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Abstract. This paper addresses the local convergence properties of the affine-scaling interior-point algorithm
for nonlinear programming. The analysis of local convergence is developed in terms of parameters that control the
interior-point scheme and the size of the residual of the linear system that provides the step direction. The analysis
follows the classical theory for quasi-Newton methods and addresses q-linear, q-superlinear, and q-quadratic rates
of convergence.
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1. Introduction

Interior-point methods have been intensively and successfully applied to linear program-
ming problems, linear complementarity problems, convex programming problems and other
related classes of problems. For more general classes of problems, the application and
analysis of interior-point methods is complicated by the presence of nonlinearity and non-
convexity. In the following paragraphs, we will survey the research carried in the field of
interior-point methods for nonlinear and nonconvex optimization problems.

The local convergence theory for primal-dual interior-point methods has been established
by El-Bakry et al. [14], Martinez et al. [21], and Yamashita and Yabe [29]. A few authors
have considered primal-dual interior-point algorithms for which they proved global con-
vergence (see the work by Argaez and Tapia [1], Conn et al. [8], and Yamashita [28]). The
application of these algorithms to discretized optimal control problems has also been sub-
ject of study in the papers by Battermann and Heinkenschloss [2], Leibfritz and Sachs [19],
Vicente [26], and Wright [27]. The recent papers by Gay, Overton, and Wright [16] and
Vanderbei and Shanno [25] introduce and test globalization strategies for primal-dual
interior-point algorithms.

In the papers cited above, the step direction for the interior-point method is defined in the
primal variables, in the multipliers corresponding to equality constraints and in the multi-
pliers corresponding to inequality constraints. Other authors (Forsgren and Gill [15], Byrd
et al. [5], and references therein) investigated interior-point methods where the direction is
defined only in the first two set of variables and an approximation is used to the multipliers
corresponding to the inequality constraints.
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On the other hand, affine-scaling interior-point methods for nonlinear optimization were
developed by Coleman and Li (see, e.g., [3, 6, 12]) for minimization problems with sim-
ple bounds. The Coleman-Li affine scaling incorporates dual information and relates to
the Dikin-Karmarkar affine scaling (see, e.g., [13, 18, 22, 23]). One attractive feature of
affine-scaling interior-point methods is that they can be appropriately tailored to specific
classes of problems. They have been applied to discretized optimal control problems by
Dennis et al. [10] and to infinite dimensional control problems by Ulbrich and Ulbrich [24].
They have also been applied to other classes of problems like quadratic programming and
nonlinear minimization subject to linear inequality constraints, but also to general nonlinear
programming (Coleman and Li [7], Das [9], and Li [20]). One other attractive aspect of
affine-scaling interior-point methods is that they exhibit strong local and global convergence
properties: In many of the papers cited above the affine-scaling scheme has been combined
with the trust-region strategy and the resulting interior-point algorithm converges globally to
points satisfying first-order and second-order necessary conditions. The paper by Heinken-
schloss et al. [17] combines the scaling with a projection and establishes superlinear and
quadratic convergence without the strict complementarity assumption.

The paper by Vicente [26] gives a unified perspective of primal-dual and affine-scaling
interior-point algorithms and introduces reduced primal-dual interior-point methods.

As far as the author is concerned, there is no general analysis of local convergence for
affine-scaling interior-point algorithms like the analysis given in the aforementioned papers
[14, 21, 29] for primal-dual interior-point methods. Our intention is to fill this gap in the
current paper by providing a local convergence analysis of the affine-scaling interior-point
algorithm for nonlinear programming when second-order derivatives are replaced by quasi-
Newton updates and linear systems are solved inexactly. We do not present any analysis of
global convergence or polynomiality. We start in Section 2 by describing the local version
of the affine-scaling interior-point algorithm for nonlinear programming. The analysis
will follow the approach given by Yamashita and Yabe [29] for primal-dual interior-point
algorithms, which in turn relies on the theory developed by Broyden et al. [4] and Dennis
and Moré [11] for quasi-Newton methods. However, the technical results needed for the
analysis are obtained differently from [29] and they will be the subject of a careful study
in Section 3. The results for linear, superlinear, and quadratic convergence are stated in
Section 4.

2. The affine-scaling interior-point algorithm

Consider a nonlinear programming problem written in the form

minimize f (x)

subject to g(x) = 0,

x ≥ 0,

(1)

wherex ∈ IRn, f :Ä→ IR, g :Ä→ IRm, n and m are positive integers satisfyingn>m,
andÄ is an open set of IRn. We will assume that the functionsf andg are twice Lipschitz
continuously differentiable inÄ.
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2.1. Motivation

If a point x is a local minimizer for problem (1) and if it satisfies a given constraint qualifi-
cation (like the regularity condition to be described later), thenx verifies the Karush-Kuhn-
Tucker first-order necessary conditions, i.e., there existλ∈ IRm andz∈ IRn such that

∇x`(x, λ)− z = 0, (2)

g(x) = 0, (3)

xi zi = 0, i = 1, . . . ,n, (4)

x, z ≥ 0, (5)

where`(x, λ) = f (x)+ λ>g(x) and∇x`(x, λ) = ∇ f (x)+∇g(x)λ.
The affine-scaling algorithm is based on the definition of the diagonal matrixD(x, λ)

whose diagonal elements are given by:

(D(x, λ))ii =
{
(xi )

1
2 if (∇x`(x, λ))i ≥ 0,

1 if (∇x`(x, λ))i < 0,

for i = 1, . . . ,n.
Given the definition of this diagonal matrix, we can eliminate the multipliersz from

the first-order necessary conditions. In fact, a pointx satisfies the first-order necessary
conditions if and only if there existsλ ∈ IRm such that

D(x, λ)2∇x`(x, λ) = 0, (6)

g(x) = 0, (7)

x ≥ 0. (8)

The vector function D(x, λ)2∇x`(x, λ) is continuous, but not differentiable if
(∇x`(x, λ))i = 0 for somei ∈ {1, . . . ,n}. If (∇x`(x, λ))i 6= 0, we will differentiate the
i -th function in (6) using the product rule. For that purpose we introduce the diagonal
matrix E(x, λ) whose diagonal elements are the product of the derivative of the diagonal
elements ofD(x, λ)2 and the components of∇x`(x, λ):

(E(x, λ))ii =
{
(∇x`(x, λ))i if (∇x`(x, λ))i > 0,

0 otherwise,

for i = 1, . . . ,n. If (∇x`(x, λ))i = 0, we formally apply the product rule assuming that
the derivative of(D(x, λ)2)ii is zero.

Given these considerations, the Newton step for (6)–(7) is computed from the solution
of the linear system(

D(x, λ)2∇2
xx`(x, λ)+ E(x, λ) D(x, λ)2∇g(x)

∇g(x)> 0

)(
1x

1λ

)

= −
(

D(x, λ)2∇x`(x, λ)

g(x)

)
, (9)

where∇2
xx`(x, λ) = ∇2 f (x)+∑m

i=1 λi∇2gi (x).
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With the definitions of the matricesD(x, λ) andE(x, λ) we can characterize the strict
complementarity condition and the second-order sufficient conditions in terms of the pair
of variables(x, λ). We define first the set of indicesA(x):

A(x)={i ∈ {1, . . . ,n} : xi = 0}.
The strict complementarity condition is satisfied at a pointx, with corresponding multi-

pliersλ andz satisfying the first-order necessary conditions (2)–(5), if

zi > 0 for all i ∈ A(x)
or, equivalently, if

(E(x, λ))ii > 0 for all i ∈ A(x). (10)

The second-order sufficient conditions are given by (2)–(5) and the positive definiteness
of ∇2

xx`(x, λ) on the subspace

{d ∈ IRn :∇g(x)>d= 0, di ≥ 0 if i ∈A(x), and

di = 0 if i ∈A(x) andzi > 0}.
If the pair (x, λ) satisfies strict complementarity (see (10)), the second-order sufficient
conditions are equivalent to (6)–(8) and the positive definiteness of

D(x, λ)∇2
xx`(x, λ)D(x, λ)+ E(x, λ). (11)

on the null space of∇g(x)>D(x, λ).
Finally, we address the regularity condition. A feasible pointx is regular if the matrix(∇g(x) IA(x)

)
has full column rank, whereIA(x) is a submatrix of the identity formed by columns corre-
sponding to indices inA(x). For the local convergence of the algorithm addressed in this
paper, we need the two following facts:

1. If x is a regular point, then the matrixD(x, λ)∇g(x) has full column rank.
2. If the regular pointx, with corresponding multipliersλ, is such that the matrix (11) is

positive definite, then the matrix(
D(x, λ)∇2

xx`(x, λ)D(x, λ)+ E(x, λ) D(x, λ)∇g(x)

∇g(x)>D(x, λ) 0

)
(12)

is nonsingular.

The proofs are given in [26, Prop. 3.3]. Note that the matrix (12) is obtained from the linear
system (9) that defines the Newton step and the change of variables1̃x = D(x, λ)−11x.

We end this section with the assumptions on problem (1) needed for the analysis. LetÄ

be an open set of IRn andx∗ a point inÄ.
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Assumption 2.1

1. The functionsf andg are twice Lipschitz continuously differentiable inÄ.
2. The pointx∗ (with corresponding multipliersλ∗) is regular, verifies the strict comple-

mentarity condition, and satisfies the second-order sufficient conditions.

2.2. Algorithm and notation

We describe next the main steps of the affine-scaling interior-point algorithm. We useHk

to represent a symmetric approximation to∇2
xx`k. The vectorse andê are given by

e= (1, . . . ,1)> ∈ IRn and ê= (e>, 0, . . . ,0)> ∈ IRn+m.

We use subscripted indices to represent the evaluation of a function at a particular point
of the sequences{xk} and{λk}. The vector and matrix norms used are the`2 norms,‖ · ‖F

is the Frobenius matrix norm, and‖ · ‖M is a given matrix norm.

Algorithm 2.1 (Affine-scaling interior-point algorithm)

1. Choose an initial point(x0, λ0) with x0 > 0.
2. Fork = 0, 1, . . . do

2.1 Compute an approximate solution(1xk,1λk) to the linear system(
D2

k Hk + Ek D2
k∇gk

∇g>k 0

)(
1x

1λ

)
=−

(
D2

k∇x`k − µke

gk

)
, (13)

given the approximationHk to the Hessian matrix∇2
xx`(xk, λk) andµk > 0. (µk is

a perturbation parameter for centralization purposes, see [14, 26, 30].)
2.2 Setαk = τk mini=1,...,n{1, min{− (xk)i

(1xk)i
: (1xk)i < 0}}, whereτk ∈ [τ̂ , 1] and τ̂ ∈

(0, 1).
2.3 Set the new iterates:

xk+1 = xk + αk1xk, λk+1 = λk +1λk.

For the analysis, it is convenient to use the following notations:

wk =
(

xk

λk

)
, 1wk =

(
1xk

1λk

)
,

3k =
(
αk In 0

0 Im

)
, wk+1 = wk +3k1wk,

and

Ak =
(

D2
k Hk + Ek D2

k∇gk

∇g>k 0

)
.
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2.3. Inexactness

The linear system (13) can be solved inexactly, meaning that:(
D2

k Hk + Ek D2
k∇gk

∇g>k 0

)(
1xk

1λk

)
= −

(
D2

k∇x`k − µke

gk

)
+
(

r 1
k

r 2
k

)
, (14)

where

rk =
(

r 1
k

r 2
k

)
is the residual vector. The analysis in this paper determines how fast the norm of the residual
rk must go to zero. We will also impose asymptotic conditions on the norm of the vector

s1
k =


(r 1

k )1

(xk)1

...

(r 1
k )n

(xk)n

 ·

2.4. Differentiability

The step1wk can be seen as a Newton step on a system of Lipschitz continuously dif-
ferentiable nonlinear equations. For this purpose, we consider a pointw∗ = (x∗, λ∗) in
the conditions of the Assumptions 2.1. Of importance for this discussion is the fact that
w∗ satisfies the strict complementarity condition (10) and the first-order necessary condi-
tions (6)–(8). We define a diagonal matrixD[x∗, λ∗, k](x, λ) with diagonal elements given
by

(D[x∗, λ∗, k](x, λ))ii =


(xi )

1
2 if (∇x`(x∗, λ∗))i > 0,

(xi )
1
2 if (∇x`(x∗, λ∗))i = 0 and (∇x`k)i ≥ 0,

1 if (∇x`(x∗, λ∗))i = 0 and (∇x`k)i < 0,

1 if (∇x`(x∗, λ∗))i < 0,

for i = 1, . . . ,n. Given this definition, we can easily deduce the three following facts:

1. The vector functionD[x∗, λ∗, k](x, λ)∇x`(x, λ) is Lipschitz continuously differentiable
on the variablesx andλ. The definition of the vector functionD[x∗, λ∗, k](·, ·) depends
on (x∗, λ∗) and(xk, λk). However, the definition of thei -th principal diagonal element
of D[x∗, λ∗, k](x, λ) is independent of(x, λ).

2. If wk is sufficiently close tow∗, then

D[x∗, λ∗, k](xk, λk) = D(xk, λk).
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To simplify notation, we define

D∗,k(x, λ) = D[x∗, λ∗, k](x, λ) and D∗,k = D∗,k(xk, λk).

Thus we can write(
D2
∗,k Hk + Ek D2

∗,k∇gk

∇g>k 0

)(
1xk

1λk

)
= −

(
D2
∗,k∇x`k − µke

gk

)
+
(

r 1
k

r 2
k

)
. (15)

Introducing the notation

A∗,k =
(

D2
∗,k Hk + Ek D2

∗,k∇gk

∇g>k 0

)
and

F∗,k(w) = F∗,k(x, λ) =
(

D∗,k(x, λ)2∇x`(x, λ)
g(x)

)
,

we rewrite the quasi-Newton step1wk as

A∗,k1wk = −F∗,k(wk)+ µkê+ rk. (16)

3. If rk = 0, Hk = ∇2
xx`(xk, λk), andwk is sufficiently close tow∗, then1wk is the Newton

step for

D[x∗, λ∗, k](x, λ)∇x`(x, λ)− µke= 0,

g(x) = 0,

atw = wk. Thus

∇F∗,k(w)=∇F∗,k(x, λ)=
(

D2
∗,k(x, λ)∇2

xx`(x, λ)+ E(x, λ) D2
∗,k(x, λ)∇g(x)

∇g>(x) 0

)
and the Newton step1wk satisfies

∇F∗,k(wk)1wk = −F∗,k(wk)+ µkê+ rk.

3. Technical lemmas

The set of active indices atx∗ is defined as

A(x∗) = {i ∈ {1, . . . ,n} : (x∗)i = 0}.
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Lemma 3.1. There exist positive numbersε, κ1, κ2, andκ3 independent of k, such that if
‖wk − w∗‖ ≤ ε, κ1‖1wk‖ ≤ 1, andκ2‖1wk‖ + κ3‖s1

k‖ ≤ 1, then

|1− αk| ≤ |1− τk| + τk
(
κ2‖1wk‖ + κ3

∥∥s1
k

∥∥).
Proof: If i /∈ A(x∗) andε ≤ (x∗)i

2 then

− (1xk)i

(xk)i
≤ κ1‖1wk‖,

whereκ1 = max{ 2
(x∗)i

: i /∈ A(x∗)}.
If i ∈ A(x∗) andε is sufficiently small, then from the assumption (10) on strict com-

plementarity we know that(Ek)ii ≥ (E∗)ii/2. On the other hand, from the first equation
in (15)

(1xk)i = −
(
D2
∗,k Hk1xk

)
i

(Ek)ii
−
(
D2
∗,k∇gk1λk

)
i

(Ek)ii
−
(
D2
∗,k∇x`k

)
i

(Ek)ii
+ µk

(Ek)ii
+
(
r 1

k

)
i

(Ek)ii
.

Thus,

− (1xk)i

(xk)i
= (Hk1xk)i

(Ek)ii
+ (∇gk1λk)i

(Ek)ii
− 1− µk

(xk)i (Ek)ii
−

(
r 1

k

)
i

(xk)i (Ek)ii
.

Since

µk

(xk)i (Ek)ii
> 0

we get

− (1xk)i

(xk)i
≤ 1+ κ2‖1wk‖ + κ3

∥∥s1
k

∥∥,
whereκ2 andκ3 are positive constants independent ofk. A simple derivation yields

|1− αk| ≤ |1− τk| + τk

∣∣∣∣1− αk

τk

∣∣∣∣. (17)

If αk = τk then|1− αk| ≤ |1− τk| and the proof is completed. Ifαk < τk, then the value of
αk is determined by an indexi for which (1xk)i < 0. In this case, we have two situations.
Either i /∈ A(x∗), in which case

− (xk)i

(1xk)i
≥ 1

κ1‖1wk‖ ≥ 1≥ 1− κ2‖1wk‖ − κ3

∥∥s1
k

∥∥, (18)
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or i ∈ A(x∗), in which case

− (xk)i

(1xk)i
≥ 1

1+ κ2‖1wk‖ + κ3

∥∥s1
k

∥∥ ≥ 1− κ2‖1wk‖ − κ3

∥∥s1
k

∥∥. (19)

The proof is completed by combining inequality (17) with the definition ofαk, and the two
inequalities (18) and (19). 2

From this lemma and the form of the quasi-Newton step1wk given by (16), we can
establish

|1− αk| ≤ |1− τk| + τk
(
κ2

∥∥A−1
∗,k
∥∥(‖F∗,k‖ + µk‖ê‖ + ‖rk‖)+ κ3

∥∥s1
k

∥∥), (20)

providedA∗,k is nonsingular. This bound on 1− αk is determinant for the analysis since
I −3k appears in the formula forwk+1− w∗:

wk+1− w∗ = wk−3k A−1
∗,k(F∗,k(wk)−µkê− rk)−w∗

= (I −3k)(wk−w∗)+3k A−1
∗,k(F∗,k(w∗)− F∗,k(wk)− A∗,k(w∗ −wk))

+3k A−1
∗,k(µkê+ rk). (21)

The matrix A∗,k will be nonsingular and its norm bounded ifwk is sufficiently close
to w∗ and Hk is sufficiently close to∇2

xx`(xk, λk), cf. Lemma 3.2. The analysis for local
convergence consists of bounding‖wk+1 − w∗‖ in terms of‖wk − w∗‖ (for q-linear and
q-superlinear convergence) or‖wk−w∗‖2 (for q-quadratic convergence). From the expres-
sions (20) and (21), we observe that these bounds will depend on the following quantities:

|1− τk|, µk, ‖rk‖,
∥∥s1

k

∥∥,
‖F∗,k(wk)− F∗,k(w∗)−∇F∗,k(w∗)(wk − w∗)‖,
‖(∇F∗,k(w∗)− A∗,k)(wk − w∗)‖.

We can monitor the sizes of|1− τk|, µk, ‖rk‖, and‖s1
k‖, forcing these quantities to satisfy

specific asymptotic conditions.
The term‖F∗,k(wk) − F∗,k(w∗) − ∇F∗,k(w∗)(wk − w∗)‖ is bounded by a constant

times‖wk − w∗‖2. If Hk = ∇2
xx`(xk, λk) then(∇F∗,k(w∗) − A∗,k)(wk − w∗) = 0 and

the q-quadratic convergence is achievable. In the case whereHk is an approximation to
∇2

xx`(xk, λk), we can expect q-linear or q-superlinear convergence. The following lemma
is important for the q-linear convergence since it determines thatA∗,k is close to∇F∗,k(w∗)
providedwk is sufficiently close tow∗ andHk is sufficiently close to∇2

xx`(xk, λk).

Lemma 3.2. There exist positive numbersε and δ such that if‖wk − w∗‖ ≤ ε and
‖Hk −∇2

xx`(x∗, λ∗)‖ ≤ δ, then A∗,k is nonsingular,∥∥A−1
∗,k
∥∥ ≤ κ4,
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and

‖A∗,k −∇F∗,k(w∗)‖ ≤ κ5(δ + ε),

whereκ4 andκ5 are positive constants independent of k.

Proof: We have

A∗,k−∇F∗,k(w∗) =(
D∗,k(wk)

2Hk − D∗,k(w∗)2∇2
xx`∗ + Ek − E∗ D∗,k(wk)

2∇gk − D∗,k(w∗)2∇g∗
∇g>k −∇g>∗ 0

)
.

Now, if we add and subtractD∗,k(wk)
2∇2

xx`∗ in the 1, 1 block andD∗,k(wk)
2∇g∗ in the 1, 2

block, we obtain

‖A∗,k −∇F∗,k(w∗)‖2F ≤ ‖D∗,k(wk)
2‖2F

∥∥Hk −∇2
xx`∗

∥∥2
F

+‖D∗,k(wk)
2− D∗,k(w∗)2‖2F

∥∥∇2
xx`∗

∥∥2
F

+‖Ek − E∗‖2F + ‖D∗,k(wk)
2‖2F‖∇gk −∇g∗‖2F

+‖D∗,k(wk)
2− D∗,k(w∗)2‖2F‖∇g∗‖2F

+ ∥∥∇g>k −∇g>∗
∥∥2

F .

Since

‖D∗,k(wk)
2− D∗,k(w∗)2‖2F ≤ ‖xk − x∗‖2, ‖Ek − E∗‖2F ≤ ‖xk − x∗‖2,

and∇g(x) is Lipschitz continuous, we get

‖A∗,k −∇F∗,k(w∗)‖2 ≤ κ2
5(δ

2+ ε2) ≤ κ2
5(δ

2+ ε2+ 2δε),

whereκ5 is positive and independent ofk. The proof is complete since we know, from
fact 2 (in Section 2.1), that the matrix∇F∗,k(w∗) is nonsingular. 2

4. Local convergence

The results in this section rely on the classical theory of quasi-Newton methods (see the
papers by Broyden, Dennis, and Mor´e [4] and Dennis and Mor´e [11]) and correspond to
the results that Yamashita and Yabe [29] obtained for the local version of the primal-dual
interior-point algorithm. The proofs are similar and are omitted. The first result is the q-linear
convergence of the affine-scaling interior-point algorithm. We require the approximation
Hk to the Hessian to satisfy the bounded deterioration property (22). In the following
theorems, if{ak} and{bk} are sequences of positive numbers, thenak = O(bk) is a notation
for lim supk→+∞ ak/bk < +∞ andak = o(1) represents lim supk→+∞ ak = 0.



LOCAL CONVERGENCE 33

Theorem 4.1. Suppose Assumptions2.1 hold. Consider a sequence generated by
Algorithm2.1where

0< τ̂ ≤ τk ≤ 1, µk = O
(‖F∗,k(wk)‖1+ξ1

)
,

‖rk‖ = O
(‖F∗,k(wk)‖1+ξ1

)
, and

∥∥s1
k

∥∥ = O(‖F∗,k(wk)‖ξ2
)
,

and{Hk} satisfies the bounded deterioration property∥∥Hk+1−∇2
xx`∗

∥∥
M ≤ (1+ β1σk)

∥∥Hk −∇2
xx`∗

∥∥
M + β2σk, (22)

with

σk = max{‖wk+1− w∗‖, ‖wk − w∗‖}.
(The constantsξ1, ξ2, β1, andβ2 are positive.)

For eachν ∈ (1− τ̂ , 1) there exist anε(ν) > 0 and aδ(ν) > 0 such that if‖w0−w∗‖ ≤
ε(ν) and‖H0 − ∇2

xx`∗‖ ≤ δ(ν), the sequence{wk} is well defined, converges tow∗, and
the rate is q-linear with constantν, i.e.,

‖wk+1− w∗‖ ≤ ν‖wk − w∗‖.

The characterization of q-superlinearity is given by a Dennis-Mor´e condition (see (23)
below).

Theorem 4.2. Suppose Assumptions2.1 hold. Consider a sequence{wk} generated by
Algorithm2.1converging q-linearly tow∗, where

1− τk = o(1), µk = O(‖F∗,k(wk)‖),
‖rk‖ = O(‖F∗,k(wk)‖), and

∥∥s1
k

∥∥ = o(1).

The sequence{wk} converges q-superlinearly tow∗ if and only if

lim
k→+∞

‖(Ak −∇F∗,k(w∗))(wk+1− wk)‖
‖wk+1− wk‖ = 0.

It is easy to prove that

lim
k→+∞

∥∥(Hk −∇2
xx`∗

)
(xk+1− xk)

∥∥
‖xk+1− xk‖ = 0 (23)

implies

lim
k→+∞

‖(Ak −∇F∗,k(w∗))(wk+1− wk)‖
‖wk+1− wk‖ = 0.

Finally, we state the q-quadratic convergence of the affine-scaling interior-point
algorithm.
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Theorem 4.3. Suppose Assumptions2.1 hold. Consider a sequence generated by
Algorithm2.1where Hk = ∇2

xx`(xk, λk),

1− τk = O(‖F∗,k(wk)‖), µk = O(‖F∗,k(wk)‖2),
‖rk‖ = O(‖F∗,k(wk)‖2), and

∥∥s1
k

∥∥ = O(‖F∗,k(wk)‖).

There existsε > 0 such that if‖w0 − w∗‖ ≤ ε, then the sequence{wk} is well defined,
converges tow∗, and the rate is q-quadratic, i.e.,

‖wk+1− w∗‖ ≤ κ6‖wk − w∗‖2, (24)

whereκ6 is positive and independent of k.
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