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In the same way as the notion of Boolean algebra appears as an abstraction of
the power setP (X) of a setX, the notion of frame arises as an abstraction from
the topology7 of a topological spacéX, 7): a frameis a complete latticd.
satisfying the distributive lawt A \/ S = \/{x As | s € S} forall x € L and

S C L. A frame homomorphisns a map between frames which preserves finitary
meets (including the unit 1) and arbitrary joins (including the zero 0). A standard
reference for frames is Johnstone [18].

Pointfree topology deals with the categ®iyn of frames and frame homomor-
phisms (or, depending on the point of view, with its dual categoripcéles in
this ‘localic’ point of view one thinks of locales as generalized spaces; technically,
however, we will work inFrm. Therefore, for example, statements on products of
generalized spaces will appear as statements on coproducts of frames).

In topology, metrics, uniformities, nearnesses, proximities and such like struc-
tures are defined on a set and determine a topology on that set. In pointfree topol-
ogy, “the specified object is the ‘topology’, that is, a frame; and consequently,
metrics, uniformities, and nearnesses must appear as additional structures on a
frame” [2].

The study of structured frames started in the early 1970’s with Isbell [15], where
uniformities on frames were introduced as the exact translation into frame terms
of Tukey’s approach [25] to uniform spaces via covers, and continued, in more
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detail, with Pultr [23, 24] and Frith [11]. Quasi-uniformities, which are uniformi-
ties without symmetry, were introduced by Frith [11] in terms of conjugate cover
pairs of biframes (the translation into frame terms of the approach of Gantner
and Steinlage [13] to quasi-uniform spaces via covers). Nearness, which is uni-
formity without the star-refinement condition, was introduced more recently by
Banaschewski and Pultr [4], and in [5] and [6] Dube studied several properties of
nearness frames.

As in the case of spaces, there are other ways of describing (quasi-)uniformities,
such as the entourage (quasi-)uniformities of Fletcher and Hunsaker [9] and the
Weil (quasi-)uniformities of Picado [20, 21]. The various descriptions are known
to be equivalent.

The purpose of this article is to outline some results of my Ph.D. thesis, written
under the supervision of Professors B. Banaschewski and M. Sobral, which | be-
lieve establish the naturality of an entourage approach to several frame structures
(uniformities, quasi-uniformities, nearnesses, proximities etc.). The point that |
wish to make here is that the notion of Weil entourage introduced in [20] is the
exact translation into frame terms of Weil's classical notion of entourage and that
it provides us with the appropriate environment to get frame extensions of spa-
tial results envolving entourages, and to formulate them in a very similar way to
the corresponding classical results. After a brief summary, in a preliminary sec-
tion, on the needed tools, | describe some results of [21] which emphasize this
point.

| would like to express my gratitude to Professor B. Banaschewski for his
invaluable suggestions and comments.

Preliminaries

For subsetd, B, ... and elements, y, ... of aframeL, let us recall the following
notation and terminology:

A < B if each member ofd is below some member @f;

st(x, A) ;= \/{aeA|a/\x7&0}, A* = {st(x, A) | x € A},
AAB:={anb|laeA,be B}

Further, A is called a cover oL if \/ A = 1, andCov L) denotes the set of
all covers of L, taken as quasi-ordered by the above relatanNext, for any

A .
A C CoML), y < x means thakz(y, A) < x for someA € A, andA is

called admissiblewheneverx = \/{y € L | y ?1 x} for all x € L. Then,
a nearneson L is an admissible filtefl in Cou(L). In particular,U is called
a uniformity if it satisfies the refinement condition, that is, for edédhe U,
there existsV € U such thatV* < U. A nearness framéresp.,uniform frame
is a frame together with a specified nearness (resp., uniformity). For nearness
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frames(L, U) and (L', U'), a frame mapf: L — L’ isuniformif f[U] € U
for any U € U. Further,Nfrm (resp.,Ufrm) will be the category of nearness
frames and uniform homomorphisms (resp., uniform frames and uniform homo-
morphisms).

For the following, recall that a subsatof a poset X, <) is said to be @own-set
if A=A wherelA denotes the sdfc € X | x < a for somea € A}.

Let L be a frame. Recall (cf., e.g., [18]) that the coproduct of the franiey
itself

ML ML
L—5L@L<>L

can be constructed as follows:

Take the Cartesian produEtx L with the usual order. A down-sdtof L x L is
acC-idealif {x} x SCA= (x,\/S) eAand(Sx {y} T A= (\/S,y) € A).
PutL & L as the frame of alC-ideals of L x L. Observe that the case = ¢
implies that evenyC-ideal contains the sdd := | {(1, 0)} U [ {(0, 1)}. Obviously,
eachl{(x, y)} U O is aC-ideal. It is denoted by & y. Finally putuf(x) = x & 1
andub(y) = 1@ y.

The following clear facts are useful:

o ForeveryAe L®L,A=\/{x®y]| (x,y) € A} and so every element of
L & L is join-generated by some family of elements y;
o O£xdyCzdwimpliesx <zandy < w.

For any frame homomorphistfi. L — M,wewrite f @ f: LOL > MO M
for the frame homomorphism given by & f)-u> = u¥ - f (i = 1, 2). Obviously,
(f @ NV, @ ®y,) =V, (f(5,) & F(3)).

GivenA, B in the latticeD (L x L) of all down-sets of. x L we denote by (A)
theC-ideal generated by and byA o B theC-ideal generated bi(x, y) € L x L |
3z € L\ {0} : (x,2) € A,(z,y) € B}, thatis,\/{x®y |Jze L\ {0} : (x,2) €
A, (z,y) € B}. The following technical lemma, proved in [20] (Lemma 3.1), will
play a crucial r6le in our approach:

LEMMAA. ForanyA, B € D(L x L), k(A) ok(B) = A o B.
The importance of this result relies in the fact that it allows us to work with

composition of frame entourages in a way very similar to the spatial one. This can
be observed, for example, in the proof of Proposition 1.4 below.
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Weil Structures on Frames
1. UNIFORMITIES

Uniform spaces were introduced by Weil in terms of the basic notion of entourage.
An entourageof a setX is a subseFE of X x X for which the diagonalhy: X —
X x X factorizes through the inclusiofi < X x X:

X
3
f Ay
EC__ ,XxX

This motivates the study, on a franie of the elements of the frame coproduct
L @ L for which the codiagonaV,: L & L — L factorizes through the open
sublocaleL & L — [{E}of L & L:

LoL DnE

HE}

\J
af

L

(here,(-)NE(F) = ENF,foreveryF € L ® L andV, is the uniqgue morphism
such thatv, - ul = 1, = v, - u%). We call them\Weil entouragesf L. Evidently,
E € L ® L is a Weil entourage if and only ¥, (E) = 1. SinceV, is defined by

E=\/ coyr— \/ xry),

(x,y)€E (x,y)€E

an elementt of L @ L is a Weil entourage if and only X/, ,.px = 1 or, in
other words, if and only if there exists a covgrof L such that\/,_,(x ®x) C E.
This shows a perfect analogy between our notion of frame entourage (introduced
in [20]) and the notion of entourage for sets and justifies the designation of Weil
entourage for these frame entourages.

The collectionW Ent (L) of all Weil entourages of. may be partially ordered
by inclusion. This is a partially ordered set with finitary meets (including a unit
1=L& L).

We define the composition of Weil entourages as follows:

EoF:=\/(x®&y|3zeL\{0}: (x,2) € E.(z.y) € F}.

For the basic properties of the operatioaee [21].
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The inverse of a Weil entouragé has the natural definitio®—* = {(y, x) |
(x,y) € E}. We also consider a new partial orderfininduced by a family¢ of
Weil entourages:

&
y < x (read 'y is &-strongly belowx’) if there is
E e &suchthatt o (y® y) Cx ® x. (1.2)

Of course, whei§ is symmetric (thatisE e & implies E~1 € &) this is equivalent
to saying that

there isk € & suchthatly @ y) o E C x & x. (1.2)

DEFINITION 1.3. LetL be aframe and le& be a nonempty filter dfWEN{L), C).
Consider the following axioms:

(W1) [Admissibility Axiom] Foranyx € L,x = \/{y e L | y 2 x} (where€
denotes the filter of WEN{(L), C) generated by U {E~! | E € &));

(W2) [Symmetry Axiom] For anyE € &, E~1 € &;
(W3) [Refinement Axiom] For each € & there existd € §suchthatF o F C E.

The family € is called aWeil nearnes®n L if it satisfies (W1) and (W2) and it
is called awWeil uniformityon L if it fulfils (W1), (W2) and (W3). The pai(L, &)
is called aWeil nearness framgesp.,Weil uniform framgif & is a Weil nearness
(resp., Weil uniformity) onL. A Weil nearness basgesp.,Weil uniformity basg
is just a filter base of some Weil nearness (resp., Weil uniformity).

If (L,&) and(L’, &) are Weil nearness frames, a frame homomorphfm
L — L'is called aMeil homomorphisrfrom (L, &)to (L', &) if (f&® f)(E) € &
wheneverE € §.

We shall denote bwNFrm (resp. WUFrm) the category of Weil nearness frames
and Weil homomorphisms (resp., Weil uniform frames and Weil homomorphisms).

We proceed to give examples of Weil uniformities which illustrate the similari-
ties with the corresponding spatial cases.

EXAMPLES. (a) Let(L, d) be a metric frame [24]. For any real> O letE, =
V{x ®x | d(x) < €}. The family (E,).~¢ is a base for a Weil uniformity of.
(b) Consider a localic group [16] (a cogroup in the category of frames), that is,
a frameL endowed with a multiplicatiop: L — L@ L, aninverse: L — L and
a unit pointe: L — 2 (2 denotes the two-element lattice) satisfying the identities

m®l) - n=A,dw - un,

(@l n=1,=0A,®e) - u
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and

Vi-®1) - n=Vp- (It ®1) - p=o-¢,
whereo is the morphisn2 — L. Note that the usual properties for groups

g-1=g¢g,

11 =1,
and
mnw-1=17-0d1)-u,

where is the unique map fronl @ L to L & L satisfyingt - u}f = u% and
t-u? = ul, are also valid here.
These groups have Weil uniformities that arise in a similar way as in the spatial

setting of topological groups. For amye L such that(x) = 1 put

E =1 ®)(ux) and Ej:= 1) (ux).

PROPOSITION 1.4.8" := {E! | x € L,e(x) = 1} and & := {E’ | x €
L, ¢(x) = 1} are bases for Weil uniformities.

Proof. We only show that” is a Weil uniformity base. The proof fog’ is
similar.

EachE’ is a Weil entourage becauSg (E7) = V.- ®1.)-u(x) = e(x) = 1.

Obviously, EZ N E) = Ey,,. Sincee(x A y) = 1 whenevek(x) = e(y) = 1,
&" is afilter base of WEN{L), ©).

The symmetry is a consequence of the fact that, for everyz’)~1 = E],
which we prove next. Pyi(x) = \/yeF(x)/ ®y,). ThenE! = \/yeF(l (x,) ®yy).
Onthe other hand, singe: = 7-(:®1)-u, we haveu (i (x)) = \/yer(l )@ (x,))
and, thereforef] ) = \/yer(yy Di(xy)).

Now, considelE” with e(x) = 1. We havee = 1, e = (L®e)-(¢®1)-n =
(e®e)-p. Thus(e ®e) - u(x) =1, thatis,\/{e(a) ® e(b) | (a,b) € nu(x)} =1.
Therefore there is some, b) € u(x) with e(a) = ¢(b) = 1. Also(aAb,a Ab) €
w(x) ande(a A b) = 1. Denotea A b by y. We claim thatE; oEj CEL.In fact,
E}, o E') is the Weil entourage

( \/ (z(a)eeb))o( \Vi (z(a)aab))

(a.b)ep(y) (a,b)ep(y)
= < U @@ eab)) o ( U @@ @b)),
(a,b)ep(y) (a.b)eu(y)
by Lemma A. Takd(a), b) with (a, b) € u(y) and((c), d) with (¢, d) € u(y)
such thab A 1(c) # 0. From the inclusiory & y C u(x) it follows that

uM O () CUwdwmnx)=A, &udly) -  (udly) - (ux)).
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Thereforea @b D cDd C (1L, Dud1) - (ud 1) - (u(x)). Applying 1, &V, -
(1, ®1) @ 1, to both sides we get

a®GA) SIS L @®odL) )= \/ @el eb).
(a,b)ep(x)

Sinceb A i(c) # 0, then(a, d) € u(x) and(i(a),d) € E’. HenceE? o EY C E.
Finally, let us check the admissibility condition (W1). From the identity &
g) - u = 1, it follows that, for everyx € L,

x = \/{a@s(b)la@bgu,(x)}
= \/laeL|FBeL:eb)=1anda®b < u(x)},

whence it remains to show thatis &”-strongly belowx whenever there is some
b € L satisfyinge(b) = 1 anda @ b C u(x). In order to conclude this, it suffices
to show that, for any symmetri€ € &" such thatF? C Ej, Fo (a ®a) C x @ x.
So, assuméux, B) € F, (B, v) < (a,a) with a, 8, y # 0. We need to show that
botho andy are belowx. Clearlyy < a < x. Let us show that alsa < «x.
Of course,(«, B) € F? and, by the symmetry of, (8, «) € F?, which forces
(Vv B,aV B) € F2 C E}, as(a,a) and (B, B) also belong toF2. Moreover
(Vv pB)Ara+#0.Thusi(ax Vv B) ® (o Vv B) C wu(b). Onthe other hand; ® b C
u(x). Consequentlyg ® b ®a C (u ® 1.)(x ® @) which, in turn, implies that
a®ub)®a < L, oudl) - (udl)(xda). Thus,we have di(a Vv B) ®a C
Q. dudly) (udly)(x®a). By the associativity oft, (1; dudl;) - (udly) =
(Lrow - Wl =(uel) Wl =nel, &l (udly). Thus,
a®ilaVvp)d@Vvph) ®a < (ndl &1 (ndl)(x D a) Applying
Ve- (L ®1) @1, @1, tobothsideswegdu A (Vv E) D@V B da C
(- el 1) WOl ®a)=((0-e6®1) - udl)(xda)=(((c &
1) (edl) wodl)xda)=(0d1,®1)(xda).But(c®1l)(x) =1dx
so(an(aVvB))@d@Vvp)daldxda. Sincea A (a Vv B) # 0, we finally
obtain(a v B) ®a C x @ a. In conclusiong < a Vv B < x. O

We point out that, as for topological groups, the mapa Weil uniform frame
isomorphism between the two structures: indeesla frame isomorphism and, for
anyx € L, 0 ®1)(E) = ® 1) & 1) (ux) = (1, & )(u(x)) = EL

(c) Our approach via Weil entourages may also be useful to prove (or disprove)
frame counterparts of spatial results envolving entourages. For an example in this
direction see [21], where it is proved that whenever two uniformities with countable
bases on a frame determine the same Samuel compactification they are equal. This
is the localic version of a theorem of Efremowf 1952 [8] (cf. Theorem 12.18
and Corollary 12.19 of [19]).

Weil entourages and covers interact in a very easy way: for any Weil entourage
Etheset{x € L | x ® x C E}is a cover ofL and, conversely, for any covér
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of L, \/,cy(x @ x) is a Weil entourage of.. Moreover, for any nearness frame
(L, W), {V,cy(x®x) | U € U} forms a base for a Weil nearnegsU) on L and,
conversely, for any Weil nearness frartie, &), {{x e L | x ®x C E} | E € &}
forms a base for a nearne$s€) on L.

The correspondencéd., U) s (L, ¥(W)) and(L, &) 2 (L, ®(&)) con-
stitute a Galois connection between the partially ordered sets (by inclusion) of,
respectively, nearnesses and Weil nearnessds. dn< & and®W¥ < 1. This
Galois connection induces a ‘maximal’ isomorphism between the partially ordered
set of Weil nearnesse&on L satisfying the condition

VEce \/ xox €€ (1.3)
(x,x)eE

and the partially ordered set of nearnessiesn L satisfying the condition

VUG‘LEIVG‘L{:<xEBx§\/(xEBx)$EIu€U:x§u). (1.4)

xeV

For the proofs and further details, the reader is referred to [21]. This extends the
result of [20] that asserts the isomorphism betw@asFrm andUFrm; in fact, in
particular, this gives a bijection for uniformities since it can be readily seen that the
refinement conditions in the definitions of Weil uniform frame and uniform frame
are stronger than the corresponding conditions 1.3 and 1.4 above. However, | am
not able to conclude wheth&/NFrm and NFrm are isomorphic. This is still an
open guestion.

2. QUASI-UNIFORMITIES AND QUASI-NEARNESSES

One of the advantages of entourage-like theories is that the symmetry is explicit
and so the corresponding nonsymmetric versions are evident and pleasantly man-
ageable. By dropping the symmetry in Definitions 1.3 we have the notioeibf
guasi-nearness framendWeil quasi-uniform frame

With the lack of symmetry the equivalence between conditions 1.1 and 1.2 is

no longer valid; whence, in the place afwe have two order relations
&
y<hx=Eo(y®y) Cxdx, forsomeE € g,
&
ybx=(y®y)oE Cx@®x, forsomek € é,
which in turn, lead to two subframes 6f
&
L= {xele:\/{yeL|y<11x}} and

L2:={xeL|x:\/{yeL|y<182x}}
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(for spaces this corresponds to the two topologies defined by the quasi-uniformity).

Notice that the condition (W1) of admissibility says that the tridle L1, L») is
a biframe. This allows us to establish a Galois connection between Weil entourages
and conjugate cover pairs of biframes:

Recall that aiframe[3] is a triple B = (B, B1, B2) in which By is a frame and
B1, B, are subframes aBg such that each € By is the join of finite meets from
B, U Bo.

Let B = (Bg, B1, B») be a biframe. The following definitions and notations are
transcribed from [11]. A subséf of B; x B, is aconjugate cover paifor just
conjugate coverof B provided that{u; A us | (41, un) € U} is a cover ofBy.

A conjugate covel is strongif, for every (uq1, u;) € U, ui A uo # 0 whenever
u1 Vupy # 0. LetU andV be conjugate covers. Thdh < V provided that, for
each(uq, us) € U, there is(vy, v2) € V with u; < v; andus < v,. Furthermore,
U AV denotes the conjugate CoM@ly A vy, us Ava) | (g, uz) € U, (vy, v2) € V}
and U* stands for the conjugate covibt (u1, U), sto(uz, U)) | (u1, u) € U},
wherest; (x, U) := \/{u1 | (u1,u2) € U,ups A x # 0} andsta(x, U) := \/{uz |
(u1,up) € U,uy A x # 0} foranyx € Bq.

Let B = (By, B1, B,) be a biframe and l&ll be a collection of conjugate covers.
Then U is a quasi-uniformityfor the biframeB and (B, U) is a quasi-uniform
frameprovided that:

(i) The family of strong members dfl is a filter base fofl with respect to<;
(ii) For eachU € U there existy/ € U such thatV* < U;

Uu Uu
(i) Foreachx € B; (i € {1,2}), x = \/{y € B; | y<;x}, wherey<;x means
that there i/ € U such thatz; (y, U) < x.

Let (B, U) and (B’, W) be quasi-uniform frames. Aniform homomorphism
f: (B, U) — (B, U)is abiframe magf: B — B’ such that, for every/ € U,
fIUY .= {(f(uy), f(up)) | (u1,u) € U} € U'. The category of quasi-uniform
frames and uniform homomorphisms will be denotedJufFrm.

The relationship between Weil entourages and conjugate covers is not so ev-
ident as the one between Weil entourages and covers. For any conjugate cover
U of a biframe(Bo, B1, B2), \/{u1 ® us | (u1,uz) € U} (meant inBy @ Bo)
is a Weil entourage oBy. Conversely, starting with a Weil entouragde of a
guasi-nearness frame L, we may consider the bifrémel, L,) and the pairs
(sta(x, E), st2(x, E)) for (x,x) € E, wherest;(x, E) := \/{y € L | (y,2) €
E,z Ax # 0} andsty(x, E) :==\/{y € L | (z,y) € E, z A x # 0}. However there
is a problem: these pairs may not belond.tox L,. It may be solved by introducing
two interior operators ir. @ L in the following manner: Forevery, J € L ® L,

& &
we defineIC,J by E o I C J for someE € &, and similarly we defindC,J by
I o E C J for someE € &. Further, for eachi € {1, 2}, letint;(E) := \/{I €

LeL| Igg,»E}. Then{(st1(x, inty(E)), st2(x, inta(E))) | x ® x C E} is already a
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conjugate cover ofL, L., L,). These correspondences define a Galois connection
which gives an isomorphism for quasi-uniformities (see [22] for the details). For
quasi-nearnesses the question of knowing whether the entourage approach and the
cover approach are equivalent is still open.

Notice that Weil quasi-uniformities are defined on a frame; do not require —
as the (biframe) quasi-uniformities — prior knowledge of the underlying biframe.
The analogy with the spatial case is now evident. This clarifies the discussion in
D. Doitchinov, “Some reflections on quasi-uniform frames”, Topology with Appli-
cations (Szekszard, Hungary, 1993), Bolyai Math. Soc., Math. Studies 4, 1995, pp.
151-158.

A natural question concerning Weil (quasi-)nearness frames is: which is the
right spatial concept in analogy with the chosen frame concept, that is, which
spaces correspond to them by an ‘open’/'spectrum’ adjunction?

The answer (see [21]) gives us the categong&ar (of ‘Weil nearness spacgs
andwQNear (of ‘Weil quasi-nearness spacesVe concluded in Chapter IV of [21]
thatWNear is an interesting category containing the categories of symmetric topo-
logical spaces and continuous maps, uniform spaces and uniformly continuous
maps, and proximal spaces and proximal maps, in a nice way: they are either bire-
flective or bicoreflective full subcategories\wiNear. However the categoriop of
topological spaces is not a subcategorywear. Other useful topological struc-
tures, namely the nonsymmetric ones of quasi-uniform spaces and quasi-proximal
spaces are also not embeddabl&inear.

Nevertheless, in the realm of those ‘Weil quasi-nearness spaces’ mentioned
above, it is possible to consider all those spaces of topological and uniform nature.
It turns out that the category of Weil quasi-nearness spaces contains all the nonsym-
metric categories referred to above as well as the cateigpras nicely embedded
full subcategories and so it is a unified theory of (nonsymmetric) topology and
uniformity. The corresponding covering results were explained in the thesis [11].

3. PROXIMITIES

Let us now see how it goes with proximities. We recall that a binary relati@m a
framelL is astrong inclusiorn1] if the following axioms are satisfied for, y, z, w
in L:

(Pl x <y« z<wimpliesx <« w;
(P2) « is a sublattice of. x L;

(P3) x « y impliesx < y (wherex < y means that Az =0andy v z =1 for
somez € L, alternatively expressed as'x* = 1 with the pseudocomplement
x*=\{zeL|xAnz=0});

(P4) Ifx « ythenx « z « y for somez € L;
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(P5) x « y impliesy* « x*;
(P6) Foreach e L, x = \/{y e L | y < x}.

Note that, in the presence of (P1), (P2) meangk @, 1<K 1,x < yandz < y
imply x Vz < y,andx < yandx < zimply x < y A z.

The pair(L, <) is called aproximal frameif « is a strong inclusion of.. A
frame map between proximal frames is said to be proximal if it preserves the strong
inclusion. We denote bigFrm the category of proximal frames and proximal frame
homomorphisms.

REMARKS 3.1. (a) The basic properties of Weil uniformities imply that, for any

Weil uniform frame(L, &), (L, 2) is a proximal frame.
(b) Whenx v y = 1, theC-ideal (x & x) v (y & y) is a Weil entourage of.
(the converse is also true; for the proof the reader is referred to [21]). Thus, in any
proximal frame(L, <), since« is stronger thark, E, , := (x* @ x*) vV (y @ y)
is a Weil entourage whenever« y.

The entourageg, , are very important. Indeed, they enable us to formulate the
concept of proximity in terms of Weil entourages:

PROPOSITION 3.2.Let(L, <) be a proximal frame. ThefE, , | x,y € L, x <

y} is a subbase for a Weil uniformit§(«) on L. Moreover, the proximitf(<<1<)
induced byé («) coincides with«.

Proof. It is an immediate consequence of Lemma IV.6.7 of [21] (which has a
rather technical and long proof that we omit here). Indeed, this lemma affirms that,
in any proximal framegL, <), x <« y whenever\'_, E,, ,, € E., andx; < y;
foreveryi € {1,...,n}. O

The following proposition is also obvious:

PROPOSITION 3.3.1f (L, &) is a Weil uniform frame satisfying

(WA)VE € € Ix1, y1, ..., X,y € L : (ﬂ Eqy SEand()Ey.,, € 8)
i=1 i=1

the Well uniformity&’(g]) induced byil coincides withs.

Let us denote byWUFrmy4) the full subcategory ofvUFrm of all Weil uni-
form frames satisfying (W4). This is a bicoreflective subcategomwofrm.

The preceding propositions give us a characterization of frame proximities in
terms of Weil entourages:

THEOREM 3.4. The categorie®Frm and WUFrm w4, are isomorphic.
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Proof. According to Remark 3.1(a) and Propositions 3.2 and 3.3 it remains to
show that a frame map: L, — L, between two proximal framed.,, <«1) and
(L,, <) is a proximal frame homomorphism if and only if it is a Weil uniform
homomorphism from{L1, §(«<1)) to (L,, §(K3)). So, letf be a proximal frame
homomorphism. For an§ € &(«1) we may write(/_; E,, ,, € E, wherex; <1
y; foreveryi € {1,...,n}. Then

(f® IE) 2 [\(f © ) (Exy)

i=1

= (W& & FE) V (fO) & FO1).

i=1

Now consider, foreache {1, ...,n},z;, w; € Lsuchthak; «; z; <1 w; <1 y;i.
There is a simple and well-known lemma (cf., for example, Lemma 2.8 of [11]),
which affirms that, for any frame homomorphisfy f(y)* < f(x*) whenever

x < y. Applying this lemma, we obtain

(fGDH @ NV (f) @ fi)
2 (f@) @ f@))V (f(w) & f(w) = Ere, fan-

So(f ® f)(E) 2 (o1 Efe. - Since, by hypothesisf(z;) < f(w;), then
(f @ fI(E) € €(KL2).
Conversely, ifx <1 y then(f & f)(E.,) € €(K2). As(f & f)(Ey,) C
E ). f(y), the entourageE s, r,) also belongs tog (<) and we may write
N1 Eviyi S Efm.ro) fOr x1, 1, ..., %0, ya € Lo with x; <o y; for every
i € {1,...,n}. It suffices now to recall again Lemma IV.6.7 of [21] to conclude

that f (x) <<2 f). -

As it is well-known, the concepts of proximity and totally bounded uniformity
are still equivalent for frames (the proof is due to Frith [12]). This motivates the
following definition:

A Weil entouragek is finite provided there exist elements, yi, ..., X, y,
in L such thaty; < y;, for everyi € {1,...,n}, and(\_; E,,y, = E. By Re-
mark 3.1(b), the conditions; < y; are redundant since eadh, ,, by containing
E is also a Weil entourage.

Now Theorem 3.4 affirms that

“The categoryPFrm is isomorphic to the full subcategory @fUFrm of Weil
uniform frames with a base of finite entourages

which is the entourage version of Frith’s result.

When the framd. is normal (i.e.x v y = 1 implies there exisi, v € L such
thatx vu = 1=y v vandu A v = 0) our notion of finiteness may be stated in a
way very likely to the spatial one:
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PROPOSITION 3.5.If L is normal, the filter FWEHRL) of (WEN{L), ) gener-
ated by all finite Weil entourages coincides with the filter generated by

{\n/(x,'EBxi)ln eN x1,...,x, eL,\n/xi :1}.
i=1

i=1

Proof.ConsiderE € FWEN{L). Then there areq, y1, ..., x,,, y, € L such that
x; < y; foreveryi € {1,...,n} and_; E,,.,, C E. Since eaclE,, ,, belongs to
the set

n

{\/(xiEBxi)ln eN, x1,...,x, GL,\n/xi :l},
i=1

i=1

E belongs to the filter generated by it.

Conversely, considey/’_, (x; ® x;) with \/?_; x; = 1. From the normality of.
we may ensure the existenceyaf . .., y, € L such that\/}_, y; = L andy; < x;
foranyi € {1,...,n}. Since(L @ L,N,\/) is a frame, one can easily prove, by
induction onn > 1, that

n
mEyi,xi: \/ \/ (AN ANZ,BZIA - AZy).
i=1

Zle[yi,xl} zn €y xn}

But (yf ARERA y:) 52 (y>1k ANEIRAN y:) = 0. Hencermr't:l Ey,',x,' - \/,r';l(xi D x;)
and therefore/_; (x; ® x;) € FWEN{(L). O

REMARKS 3.6. (a) By dropping the symmetry &fin the definition of the objects
of the categoryWUFrm .4, we obtain the theory of quasi-proximities in terms of
Weil entourages. The isomorphism betwagQUFrm and QUFrm yields an iso-
morphism between this category ofuasi-proximal framésand the covering one
of Frith ([11], p. 68).

(b) The isomorphism betwedFrm andWUFrm 4, suggested to us the notion
of finite Weil entourage. It also justifies the fact that we name the Weil nearness
frames satisfying (W4) asiWeil contigual frames This is the analogous notion
to the contigual frames of Dube [6] in the setting of nearness frames. One natural
guestion is this: are these two categories equivalent? Another interesting problem
is whether the corresponding category Wieil contigual spacéqas a full sub-
category ofwNear) is equivalent to the category of contigual nearness spaces of
Herrlich [14] and, consequently, equivalent to the classical category of contigual
spaces and contigual maps in the sense of lvanova and Ivanov [17].

In this paper we have tried to emphasize the point that our language of Weil
entourages allows us to get frame versions of spatial results concerning entourages,
and to formulate them in a very similar way to the corresponding classical results.
We end it with another illustration of this. Although not entirely surprising, it is



364 JORGE PICADO

still noteworthy that Weil entourages also serve the same purpose for uniform-like
structures in frames as entourages for spaces and that, after all, covers much wider
ground, since there are structured frames which are not spatial.

4. INFINITESIMAL RELATIONS

The notion of proximity in classical topology was originaly introduced by Efre-
movic [7] in terms of the infinitesimal relationA' is nearB’ (usually denoted by
ASB [19]) for subsetsA and B of any set. We conclude this article with a brief
discussion of the corresponding axiomatization for frames.

PROPOSITION 4.1.1f (L, <) is a proximal frame, the binary relation aigiven
by xdy = x &« y* satisfies the following properties:

(11) xéy impliesydx;

(12) x8(y Vv z) ifand only ifx8y or x8z;

(13) x8y impliesx £ 0andy # O;

(14) If xgy then there ig € L such thatxdz and ygz*;
(15) x* v y* # limpliesxdy;

(16) Foreveryx € L,x = \/{y € L | y < x andydx*}.

Proof. Straightforward. a

Note that, sinca A y # 0 impliesx* v y* #£ 1, (15) says, in particular, thatsy
whenevenr Ay # 0. WhenL is Boolean the converse is also true and condition (15)
is equivalent to the conditiofx A y # 0 = x48y).

We say that a binary relatiof satisfying all properties (11)—(16) of 4.1 is an
infinitesimal relationand that, in this casé€/l, §) is aninfinitesimal frame

The correspondence of 4.1 is invertible for Boolean frames:

PROPOSITION 4.2. If (L, é) is an infinitesimal frame, the binary relatiot
given byx <« y = xdy* is a proximity onL if and only if L is Boolean.

Proof. If « is a proximity then, foranyg € L, x* = \/{y € L | y < x*}.
Buty < x* & ydx™* < y < x. Consequentlyy™ =\/{y e L | y < x} =x
andL is Boolean.

Since in any Boolean frame the DeMorgan law A x2)* = x7 Vv x5 also holds,
the proof thatk is a proximity whenL is Boolean follows immediately from the
properties of. a

These two results show that the description of proximities in terms of infinites-
imal relations is also valid for Boolean frames.
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It is a well-known result of proximal spaces that, given a uniform space),
there is a way of defining an infinitesimal relation &rby A B if and only if one
of the following three equivalent conditions holds:

(i) ForeveryE € &, (A x B)NE #
(ii) For everyE € & there isa € A such thatE[a] N B # §;
(iii) For everyE € & there isb € B such thatd N E[b] # 0.

In frames, we have a similar situation. In fact, the next proposition, together
with Remark 3.1(a) and Proposition 4.1, says that any Weil unifor@itgn L
induces an infinitesimal relatiahon L by x§y if and only if one of the following
three equivalent conditions is satisfied:

(i) ForeveryE € &, (x ®y) N E # O;
(ii) For everyE € & there exists’ € | {x} \ {0} such thatE[x'] A y # O;
(iii) ForeveryE € & there existy’ € | {y} \ {0} such thatc A E[y'] # 0.

PROPOSITION 4.3.Let & be a Weil nearness oh and letx, y € L. Denoting
by E[x] (E € &) the elemeny/{y € L | (x, y) € E}, the following assertions are
equivalent:

(i) x < y*;

(i) (xe® y)NE = OforsomeE € &,
(i) There isE € & such that, for every nonzerd € | {x}, E[x'] Ay =0,
(iv) There isE € & such that, for every nonzerd € | {y}, x A E[y'] = 0.

Proof. The equivalence between (i) and (ii) is a consequence of the equivalence
betweenx ® y)NE~t = 0andEo (x ®x) C y*® y*, that we prove next. So, let
(x ® y)N E~!t = O and consideta, b) € E and(b, c) € x ® x witha, b, ¢ # 0.
Then(b,aAy) e EIN(x®y) =0anda Ay =0, thatisa < y*. On the other
handx < y*,i.e,x Ay =0.Infact,x Ay =\/{x AyAa| (a,a) € E} and, for
any(a,a) e E,(x Ayra,x AyAna) € (x®y)NE =0.Thusec < x < y*and
(a, c) € y* @ y*. The reverse implication is also clear.

The equivalence (i} (iii) is obvious. By symmetry, (ii) is then also equivalent
to (iv). O
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