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Abstract. Nonparametric inference for point processes is discussed by way histograms, which
provide a nice tool for the analysis of on-line data. The construction of histograms depends on a
sequence of partitions, which we take to be nonembedded. This is quite natural in what regards
applications, but presents some theoretical problems. In another direction, we drop the usual inde-
pendence assumption on the sample, replacing it by an association assumption. Under this setting, we
study the convergence of the histogram, in probability and almost surely which, under association,
depends on conditions on the covariance structure. In the final section we prove that the finite dimen-
sional distributions converge in distribution to a Gaussian centered vector with a specified covariance.
The main tool of analysis is a decomposition of second order moment measures.
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1. Introduction

Nonparametric inference for point processes has been developed by using methods
similar to those employed in classical functional estimation, where the estimators
are either histograms or kernel estimators. Although the kernel approach has be-
come increasingly popular as it produces smooth estimators, the use of histograms
still proves efficient in many situations. In addition, some recent variations on the
classical histogram help improve the convergence rates of such an estimator (see
Beirlant et al. [2]). Histograms have been used in estimation in several models
depending on point processes. Some examples include regression, as in Bensa¨ıd
[3], Palm distributions, as in Karr [23–25] or Ni´eré [29], mean local distributions
of composed random measures, as in Mendes Lopes [26] or Saleh [36, 37], or
density estimation, as in Ellis [11]. These references are not an account of the
existing literature, but rather a mention of examples illustrating each problem. For
a more complete list of publications on these subjects the interested reader is re-
ferred to one of the following monographs: Bosq [6], Bosq and Lecoutre [8], Bosq
and Nguyen [7] or Karr [23]. All the above-mentioned problems produce results
which exhibit a similarity. This similarity is due to the fact that these problems
may be addressed in a unified way by defining a convenient general framework,
reducing the estimation of the functions in each case to the estimation of a Radon–
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Nikodym derivative of the means of two given random measures. Some examples
as to how this framework may include some of the problems referred to above will
be given later. This general framework has been used in Bensa¨ıd and Fabre [4],
Ellis [11], Ferrieux [13, 14], Jacob and Mendes Lopes [17], Jacob, Oliveira [19–21]
and Roussas [33–35]. Articles [19] and [21] are concerned with histograms, while
the others study kernel type estimators. Papers [11] and [33–35] used a somewhat
narrower framework by imposing some special properties on the random measures,
namely, assuming one of them to be almost surely fixed. Jacob and Mendes Lopes
[17] deals with absolutely continuous random measures, thus reducing the problem
to an analysis of the random densities involved. Half of the articles cited study
estimation based on an independent sampling of the point process. Some results
for dependent sampling have been obtained by Bensa¨ıd and Fabre [4] where the
kernel estimator is constructed under strong mixing. Suppressing the independ-
ence assumption, Roussas [33] and, more recently Ferrieux [13, 14] considered
kernel estimators based on associated samples. Roussas [34, 35] also studied kernel
estimates for associated random fields.

Here we will be concerned with histograms based associated compound point
processes. These models provide interesting examples for illustrative purposes. The
use of histograms relies on the choice of a sequence of partitions of the base space,
which typically is constructed by splitting some of the sets of a partition to obtain
the next one. This procedure produces embedded partitions which are convenient
as they allow the use of martingale tools for proving the required convergences.
This was used by the authors in [19]. However, this procedure is quite unnatural
from an applications point of view. For such cases, it is customary to require that the
sets in each partition are of same size, with respect to some reference measure. This
requirement, together with the embedding procedure, produces sets which decrease
quite fast. This fact may mean that the results thus obtained are of limited interest,
as the number of new observations needed to change to the next partition would be
very large. Nonembedded partitions have been used, for example, in Abou-Jaoud´e
[1], Grenander [15] or Karr [23]. The conditions used typically link the number of
sets in each partition to the moments of the unknown distribution, as it is done in
Karr [23]. These authors [21] gave another solution to this problem, using the same
general framework as is done here, but for independent samples. The conditions
imposed depend only on the distribution or only on the sizes of the sets. As this
seems a more natural procedure to apply, the results in [21] will be the base for the
extension discussed here to associated samples.

2. Preliminaries

In order to define the framework more precisely letS be a complete, separable
and locally compact metric space; letB be the ring of relatively compact Borel
subsets ofS; and letM be the space of nonnegative Radon measures onS. A
random measure is any function defined on some probability space with values in
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M measurable with respect to theσ -algebra induced by the topology of vague
convergence (we refer the reader to Daley and Vere-Jones [10], Kallenberg [22]
or Karr [23] for basic properties on random measures). In what followsξ andη
are random measures which are supposed to be integrable, that is, the set functions
µ(B) = Eη(B) andν(B) = Eξ(B) define elements ofM, and these mean meas-
ures satisfy the absolute continuity relationµ � ν. As it will be evident, we will
be interested in estimating a version of the Radon–Nikodym derivative dµ/dν. We
will denote byIA the indicator function of the setA.

We now indicate how some of the estimation problems mentioned above may
be included in the present framework. In each setting, we will be interested in the
interpretations of the Radon–Nikodym derivative dµ/dν.

− (Ellis [11]) Density estimation: letν be a measure onS and takeξ = ν a.s.,
η = δX, whereX is a random variable with absolutely continuous distribution
with respect toν. Then dµ/dν is the density ofX with respect toν.

− Regression: supposeY is an almost surely nonnegative real random vari-
able andX is a random variable onS. Then, if ξ = δX andη = YδX, the
conditional expectationE(Y |X = s) is a version of dµ/dν.

− Thinning: supposeξ =∑N
i=1 δXi , where theXn, n ∈ N, are random variables

on S, αn, n ∈ N, are Bernoulli variables, conditionally independent given the
sequenceXn, n ∈ N, with parametersp(Xn), and putη =∑N

i=1 αiδXi . Then
p = dµ/dν is the thinning function giving the probability of suppressing each
point.

− Marked point processes: letζ =∑N
i=1 δ(Xi,Ti) be a point process onS×T such

that the marginξ =∑N
i=1 δXi is itself a point process. IfB ⊂ T is measurable,

choosingαn = IB(Tn), andη =∑N
i=1 αiδXi , we have

Eζ(A× B) =
∫
A

dµ

dν
(s)Eζ(ds × R).

Thus dµ/dν is the marking function.
− Cluster point processes: supposeζ = ∑N

i=1

∑Ni
j=1 δ(Xi,Yi,j ) is a point process

onS×Ssuch that
∑N

i=1

∑Ni
j=1 δYi,j is also a point process (for which it suffices

to assume that, for example,N andNn, n ∈ N are almost surely finite). The
processξ = ∑N

i=1 δXi identifies the cluster centers and the processesζXi =∑Ni
i=1 δYi,j identify the points. The distribution ofζ may be characterized by

a Markovian kernel of distributions(πx, x ∈ S) with means(µx, x ∈ S)
such that, conditionally onξ = ∑N

i=1 δxi , (ζx1, . . . , ζxn), it has distribution
πx1 ⊗ · · · ⊗ πxn . Definingη(A) = ζ(A× B), with B ∈ B fixed, we have

dµ

dν
(x) = µx(B)
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ν-almost everywhere.
− Markovian shifts: this is a special case of the previous example, whenNi =

1 a.s.,i> 1. In reference to at the previous example, the conclusion is that
(Y1, . . . , Yn) has distributionµx1 ⊗ · · · ⊗ µxn (we replaced the double index
of theY variables by a single one as, for eachi fixed, there is only one such
variable). Then it would follow that

dµ

dν
(x) = µx(B) = P(Y ∈ B|X = x).

So, as illustrated by the above examples, we will be concerned with the es-
timation of dµ/dν, based on a sample((ξ1, η1), . . . , (ξn, ηn)) of the random pair
(ξ, η). As already mentioned, we suppose the pairs(ξi, ηi), i = 1, . . . , n, to be
associated: givenn ∈ N and any two coordinatewise nondecreasing functionsf, g

defined onM2n, for which the covariance below exists, we have

Cov(f (ξ1, η1, . . . , ξn, ηn), g(ξ1, η1, . . . , ξn, ηn))> 0.

(For ζ1, ζ2 ∈ M, we say thatζ16 ζ2 if ζ2 − ζ1 ∈ M). For basic results on
association, we refer the reader to Newman [27], and for association of random
measures to Burton and Waymire [9] or Evans [12]. An account of the relevant
results pertinent to our purposes may be found in Ferrieux [13, 14].

We note that the density estimation case and the regression case mentioned
above are not meaningful for the associated sampling. In fact, it is easily checked
that, whenever a point process has a fixed number of independent points, it cannot
be associated with itself. Thus, it is impossible to construct a sequence of associated
point processes with that same distribution. To check this, supposeξ = δX. Then it
is easily seen that Cov(ξ, ξ) = Eδ(X,X)−PX⊗PX. More generally, ifξ =∑n

i=1 δXi ,
for some independent random elementsXi with distributionsPXi , not necessarily
equal, then

Cov(ξ, ξ) =
n∑
i=1

(
Eδ(Xi,Xi ) − PXi ⊗ PXi

)
.

AsEδ(Xi,Xi) is a measure onS×Swith support included in the diagonal andPXi ⊗
PXi is not supported by the diagonal (except in degenerate cases), we actually have
a signed measure.

It should also be noted that it is not clear whether there is any connection
betweenX1, . . . , Xn being associated andδX1, . . . , δXn being associated. This
implies that there is probably no overlap with the work of Ellis [11] or Roussas
[33–35].

In order to define the histograms to be employed we need a sequence of par-
titions. For reasons that will be explained later we will take5k, k ∈ N, to be a
sequence of partitions of a fixed compact setB ⊂ S, instead of partitions of the
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entire space. On the followingI represents a set belonging to some partition5k.
We impose the following assumptions:

(P1) for eachk ∈ N,5k ⊂ B;
(P2) for eachk ∈ N,5k is finite;
(P3) θk = sup{diam(I ) : I ∈ 5k} −→ 0;
(P4) for eachk ∈ N andI ∈ 5k, ν(I ) > 0;
(P5) maxI∈5k ν(I ) −→ 0.

Note that(P4)and(P5) introduce assumptions which are relative to the measure
ν. In some cases we need that(P4)and(P5)be satisfied with respect to some other
reference measureλ, meaning that we requireλ(I ) > 0, for everyI ∈ 5k, k ∈ N,
and maxI∈5k λ(I ) −→ 0. The correct indication of this measure is of importance
when coupled with conditions(M1) and(M2), to be introduced later, where there
exists a measure playing a role of reference. We need these two reference measures
to be identical.

Before we proceed with the introduction of further assumptions, we may define
an approximation to (a suitable version of) dµ/dν. Given s ∈ B, we denote by
Ik(s) the unique set of5k containing the points, and, for eachk ∈ N, define the
function

gk(s) =
∑
I∈5k

µ(I )

ν(I )
I I (s) = µ(Ik(s))

ν(Ik(s))
.

In the case of embedded partitions, the convergence ofgk to some version of dµ/dν
is just a martingale result, which, however, is no longer available in our setting.
As is well known, if there exists a continuous versionf of the Radon–Nikodym
derivative dµ/dν, and if the sequence of partitions5k, k ∈ N, satisfies(P1)–(P4),
the convergence

sup
s∈B
|f (s)− gk(s)| −→ 0

holds. The fact that everything is happening within a compact set is crucial to the
proof of this uniform convergence. That is why we only consider partitions of a
fixed compact setB.

Based on the sample((ξ1, η1), . . . , (ξn, ηn)), define

ξn = 1

n

n∑
i=1

ξi and ηn =
1

n

n∑
i=1

ηi. (1)

The histogram estimator off is then

fn(s) =
∑
I∈5k

ηn(I )

ξn(I )
I I (s) = ηn(Ik(s))

ξn(Ik(s))
(2)
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(as usual, we definefn(s) as zero whenever the denominator vanishes), where the
dependence ofk on n is to be made precise later. The convergence offn to some
version of dµ/dν follows from the convergence offn− gk to zero. This latter con-
vergence was obtained, in the independent case, via a martingale result concerning
product measures of the typeEζ1 ⊗ ζ2, whereζ1, ζ2 ∈ {ξ, η} (see Lemma 3.1 in
[19]). Again, this was a consequence of the embedding of the partitions, no longer
available in the present framework. To circumvent this difficulty, we consider an
assumption concerning a decomposition of measures on the product spaceS×S, as
is done in [21]. We will say that a measurem on S×Ssatisfies condition(M) with
respect to the measureν on S if m = m1 + m2 wherem2 is a measure on1, the
diagonal ofS×S, andm1 is a measure onS×S\1, such that

(M1) m1� ν ⊗ ν and there exists a versionγ1 of the Radon–Nikodym derivative
dm1/dν ⊗ ν which is bounded;

(M2) m2 � ν∗, whereν∗ is the measure on1 defined by liftingν, that is, such
thatν∗(A∗) = ν(A) with A∗ = {(s, s) : s ∈ A}, and there exits a continuous
versionγ2 of the Radon–Nikodym derivative dm2/dν∗.

Then the following result, which will play the role of the above-mentioned
martingale lemma in the independent case, holds.

THEOREM 2.1 [21]. Supposem is a measure onS×S that satisfies condition
(M) with respect toν and suppose the sequence of partitions5k, k ∈ N, satisfies
(P1)–(P5). Then∑

I∈5k

m(I × I )
ν(I )

I I (s) −→ γ2(s, s)

uniformly onB.
Proof. Using the decomposition included in(M) we have two terms to examine,

corresponding tom1 andm2. Regarding the first term,∑
I∈5k

m1(I × I )
ν(I )

I I (s) =
∑
I∈5k

(
1

ν(I )

∫
I×I

γ1 dν ⊗ ν
)

I I (s)

6 sup
s,t∈B
|γ1(s, t)|

∑
I∈5k

ν(I ) I I (s)

6 sup
s,t∈B
|γ1(s, t)|max

I∈5k
ν(I ) −→ 0.

As for the second term∑
I∈5k

m2(I × I )
ν(I )

I I (s) =
∑
I∈5k

m2(I
∗)

ν∗(I ∗)
I I (s)

=
∑
I∈5k

(
1

ν∗(I ∗)

∫
I ∗
γ2 dν∗

)
I I (s)



HISTOGRAMS AND ASSOCIATED POINT PROCESSES 233

and the uniform convergence of this expression toγ2(s, s) is just another version of
the result giving the already mentioned convergence of the sequencegk , k ∈ N. 2

Note that(M) must be defined with respect to some measure. If we do not
mention any such measure, it will be understood that the measure isν. As it was
stated after the introduction of conditions(P1)–(P5)what will be important is that
the reference measure is the same in both cases. Then, the convergence stated
in Theorem 2 still holds with the obvious modification on the definition ofγ2,
becoming the Radon–Nikodym derivative ofm2 with respect to the lifting of the
reference measure used.

We conclude this section by quoting a useful result, which makes possible the
separation of the variables in the expressionfn.

LEMMA 2.2 [18]. Let X and Y be non-negative integrable random variables.
Then, forε > 0 small enough,{∣∣∣∣XY − E(X)E(Y )

∣∣∣∣ > ε} ⊂
⊂
{∣∣∣∣ X

E(X)
− 1

∣∣∣∣ > ε

4

E(Y )
E(X)

}
∪
{∣∣∣∣ Y

E(Y )
− 1

∣∣∣∣ > ε

4

E(Y )
E(X)

}
.

Using this Lemma, it follows that, forε > 0 small enough,

{|fn(s)− gk(s)| > ε} =
{∣∣∣∣ηn(Ik(s))
ξn(Ik(s))

− µ(Ik(s))
ν(Ik(s))

∣∣∣∣ > ε} ⊂
⊂
{∣∣ηn(Ik(s))− µ(Ik(s))∣∣ > ε

4
ν(Ik(s))

}
∪

∪
{∣∣ξn(Ik(s))− ν(Ik(s))∣∣ > ε

4

ν2(Ik(s))

µ(Ik(s))

}
. (3)

3. Convergence of the Estimator

Having introduced all the definitions and preliminary results needed, we may now
investigate the convergence of the estimatorfn. We begin with the convergence
in probability, for which we state two versions. The second version extends to
an almost complete result which we will not state here for reasons that will be
explained later. In order to be more explicit about the dependence between the
different indices used, we will denote the set involved byIk(n) to emphasize the
dependence ofk onn, the size of the sample.
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THEOREM 3.1. Let B ∈ B be compact and letf be a version ofdµ/dν con-
tinuous onB. Suppose the sequence of partitions5k, k ∈ N, satisfies conditions
(P1)–(P5)and that there exist measuresmξ,ξ andmη,η such that, for everyn ∈ N,

1

n

n∑
i,j=1

Cov(ξi, ξj )6mξ,ξ and
1

n

n∑
i,j=1

Cov(ηi, ηj )6mη,η (4)

withmξ,ξ andmη,η both satisfying(M) with respect toν and

n min
I∈5k(n)

ν(I ) −→ +∞. (5)

Then, for everys ∈ B, fn(s) converges in probability tof (s).
Proof. After separation of variables by using (3), we apply Chebyshev’s in-

equality. The term corresponding toη leads to

P
(∣∣ηn(Ik(n)(s))− µ(Ik(n)(S))∣∣ > ε ν(Ik(n)(s))

4

)
6 16

ε2 n ν2(Ik(n)(s))

1

n

n∑
i,j=1

Cov(ηi(Ik(n)(s)), ηj (Ik(n)(s)))

6 16

ε2 n ν(Ik(n)(s))

m
η,η

1 (Ik(n)(s)×Ik(n)(s))+mη,η2 (Ik(n)(s)×Ik(n)(s))
ν(Ik(n)(s))

, (6)

and this last expression converges to zero according to (5) and Theorem 2. The
other term is treated analogously after separation of variables. 2

Note that in the preceding result, association implies that the covariance meas-
ures introduced are really measures and not just signed measures. We may relax
(4) by requiring only that the covariances involved to be bounded onB. This will
mean a slower decrease rate of measures of the sets.

COROLLARY 3.2. LetB ∈ B and letf be a version ofdµ/dν continuous onB.
Suppose there exist constantsc1, c2 > 0 such that

1

n

n∑
i,j=1

Cov
(
ηi(B), ηj (B)

)
6 c1, (7)

1

n

n∑
i,j=1

Cov
(
ξi(B), ξj (B)

)
6 c2. (8)

If

n1/2 min
I∈5k(n)

ν(I ) −→ +∞, (9)

thenfn(s) converges in probability tof (s) ν-almost everywhere inB.
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Proof. As in the proof of the theorem, we begin by applying Chebyshev’s in-
equality to find the upper bound in the middle line of (6). The setsIk(n)(s) are, by
definition of the partitions5k, subsets ofB so, by association, this upper bound is
still bounded above by

16

ε2 n ν2(Ik(n)(s))

1

n

n∑
i,j=1

Cov(ηi(B), ηj (B)),

which converges to zero according to (7) and (9). 2
Note that condition (7), for the caseη = δX, is rewritten as

1

n

n∑
i,j=1

[P(Xi ∈ Ik(n), Xj ∈ Ik(n))− P(Xi ∈ Ik(n))P (Xj ∈ Ik(n))]6 c1.

This kind of sum appears in other situations as well when studying association.
In fact, a general condition for tightness of empirical processes inL2[0,1] is the
uniform convergence of these expressions, as proved in Oliveira and Suquet [30,
31]. The discussion of the same problem, but in the spaceD[0,1], also depends on
these expressions, as is done in Yu [40] and Shao and Yu [38].

The method used for proving Corollary 3.2 may be extended, requiring the
existence of higher order moments, to derive an almost complete result. We would
then be lead to use moment inequalities for sums of associated variables by Birkel
[5]. These would require a quite slow convergence rate of the sets used at each step
and, further, this convergence rate should be well tuned with the decrease rate of
the covariance structure of the sequencesξn(B), ηn(B), n ∈ N. Thus, we would
have conditions with the same drawbacks as those already mentioned linking the
size of the sets to the moments of the unknown distribution, which we are trying
to avoid here. Another method to derive the almost complete convergence is based
on exponential inequalities. One such inequality for associated random variables
appeared in the literature while this after this article was submitted (see Ioannides
and Roussas [16]). This inequality really provide the means for an almost complete
result, but the conditions it requires are of a different sort and much stronger than
those we have been assuming in this article. Namely, for the use of Ioannides and
Roussas’s exponential inequality it would be necessary to assume that the point
processes were uniformly bounded, at least on the compact setB. In this article, we
have been using only moment conditions on the point processes. So, we choose no
to include an almost complete result and prove only an almost sure result. Instead
of using separation of variables based on Lemma 2.2, the crucial step towards an
almost sure theorem is to observe that we do not change the partition each time
a new observation is added to our sample, that is, we go on using the same sets
until the number of observations increases enough to justify the use of the next
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partition. This is what is implicitly included in conditions such us (5) or (9). We
will not investigate the differencefn − gk, but rather we rewritefn(s) as

fn(s) = µ(Ik(n)(s))

ν(Ik(n)(s))

ηn(Ik(n)(s))/µ(Ik(n)(s))

ξn(Ik(n)(s))/ν(Ik(n)(s))
.

So, in order to prove the almost sure convergence offn(s), it is enough to prove
that both expressionsηn(Ik(n)(s))/µ(Ik(n)(s)) andξn(Ik(n)(s))/ν(Ik(n)(s)) converge
almost surely to 1. We will suppress the arguments where confusion does not arise.
For the almost sure convergence, we need to identify where we really change from
one partition to the next one. For very small values ofn, the construction of the
histogram estimatorfn uses sets belonging to51. As the sample sizen increases,
that will mean we eventually will use, for constructingfn(s), sets from52. Define
t1 = 1 andt2 the firstn for which we use, for the construction offn, sets of52. As
n continues to increase, we will eventually base the construction offn(s) in sets
belonging to5k. We definetk as the sample size for which we use, for the first
times, sets from the partition5k.

THEOREM 3.3. Let B ∈ B be compact and letf be a version ofdµ/dν con-
tinuous and bounded away from zero onB. Suppose the sequence of partitions
5k, k ∈ N, satisfies(P1)–(P5), that there exist measuresmξ,ξ andmη,η, such that,
for everyn ∈ N,

1

n

n∑
i,j=1

Cov(ξi, ξj )6mξ,ξ and
1

n

n∑
i,j=1

Cov(ηi, ηj )6mη,η

withmξ,ξ andmη,η both satisfying(M) , and

tk+1

tk
(10)

being bounded and

∞∑
k=1

1

tk minI∈5k ν(I )
<∞. (11)

Then, for everys ∈ B, fn(s) converges almost surely tof (s).

Proof. We shall show that, under the assumptions of the theoremηn(Ik(n))/

µ(Ik(n)) converges to 1 a.s. The term corresponding toξ is treated analogously.
The proof will follow the classical method: first we show the convergence along
the subsequence defined by the indicestk, k ∈ N, and then establish bounds for the
difference between these subsequences and the remaining terms of the sequence.
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The first step reduces to an application of Chebyshev’s inequality, as follows:

P
(∣∣∣∣ηtk (Ik)ν(Ik)

− 1

∣∣∣∣ > ε)
= P

(∣∣∣∣∣
tk∑
i=1

(ηi(Ik)− µ(Ik))
∣∣∣∣∣ > εtkµ(Ik)

)

6 1

ε2t2k µ(Ik)

tk∑
i,j=1

Cov(ηi(Ik), ηj (Ik))

6 1

ε2

1

tkν(Ik)

ν2(Ik)

µ2(Ik)

m
η,η

1 (Ik × Ik)+mη,η2 (Ik × Ik)
ν(Ik)

and this defines a convergent series, according to (11) and Theorem 2.1.
Suppose now thatn ∈ [tk, tk+1). According to the definition oftk, it follows that

Ik(n) = Ik, so that

ηn(Ik(n))

µ(Ik(n))
− ηtk (Ik)
µ(Ik)

=
tk∑
i=1

(
1

n
− 1

tk

)
ηi(Ik)− µ(Ik)

µ(Ik)
+ 1

n

n∑
i=tk+1

ηi(Ik)− µ(Ik)
µ(Ik)

. (12)

The first term equals(tk/n − 1)(ηtk (Ik)/µ(Ik) − 1). As tk 6 n, the first factor is
bounded, and the other factor in this last expression converges almost surely to
0, as proved in the first step. As for the second term in (12), we have, by using
the generalization of the Kolmogorov inequality for associated variables proved by
Newman and Wright [28],

P

 max
tk 6 n<tk+1

1

n

∣∣∣∣∣∣
n∑

i=tk+1

ηi(Ik)− µ(Ik)
µ(Ik)

∣∣∣∣∣∣ > ε


6P

 max
tk 6 n<tk+1

∣∣∣∣∣∣
n∑

i=tk+1

[ηi(Ik)− µ(Ik)]
∣∣∣∣∣∣ > εtkµ(Ik)


6 2

ε2t2k µ
2(k)

tk+1∑
i,j=tk

Cov(ηi(Ik), ηj (Ik))

6 2

ε2

tk+1

tk

1

tkν(Ik)

ν2(Ik)

µ2(Ik)

m
η,η

1 (Ik × Ik)+mη,η2 (Ik × Ik)
ν(Ik)

,

which defines a convergent series according to (10), (11) and Theorem 2.1. So the
second term in (12) also converges almost surely to zero, and this concludes the
proof. 2
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4. Finite-Dimensional Distributions

We now investigate the finite-dimensional asymptotics offn − gk, properly nor-
malized. As in Jacob and Oliveira [21], in this section we will suppose thatν is
absolutely continuous with respect to some fixed nonatomic measureλ on S, with
Radon–Nikodym derivativefν continuous on the compact setB, and that the sets
in each partition have equalλ measure. Denote byhn the λ measure of each set
in 5k(n). Obviously,µ will also be absolutely continuous with respect toλ and we
will denote byfµ a version of the Radon–Nikodym derivative dµ/dλ which we
will suppose also to be continuous onB. Further, we will suppose that bothfν and
fµ are bounded away from zero onB. Let us fix s1, . . . , sr ∈ B and denote by
In,1, . . . , In,r the sets in partition5k(n) containing each one of the given points.
To prove the convergence in distribution of the finite-dimensional distributions,
we will need a weak form of weak stationarity on the sample, expressed by the
conditions to be imposed on the decomposition of the covariance measures (13).
The proof is based on the method used in the proof of Theorem 9 in Oliveira and
Suquet [32], consisting in approximating the sums involved by the sums of suitably
defined blocks and showing that we may reason as if these blocks were independ-
ent. For this latter part, the main tool is the inequality proved in Theorem 16 in
Newman [27], regarding the characteristic functions of associated random vectors.
Before we proceed with the result regarding the finite-dimensional distributions of
the estimator, we state a lemma which is a suitable version of the inequality just
referred to.

LEMMA 4.1. Let Yn, n ∈ N, be associated random variables, letr ∈ N and let
α0, . . . , αr ∈ R. For eachn ∈ N, define

Xn =
r∑
k=0

αkYk+n and Xn =
r∑
k=0

|αk|Yk+n.

Then, for everyu1, . . . , ur ∈ R,∣∣∣∣∣∣Eei
∑m
j=1 ujXj −

m∏
j=1

EeiujXj

∣∣∣∣∣∣ 6 2
∑
k 6=l

∣∣ukul Cov(Xk,Xl)
∣∣ .

Proof. For eachn ∈ N, definefn(y1, y2, . . . ) = ∑r
k=0αkyk+n and f n(y1,

y2, . . . ) = ∑r
k=0 |αk| yk+n. Thenfn(y1, y2, . . . ) + f n(y1, y2, . . . ) = ∑r

k=0(αk +
|αk|)yk+n andf n(y1, y2, . . . ) − fn(y1, y2, . . . ) = ∑r

k=0(|αk| − αk)yk+n, both are
coordinatewise increasing, as the coefficients of these linear combinations are non-
negative. Thus, we may apply Theorem 16 of Newman [27], which yields the
conclusion of this lemma. 2
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For eachj, k ∈ N, let us introduce the measures

θj,k = 1

k

jk∑
l,l′=(j−1)k+1

Cov(ζ1,l, ζ2,l′), (13)

where ζ1,l = ξl or ζ1,l = ηl for every l ∈ N, and analogously forζ2,l. De-
composition(M) defines measures which we will denote bymζ1,ζ21,j,k andmζ1,ζ22,j,k,
whereζ1, ζ2 ∈ {ξ, η}, and analogously for the corresponding Radon–Nikodym
derivatives.

In the course of the proof of the next theorem and lemmas we need to assume
that the sequencetk, k ∈ N, is such that the differencestk+1 − tk are strictly
increasing. As this is true, at least for some subsequence, we will assume in the
sequel that this property is satisfied.

THEOREM 4.2. Suppose the sequence of partitions5k, k ∈ N, satisfies(P1)–
(P5)with respect toλ, and

n hn −→ +∞, (14)

hn+1

hn
−→ 1. (15)

For k ∈ N, letm be the largest integer less than or equal ton/k. For each choice
of ζ1, ζ2 ∈ {ξ, η}, suppose that the measuresθj,k satisfy condition(M) with respect
to λ and the Radon–Nikodym derivatives defined there satisfy

sup
j,k,n∈N,jk6 n

sup
x∈B

∣∣∣γ ζ1,ζ21,j,k (x)

∣∣∣ 6 c0 <∞, (16)

lim
m→+∞

1

m

m∑
j=1

γ
ζ1,ζ2
2,j,k = gζ1,ζ22,k uniformly onB, (17)

lim
k→+∞

g
ζ1,ζ2
2,k = gζ1,ζ22 uniformly onB, (18)

for some functionsgζ1,ζ22,k andgζ1,ζ22 continuous on B. Suppose further that for every
sequenceIn ∈ ∪∞k=15k decreasing to a discrete set and every constantC > 0,∫

{ζ2
2 (In)>Cnhn}

1

hn
ζ 2

1 (In)dP −→ 0 (19)

for every choiceζ1, ζ2 ∈ {ξ, η}. Then, the random vector

n1/2h−1/2
n (ηn(In,1)− µ(In,1), . . . , ηn(In,r )− µ(In,r ),

ξn(In,1)− ν(In,1), . . . , ξ n(In,r )− ν(In,r )) (20)
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converges in distribution to a centered Gaussian random vector with covariance
matrix

0 =



g
η,η

2 (s1, s1) · · · 0 g
ξ,η

2 (s1, s1) · · · 0
...

. . .
...

...
. . .

...

0 · · · gη,η2 (sr , sr ) 0 · · · gξ,η2 (sr , sr )

g
ξ,η

2 (s1, s1) · · · 0 g
ξ,ξ

2 (s1, s1) · · · 0
...

. . .
...

...
. . .

...

0 · · · gξ,η2 (sr , sr ) 0 · · · gξ,ξ2 (sr , sr )


.

The proof of this theorem follows several steps taking care of the approx-
imations needed to handle the dependence of the variables. In order to improve
readability, we will present this proof divided into four lemmas, followed by a final
step, presented as the proof of the theorem itself, gathering all the partial results.
Before embarking in the proof of the lemmas we give a brief description of the
step that is accomplished in each one of the following lemmas. Lemma 4.3 shows
that we only need to treat those values ofn which are multiples of the fixed integer
k. The variable introduced in the previous lemma is decomposed into the sum of
several dependent variables. The usual coupling technique replaces these variables
with independent ones with the same distributions. Lemmas 4.4 and 4.5 justify the
use of this coupling by controlling the difference of the respective characteristic
functions. This control has to be accomplished in two steps due to the nature of
the variables treated. Finally, Lemma 4.6 shows that, after coupling, the Lindeberg
condition is satisfied, so the Central Limit Theorem holds.

In the course of the proof we will need some notation which will be used
throughout the lemmas. Letc1, . . . , cr , d1, . . . , dr ∈ R be fixed and, for each
n ∈ N, i = 1, . . . , n, q = 1, . . . , r, define the random variables

T
q

n,i =
1√
hn

[cq(ξi(In,q)− ν(In,q))+ dq(ηi(In,q)− µ(In,q))]

and

T qn =
1√
n

n∑
i=1

T
q

n,i, Zn,i =
r∑
q=1

T
q

n,i , Zn = 1√
n

n∑
i=1

Zn,i =
r∑
q=1

T qn .

For eachj = 1, . . . , m andq = 1, . . . , r define

Y
q

n,j =
1√
k

jk∑
l=(j−1)k+1

T
q

n,l .

Then

T
q

mk =
1√
mk

mk∑
i=1

T
q

mk,i =
1√
m

m∑
j=1

Y
q

mk,j .
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The variableZn is the linear combination of the coordinates of (20), required for
the application of the Cram´er-Wold Theorem, while the variablesY qn,j correspond
to the blocks in which the sums are decomposed.

LEMMA 4.3. Suppose the assumptions of Theorem 4.2 are satisfied and letk be
fixed. Then, at least one of the following convergences hold:

lim
n→+∞

∣∣EeiuZn − EeiuZmk
∣∣ = 0 (21)

or

lim
n→+∞

∣∣EeiuZn − EeiuZ(m+1)k
∣∣ = 0. (22)

Proof. For fixedk and large enoughn, there is at most one change of partition
between the sample sizesmk and (m + 1)k. Suppose for the moment there are
no changes of partitions, or, if there is one corresponding to the sample sizetl ∈
[mk, (m+ 1)k), thenmk6 n < tl. In this case, we approximateZn byZmk.∣∣EeiuZn − EeiuZmk

∣∣ 6 E[|u| |Zn − Zmk|]
6 |u|Var1/2(Zn − Zmk)

6 |u|
[

1√
n

Var1/2
(
mk∑
i=1

(Zn,i − Zmk,i)
)
+

+
(

1√
mk
− 1√

n

)
Var1/2

(
mk∑
i=1

Zmk,i

)
+

+ 1√
n

Var1/2
(

n∑
i=mk+1

Zn,i

)]
. (23)

We now prove that this sum converges to zero. The square of the first term is

1

n
Var

(
mk∑
i=1

(Zn,i − Zmk,i)
)

= 1

n

mk∑
i,j=1

[
Cov(Zn,i, Zn,j )− Cov(Zn,i , Zmk,j )−

− Cov(Zmk,i , Zn,j )+ Cov(Zmk,i, Zmk,j )]. (24)

Expanding the first of these terms, we find

1

n hn

r∑
q,q ′=1

mk∑
i,j=1

[cqcq ′ Cov(ξi(In,q), ξj (In,q ′))+

+ cqdq ′ Cov(ξi(In,q), ηj (In,q ′))+ dqcq ′ Cov(ηi(In,q), ξj (In,q ′))+
+ dqdq ′ Cov(ηi(In,q), ηj (In,q ′))]. (25)
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Using the decomposition(M) the first term of this last expansion equals

mk hmk

n hn

m
ξ,ξ

1,1,mk(In,q × In,q)
hmk

+ mk
n

m
ξ,ξ

2,1,mk(In,q × In,q)
hmk

.

Now,

m
ξ,ξ

1,1,mk(In,q × In,q)
hmk

6 c0
λ(In,q)λ(In,q ′)

hn
−→ 0

by the assumptions on the partitions. The second term on the decomposition equals
0 if q 6= q ′, as in this case the setIn,q × In,q ′ does not intersect the diagonal of the
product space. Whenq = q ′, we find, by (18),

m
ξ,ξ

2,1,mk(In,q × In,q)
hmk

= m
ξ,ξ

2,1,mk(I
∗
n,q)

λ∗(I ∗n,q)
−→ g

ξ,ξ

2 (sq, sq).

The remaining terms in (25) are treated analogously. Thus, remembering thatmk/n

→ 1, we get,

lim
n→+∞

1

n

mk∑
i,j=1

Cov(Zn,i , Zn,j )

=
r∑
q=1

(
c2
q g

ξ,ξ

2 (sq, sq)+ 2cqdq g
ξ,η

2 (sq, sq)+ d2
q g

η,η

2 (sq, sq)
)

(note that we should consider two terms corresponding tog
ξ,η

2 and gη,ξ2 , but as
we only need their values on the diagonal, these terms coincide). The fourth term
in (24) is analogous to the one just discussed. The second and third are slightly
different, requiring the use of the sequencetl, l ∈ N. In fact,

1

n

mk∑
i,j=1

Cov(Zn,i , Zmk,j )

= 1

n
√
hnhmk

r∑
q,q ′=1

mk∑
i,j=1

[cqcq ′ Cov(ξi(In,q), ξj (Imk,q ′))+

+ cqdq ′ Cov(ξi(In,q), ηj (Imk,q ′))+ dqcq ′ Cov(ηi(In,q), ξj (Imk,q ′))+
+ dqdq ′ Cov(ηi(In,q), ηj (Imk,q ′))].

We supposed that there was no change of partition betweenmk and(m + 1)k or
thatmk6 n < tl < (m + 1)k. In either case, it follows thatImk,q ′ = In,q ′ , so the
convergence of this expression to

r∑
q=1

(
c2
q g

ξ,ξ

2 (sq, sq)+ 2cqdq g
ξ,η

2 (sq, sq)+ d2
q g

η,η

2 (sq, sq)
)

follows as in the discussion of the first term in (24).
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So, adding up these terms, we finally get that

1√
n

Var

(
mk∑
i=1

(Zn,i − Zmk,i)
)
−→ 0.

We now proceed with the second term in (23). Again expanding its square, we
find (

1√
mk
− 1√

n

)2 1

hmk

mk∑
i,j=1

Cov(Zmk,i, Zmk,j )

=
(

1−
√
mk√
n

)2
1

mk hmk

r∑
q,q ′=1

mk∑
i,j=1

[cqcq ′ Cov(ξi(Imk,q), ξj (Imk,q ′))+

+ cqdq ′ Cov(ξi(Imk,q), ηj (Imk,q ′))+ dqcq ′ Cov(ηi(Imk,q), ξj (Imk,q ′))+
+ dqdq ′ Cov(ηi(Imk,q), ηj (Imk,q ′))].

All the terms have now the same form as those in (25), so the above expression
converges to zero, as(1−√mk/√n)2 −→ 0.

Finally, we investigate the third term in (23). Expanding its square, we find

1

n

n∑
i,j=mk+1

Cov(Zn,i , Zn,j )

= 1

n hn

r∑
q,q ′=1

n∑
i,j=mk+1

[cqcq ′ Cov(ξi(In,q), ξj (In,q ′))+

+ cqdq ′ Cov(ξi(In,q), ηj (In,q ′))+ dqcq ′ Cov(ηi(In,q), ξj (In,q ′))+
+ dqdq ′ Cov(ηi(In,q), ηj (In,q ′))].

However, all these terms converge to zero because of (15) and the nonnegativity of
the covariances, due to association of the variables. So, we have finally proved that
(21) holds.

It remains to check the case wheremk6 tl 6 n < (m + 1)k. Presently, we
approximate the characteristic function ofZn by that ofZ(m+1)k. The boundedness
used in (23) is modified here as follows. In the first two terms of (23), just replace
m bym+ 1. This does not affect the arguments used in the subsequent discussion,
andIn,q = I(m+1)k,q. Thus, the first two terms in (23) converge to zero. The third
term in (23) is replaced by

1√
n

Var1/2
(
(m+1)k∑
i=n+1

Zn,i

)
,

which converges to zero as was the case in the corresponding term in the analysis
carried previously whenmk6 n < tl < (m + 1)k. So, in this case, we also have
that (22) is satisfied. 2
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LEMMA 4.4. Suppose the assumptions of Theorem 4.2 are satisfied and letk be
fixed. Then,

lim
n→+∞

∣∣∣∣∣∣EeiuZmk −
r∏
q=1

EeiuT qmk

∣∣∣∣∣∣ = 0.

Proof. We now work with the difference betweenZmk = ∑
q T

q

mk and the
same sum if the variablesT 1

mk, . . . , T
r
mk were independent. For eachn ∈ N, i =

1, . . . , n, q = 1, . . . , r define the random variables

T
q

n,i =
1√
hn

[|cq |(ξi(In,q)− ν(In,q))+ |dq |(ηi(In,q)− µ(In,q))]

and let

T
q

n =
1√
n

n∑
i=1

T
q

n,i .

By Lemma 4.1,∣∣∣∣∣∣EeiuZmk −
r∏
q=1

EeiuT qmk

∣∣∣∣∣∣
=
∣∣∣∣∣∣Eeiu

∑
q T

q
mk −

r∏
q=1

EeiuT qmk

∣∣∣∣∣∣ 62u2
∑
q 6=q ′

Cov(T
q

mk, T
q ′
mk).

This expression converges to zero, as is easily seen by expanding one of the cov-
ariance terms,

Cov(T
q

mk, T
q ′
mk) =

1

mk

mk∑
i,j=1

Cov(T
q

mk,i , T
q ′
mk,j )

= 1

mk hmk

mk∑
i,j=1

[|cqcq ′ |Cov(ξi(Imk,q), ξj (Imk,q ′)) +

+ |cqdq ′ |Cov(ξi(Imk,q), ηj (Imk,q ′))+
+ |dqcq ′ |Cov(ηi(Imk,q), ξj (Imk,q ′))+
+ |dqdq ′ |Cov(ηi(Imk,q), ηj (Imk,q ′))].

Using the decomposition(M) , the first term on the right-hand side above equals

m
ξ,ξ

1,1,mk(Imk,q × Imk,q ′)
hmk

+ m
ξ,ξ

2,1,mk(Imk,q × Imk,q ′)
hmk

.
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This expression converges to zero, as was seen above, by taking into account that
q 6= q ′, so that for large enoughn, Imk,q ∩ Imk,q ′ = ∅. 2
LEMMA 4.5. Suppose the assumptions of Theorem 4.2 are satisfied and letk be
fixed. Then,

lim sup
n→+∞

∣∣∣∣∣∣
r∏
q=1

EeiuT qmk −
r∏
q=1

m∏
j=1

Eei u√
m
Y
q
mk,j

∣∣∣∣∣∣ 6 2u2
r∑
q=1

(aq − aqk ), (26)

where

aq = c2
q g

ξ,ξ

2 (sq, sq)+ 2
∣∣cqdq ∣∣ gξ,η2 (sq, sq)+ d2

q g
η,η

2 (sq, sq)

and

a
q

k = c2
q g

ξ,ξ

2,k (sq, sq)+ 2
∣∣cqdq ∣∣ gξ,η2,k (sq, sq)+ d2

q g
η,η

2,k (sq , sq).

Proof. The sumsT qmk = (1/
√
m)
∑m

j=1 Y
q

mk,j are now to be approximated by
independent summands. Withq fixed, we may reason as follows:∣∣∣∣∣∣

r∏
q=1

EeiuT qmk −
r∏
q=1

m∏
j=1

Eei u√
m
Y
q
mk,j

∣∣∣∣∣∣
6

r∑
q=1

∣∣∣∣∣∣EeiuT qmk −
m∏
j=1

Eei u√
m
Y
q
mk,j

∣∣∣∣∣∣ .
For eachj = 1, . . . , m andq = 1, . . . , r define

Y
q

n,j =
1√
k

jk∑
l=(j−1)k+1

T
q

n,l .

Then, an application of Lemma 4.1 yields∣∣∣∣∣∣EeiuT qmk −
m∏
j=1

Eei u√
m
Y
q
mk,j

∣∣∣∣∣∣
=
∣∣∣∣∣∣Eei u√

m

∑m
j=1 Y

q
mk,j −

m∏
j=1

Eei u√
m
Y
q
mk,j

∣∣∣∣∣∣
6 2u2

∑
j 6=j ′

1

m
Cov(Y

q

mk,j , Y
q

mk,j ′)

= 2u2

 1

mk

mk∑
i,j=1

Cov(T
q

n,i , T
q

n,j )−
1

m

m∑
j=1

Cov(Y
q

mk,j , Y
q

mk,j )

 . (27)
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Next,

1

mk

mk∑
i,j=1

Cov(T
q

n,i , T
q

n,j )

= 1

mk hmk

mk∑
i,j=1

[c2
q Cov(ξi(Imk,q), ξj (Imk,q))+

+ |cqdq |Cov(ξi(Imk,q), ηj (Imk,q))+ |dqcq |Cov(ηi(Imk,q), ξj (Imk,q))+
+ d2

q Cov(ηi(Imk,q), ηj (Imk,q))]

and this expression converges toaq , as was seen earlier. The remaining term in (22)
is discussed as follows by using decomposition(M) :

Cov(Y
q

mk,j , Y mk,j )

= 1

k hmk

jk∑
l,l′=(j−1)k+1

[c2
q Cov(ξl(Imk,q), ξl′(Imk,q))+

+ |cqdq |Cov(ξl(Imk,q), ηl′(Imk,q))+ |dqcq |Cov(ηl(Imk,q), ξl′(Imk,q))+
+ d2

q Cov(ηl(Imk,q), ηl′(Imk,q))].

Utilizing same arguments as above, this expression converges to

c2
qγ

ξ,ξ

2,j,k(sq , sq)+ 2|cqdq |γ ξ,η2,j,k(sq, sq)+ d2
qγ

η,η

2,j,k(sq, sq),

so that, by using (17),

lim
n→+∞

1

m

m∑
j=1

Cov(Y
q

mk,j , Y
q

mk,j ) = aqk .

Thus, by relation (27), the inequality (26) follows. 2
LEMMA 4.6. Suppose the assumptions of Theorem 4.2 are satisfied and letk and
q be fixed. Then,

lim
n→+∞

1

Var(
∑m

j=1 Y
q

mk,j )

∫
{∣∣∣Yqmk,j ∣∣∣>εaqk√m}(Y

q

mk,j )
2 dP = 0.

Proof. We now show that the Lindeberg conditions is satisfied by the triangular
arraym−1/2Y

q

mk,j , j = 1, . . . , m. So, supposing the variables to be independent, a
Central Limit Theorem will follow.

Repeating the arguments in the previous lemmas, is easily shown that

1

m
Var

 m∑
j=1

Y
q

mk,j

 −→ a
q

k

:= c2
q g

ξ,ξ

2,k (sq, sq)+ 2cqdq g
ξ,η

2,k (sq , sq)+ d2
q g

η,η

2,k (sq, sq).
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In such a case Lindeberg condition reduces to

m∑
j=1

∫
{∣∣∣Yqmk,j ∣∣∣>εaqk√m}

1

m
(Y

q

mk,j )
2 dP −→ 0.

The variablesY qmk,j are defined as sums of the variablesT qmk,l, l = (j − 1)k +
1, . . . , jk, so we may apply Lemma 4 of Utev [39], which gives an upper bound
for the integral of the square of a sum in terms of the sum of the squares of the
variables, to this last integral to find the upper bound

m∑
j=1

∫
{∣∣∣∑jk

l=(j−1)k+1 T
q
mk,l

∣∣∣>εaqk√mk}
1

mk

 jk∑
l=(j−1)k+1

T
q

mk,l

2

dP

6 2

m

m∑
j=1

jk∑
j=(j−1)k+1

∫{∣∣∣T qmk,l ∣∣∣>εa
q
k

2

√
m
k

}(T qmk,l)2 dP

= 2

m

mk∑
j=1

∫{∣∣∣T qmk,j ∣∣∣>εa
q
k

2k

√
mk

}(T qmk,j )2 dP.

As k is fixed, the above sum has the same form as the one appearing in the proof
of Theorem 4.1 in Jacob and Oliveira [21] (see also, Theorem 6.1 in [19]), which
was proved to converge to zero on account of (19). 2

Proof of Theorem 4.2.Now, in order to complete the proof of the theorem, we
setaq = c2

q g
ξ,ξ

2 (sq, sq)+ 2cqdq g
ξ,η

2 (sq, sq)+ d2
q g

η,η

2 (sq, sq), and have∣∣∣∣EeiuZmk − e− u2
2

∑r
q=1 a

q

∣∣∣∣
6

∣∣∣∣∣∣EeiuZmk −
r∏
q=1

EeiuT qmk

∣∣∣∣∣∣+
r∑
q=1

∣∣∣∣∣∣EeiuT qmk −
m∏
j=1

Ee
iu√
m
Y
q
mk,j

∣∣∣∣∣∣+
+

r∑
q=1

∣∣∣∣∣∣
m∏
j=1

Ee
iu√
m
Y
q
mk,j − e− u2

2 a
q
k

∣∣∣∣∣∣+
r∑
q=1

∣∣∣∣e− u2
2 a

q
k − e− u2

2 a
q

∣∣∣∣ . (28)

For the moment, supposek is fixed. The first term in the last expression above
converges to zero by Lemma 4.4. The third term converges to zero by Lemma 4.6.
In fact, the product appearing in this term is the characteristic function of the vector
m−1/2 (Y

q

mk,1, . . . , Y
q

mk,m), supposing the coordinates to be independent. A shown
in Lemma 4.6 this converges to a centered Gaussian vector with covariance matrix
of the same form as0 but with thegζ1,ζ22 replaced bygζ1,ζ22,k , so the convergence to
zero of the third term in (28) follows. So, taking into account of Lemma 4.5, we
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have, for eachk ∈ N,

lim sup
m→+∞

∣∣∣∣EeiuZmk − e− u2
2

∑r
q=1 a

q

∣∣∣∣
6 2u2

r∑
q=1

(aq − aqk )+
r∑
q=1

∣∣∣∣e− u2
2 a

q
k − e− u2

2 a
q

∣∣∣∣ .
Finally, lettingk −→ +∞, the expression on the right-hand side above converges
to zero on account of (18). Thus, the convergence in distribution asserted in (20) is
established. 2

A discussion on condition (19) has been presented by the authors in [19], indic-
ating that it is a reasonable one. It is fulfilled in Poisson processes and also some
other point processes constructed from Poisson processes.

An application of theδ-method yields the convergence of the finite-dimensional
distributions of the estimatorfn itself.

THEOREM 4.7. Suppose the conditions of Theorem 4.2 are satisfied. Then

n1/2h1/2
n

(
ηn(In,1)

ξn(In,1)
− µ(In,1)
ν(In,1)

, . . . ,
ηn(In,r)

ξn(In,r )
− µ(In,r )
ν(In,r )

)
(29)

converges in distribution to a centered Gaussian random vector with diagonal
covariance matrix0∗ with

γ ∗q,q =
g
ξ,ξ

2 (sq, sq)

f 2
µ(sq)

− 2gξ,η2 (sq, sq)fµ(sq)

f 3
ν (sq)

+

+ f
2
µ(sq)g

η,η

2 (sq, sq)

f 4
ν (sq)

, q = 1, . . . , r.

Proof. Define the random vector

Un =
(
ηn(In,1), . . . , ηn(In,r ), ξn(In,1), . . . , ξ n(In,r )

)
and the real valued functionϕ onR2r by

ϕ(y) =
r∑
q=1

bq
yq

yr+q
,

whereb1, . . . , bq are real numbers, so that
√
nhn (ϕ(Un)− ϕ(EUn)) is a linear

combination of the coordinates in (29). Using the Taylor expansion, we find√
n hn (ϕ(Un)− ϕ(EUn))

=
2r∑
q=1

hn
∂ϕ

∂yq
(EUn)

√
n

hn
(Un,q − EUn,q)+

+hn
√
n

hn
‖ Un − EUn ‖ε(‖ Un − EUn ‖),
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whereε is continuous and limy→0 ε(y) = 0. AsUn −→ EUn in probability, by
Theorem 3.1, andn1/2h

−1/2
n ‖ Un − EUn ‖ converges in distribution, the last term

above converges in probability to zero. Now consider the vectoru = (fµ(s1), . . . ,
fµ(sr), fν(s1), . . . , fν(sr)) and rewrite the first term of the Taylor expansion as
follows:

2r∑
q=1

∂ϕ

∂yq
(u)

√
n

hn
(Un,q − EUn,q)+

+
2r∑
q=1

[
hn
∂ϕ

∂yq
(EUn)− ∂ϕ

∂yq
(u)

]√
n

hn
(Un,q − EUn,q).

Computing the derivatives, it is easily seen that

hn
∂ϕ

∂yq
(EUn) −→ ∂ϕ

∂yq
(u),

so that the limiting distribution of
√
nhn (ϕ(Un)− ϕ(EUn)) is the same as that of

2r∑
q=1

∂ϕ

∂yq
(u)

√
n

hn
(Un,q − EUn,q),

which, in Theorem 4.2 was shown to be Gaussian. Its variance is easily shown to
be

2r∑
q=1

b2
q

(
g
ξ,ξ

2 (sq, sq)

f 2
µ(sq)

− 2gξ,η2 (sq, sq)fµ(sq)

f 3
ν (sq)

+ f
2
µ(sq)g

η,η

2 (sq, sq)

f 4
ν (sq, sq)

)
,

as it follows by replacingcq and dq , in the computation of the variance in the
Theorem 4.2 bybq/fµ(sq) andbqfµ(sq)/f 2

ν (sq), respectively. 2
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