Frames with Transitive Structures

WORTHEN HUNSAKER

Mathematics Department, Southern Illinois University, Carbondale, IL 62901, U.S.A.

JORGE PICADO*

Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3000 Coimbra, Portugal

(Received: 22 February 1999; accepted: 10 September 1999)

Abstract. A classical result in the theory of uniform spaces is that any topological space with a base of clopen sets admits a uniformity with a transitive base and the uniform topology of such a space has a base of clopen sets. This paper presents a pointfree generalization of this, both to uniform and quasi-uniform frames, together with various properties concerning total boundedness, compactifications and completions.

Mathematics Subject Classifications (2000): 54E05, 54E15, 54E55, 06B99.

Key words: zero-dimensional frames resp. biframes, (quasi-)uniform frames, transitive (quasi-)uniform frames, totally bounded coreflection, completion, universal zero-dimensional compactification.

1. Introduction

The study of transitivity has been important in the development of the theory of both uniform spaces and quasi-uniform spaces. Uniformities with a transitive base necessarily have a base of equivalence relations. These are called non-archimedean uniformities and have been investigated by B. Banaschewski [1], J. R. Isbell [14], P. Nyikos and H. C. Reichel [18] and others. Any zero-dimensional topological space, that is, with a base of open-closed (clopen) sets admits a uniformity with a transitive base and the uniform topology of such a space has a base of clopen sets. Transitivity has proved to be more fundamental in the study of quasi-uniform spaces than in the study of uniform spaces. In fact the usual proof that every topological space admits a quasi-uniformity is given by constructing a compatible quasi-uniformity with a base of transitive entourages [19]. Furthermore, P. Fletcher's construction of transitive quasi-uniformities has provided an important technique in the theory of quasi-uniform spaces [6]. For further information on the role of transitivity in quasi-uniform spaces the reader is referred to [10].

In this paper we investigate frame (quasi-)uniformities with transitive bases. We begin by extending the notions of (quasi-)uniformities with transitive bases to

^{*} The second author acknowledges partial financial assistance by the Centro de Matemática da Universidade de Coimbra/FCT and by the PRAXIS projects 2/2.1/MAT/46/94/ESCoLa and PCEX/P/MAT/46/96/ACL.

frames. As we demonstrate the theory of frame uniformities parallels the theory in the spatial case. If (L,\mathcal{E}) is a uniform frame in which \mathcal{E} has a base of transitive entourages then L is zero-dimensional. Furthermore, each zero-dimensional frame admits a uniformity with a transitive base.

For frame quasi-uniformities, in order to recognize the similarity of our results with the spatial case we need to consider biframes [4] and bitopological spaces [17]. If (X, \mathcal{T}) is a T_1 -space then the transitive structures given by Pervin [19] and Fletcher [6] each have the property that the conjugate structure is discrete, and hence the underlying bitopological space is pairwise zero-dimensional [23]. We prove that each zero-dimensional biframe (L_0, L_1, L_2) admits a transitive frame quasi-uniformity on its total part L_0 whose underlying biframe is (L_0, L_1, L_2) . Furthermore, if (L, \mathcal{E}) is a quasi-uniform frame, and \mathcal{E} has a base of transitive entourages, then the underlying biframe is zero-dimensional.

Finally, we establish a number of additional properties concerning total boundedness, the universal zero-dimensional compactification and completions.

This paper uses the Weil entourages of Picado [20]. We note that, as in the case of spaces, there are several different ways of describing frame uniformities. Examples are the covering uniformities of Isbell [15], the entourage uniformities of Fletcher and Hunsaker [7] and the Weil uniformities of Picado [20]. There are also three equivalent approaches to quasi-uniform frames: Frith [11], Fletcher, Hunsaker and Lindgren [8], and Picado [22]. The equivalence of the approaches to uniform (resp. quasi-uniform) frames was proved by Picado [20] and Fletcher and Hunsaker [7] (resp. Picado [22] and Fletcher, Hunsaker and Lindgren [9]).

2. Preliminaries and Notation

Recall that a *frame* L is a complete lattice satisfying the infinite distributive law $x \land \bigvee S = \bigvee \{x \land s \mid s \in S\}$ for every $x \in L$ and every $S \subseteq L$, and a *frame homomorphism* $h: L \to M$ is a mapping preserving arbitrary joins (including the bottom element 0) and finite meets (including the top 1). The *pseudocomplement* of an $x \in L$ is $x^* = \bigvee \{a \in L \mid a \land x = 0\}$. If $x \lor x^* = 1$, then x is *complemented*. We denote by $\mathcal{B}L$ the sublattice of L of all complemented elements of L (the *Boolean part* of L). A frame L is *zero-dimensional* [2] provided that each element of L is a join of complemented elements. L is *compact* provided that, for any *cover* S of L, that is, for any $S \subseteq L$ such that $1 = \bigvee S$, there is a finite cover $F \subseteq S$. A standard reference for frames is Johnstone [16].

A biframe [4] is a triple (L_0, L_1, L_2) where L_1 and L_2 are subframes of the frame L_0 , and each element of L_0 is the join of finite meets from $L_1 \cup L_2$. In the sequel, we use L_i , L_j to denote L_1 or L_2 always assuming that $i, j = 1, 2, i \neq j$.

A biframe homomorphism $(L_0, L_1, L_2) \rightarrow (M_0, M_1, M_2)$ is a frame homomorphism from L_0 to M_0 which maps L_i into M_i . A biframe (L_0, L_1, L_2) is compact provided that L_0 is a compact frame. Schauerte [24] introduces the following useful notation for a biframe (L_0, L_1, L_2) :

For any $x \in L_i$, $x^{\bullet} = \bigvee \{y \in L_j \mid y \land x = 0\}$. The biframe (L_0, L_1, L_2) is *zero-dimensional* [2] provided that each element of L_i can be written as a join of elements $x \in L_i$ for which $x \lor x^{\bullet} = 1$.

Additional information concerning biframes may be found in [4].

For a subset A of a poset (X, \leq) , let $\downarrow A = \{x \in X \mid \exists a \in A : x \leq a\}$. The set A is said to be a *decreasing subset* of X if $\downarrow A = A$. For a frame L consider the frame $\mathcal{D}(L \times L)$ of all non-void decreasing subsets of $L \times L$, ordered by inclusion. The coproduct $L \oplus L$ will be represented, as usual (cf. [16]), as the subset of $\mathcal{D}(L \times L)$ consisting of all the *saturated* sets, that is, of those sets A which satisfy

$$\{x\} \times S \subseteq A \Rightarrow (x, \bigvee S) \in A$$

and

$$S \times \{y\} \subseteq A \Rightarrow (\bigvee S, y) \in A.$$

Since the premise is trivially satisfied if $S = \emptyset$, each saturated set A contains $\mathbf{O} := \{(0, a), (a, 0) \mid a \in L\}$, and \mathbf{O} is the zero of $L \oplus L$. Obviously, each $x \oplus y = \downarrow(x, y) \cup \mathbf{O}$ is a saturated set and for each saturated set A one has $A = \bigvee\{x \oplus y \mid x \oplus y \leq A\} = \bigvee\{x \oplus y \mid (x, y) \in A\}$. The coproduct injections $u_i^L : L \to L \oplus L$ are defined by $u_1^L(x) = x \oplus 1$ and $u_2^L(x) = 1 \oplus x$ so that $x \oplus y = u_1^L(x) \land u_2^L(y)$. Consequently, the *codiagonal* $\nabla : L \oplus L \to L$ is given by $\nabla(A) = \bigvee\{x \land y \mid (x, y) \in A\}$.

For any frame homomorphism $h: L \to M$, the definition of coproduct ensures us the existence (and uniqueness) of a frame homomorphism $h \oplus h: L \oplus L \to M \oplus M$ such that $(h \oplus h) \cdot u_i^L = u_i^M \cdot h$ (i = 1, 2).

For a frame L, a Weil entourage [20] is an $E \in L \oplus L$ for which the codiagonal factorizes through $(-) \cap E : L \oplus L \rightarrow \downarrow \{E\}$:

$$L \oplus L \xrightarrow{(-) \cap E} \downarrow \{E\}$$

This is equivalent to saying that $\nabla(E) = 1$, that is, $\bigvee\{x \in L \mid (x, x) \in E\} = 1$. The collection $W \operatorname{Ent}(L)$ of all Weil entourages of L may be partially ordered by inclusion. This is a partially ordered set with finitary meets (including a unit $1 = L \oplus L$).

For any decreasing sets E, F of $L \oplus L$ define

$$E\circ F:=\bigvee\{x\oplus y\mid \exists z\in L\setminus\{0\}: (x,z)\in E, (z,y)\in F\}.$$

In particular, we are defining the composition for Weil entourages.

For the basic properties of the operation \circ see [21].

The behavior of entourages in the frame setting is similar to their behavior in spaces because of the following fundamental property, proved in [20]:

LEMMA 2.1.

$$\left(\bigvee_{i\in I}(a_i\oplus b_i)\right)\circ\left(\bigvee_{j\in J}(c_j\oplus d_j)\right)=\left(\bigcup_{i\in I}(a_i\oplus b_i)\right)\circ\left(\bigcup_{j\in J}(c_j\oplus d_j)\right).$$

A Weil entourage *E* is *symmetric* if it coincides with $E^{-1} := \{(y, x) \mid (x, y) \in E\}$. Further we have:

For any $\mathcal{E} \subseteq L \oplus L$ and $x, y \in L$, $x \stackrel{\mathcal{E}}{\triangleleft} y$ means that

$$E \circ (x \oplus x) \subseteq y \oplus y$$
 for some $E \in \mathcal{E}$. (2.1)

Of course, when \mathcal{E} is symmetric (that is, $E \in \mathcal{E}$ implies $E^{-1} \in \mathcal{E}$) this is also equivalent to saying that

$$(x \oplus x) \circ E \subseteq y \oplus y$$
 for some $E \in \mathcal{E}$. (2.2)

The elements st(x, E) satisfy the following properties [21]:

$$x \le st(x, E) \tag{2.3}$$

$$st(st(x, E), F) \le st(x, E \circ F)$$
 (2.4)

$$st(x, E) \le y \Rightarrow st(y^*, E) \le x^*.$$
 (2.5)

A set $\mathcal{E} \subseteq W \operatorname{Ent}(L)$ is called *admissible* if, for every $x \in L$, $x = \bigvee \{y \in L \mid y \leq x\}$, where $\overline{\mathcal{E}} := \mathcal{E} \cup \{E^{-1} : E \in \mathcal{E}\}$. A (*Weil*) *uniformity* on L is an admissible filter \mathcal{E} of ($W \operatorname{Ent}(L)$, \subseteq) satisfying:

- (1) For each $E \in \mathcal{E}$ there exists $F \in \mathcal{E}$ such that $F \circ F \subseteq E$.
- (2) For each $E \in \mathcal{E}$, $E^{-1} \in \mathcal{E}$.

A (Weil) uniform frame is a pair (L,\mathcal{E}) where L is a frame and \mathcal{E} is a uniformity on L. If (L,\mathcal{E}) and (M,\mathcal{F}) are uniform frames, a uniform homomorphism $h: (L,\mathcal{E}) \to (M,\mathcal{F})$ is a frame homomorphism $h: L \to M$ such that $(h \oplus h)(E) \in \mathcal{F}$ whenever $E \in \mathcal{E}$. The resulting category WUFrm contains the category KRFrm of compact regular frames as a full subcategory in virtue of the fact that, for any compact regular frame L, W Ent(L) is its unique uniformity [13]. Further, each uniform frame has a coreflection to KRFrm, called the Samuel compactification [5]. On the other hand, there is a notion of completeness for uniform frames, determined as follows:

A frame homomorphism $h: L \to M$ is said to be *dense* if h(x) = 0 implies x = 0. A uniform homomorphism $h: (L, \mathcal{E}) \to (M, \mathcal{F})$ is called a *dense surjection* if it is onto, dense and \mathcal{F} is generated by the image entourages $(h \oplus h)(E)$, $E \in \mathcal{E}$. A uniform frame (M, \mathcal{F}) is called *complete* if any dense surjection $(L, \mathcal{E}) \to (M, \mathcal{F})$ is an isomorphism, and a *completion* of (L, \mathcal{E}) is a complete (M, \mathcal{F}) together with a dense surjection $(M, \mathcal{F}) \to (L, \mathcal{E})$. Isbell [15] established that

each uniform frame has an essentially unique completion which thus provides the coreflection to complete uniform frames.

We point out that, for any uniformity \mathcal{E} on L, $x \stackrel{\mathcal{E}}{\lhd} y$ if and only if there exists $E \in \mathcal{E}$ such that

$$st(x, E) := \bigvee \{z \in L \mid (z, z) \in E, z \land x \neq 0\} \le y$$
 [20].

By just dropping the symmetry condition (2) in the definition of uniform frame we get the category of *quasi-uniform frames*. With the lack of symmetry the equivalence between conditions (2.1) and (2.2) is no longer valid; whence, in the place of \leq we have two partial orders

$$x \stackrel{\mathcal{E}}{\lhd_1} y \equiv E \circ (x \oplus x) \subseteq y \oplus y, \quad \text{for some } E \in \mathcal{E},$$

 $x \stackrel{\mathcal{E}}{\lhd_2} y \equiv (x \oplus x) \circ E \subseteq y \oplus y, \quad \text{for some } E \in \mathcal{E},$

which in turn, lead to two subframes of L,

$$L^{1} := \left\{ x \in L \mid x = \bigvee \{ y \in L \mid y \stackrel{\mathcal{E}}{\lhd}_{1} x \} \right\} \quad \text{and}$$

$$L^{2} := \left\{ x \in L \mid x = \bigvee \{ y \in L \mid y \stackrel{\mathcal{E}}{\lhd}_{2} x \} \right\}.$$

Notice that the admissibility condition is equivalent to saying that the triple (L, L^1, L^2) is a biframe [22].

As in the symmetric case, $\stackrel{\mathcal{E}}{\lhd_1}$ and $\stackrel{\mathcal{E}}{\lhd_2}$ may be characterized in the following way:

• $x \stackrel{\mathcal{E}}{\triangleleft}_1 y$ if and only if there exists $E \in \mathcal{E}$ such that

$$st_1(x, E) := \bigvee \{z \in L \mid (z, w) \in E, w \land x \neq 0\} \leq y;$$

• $x \stackrel{\mathcal{E}}{\triangleleft}_2 y$ if and only if there exists $E \in \mathcal{E}$ such that

$$st_2(x, E) := \bigvee \{z \in L \mid (w, z) \in E, w \land x \neq 0\} \leq y.$$

Moreover we have [21]:

$$x \le st_i(x, E), \tag{2.6}$$

$$st_i(st_i(x, E), F) \le st_i(x, E \circ F).$$
 (2.7)

A Weil entourage E is said to be *finite* [13] if there exists a finite cover x_1, x_2, \ldots, x_n of E such that $\bigvee_{i=1}^n (x_i \oplus x_i) \subseteq E$. A (quasi-)uniformity is *totally bounded* if it has a base of finite entourages.

3. Transitive Entourages: Basic Results

In this section, we collect a number of preliminary results needed later on.

For a frame L, we say that $E \in L \oplus L$ is transitive if $E^2 := E \circ E = E$.

We begin by checking that, for any transitive Weil entourage E, the elements st(x, E) are complemented:

PROPOSITION 3.1. Let L be a frame and let E be a transitive Weil entourage of L. For every $x \in L$, $st(x, E) \vee st(x, E)^* = 1$.

Proof. Let $(y, y) \in E$ with $y \wedge st(x, E) \neq 0$. Then there exists $(\alpha, \alpha) \in E$ such that $\alpha \wedge x \neq 0$ and $\alpha \wedge y \neq 0$. Thus (α, y) and (y, α) belong to $E^2 = E$ and, consequently, $(\alpha \vee y, \alpha \vee y) \in E$. Since $(\alpha \vee y) \wedge x \neq 0$, we may conclude that $st(x, E) \geq \alpha \vee y \geq y$. Hence $st(x, E) \vee st(x, E)^* \geq (\bigvee \{y \in L \mid (y, y) \in E, y \wedge st(x, E) \neq 0\}) \vee (\bigvee \{y \in L \mid y \wedge st(x, E) = 0\}) \geq \bigvee \{y \in L \mid (y, y) \in E\} = 1$. \square

Similarly, for any transitive entourage E of the total part L_0 of a biframe (L_0, L_1, L_2) , the elements $st_i(x, E)$ are complemented. Moreover, if all elements $st_i(x, E)$ belong to L_i then they are complemented, with complement in L_j . For this we need the following lemma:

LEMMA 3.2. Let L be a frame and let E be a transitive Weil entourage of L. For every $x \in L$, if $st_i(x, E) \land y = 0$ then $st_i(x, E) \land st_i(y, E) = 0$.

Proof. We prove only for i = 1 and j = 2 (the case i = 2 and j = 1 is analogous):

Computing $st_1(x, E) \wedge st_2(y, E)$ we get

$$st_1(x, E) \wedge st_2(y, E) = \bigvee \{\alpha \wedge \beta \mid (\alpha, z) \in E, (w, \beta) \in E, z \wedge x \neq 0, w \wedge y \neq 0\}.$$

This join is indeed 0 because, whenever (α, z) and (w, β) belong to E with $\alpha \wedge \beta \neq 0$, we have $(w, z) \in E^2 = E$ and then, if $z \wedge x \neq 0$, we obtain, by hypothesis, $w \wedge y \neq 0$.

PROPOSITION 3.3. Let (L_0, L_1, L_2) be a biframe and let E be a transitive entourage of L_0 such that, for any $x \in L_0$, $st_i(x, E) \in L_i$. Then, for any $x \in L_0$, $st_i(x, E) \vee st_i(x, E)^{\bullet} = 1$.

Proof. Let us show that $st_1(x, E) \vee st_1(x, E)^{\bullet} = 1$ by proving that

$$\sqrt{\{y \in L_0 \mid (y, z) \in E, z \land x \neq 0\}} \lor \sqrt{\{y \in L_2 \mid y \land st_1(x, E) = 0\}}
\ge \sqrt{\{y \in L_0 \mid (y, y) \in E\}} = 1.$$

Consider $y \in L_0$ such that $(y, y) \in E$.

If $y \wedge st_1(x, E) = 0$ then we have $y \leq st_2(y, E) \in L_2$ and, by Lemma 3.2, $st_1(x, E) \wedge st_2(y, E) = 0$.

Otherwise, the existence of $(\alpha, \beta) \in E$ such that $x \wedge \beta \neq 0$ and $y \wedge \alpha \neq 0$ implies that $(y, \beta) \in E^2 = E$ with $x \wedge \beta \neq 0$.

The proof for i = 2 is similar.

Respectively by (2.4) and (2.7) we immediately have:

PROPOSITION 3.4. Let L be a frame and let $\mathcal{E} \subseteq W \operatorname{Ent}(L)$. For every $x \in L$ and every transitive $E \in \mathcal{E}$, $\operatorname{st}(x, E) \stackrel{\mathcal{E}}{\lhd} \operatorname{st}(x, E)$.

PROPOSITION 3.5. Let (L_0, L_1, L_2) be a biframe and let $\mathcal{E} \subseteq W \operatorname{Ent}(L_0)$. For every $x \in L_i$ and every transitive $E \in \mathcal{E}$, $st_i(x, E) \stackrel{\mathcal{E}}{\lhd}_i st_i(x, E)$.

4. Transitive Uniformities

We say that a (quasi-)uniform frame (L, \mathcal{E}) is *transitive* if \mathcal{E} has a base of transitive entourages. We now derive the results concerning transitive uniform frames.

PROPOSITION 4.1. Let (L, \mathcal{E}) be a transitive uniform frame. Then L is zero-dimensional.

Proof. Let $x \in L$. Then $x = \bigvee \{y \in L \mid y \stackrel{\varepsilon}{\lhd} x\}$. But $y \stackrel{\varepsilon}{\lhd} x$ if and only if there exists a transitive $E \in \mathcal{E}$ such that $st(y, E) \leq x$. Thus, since $y \leq st(y, E)$,

$$x \le \bigvee \{st(y, E) \mid E \in \mathcal{E}, \text{ transitive, } y \in L \text{ and } st(y, E) \le x\} \le x.$$

So, every x in L is the join of some st(y, E) with transitive $E \in \mathcal{E}$, which are, by Proposition 3.1, complemented elements.

Conversely, every zero-dimensional frame admits a transitive uniformity. As a step in this direction, we need to introduce the following:

For any $a \in L$ let E_a denote the element $(a \oplus a) \lor (a^* \oplus a^*)$ of $L \oplus L$. The proof of the following proposition uses Lemma 2.1:

PROPOSITION 4.2. For every $a \in L$, $E_a^2 = E_a$.

Proof. Consider (α, β) , $(\beta, \gamma) \in (a \oplus a) \cup (a^* \oplus a^*)$ with $\alpha, \beta, \gamma \neq 0$. Clearly, the cases (α, β) , $(\beta, \gamma) \in a \oplus a$ or (α, β) , $(\beta, \gamma) \in a^* \oplus a^*$ are the only possible ones. In each one, $(\alpha, \gamma) \in (a \oplus a) \cup (a^* \oplus a^*)$.

For any complemented a, E_a is obviously a Weil entourage. Moreover, we have (for a proof see Remark IV.6.3 of [21]):

PROPOSITION 4.3. E_a is a Weil entourage if and only if a is complemented.

THEOREM 4.4. Let L be a zero-dimensional frame. The family $\delta = \{E_a \mid a \in \mathcal{B}L\}$ is a subbase for a transitive, totally bounded, uniformity on L.

Proof. Let \mathcal{E} be the filter of $(W \operatorname{Ent}(L), \subseteq)$ generated by \mathcal{S} , that is,

$$\mathcal{E} = \left\{ E \in W \operatorname{Ent}(L) \mid \exists a_1, \dots, a_n \in \mathcal{B}L : \bigcap_{i=1}^n E_{a_i} \subseteq E \right\}.$$

This is indeed a transitive, totally bounded, uniformity on L. We first check the admissibility condition:

By the zero-dimensionality, every $x \in L$ is a join of complemented elements; but, for any $c \in \mathcal{B}L$, $E_c \circ (c \oplus c) \subseteq c \oplus c$; indeed, if $(\alpha, \beta) \in (c \oplus c) \cup (c^* \oplus c^*)$ and $(\beta, \gamma) \in c \oplus c$ with $\beta \neq 0$, then $(\alpha, \beta) \in c \oplus c$ and thus $(\alpha, \gamma) \in c \oplus c$. Therefore $c \triangleleft c$ and, consequently, we may conclude that $x = \bigvee \{y \in L \mid y \triangleleft x\}$. The total boundedness is obvious because each $\bigcap_{i=1}^n E_{a_i}$ is a finite Weil en-

tourage. The proof of the other conditions is straightforward. \Box

In the sequel, given a zero-dimensional frame, we denote by \mathcal{E}_P the transitive uniformity on L constructed in the proof of Theorem 4.4.

LEMMA 4.5. Let $h: L \to M$ be a frame homomorphism between zero-dimensional frames. Then $h: (M, \mathcal{E}_P^M) \to (L, \mathcal{E}_P^L)$ is uniform.

Proof. Since $(h \oplus h)(E_a) = (h \oplus h)((a \oplus a) \vee (a^* \oplus a^*)) = (h(a) \oplus h(a)) \vee (h(a^*) \oplus h(a^*))$ we have $(h \oplus h)(E_a) = E_{h(a)}$ whenever a is complemented. Consequently, $(h \oplus h)(E) \in \mathcal{E}_P^L$ for every $E \in \mathcal{E}_P^M$.

THEOREM 4.6. Let L be a zero-dimensional frame and let $(CL, C\mathcal{E}_P)$ be the uniform completion of (L, \mathcal{E}_P) . Then $(CL, C\mathcal{E}_P)$ is the universal zero-dimensional compactification of L.

Proof. By [5, Proposition 3], $(CL, C\mathcal{E}_P)$ is compact and coincides with the Samuel compactification $\mathcal{R}(L, \mathcal{E}_P)$ of (L, \mathcal{E}_P) .

Now for any frame homomorphism $h: M \to L$ with M compact and zero-dimensional, h is uniform by Lemma 4.5. Then, in the diagram

$$\begin{array}{c|c}
\mathcal{R}(M, \mathcal{E}_P) & \xrightarrow{\mathcal{R}h} & \mathcal{R}(L, \mathcal{E}_P) \\
 & \downarrow^{\rho_L} & \downarrow^{\rho_L} \\
M & \xrightarrow{h} & L
\end{array}$$

 ρ_M is an isomorphism and we have $h = \rho_L \mathcal{R} h \rho_M^{-1}$, which shows that $\mathcal{R}(L, \mathcal{E}_P)$ is the compact zero-dimensional coreflection of L with coreflection map ρ_L : $\mathcal{R}(L, \mathcal{E}_P) \to L$.

It is easy to verify that if $h: M \to L$ is a zero-dimensional compactification of a frame L, then the image by h of the unique uniform structure on M is a totally bounded transitive uniformity. From this and the comments of B. Banaschewski [3, p. 115] it follows that there is a one to one correspondence between

zero-dimensional compactifications of a frame L and transitive totally bounded uniformities on L. Therefore, symmetric transitive structures give us a method for representing all zero-dimensional compactifications.

THEOREM 4.7. The totally bounded coreflection (L, \mathcal{E}_*) of any transitive uniform frame (L, \mathcal{E}) is transitive.

Proof. Consider

$$\mathcal{F} = \left\{ E \in W \operatorname{Ent}(L) \mid \exists c_1, c_2, \dots, c_n \in L : c_i \stackrel{\mathcal{E}}{\triangleleft} c_i \text{ and } \bigcap_{i=1}^n E_{c_i} \subseteq E \right\}.$$

We first prove that \mathcal{F} is a uniformity on L. Clearly, \mathcal{F} is a filter of $W \operatorname{Ent}(L)$ and each intersection $\bigcap_{i=1}^n E_{c_i}$ is symmetric. In order to show the admissibility, it suffices to prove that $x \triangleleft y$ implies $x \triangleleft y$. Let $x \triangleleft y$, that is, $st(x, E) \leq y$ for some symmetric and transitive $E \in \mathcal{E}$. By Proposition 3.4, $E_{st(x,E)} \in \mathcal{F}$. Further, $E_{st(x,E)} \circ (x \oplus x) \subseteq y \oplus y$:

Indeed, for any

$$(\alpha, \beta) \in \downarrow (st(x, E), st(x, E)) \cup \downarrow (st(x, E)^*, st(x, E)^*)$$

and $(\beta, \gamma) \leq (x, x)$, we have $(\alpha, \beta) \leq (st(x, E), st(x, E))$ whenever $\beta \neq 0$, because $x \leq st(x, E)$. Since $st(x, E) \leq y$ we have $(\alpha, \gamma) \leq (y, y)$. Consequently $x \leq y$. Therefore \mathcal{F} is a uniformity on L. Notice that, if $c \leq c$, then c is equal to st(c, E) for some transitive $E \in \mathcal{E}$ and, therefore, c is complemented and $E_c \in W \operatorname{Ent}(L)$. These Weil entourages form a subbase for \mathcal{F} . From

$$\bigcap_{i=1}^n E_{c_i} \circ \bigcap_{i=1}^n E_{c_i} \subseteq \bigcap_{i=1}^n (E_{c_i} \circ E_{c_i}) = \bigcap_{i=1}^n E_{c_i},$$

it follows that \mathcal{F} is transitive.

 ${\mathcal F}$ is also totally bounded. Indeed, whenever $c \stackrel{\varepsilon}{\lhd} c$ and $d \stackrel{\varepsilon}{\lhd} d$,

$$E_c \cap E_d = (c \wedge d \oplus c \wedge d) \vee (c \wedge d^* \oplus c \wedge d^*) \vee (c^* \wedge d \oplus c^* \wedge d)$$
$$\vee (c^* \wedge d^* \oplus c^* \wedge d^*)$$

and, since $\{c \wedge d, c \wedge d^*, c^* \wedge d, c^* \wedge d^*\}$ is a cover of $L, E_c \cap E_d$ is finite.

We conclude the proof that \mathcal{E}_* is transitive by showing that $\mathcal{E}_* = \mathcal{F}$. By the well-known isomorphism between the categories of totally bounded uniform frames and proximal frames it suffices to show that the corresponding proximities $\overset{\mathcal{E}_*}{\lhd}$ and $\overset{\mathcal{F}}{\lhd}$ do coincide.

First we prove that $\mathcal{F} \subseteq \mathcal{E}$. Consider E_c with $c \stackrel{\mathcal{E}}{\lhd} c$. By (2.5), $c^* \stackrel{\mathcal{E}}{\lhd} c^*$. Therefore there exist $E_1, E_2 \in \mathcal{E}$ for which $E_1 \circ (c \oplus c) \subseteq c \oplus c$ and $E_2 \circ (c^* \oplus c^*) \subseteq c^* \oplus c^*$. Thus $E_1 \cap E_2 \subseteq (E_1 \cap E_2) \circ E_c \subseteq E_c$, which implies that $E_c \in \mathcal{E}$.

Now, the totally boundedness of \mathcal{F} implies that $\mathcal{F} \subseteq \mathcal{E}_*$, hence $\overset{\mathcal{F}}{\lhd} \subseteq \overset{\mathcal{E}_*}{\lhd}$. The opposite inclusion follows from the fact, already proved, that $\overset{\mathcal{F}}{\lhd} \subseteq \overset{\mathcal{E}_*}{\lhd}$.

It is well-known that a frame is uniformizable iff it is completely regular. As in the spatial situation, it is natural to consider under what conditions the collection of all entourages of a given completely regular frame form a uniformity, and if not, to characterize the "finest" uniformity on the given frame.

Let L be a completely regular frame, and consider the union \mathcal{S} of all uniformities on L. This is a subbase for a uniformity. Indeed, the collection \mathcal{B} of all finite intersections of elements of \mathcal{S} form a base for a uniformity:

- Let $E = E_1 \cap E_2 \cap \cdots \cap E_n$ with $E_1, E_2, \ldots, E_n \in \mathcal{S}$. For each $i \in \{1, 2, \ldots, n\}$ there exists $F_i \in \mathcal{S}$ such that $F_i^2 \subseteq E_i$. Then $(F_1 \cap F_2 \cap \cdots \cap F_n)^2 \subseteq E$ and $F_1 \cap F_2 \cap \cdots \cap F_n \in \mathcal{B}$.
- Let $E = E_1 \cap E_2 \cap \cdots \cap E_n \in \mathcal{B}$ with $E_1, E_2, \dots, E_n \in \mathcal{S}$. For each $i \in \{1, 2, \dots, n\}$ $E_i^{-1} \in \mathcal{S}$. Then $E_1^{-1} \cap \cdots \cap E_n^{-1} \in \mathcal{S}$ and $(E_1^{-1} \cap \cdots \cap E_n^{-1})^{-1} = E$.
- Since for each uniformity & on L, $x = \bigvee \{y \in L \mid y \overset{\&}{\lhd} x\} \le \bigvee \{y \in L \mid y \overset{\&}{\lhd} x\}$, we have $x = \bigvee \{y \in L \mid y \overset{\&}{\lhd} x\}$ for every $x \in L$.

This uniformity is called the *fine uniformity* on *L*.

We say that a sequence of entourages $E_1, E_2, \ldots, E_n, \ldots$ is a *normal sequence* if $E_{n+1}^2 \subseteq E_n$. An entourage E is a *normal entourage* if $E = E_1$ in some normal sequence.

LEMMA 4.8. The fine uniformity on L coincides with the collection of all normal entourages of L.

Proof. By the square root property for uniformities, each entourage in the fine uniformity is a normal entourage.

On the other hand, take any normal entourage E of L, say with $E = E_1$ in some normal sequence $\{E_n\}$, and let \mathcal{E} be any uniformity on L. Then it is easy to see that $\mathcal{E} \cup \{E_n\} \cup \{E_n^{-1}\}$ is a subbase for some uniformity on L. Hence E belongs to the fine uniformity on L.

Recall that a frame is Lindelöf if each cover has a countable subcover.

THEOREM 4.9. If L is a zero-dimensional Lindelöf frame then the fine uniformity of L is transitive.

Proof. Trivially any zero-dimensional frame is completely regular. By Lemma 4.8, it suffices to show that any normal entourage E_1 contains a transitive entourage.

Let $(x, x) \in E_1$. Then $x = \bigvee x_{\alpha}$ where each x_{α} is complemented. Let E be the join of all $x_{\alpha} \oplus x_{\alpha}$ where x_{α} is complemented and appears in a join which generates some x with $(x, x) \in E_1$. Clearly E is a Weil entourage contained in E_1 .

By the Lindelöf property there exists a countable cover $\{x_i \mid i \in \mathbb{N}\}$ of L such that $(x_i, x_i) \in E$ for every $i \in \mathbb{N}$. Put $y_1 = x_1$, $y_2 = x_2 \wedge x_1^*$, $y_3 = x_3 \wedge x_1^* \wedge x_2^*$, ..., $y_n = x_n \wedge (\bigwedge_{i=1}^{n-1} x_i^*)$ and let $F = \bigvee_{i \in \mathbb{N}} (y_i \oplus y_i) \subseteq E$. Notice that, for every $n \in \mathbb{N}$, $\bigvee_{i=1}^n y_i = \bigvee_{i=1}^n x_i$. Therefore $\bigvee_{i \in \mathbb{N}} y_i = \bigvee_{i \in \mathbb{N}} x_i = 1$, which means that F is a Weil entourage. Also, for m > n,

$$y_n \wedge y_m = \left(x_n \wedge \bigwedge_{i=1}^{n-1} x_i^*\right) \wedge \left(x_m \wedge \bigwedge_{i=1}^{m-1} x_i^*\right) \leq x_n \wedge x_n^* = 0.$$

This implies that F is transitive. Indeed: if $(\alpha, \beta) \in y_i \oplus y_i$ and $(\beta, \gamma) \in y_j \oplus y_j$ with $\alpha, \beta, \gamma \neq 0$, then $\beta \leq y_i \wedge y_j$ which implies j = i and $(\alpha, \gamma) \in y_i \oplus y_i$. This shows that $F \circ F = F$ because

$$F \circ F = \bigcup_{i \in \mathbb{N}} (y_i \oplus y_i) \circ \bigcup_{i \in \mathbb{N}} (y_i \oplus y_i).$$

5. Transitive Quasi-Uniformities

We close with the results concerning transitive quasi-uniform frames.

Let (L, \mathcal{E}) be a quasi-uniform frame and let (L, L^1, L^2) be its underlying biframe. By Proposition III 4.3 of [21], for every transitive entourage E of L and every $x \in L$,

$$st_i(x, E) \in L^i. (5.1)$$

So, in this case, the conditions of Proposition 3.3 are satisfied. Moreover: since $st_i(x, E) \le y$ implies $st_j(y^{\bullet}, E) \land x = 0$ for every $y \in L^i$, (5.1) also implies that, for any $x, y \in L^i$ and any transitive E,

$$st_i(x, E) \le y \Rightarrow st_i(y^{\bullet}, E) \le x^{\bullet}.$$
 (5.2)

PROPOSITION 5.1. Let (L, \mathcal{E}) be a transitive quasi-uniform frame. Then the biframe (L, L^1, L^2) is zero-dimensional.

Proof. Let $x \in L^i$ (i = 1, 2). For any $y \in L$ such that $y \stackrel{\mathcal{E}}{\triangleleft}_i x$ take $E \in \mathcal{E}$, transitive, satisfying $st_i(y, E) \leq x$. From $st_i(st_i(y, E), E) \leq st_i(y, E^2) = st_i(y, E) \leq x$ it follows that $y \leq st_i(y, E) \stackrel{\mathcal{E}}{\triangleleft}_i x$. Thus

$$x = \bigvee \{ y \in L \mid y \stackrel{\mathcal{E}}{\triangleleft_i} x \}$$

$$= \bigvee \{ y \in L^i \mid y \stackrel{\mathcal{E}}{\triangleleft_i} x \}$$

$$\leq \bigvee \{ st_i(y, E) \mid E \in \mathcal{E}, E^2 = E, st_i(y, E) \leq x \} \leq x.$$

The conclusion now follows from Proposition 3.3.

In particular, this implies that the frame L is zero-dimensional.

Now, let L be a frame. For any $a \in L$, let us denote by E_a^r and E_a^l , respectively, the elements $(1 \oplus a) \lor (a^* \oplus a^*)$ and $(a \oplus 1) \lor (a^* \oplus a^*)$ of $L \oplus L$. Clearly, $(E_a^l)^{-1} = E_a^r$ and $E_a^l \cap E_a^r = E_a$. The following result is quite obvious:

PROPOSITION 5.2. For any $a \in L$, E_a^l and E_a^r are transitive.

PROPOSITION 5.3. For any $a \in L$, E_a^l and E_a^r are Weil entourages of L if and only if a is complemented.

Proof. Clearly, if E_a^r and E_a^l are Weil entourages, $E_a^r \cap E_a^l = E_a$ is also a Weil entourage. Thus, by Proposition 4.3, a is complemented.

Conversely, if a is complemented, $\bigvee \{x \in L \mid (x, x) \in E_a^r\} \ge a \vee a^* = 1$ and, similarly, for E_a^l .

The following auxiliary result will be useful in the sequel.

LEMMA 5.4. Let
$$E_k = (a_1^k \oplus b_1^k) \vee (a_2^k \oplus b_2^k)$$
 $(k = 1, 2, ..., n)$. Then

$$st_1\left(x,\bigcap_{k=1}^n E_k\right) = \sqrt{\{a_{t_1}^1 \wedge a_{t_2}^2 \wedge \dots \wedge a_{t_n}^n \mid t_k \in \{1,2\},\$$

$$k \in \{1,2,\dots,n\}, b_{t_1}^1 \wedge b_{t_2}^2 \wedge \dots \wedge b_{t_n}^n \wedge x \neq 0\}$$

and

$$st_2\left(x,\bigcap_{k=1}^n E_k\right) = \bigvee \{b_{t_1}^1 \wedge b_{t_2}^2 \wedge \dots \wedge b_{t_n}^n \mid t_k \in \{1,2\},$$
$$k \in \{1,2,\dots,n\}, a_{t_1}^1 \wedge a_{t_2}^2 \wedge \dots \wedge a_{t_n}^n \wedge x \neq 0\}.$$

Proof. Since

$$\bigcap_{k=1}^{n} E_{k} = \bigvee_{t_{1}=1}^{2} \bigvee_{t_{2}=1}^{2} \cdots \bigvee_{t_{n}=1}^{2} \left((a_{t_{1}}^{1} \oplus b_{t_{1}}^{1}) \cap (a_{t_{2}}^{2} \oplus b_{t_{2}}^{2}) \cap \cdots \cap (a_{t_{n}}^{n} \oplus b_{t_{n}}^{n}) \right)$$

$$= \bigvee_{t_{1}=1}^{2} \bigvee_{t_{2}=1}^{2} \cdots \bigvee_{t_{n}=1}^{2} \left((a_{t_{1}}^{1} \wedge a_{t_{2}}^{2} \wedge \cdots \wedge a_{t_{n}}^{n}) \oplus (b_{t_{1}}^{1} \wedge b_{t_{2}}^{2} \wedge \cdots \wedge b_{t_{n}}^{n}) \right)$$

we have that $st_1(x, \bigcap_{k=1}^n E_k)$ is equal to

$$st_{1}\left(x,\bigcup_{t_{1}=1}^{2}\bigcup_{t_{2}=1}^{2}\cdots\bigcup_{t_{n}=1}^{2}\downarrow(a_{t_{1}}^{1}\wedge a_{t_{2}}^{2}\wedge\cdots\wedge a_{t_{n}}^{n},b_{t_{1}}^{1}\wedge b_{t_{2}}^{2}\wedge\cdots\wedge b_{t_{n}}^{n})\right)$$

$$=\bigvee\{a_{t_{1}}^{1}\wedge a_{t_{2}}^{2}\wedge\cdots\wedge a_{t_{n}}^{n}\mid t_{1},t_{2},\ldots,t_{n}\in\{1,2\},\$$

$$a_{t_{1}}^{1}\wedge a_{t_{2}}^{2}\wedge\cdots\wedge a_{t_{n}}^{n}\wedge x\neq0\}.$$

The proof of the other assertion is similar.

THEOREM 5.5. Let (L_0, L_1, L_2) be a zero-dimensional biframe. The family

$$\mathcal{S} = \{E_a^l \mid a \in L_1 \text{ has complement in } L_2\}$$
$$\cup \{E_a^r \mid a \in L_2 \text{ has complement in } L_1\}$$

is a subbase for a transitive, totally bounded, quasi-uniformity \mathcal{E}_F on L_0 , for which $L_0^i = L_i \ (i = 1, 2).$

Proof. Let \mathcal{E}_F be the filter of $(W \operatorname{Ent}(L), \subseteq)$ generated by \mathcal{S} .

We prove the admissibility condition by showing, equivalently, that (L_0, L_0^1, L_0^2) is a biframe. In order to do this it suffices to see that $L_i = L_0^i$ (i = 1, 2).

For i = 1 we have

$$L_0^1 = \left\{ x \in L_0 \mid x = \bigvee \{ y \in L_0 \mid y \stackrel{\mathcal{E}_F}{\triangleleft_1} x \} \right\}$$

\(\geq \{ c \in L_1 \ | c \text{ has complement in } L_2 \}

since, for these c, $E_c^l \circ (c \oplus c) \subseteq c \oplus c$, that is, $c \stackrel{\mathcal{E}_F}{\lhd_1} c$. The inclusion $L_1 \subseteq L_0^1$ now follows from the facts that L_0^1 is a subframe of L_0 and that (L_0, L_1, L_2) is zero-dimensional.

The proof for i = 2 can be done similarly because, for $c \in L_2$ with complement in L_1 , $(c \oplus c) \circ E_c^r \subseteq c \oplus c$.

Since, for each complemented a, E_a^l and E_a^r are finite, transitive, Weil entourages, \mathcal{E}_F is a totally bounded transitive quasi-uniformity on L_0 .

Finally let us show that $L_0^1 \subseteq L_1$. Let $y \stackrel{\mathcal{E}_F}{\triangleleft} x$. It suffices to show the existence of $z \in L_1$ such that $y \le z \stackrel{\mathcal{E}_F}{\triangleleft_1} x$. Let $E \in \mathcal{E}_F$ be a transitive entourage such that $st_1(y, E) \leq x$. As we have already seen, $st_1(y, E) \stackrel{\mathcal{E}_F}{\triangleleft_1} x$. The following lemma ensures the existence of that z:

LEMMA 5.6. For any $x \in L_0$ and $E \in \mathcal{E}_F$ there exists $E' \in \mathcal{E}_F$ such that $st_i(x, E') \le st_i(x, E) \text{ and } st_i(x, E') \in L_i \ (i = 1, 2).$

Proof. Any $E \in \mathcal{E}_F$ contains an $E' \in \mathcal{E}_F$ of the form $E' = (\bigcap_{i=1}^n E_{a_i}^l) \cap$ $(\bigcap_{i=1}^m E_{b_i}^r)$. Let us show that $st_1(x, E') \in L_1$.

By Lemma 5.4, $st_1(x, E')$ is equal to

$$\bigvee \{\alpha_{t_1}^1 \wedge \cdots \wedge \alpha_{t_n}^n \wedge \gamma_{u_1}^1 \wedge \cdots \wedge \gamma_{u_m}^m \mid t_1, \dots, t_n, u_1, \dots, u_m \in \{1, 2\}, \\
\beta_{t_1}^1 \wedge \cdots \wedge \beta_{t_n}^n \wedge \delta_{u_1}^1 \wedge \cdots \wedge \delta_{u_m}^m \wedge x \neq 0\},$$

where, for each i = 1, ..., n,

$$\alpha_1^i = a_i^*, \qquad \alpha_2^i = a_i, \beta_1^i = a_i^*, \qquad \beta_2^i = 1$$

$$\beta_1^i = a_i^*, \qquad \beta_2^i = 1$$

and, for each $i = 1, \ldots, m$,

$$\gamma_1^i = b_i^*, \qquad \gamma_2^i = 1,$$

$$\delta_1^i = \beta_i^*, \qquad \delta_2^i = \beta_i.$$

The only problem is when there is some $i \in \{1, ..., n\}$ such that

$$x \wedge \beta_{t_1}^1 \wedge \beta_{t_2}^2 \wedge \cdots \wedge \beta_1^i \wedge \cdots \wedge \beta_{t_n}^n \wedge \delta_{u_1}^1 \wedge \cdots \wedge \delta_{u_m}^m \neq 0,$$

because then $\alpha_1^i = a_i^* \in L_2$ appears in the join $st_1(x, E')$. But

$$x \wedge \beta_{t_1}^1 \wedge \beta_{t_2}^2 \wedge \cdots \wedge \beta_1^i \wedge \cdots \wedge \beta_{t_n}^n \wedge \delta_{u_1}^1 \wedge \cdots \wedge \delta_{u_m}^m \neq 0$$

implies that

$$x \wedge \beta_{t_1}^1 \wedge \beta_{t_2}^2 \wedge \cdots \wedge \beta_{t_n}^i \wedge \cdots \wedge \beta_{t_n}^n \wedge \delta_{u_1}^1 \wedge \cdots \wedge \delta_{u_m}^m \neq 0$$

thus

$$\alpha_{t_1}^1 \wedge \alpha_{t_{i-1}}^{i-1} \wedge \alpha_2^i \wedge \alpha_{t_{i+1}}^{i+1} \wedge \cdots \wedge \alpha_{t_n}^n \wedge \gamma_{u_1}^1 \wedge \cdots \wedge \gamma_{u_m}^m$$

also appears in the join. Therefore, since the join of

$$\alpha_{t_1}^1 \wedge \alpha_{t_{i-1}}^{i-1} \wedge a_i^* \wedge \alpha_{t_{i+1}}^{i+1} \wedge \cdots \wedge \alpha_{t_n}^n \wedge \gamma_{u_1}^1 \wedge \cdots \wedge \gamma_{u_m}^m$$

and

$$\alpha_{t_1}^1 \wedge \alpha_{t_{i-1}}^{i-1} \wedge a_i \wedge \alpha_{t_{i+1}}^{i+1} \wedge \cdots \wedge \alpha_{t_n}^n \wedge \gamma_{u_1}^1 \wedge \cdots \wedge \gamma_{u_m}^m$$

is equal to

$$\alpha_{t_1}^1 \wedge \alpha_{t_{i-1}}^{i-1} \wedge \alpha_{t_{i+1}}^{i+1} \wedge \cdots \wedge \alpha_{t_n}^n \wedge \gamma_{u_1}^1 \wedge \cdots \wedge \gamma_{u_m}^m$$

we get rid of a_i^* .

By repeating this process we can get rid of all the a_i^* that appear in the join, which shows that this join belongs to L_1 .

This completes the proofs of Lemma 5.6 and Theorem 5.5. \Box

J. Frith [11, Proposition 4.2] constructs a quasi-uniform structure compatible with the congruence lattice of a given frame. The construction of \mathcal{E}_F given in Theorem 5.5 generalizes Frith's construction. For this reason we shall call \mathcal{E}_F the *Frith structure* of the total part L_0 of a given zero-dimensional biframe (L_0, L_1, L_2) .

THEOREM 5.7. The totally bounded coreflection (L, \mathcal{E}_*) of any transitive quasi-uniform frame (L, \mathcal{E}) is transitive.

Proof. As in the proof of Theorem 4.7, one can easily show that

$$\left\{E_c^l \mid c \in L^1, c \overset{\mathcal{E}}{\vartriangleleft}_1 c\right\} \cup \left\{E_c^r \mid c \in L^2, c \overset{\mathcal{E}}{\vartriangleleft}_2 c\right\}$$

is a subbase for a transitive, totally bounded, quasi-uniformity \mathcal{F} on L. It suffices then to check that the corresponding quasi-proximities (strong inclusions in [24]) $\stackrel{\mathcal{E}_*}{\triangleleft} \stackrel{\mathcal{E}_*}{\triangleleft} \stackrel{\mathcal{F}}{\triangleleft} \stackrel{\mathcal{F}}{\triangleleft}$ and $(\stackrel{\triangleleft}{\triangleleft}_1, \stackrel{\triangleleft}{\triangleleft}_2)$ do coincide. Now this follows from (5.2) and Proposition 3.5 (in a very similar way to the proof of the analogous identity in Theorem 4.7). \square

Recall that for any frame homomorphism $h: L \to M$, there is its *right adjoint* $h_*: M \to L$ such that $h(x) \le y$ if and only if $x \le h_*(y)$, explicitly given by $h_*(y) = \bigvee \{x \in L \mid h(x) \le y\}$. It satisfies $hh_* \le \mathrm{id}_M$ and $h_*h \ge \mathrm{id}_L$. If h maps onto M, then $hh_* = \mathrm{id}_M$. Clearly, h_* is dense whenever h is onto.

LEMMA 5.8. Let $h: L \to M$ be a dense frame homomorphism. Then:

- (a) For every $x, y \in M$, $(h \oplus h)_*(x \oplus y) = h_*(x) \oplus h_*(y)$.
- (b) For every $E \in M \oplus M$, $(h \oplus h)_*(E) = \bigvee_{(x,y) \in E} (h_*(x) \oplus h_*(y))$.
- (c) For every $E \in M \oplus M$, $(h \oplus h)_*(E)^2 \subseteq \bigvee \{h_*(x) \oplus h_*(w) \mid (x, y), (z, w) \in E, y \land z \neq 0\}$. Moreover, if h_* is dense then the equality holds.

Proof. (a) Since $(h \oplus h)(h_*(x) \oplus h_*(y)) = hh_*(x) \oplus hh_*(y) \subseteq x \oplus y$, we have $h_*(x) \oplus h_*(y) \subseteq (h \oplus h)_*(x \oplus y)$.

On the other hand, for any $(\alpha, \beta) \in E$, $\alpha \neq 0$, $\beta \neq 0$, with $(h \oplus h)(E) \subseteq x \oplus y$, we have $(h(\alpha), h(\beta)) \in x \oplus y$. Since h is dense, $h(\alpha) \neq 0$ and $h(\beta) \neq 0$, thus $h(\alpha) \leq x$ and $h(\beta) \leq y$. Hence $(\alpha, \beta) \in h_*(x) \oplus h_*(y)$. We have proved that $\bigcup \{E \in L \oplus L \mid (h \oplus h)(E) \subseteq x \oplus y\} \subseteq h_*(x) \oplus h_*(y)$ and the inclusion $(h \oplus h)_*(x \oplus y) \subseteq h_*(x) \oplus h_*(y)$ follows.

(b) Let $(\alpha, \beta) \in F$ with $(h \oplus h)(F) \subseteq E$. Then $(h(\alpha), h(\beta)) \in E$ and, since $(\alpha, \beta) \le (h_*h(\alpha), h_*h(\beta))$, the inclusion $(h \oplus h)_*(E) \subseteq \bigvee_{(x,y) \in E} (h_*(x) \oplus h_*(y))$ holds.

The reverse inclusion is a consequence of the inclusion $h_*(x) \oplus h_*(y) \subseteq (h \oplus h)_*(x \oplus y)$ in (a).

Note that here the denseness of h is not needed.

(c) By Lemma 2.1

$$(h \oplus h)_*(E)^2 \ = \ \bigcup \{ F \in L \oplus L \mid (h \oplus h)(F) \subseteq E \} \circ$$

$$\bigcup \{ F \in L \oplus L \mid (h \oplus h)(F) \subseteq E \}.$$

Consider $(\alpha, \beta) \in F_1$ and $(\beta, \gamma) \in F_2$ with $(h \oplus h)(F_1)$, $(h \oplus h)(F_2) \subseteq E$ and $\beta \neq 0$. Then $(\alpha, \gamma) \leq (h_*h(\alpha), h_*h(\gamma))$ with $(h(\alpha), h(\beta))$, $(h(\beta), h(\gamma)) \in E$ and, by denseness, $h(\beta) \neq 0$, which proves the desired inclusion.

On the other hand, if (x, y), $(z, w) \in E$ with $y \land z \neq 0$, then also $h_*(y) \land h_*(z) \neq 0$ since h_* is dense, and $(h_*(x), h_*(y))$ and $(h_*(z), h_*(w))$ belong to $(h \oplus h)_*(E)$; it follows that $(h_*(x), h_*(w)) \in (h \oplus h)_*(E)^2$.

PROPOSITION 5.9. Let $h: L \to M$ be a dense frame homomorphism. If $E \in M \oplus M$ is transitive then $(h \oplus h)_*(E)$ is transitive.

Proof. Let $E \in M \oplus M$ be transitive. By Lemma 5.8(c),

$$(h \oplus h)_*(E)^2 \subseteq \bigvee \{h_*(x) \oplus h_*(w) \mid (x, y), (z, w) \in E, y \land z \neq 0\}$$

thus $(h \oplus h)_*(E)^2$ is contained in $\bigvee \{h_*(x) \oplus h_*(w) \mid (x, w) \in E\}$ which, by Lemma 5.8(b), is equal to $(h \oplus h)_*(E)$.

Let us recall that a quasi-uniform frame (M, \mathcal{F}) is *complete* if every dense quasi-uniform surjection $(L, \mathcal{E}) \to (M, \mathcal{F})$ is an isomorphism, and a *completion* of (L, \mathcal{E}) is a complete (M, \mathcal{F}) together with a dense surjection $(M, \mathcal{F}) \to (L, \mathcal{E})$. In [12, Theorem 3.4] the authors prove that each quasi-uniform frame

has a unique completion. In the language of entourage quasi-uniformities [8], if $h:(CL,CV)\to (L,V)$ is the completion of (L,V) then $\{v_{h_*}:v\in V\}$ is a base for CV. Let $v\in V$ and let F be the Weil entourage corresponding to v in the equivalent Weil quasi-uniform structure on L. Then $(h\oplus h)_*(F)$ corresponds to v_{h_*} .

COROLLARY 5.10. The completion $(CL, C\mathcal{E})$ of any transitive quasi-uniform frame (L, \mathcal{E}) is transitive.

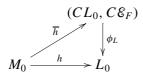
Proof. By the remarks preceding this corollary it suffices to apply Proposition 5.9.

B. Banaschewski [2, Proposition 3] gives the universal zero-dimensional compactification of a zero-dimensional biframe. The following theorem gives an alternative proof of Banaschewski's result.

THEOREM 5.11. The quasi-uniform completion of the Frith structure yields the universal zero-dimensional compactification of a given zero-dimensional biframe.

Proof. Let $L = (L_0, L_1, L_2)$ be a zero-dimensional biframe and let \mathcal{E}_F be the Frith structure on L_0 . Let $M = (M_0, M_1, M_2)$ be any compact zero-dimensional biframe, and let $h: M \to L$ be any biframe map.

The biframe M with the Frith structure is totally bounded and compact hence complete. So, by Theorem 3.7 of [12], there exists \overline{h} such that the diagram



commutes. It follows from [9, Proposition 3.7] that \overline{h} is a biframe map. It remains to prove uniqueness: suppose $g: M_0 \to (CL_0, C\mathcal{E}_F)$ such that $\phi_L g = \phi_L \overline{h}$. The map ϕ_L is dense hence monic for frames [5, Lemma 6]. Therefore $g = \overline{h}$.

References

- 1. Banaschewski, B.: Über nulldimensionale Räume, Math. Nachr. 13 (1955), 129–140.
- Banaschewski, B.: Universal zero-dimensional compactifications, in *Proc. Int. Conf. on Categorical Topology, Prague 1988*, World Sci. Publishing, Singapore, 1989, pp. 257–269.
- 3. Banaschewski, B.: Compactifications of frames, Math. Nachr. 149 (1990), 105-116.
- 4. Banaschewski, B., Brümmer, G. C. L. and Hardie, K. A.: Biframes and bispaces, *Quaestiones Math.* 6 (1983), 13–25.
- Banaschewski, B. and Pultr, A.: Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Philos. Soc. 108 (1990), 63–78.
- 6. Fletcher, P.: On completeness of quasi-uniform spaces, Arch. Math. 22 (1971), 200–204.
- Fletcher, P. and Hunsaker, W.: Entourage uniformities for frames, *Monatsh. Math.* 112 (1991), 271–279.

- 8. Fletcher, P., Hunsaker, W. and Lindgren, W.: Frame quasi-uniformities, *Monatsh. Math.* **117** (1994), 223–236.
- 9. Fletcher, P., Hunsaker, W. and Lindgren, W.: Characterizations of frame quasi-uniformities, *Quaestiones Math.* **16** (1993), 371–383.
- 10. Fletcher, P. and Lindgren, W.: Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
- 11. Frith, J. L.: The category of quasi-uniform frames, Preprint, University of Cape Town, 1991.
- 12. Frith, J. L. and Hunsaker, W.: Completion of quasi-uniform frames, *Appl. Categ. Structures* **7** (1999), 261–270.
- 13. Hunsaker, W. and Picado, J.: A note on total boundedness, Preprint, 1998.
- 14. Isbell, J. R.: On zero-dimensional spaces, *Tohuku Math. J.* 7 (1955), 1–8.
- 15. Isbell, J. R.: Atomless parts of spaces, Math. Scand. 31 (1972), 5–32.
- 16. Johnstone, P. T.: Stone Spaces, Cambridge University Press, Cambridge, 1982.
- 17. Kelly, J. C.: Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71–89.
- 18. Nyikos, P. and Reichel, H. C.: On the structure of zero-dimensional spaces, *Indag. Math.* **37** (1975), 120–136.
- 19. Pervin, W. J.: Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316–317.
- 20. Picado, J.: Weil uniformities for frames, Comment. Math. Univ. Carolin. 36 (1995), 357–370.
- 21. Picado, J.: Weil entourages in pointfree topology, Ph.D. Thesis, University of Coimbra, 1995.
- 22. Picado, J.: Frame quasi-uniformities by entourages, in *Festschrift for G. C. L. Brümmer on his* 60th *Birthday*, Cape Town 1994, Department of Mathematics, University of Cape Town, 1999, pp. 161–175.
- 23. Reilly, I. L.: Zero-dimensional bitopological spaces, *Indag. Math.* 35 (1973), 127–131.
- 24. Schauerte, A.: Biframe compactifications, Comment. Math. Univ. Carolin. 34 (1993), 567-574.