, Theorem 6.1 in [19]), which
was proved to converge to zero on account of (19). O

Proof of Theorem 4.2Now, in order to complete the proof of the theorem, we
seta? = c2 g5 (54, 5¢) + 2¢4d, 83" (54, 5¢) +d% g3 (s,. 5,), and have

. 2
Eemzmk — e_% Z;:laq

iu

IuZmA l_[EeluTﬂk + § : Eeluka l_[Eeﬁ mA/ +

j=1

2 2
_uc 9 —Uu_ a4
e 2% — e 24|

(28)

q=1|j=1 q=1

For the moment, supposeis fixed. The first term in the last expression above
converges to zero by Lemma 4.4. The third term converges to zero by Lemma 4.6.
In fact, the product appearing in this term is the characteristic function of the vector
m= Y2yl ... Y ), supposing the coordinates to be independent. A shown
in Lemma 4.6 thls converges to a centered Gaussian vector with covariance matrix
of the same form ab but with theg5“? replaced byg5%?, so the convergence to
zero of the third term in (28) follows. So, taking into account of Lemma 4.5, we
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have, for eaclt € N,

2
. ; _u? N q
lim sup|Ee'“?m — ¢~ 7 =19

m——+00

< 2u? Z(aq

Finally, Iettlngk —> 400, the expression on the right-hand side above converges
to zero on account of (18). Thus, the convergence in distribution asserted in (20) is
established. 0

w2 4
ak_e 5a

A discussion on condition (19) has been presented by the authors in [19], indic-
ating that it is a reasonable one. It is fulfilled in Poisson processes and also some
other point processes constructed from Poisson processes.

An application of thé-method yields the convergence of the finite-dimensional
distributions of the estimataf, itself.

THEOREM 4.7. Suppose the conditions of Theorem 4.2 are satisfied. Then
Y2 12 (ﬁn(ln,l) ) T (Inr) M(In,r))
"\E, ) v U E () vy

converges in distribution to a centered Gaussian random vector with diagonal
covariance matrix™* with

(29)

o 82 0uss) 285700 5 fulse)
T fHs) £3(sy)
£i2(5q)85" (54, 54)
) =1...,r
fiGsg) K '

Proof. Define the random vector

U, = (ﬁn(ln,l), cee aﬁn(ln,r), gn(ln,l), B En(ln,r))
and the real valued functiononR? by

() = Zb Yo

g=1 Yr+q

whereby, ... , b, are real numbers, so thatnh, (¢(U,) — ¢(EU,)) is a linear
combination of the coordinates in (29). Using the Taylor expansion, we find

Vnhy (GD(U)— EU,))

(EU)f(Unq EU,.¢) +
\/>||U —EU, lle(ll Un — EU, 1D,
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wheree is continuous and lin,oe(y) = 0. AsU, — EU, in probability, by
Theorem 3.1, and/2h, /2| U, — EU, || converges in distribution, the last term
above converges in probability to zero. Now consider the vecter(f,(s1), ... ,
fu(sr), fuls1), ..., fu(s,)) and rewrite the first term of the Taylor expansion as
follows:

2r
ap [n
Z B—(M) _(Un,q - EUn,q) +
—1 %Y hy
g=1

2r
o o n
; [ 9y Oy, IV ha M !

Computing the derivatives, it is easily seen that

9 9
h, L (®U,) — 2L (),
8yq 8yq

so that the limiting distribution of/nh, (¢(U,) — ¢(EU,)) is the same as that of

zr ap n
Z B—(M) h_(Un,q - EUn,q)v
e Vi

which, in Theorem 4.2 was shown to be Gaussian. Its variance is easily shown to
be

ibz 85°Ggr8¢) 285" (5 59) fulsg) | FieC5a)83" 5. 50)
g=1 1 f;f(sq) fv3(sq) fv4(sq, Sq) ’

as it follows by replacing-, andd,, in the computation of the variance in the
Theorem 4.2 by, / f,.(s,) andb,, f,.(s,)/ f2(s,), respectively. a
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