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In the same way as the notion of Boolean algebra appears as an abstraction of
the power setP (X) of a setX, the notion of frame arises as an abstraction from
the topologyT of a topological space(X,T ): a frame is a complete latticeL
satisfying the distributive lawx ∧∨ S = ∨{x ∧ s | s ∈ S} for all x ∈ L and
S ⊆ L. A frame homomorphismis a map between frames which preserves finitary
meets (including the unit 1) and arbitrary joins (including the zero 0). A standard
reference for frames is Johnstone [18].

Pointfree topology deals with the categoryFrm of frames and frame homomor-
phisms (or, depending on the point of view, with its dual category oflocales; in
this ‘localic’ point of view one thinks of locales as generalized spaces; technically,
however, we will work inFrm. Therefore, for example, statements on products of
generalized spaces will appear as statements on coproducts of frames).

In topology, metrics, uniformities, nearnesses, proximities and such like struc-
tures are defined on a set and determine a topology on that set. In pointfree topol-
ogy, “the specified object is the ‘topology’, that is, a frame; and consequently,
metrics, uniformities, and nearnesses must appear as additional structures on a
frame” [2].

The study of structured frames started in the early 1970’s with Isbell [15], where
uniformities on frames were introduced as the exact translation into frame terms
of Tukey’s approach [25] to uniform spaces via covers, and continued, in more
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detail, with Pultr [23, 24] and Frith [11]. Quasi-uniformities, which are uniformi-
ties without symmetry, were introduced by Frith [11] in terms of conjugate cover
pairs of biframes (the translation into frame terms of the approach of Gantner
and Steinlage [13] to quasi-uniform spaces via covers). Nearness, which is uni-
formity without the star-refinement condition, was introduced more recently by
Banaschewski and Pultr [4], and in [5] and [6] Dube studied several properties of
nearness frames.

As in the case of spaces, there are other ways of describing (quasi-)uniformities,
such as the entourage (quasi-)uniformities of Fletcher and Hunsaker [9] and the
Weil (quasi-)uniformities of Picado [20, 21]. The various descriptions are known
to be equivalent.

The purpose of this article is to outline some results of my Ph.D. thesis, written
under the supervision of Professors B. Banaschewski and M. Sobral, which I be-
lieve establish the naturality of an entourage approach to several frame structures
(uniformities, quasi-uniformities, nearnesses, proximities etc.). The point that I
wish to make here is that the notion of Weil entourage introduced in [20] is the
exact translation into frame terms of Weil’s classical notion of entourage and that
it provides us with the appropriate environment to get frame extensions of spa-
tial results envolving entourages, and to formulate them in a very similar way to
the corresponding classical results. After a brief summary, in a preliminary sec-
tion, on the needed tools, I describe some results of [21] which emphasize this
point.

I would like to express my gratitude to Professor B. Banaschewski for his
invaluable suggestions and comments.

Preliminaries

For subsetsA,B, . . . and elementsx, y, . . . of a frameL, let us recall the following
notation and terminology:

A ≤ B if each member ofA is below some member ofB;

st (x,A) :=
∨
{a ∈ A | a ∧ x 6= 0}, A∗ := {st (x,A) | x ∈ A},

A ∧ B := {a ∧ b | a ∈ A, b ∈ B}.
Further,A is called a cover ofL if

∨
A = 1, andCov(L) denotes the set of

all covers ofL, taken as quasi-ordered by the above relation≤. Next, for any

A ⊆ Cov(L), y
A
C x means thatst (y,A) ≤ x for someA ∈ A, and A is

called admissiblewheneverx = ∨{y ∈ L | y A
C x} for all x ∈ L. Then,

a nearnesson L is an admissible filterU in Cov(L). In particular,U is called
a uniformity if it satisfies the refinement condition, that is, for eachU ∈ U,
there existsV ∈ U such thatV ∗ ≤ U . A nearness frame(resp.,uniform frame)
is a frame together with a specified nearness (resp., uniformity). For nearness
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frames(L,U) and(L′,U′), a frame mapf : L → L′ is uniform if f [U ] ∈ U′
for any U ∈ U. Further,Nfrm (resp.,Ufrm) will be the category of nearness
frames and uniform homomorphisms (resp., uniform frames and uniform homo-
morphisms).

For the following, recall that a subsetA of a poset(X,≤) is said to be adown-set
if A =↓A where↓A denotes the set{x ∈ X | x ≤ a for somea ∈ A}.

Let L be a frame. Recall (cf., e.g., [18]) that the coproduct of the frameL by
itself

L
uL1−→L⊕ L uL2←−L

can be constructed as follows:
Take the Cartesian productL×L with the usual order. A down-setA of L×L is

aC-ideal if ({x} × S ⊆ A⇒ (x,
∨
S) ∈ A) and(S × {y} ⊆ A⇒ (

∨
S, y) ∈ A).

PutL ⊕ L as the frame of allC-ideals ofL × L. Observe that the caseS = ∅
implies that everyC-ideal contains the setO :=↓{(1,0)} ∪ ↓{(0,1)}. Obviously,
each↓{(x, y)} ∪ O is aC-ideal. It is denoted byx ⊕ y. Finally putuL1 (x) = x ⊕ 1
anduL2 (y) = 1⊕ y.

The following clear facts are useful:

• For everyA ∈ L ⊕ L, A = ∨{x ⊕ y | (x, y) ∈ A} and so every element of
L⊕ L is join-generated by some family of elementsx ⊕ y;

• O 6= x ⊕ y ⊆ z⊕w impliesx ≤ z andy ≤ w.

For any frame homomorphismf : L→M, we writef ⊕f : L⊕L→ M⊕M
for the frame homomorphism given by(f ⊕f )·uLi = uMi ·f (i = 1,2). Obviously,
(f ⊕ f )(∨γ (xγ ⊕ yγ )) =

∨
γ (f (xγ )⊕ f (yγ )).

GivenA,B in the latticeD(L×L) of all down-sets ofL×Lwe denote byk(A)
theC-ideal generated byA and byA◦B theC-ideal generated by{(x, y) ∈ L×L |
∃z ∈ L \ {0} : (x, z) ∈ A, (z, y) ∈ B}, that is,

∨{x ⊕ y | ∃z ∈ L \ {0} : (x, z) ∈
A, (z, y) ∈ B}. The following technical lemma, proved in [20] (Lemma 3.1), will
play a crucial rôle in our approach:

LEMMA A. For anyA,B ∈ D(L× L), k(A) ◦ k(B) = A ◦ B.

The importance of this result relies in the fact that it allows us to work with
composition of frame entourages in a way very similar to the spatial one. This can
be observed, for example, in the proof of Proposition 1.4 below.
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Weil Structures on Frames

1. UNIFORMITIES

Uniform spaces were introduced by Weil in terms of the basic notion of entourage.
An entourageof a setX is a subsetE of X ×X for which the diagonal1X: X→
X ×X factorizes through the inclusionE ↪→ X ×X:

⊂
?

-

�
�
�
�
�
�
�+

E X ×X

X

1X

∃f

This motivates the study, on a frameL, of the elementsE of the frame coproduct
L ⊕ L for which the codiagonal∇L: L ⊕ L → L factorizes through the open
sublocaleL⊕ L→↓{E} of L⊕ L:

?

--
�
�
�
�
�
�
�+

L

L⊕ L ↓{E}(−) ∩ E

∇L ∃f

(here,(−)∩E(F) = E ∩F , for everyF ∈ L⊕L and∇L is the unique morphism
such that∇L · uL1 = 1L = ∇L · uL2 ). We call themWeil entouragesof L. Evidently,
E ∈ L⊕ L is a Weil entourage if and only if∇L(E) = 1. Since∇L is defined by

E =
∨

(x,y)∈E
(x ⊕ y) 7−→

∨
(x,y)∈E

(x ∧ y),

an elementE of L ⊕ L is a Weil entourage if and only if
∨
(x,x)∈E x = 1 or, in

other words, if and only if there exists a coverU of L such that
∨
x∈U(x⊕x) ⊆ E.

This shows a perfect analogy between our notion of frame entourage (introduced
in [20]) and the notion of entourage for sets and justifies the designation of Weil
entourage for these frame entourages.

The collectionWEnt(L) of all Weil entourages ofL may be partially ordered
by inclusion. This is a partially ordered set with finitary meets (including a unit
1= L⊕ L).

We define the composition of Weil entourages as follows:

E ◦ F :=
∨
{x ⊕ y | ∃z ∈ L \ {0} : (x, z) ∈ E, (z, y) ∈ F }.

For the basic properties of the operation◦ see [21].
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The inverse of a Weil entourageE has the natural definitionE−1 = {(y, x) |
(x, y) ∈ E}. We also consider a new partial order inL, induced by a familyE of
Weil entourages:

y
E
C x (read ‘y is E-strongly belowx’) if there is

E ∈ E such thatE ◦ (y ⊕ y) ⊆ x ⊕ x. (1.1)

Of course, whenE is symmetric (that is,E ∈ E impliesE−1 ∈ E) this is equivalent
to saying that

there isE ∈ E such that(y ⊕ y) ◦ E ⊆ x ⊕ x. (1.2)

DEFINITION 1.3. LetL be a frame and letE be a nonempty filter of(WEnt(L),⊆ ).
Consider the following axioms:

(W1) [Admissibility Axiom] For anyx ∈ L, x = ∨{y ∈ L | y E
C x} (whereE

denotes the filter of(WEnt(L),⊆) generated byE ∪ {E−1 | E ∈ E});
(W2) [Symmetry Axiom] For anyE ∈ E , E−1 ∈ E ;

(W3) [Refinement Axiom] For eachE ∈ E there existsF ∈ Esuch thatF ◦ F ⊆ E.

The family E is called aWeil nearnesson L if it satisfies (W1) and (W2) and it
is called aWeil uniformityonL if it fulfils (W1), (W2) and (W3). The pair(L,E)
is called aWeil nearness frame(resp.,Weil uniform frame) if E is a Weil nearness
(resp., Weil uniformity) onL. A Weil nearness base(resp.,Weil uniformity base)
is just a filter base of some Weil nearness (resp., Weil uniformity).

If (L,E) and (L′,E ′) are Weil nearness frames, a frame homomorphismf :
L→ L′ is called aWeil homomorphismfrom (L,E) to (L′,E ′) if (f ⊕f )(E) ∈ E ′
wheneverE ∈ E .

We shall denote byWNFrm (resp.,WUFrm) the category of Weil nearness frames
and Weil homomorphisms (resp., Weil uniform frames and Weil homomorphisms).

We proceed to give examples of Weil uniformities which illustrate the similari-
ties with the corresponding spatial cases.

EXAMPLES. (a) Let(L, d) be a metric frame [24]. For any realε > 0 letEε =∨{x ⊕ x | d(x) < ε}. The family(Eε)ε>0 is a base for a Weil uniformity onL.
(b) Consider a localic group [16] (a cogroup in the category of frames), that is,

a frameL endowed with a multiplicationµ: L→ L⊕L, an inverseı: L→ L and
a unit pointε: L→ 2 (2 denotes the two-element lattice) satisfying the identities

(µ⊕ 1L) · µ = (1L ⊕ µ) · µ,

(ε ⊕ 1L) · µ = 1L = (1L ⊕ ε) · µ
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and

∇L · (ı ⊕ 1L) · µ = ∇L · (1L ⊕ ı) · µ = σ · ε,
whereσ is the morphism2→ L. Note that the usual properties for groups

ε · ı = ε,
ı · ı = 1L

and

µ · ı = τ · (ı ⊕ ı) · µ,
whereτ is the unique map fromL ⊕ L to L ⊕ L satisfyingτ · uL1 = uL2 and
τ · u2

L = u1
L, are also valid here.

These groups have Weil uniformities that arise in a similar way as in the spatial
setting of topological groups. For anyx ∈ L such thatε(x) = 1 put

Elx := (1L ⊕ ı)(µ(x)) and Erx := (ı ⊕ 1L)(µ(x)).

PROPOSITION 1.4. E l := {Elx | x ∈ L, ε(x) = 1} and E r := {Erx | x ∈
L, ε(x) = 1} are bases for Weil uniformities.

Proof. We only show thatE r is a Weil uniformity base. The proof forE l is
similar.

EachErx is a Weil entourage because∇L(Erx) = ∇L ·(ı⊕1L)·µ(x) = ε(x) = 1.
Obviously,Erx ∩ Ery = Erx∧y. Sinceε(x ∧ y) = 1 wheneverε(x) = ε(y) = 1,

E r is a filter base of(WEnt(L),⊆).
The symmetry is a consequence of the fact that, for everyx, (Erx)

−1 = Erı(x)
which we prove next. Putµ(x) =∨γ∈0(xγ ⊕ yγ ). ThenErx =

∨
γ∈0(ı(xγ )⊕ yγ ).

On the other hand, sinceµ·ı = τ ·(ı⊕ı)·µ, we haveµ(ı(x)) =∨γ∈0(ı(yγ )⊕ı(xγ ))
and, therefore,Erı(x) =

∨
γ∈0(yγ ⊕ ı(xγ )).

Now, considerErx with ε(x) = 1. We haveε = 12⊕ε = (12⊕ε) ·(ε⊕1L) ·µ =
(ε⊕ ε) · µ. Thus(ε ⊕ ε) · µ(x) = 1, that is,

∨{ε(a)⊕ ε(b) | (a, b) ∈ µ(x)} = 1.
Therefore there is some(a, b) ∈ µ(x) with ε(a) = ε(b) = 1. Also(a∧b, a∧b) ∈
µ(x) andε(a ∧ b) = 1. Denotea ∧ b by y. We claim thatEry ◦ Ery ⊆ Erx . In fact,
Ery ◦Ery is the Weil entourage( ∨

(a,b)∈µ(y)
(ı(a)⊕ b)

)
◦
( ∨
(a,b)∈µ(y)

(ı(a)⊕ b)
)

=
( ⋃
(a,b)∈µ(y)

(ı(a)⊕ b)
)
◦
( ⋃
(a,b)∈µ(y)

(ı(a)⊕ b)
)
,

by Lemma A. Take(ı(a), b) with (a, b) ∈ µ(y) and(ı(c), d) with (c, d) ∈ µ(y)
such thatb ∧ ı(c) 6= 0. From the inclusiony ⊕ y ⊆ µ(x) it follows that

µ(y)⊕ µ(y) ⊆ (µ⊕ µ)(µ(x)) = (1L ⊕ µ⊕ 1L) · (µ⊕ 1L) · (µ(x)).
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Thereforea⊕ b⊕ c⊕ d ⊆ (1L⊕µ⊕ 1L) · (µ⊕ 1L) · (µ(x)). Applying 1L⊕∇L ·
(1L ⊕ ı)⊕ 1L to both sides we get

a ⊕ (b ∧ ı(c))⊕ d ⊆ (1L ⊕ σ ⊕ 1L) · (µ(x)) =
∨

(a,b)∈µ(x)
(a ⊕ 1L ⊕ b).

Sinceb ∧ ı(c) 6= 0, then(a, d) ∈ µ(x) and(ı(a), d) ∈ Erx . HenceEry ◦ Ery ⊆ Erx .
Finally, let us check the admissibility condition (W1). From the identity(1L ⊕

ε) · µ = 1L, it follows that, for everyx ∈ L,

x =
∨
{a ⊕ ε(b) | a ⊕ b ⊆ µ(x)}

=
∨
{a ∈ L | ∃b ∈ L : ε(b) = 1 anda ⊕ b ⊆ µ(x)},

whence it remains to show thata is E r -strongly belowx whenever there is some
b ∈ L satisfyingε(b) = 1 anda ⊕ b ⊆ µ(x). In order to conclude this, it suffices
to show that, for any symmetricF ∈ E r such thatF 2 ⊆ Erb, F ◦ (a ⊕ a) ⊆ x ⊕ x.
So, assume(α, β) ∈ F , (β, γ ) ≤ (a, a) with α, β, γ 6= 0. We need to show that
both α andγ are belowx. Clearly γ ≤ a ≤ x. Let us show that alsoα ≤ x.
Of course,(α, β) ∈ F 2 and, by the symmetry ofF , (β, α) ∈ F 2, which forces
(α ∨ β, α ∨ β) ∈ F 2 ⊆ Erb, as(α, α) and (β, β) also belong toF 2. Moreover
(α ∨ β) ∧ a 6= 0. Thusı(α ∨ β) ⊕ (α ∨ β) ⊆ µ(b). On the other hand,a ⊕ b ⊆
µ(x). Consequently,a ⊕ b ⊕ a ⊆ (µ ⊕ 1L)(x ⊕ a) which, in turn, implies that
a⊕µ(b)⊕a ⊆ (1L⊕µ⊕1L) · (µ⊕1L)(x⊕a). Thus, we havea⊕ ı(α∨β)⊕a ⊆
(1L⊕µ⊕1L)·(µ⊕1L)(x⊕a). By the associativity ofµ, (1L⊕µ⊕1L)·(µ⊕1L) =
((1L ⊕ µ) · µ) ⊕ 1L = ((µ⊕ 1L) · µ) ⊕ 1L = (µ⊕ 1L ⊕ 1L) · (µ ⊕ 1L). Thus,
a ⊕ ı(α ∨ β) ⊕ (α ∨ β) ⊕ a ⊆ (µ ⊕ 1L ⊕ 1L) · (µ ⊕ 1L)(x ⊕ a). Applying
(∇L · (1L ⊕ ı)) ⊕ 1L ⊕ 1L to both sides we get(a ∧ (α ∨ β)) ⊕ (α ∨ β) ⊕ a ⊆
(σ · ε ⊕ 1L ⊕ 1L) · (µ⊕ 1L)(x ⊕ a) = ((σ · ε ⊕ 1L) · µ⊕ 1L)(x ⊕ a) = (((σ ⊕
1L) · (ε⊕1L) ·µ)⊕1L)(x⊕ a) = (σ ⊕1L⊕1L)(x⊕ a). But (σ ⊕1L)(x) = 1⊕ x
so(a ∧ (α ∨ β)) ⊕ (α ∨ β) ⊕ a ⊆ 1⊕ x ⊕ a. Sincea ∧ (α ∨ β) 6= 0, we finally
obtain(α ∨ β)⊕ a ⊆ x ⊕ a. In conclusion,α ≤ α ∨ β ≤ x. 2

We point out that, as for topological groups, the mapı is a Weil uniform frame
isomorphism between the two structures: indeed,ı is a frame isomorphism and, for
anyx ∈ L, (ı ⊕ ı)(Erx) = (ı ⊕ ı)(ı ⊕ 1L)(µ(x)) = (1L ⊕ ı)(µ(x)) = Elx.

(c) Our approach via Weil entourages may also be useful to prove (or disprove)
frame counterparts of spatial results envolving entourages. For an example in this
direction see [21], where it is proved that whenever two uniformities with countable
bases on a frame determine the same Samuel compactification they are equal. This
is the localic version of a theorem of Efremovič of 1952 [8] (cf. Theorem 12.18
and Corollary 12.19 of [19]).

Weil entourages and covers interact in a very easy way: for any Weil entourage
E the set{x ∈ L | x ⊕ x ⊆ E} is a cover ofL and, conversely, for any coverU
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of L,
∨
x∈U(x ⊕ x) is a Weil entourage ofL. Moreover, for any nearness frame

(L,U), {∨x∈U(x⊕x) | U ∈U} forms a base for a Weil nearness9(U) onL and,
conversely, for any Weil nearness frame(L,E), {{x ∈ L | x ⊕ x ⊆ E} | E ∈ E}
forms a base for a nearness8(E) onL.

The correspondences(L,U)
97−→ (L,9(U)) and(L,E)

87−→ (L,8(E)) con-
stitute a Galois connection between the partially ordered sets (by inclusion) of,
respectively, nearnesses and Weil nearnesses onL: 1 ≤ 98 and89 ≤ 1. This
Galois connection induces a ‘maximal’ isomorphism between the partially ordered
set of Weil nearnessesE onL satisfying the condition

∀E ∈ E
∨

(x,x)∈E
(x ⊕ x) ∈ E (1.3)

and the partially ordered set of nearnessesU onL satisfying the condition

∀U ∈ U∃V ∈U :
(
x ⊕ x ⊆

∨
x∈V
(x ⊕ x)⇒ ∃u ∈ U : x ≤ u

)
. (1.4)

For the proofs and further details, the reader is referred to [21]. This extends the
result of [20] that asserts the isomorphism betweenWUFrm andUFrm; in fact, in
particular, this gives a bijection for uniformities since it can be readily seen that the
refinement conditions in the definitions of Weil uniform frame and uniform frame
are stronger than the corresponding conditions 1.3 and 1.4 above. However, I am
not able to conclude whetherWNFrm and NFrm are isomorphic. This is still an
open question.

2. QUASI-UNIFORMITIES AND QUASI-NEARNESSES

One of the advantages of entourage-like theories is that the symmetry is explicit
and so the corresponding nonsymmetric versions are evident and pleasantly man-
ageable. By dropping the symmetry in Definitions 1.3 we have the notions ofWeil
quasi-nearness frameandWeil quasi-uniform frame.

With the lack of symmetry the equivalence between conditions 1.1 and 1.2 is

no longer valid; whence, in the place of
E
C we have two order relations

y
E
C1 x ≡ E ◦ (y ⊕ y) ⊆ x ⊕ x, for someE ∈ E,

y
E
C2x ≡ (y ⊕ y) ◦E ⊆ x ⊕ x, for someE ∈ E,

which in turn, lead to two subframes ofL,

L1 :=
{
x ∈ L | x =

∨
{y ∈ L | y E

C1x}
}

and

L2 :=
{
x ∈ L | x =

∨
{y ∈ L | y E

C2x}
}



STRUCTURED FRAMES BY WEIL ENTOURAGES 359

(for spaces this corresponds to the two topologies defined by the quasi-uniformity).
Notice that the condition (W1) of admissibility says that the triple(L,L1, L2) is

a biframe. This allows us to establish a Galois connection between Weil entourages
and conjugate cover pairs of biframes:

Recall that abiframe[3] is a tripleB = (B0, B1, B2) in whichB0 is a frame and
B1, B2 are subframes ofB0 such that eachx ∈ B0 is the join of finite meets from
B1 ∪ B2.

LetB = (B0, B1, B2) be a biframe. The following definitions and notations are
transcribed from [11]. A subsetU of B1 × B2 is a conjugate cover pair(or just
conjugate cover) of B provided that{u1 ∧ u2 | (u1, u2) ∈ U } is a cover ofB0.
A conjugate coverU is strong if, for every (u1, u2) ∈ U , u1 ∧ u2 6= 0 whenever
u1 ∨ u2 6= 0. LetU andV be conjugate covers. ThenU ≤ V provided that, for
each(u1, u2) ∈ U , there is(v1, v2) ∈ V with u1 ≤ v1 andu2 ≤ v2. Furthermore,
U ∧V denotes the conjugate cover{(u1∧v1, u2∧v2) | (u1, u2) ∈ U, (v1, v2) ∈ V }
andU ∗ stands for the conjugate cover{(st1(u1, U), st2(u2, U)) | (u1, u2) ∈ U },
wherest1(x,U) := ∨{u1 | (u1, u2) ∈ U, u2 ∧ x 6= 0} andst2(x,U) := ∨{u2 |
(u1, u2) ∈ U, u1 ∧ x 6= 0} for anyx ∈ B0.

LetB = (B0, B1, B2) be a biframe and letU be a collection of conjugate covers.
ThenU is a quasi-uniformityfor the biframeB and (B,U) is a quasi-uniform
frameprovided that:

(i) The family of strong members ofU is a filter base forU with respect to≤;
(ii) For eachU ∈U there existsV ∈U such thatV ∗ ≤ U ;

(iii) For eachx ∈ Bi (i ∈ {1,2}), x = ∨{y ∈ Bi | y U
Cix}, wherey

U
Cix means

that there isU ∈U such thatsti (y,U) ≤ x.

Let (B,U) and(B ′,U′) be quasi-uniform frames. Auniform homomorphism
f : (B,U)→ (B ′,U′) is a biframe mapf : B → B ′ such that, for everyU ∈ U,
f [U ] := {(f (u1), f (u2)) | (u1, u2) ∈ U } ∈ U′. The category of quasi-uniform
frames and uniform homomorphisms will be denoted byQUFrm.

The relationship between Weil entourages and conjugate covers is not so ev-
ident as the one between Weil entourages and covers. For any conjugate cover
U of a biframe(B0, B1, B2),

∨{u1 ⊕ u2 | (u1, u2) ∈ U } (meant inB0 ⊕ B0)
is a Weil entourage ofB0. Conversely, starting with a Weil entourageE of a
quasi-nearness frame L, we may consider the biframe(L,L1, L2) and the pairs
(st1(x,E), st2(x,E)) for (x, x) ∈ E, wherest1(x,E) := ∨{y ∈ L | (y, z) ∈
E, z ∧ x 6= 0} andst2(x,E) :=∨{y ∈ L | (z, y) ∈ E, z ∧ x 6= 0}. However there
is a problem: these pairs may not belong toL1×L2. It may be solved by introducing
two interior operators inL⊕ L in the following manner: For everyI, J ∈ L⊕ L,

we defineI
Ev1J byE ◦ I ⊆ J for someE ∈ E , and similarly we defineI

Ev2J by
I ◦ E ⊆ J for someE ∈ E . Further, for eachi ∈ {1,2}, let inti(E) := ∨{I ∈
L⊕ L | I EviE}. Then{(st1(x, int1(E)), st2(x, int2(E))) | x ⊕ x ⊆ E} is already a
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conjugate cover of(L,L1, L2). These correspondences define a Galois connection
which gives an isomorphism for quasi-uniformities (see [22] for the details). For
quasi-nearnesses the question of knowing whether the entourage approach and the
cover approach are equivalent is still open.

Notice that Weil quasi-uniformities are defined on a frame; do not require –
as the (biframe) quasi-uniformities – prior knowledge of the underlying biframe.
The analogy with the spatial case is now evident. This clarifies the discussion in
D. Doitchinov, “Some reflections on quasi-uniform frames”, Topology with Appli-
cations (Szekszárd, Hungary, 1993), Bolyai Math. Soc., Math. Studies 4, 1995, pp.
151–158.

A natural question concerning Weil (quasi-)nearness frames is: which is the
right spatial concept in analogy with the chosen frame concept, that is, which
spaces correspond to them by an ‘open’/‘spectrum’ adjunction?

The answer (see [21]) gives us the categoriesWNear (of ‘Weil nearness spaces’)
andWQNear (of ‘Weil quasi-nearness spaces’). We concluded in Chapter IV of [21]
thatWNear is an interesting category containing the categories of symmetric topo-
logical spaces and continuous maps, uniform spaces and uniformly continuous
maps, and proximal spaces and proximal maps, in a nice way: they are either bire-
flective or bicoreflective full subcategories ofWNear. However the categoryTop of
topological spaces is not a subcategory ofWNear. Other useful topological struc-
tures, namely the nonsymmetric ones of quasi-uniform spaces and quasi-proximal
spaces are also not embeddable inWNear.

Nevertheless, in the realm of those ‘Weil quasi-nearness spaces’ mentioned
above, it is possible to consider all those spaces of topological and uniform nature.
It turns out that the category of Weil quasi-nearness spaces contains all the nonsym-
metric categories referred to above as well as the categoryTop as nicely embedded
full subcategories and so it is a unified theory of (nonsymmetric) topology and
uniformity. The corresponding covering results were explained in the thesis [11].

3. PROXIMITIES

Let us now see how it goes with proximities. We recall that a binary relation� on a
frameL is astrong inclusion[1] if the following axioms are satisfied forx, y, z,w
in L:

(P1) x ≤ y � z ≤ w impliesx � w;

(P2)� is a sublattice ofL× L;

(P3) x � y impliesx ≺ y (wherex ≺ y means thatx ∧ z = 0 andy ∨ z = 1 for
somez ∈ L, alternatively expressed asy∨x∗ = 1 with the pseudocomplement
x∗ =∨{z ∈ L | x ∧ z = 0});

(P4) If x � y thenx � z� y for somez ∈ L;
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(P5) x � y impliesy∗ � x∗;

(P6) For eachx ∈ L, x = ∨{y ∈ L | y � x}.
Note that, in the presence of (P1), (P2) means: 0� 0, 1� 1, x � y andz � y

imply x ∨ z� y, andx � y andx � z imply x � y ∧ z.
The pair(L,�) is called aproximal frameif � is a strong inclusion onL. A

frame map between proximal frames is said to be proximal if it preserves the strong
inclusion. We denote byPFrm the category of proximal frames and proximal frame
homomorphisms.

REMARKS 3.1. (a) The basic properties of Weil uniformities imply that, for any

Weil uniform frame(L,E), (L,
E
C) is a proximal frame.

(b) Whenx ∨ y = 1, theC-ideal (x ⊕ x) ∨ (y ⊕ y) is a Weil entourage ofL
(the converse is also true; for the proof the reader is referred to [21]). Thus, in any
proximal frame(L,�), since� is stronger than≺, Ex,y := (x∗ ⊕ x∗) ∨ (y ⊕ y)
is a Weil entourage wheneverx � y.

The entouragesEx,y are very important. Indeed, they enable us to formulate the
concept of proximity in terms of Weil entourages:

PROPOSITION 3.2.Let(L,�) be a proximal frame. Then{Ex,y | x, y ∈ L, x �
y} is a subbase for a Weil uniformityE(�) on L. Moreover, the proximity

E(�)
C

induced byE(�) coincides with�.
Proof. It is an immediate consequence of Lemma IV.6.7 of [21] (which has a

rather technical and long proof that we omit here). Indeed, this lemma affirms that,
in any proximal frame(L,�), x � y whenever

⋂n
i=1Exi,yi ⊆ Ex,y andxi � yi

for everyi ∈ {1, . . . , n}. 2
The following proposition is also obvious:

PROPOSITION 3.3.If (L,E) is a Weil uniform frame satisfying

(W4) ∀E ∈ E ∃x1, y1, . . . , xn, yn ∈ L :
( n⋂
i=1

Exi,yi ⊆ E and
n⋂
i=1

Exi,yi ∈ E

)
,

the Weil uniformityE(
E
C) induced by

E
C coincides withE .

Let us denote byWUFrm(W4) the full subcategory ofWUFrm of all Weil uni-
form frames satisfying (W4). This is a bicoreflective subcategory ofWUFrm.

The preceding propositions give us a characterization of frame proximities in
terms of Weil entourages:

THEOREM 3.4. The categoriesPFrm andWUFrm(W4) are isomorphic.
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Proof. According to Remark 3.1(a) and Propositions 3.2 and 3.3 it remains to
show that a frame mapf : L1 → L2 between two proximal frames(L1,�1) and
(L2,�2) is a proximal frame homomorphism if and only if it is a Weil uniform
homomorphism from(L1,E(�1)) to (L2,E(�2)). So, letf be a proximal frame
homomorphism. For anyE ∈ E(�1) we may write

⋂n
i=1Exi,yi ⊆ E, wherexi �1

yi for everyi ∈ {1, . . . , n}. Then

(f ⊕ f )(E) ⊇
n⋂
i=1

(f ⊕ f )(Exi,yi )

=
n⋂
i=1

(
(f (x∗i )⊕ f (x∗i )) ∨ (f (yi)⊕ f (yi))

)
.

Now consider, for eachi ∈ {1, . . . , n}, zi, wi ∈ L such thatxi �1 zi �1 wi �1 yi .
There is a simple and well-known lemma (cf., for example, Lemma 2.8 of [11]),
which affirms that, for any frame homomorphismf , f (y)∗ ≤ f (x∗) whenever
x ≺ y. Applying this lemma, we obtain

(f (x∗i )⊕ f (x∗i )) ∨ (f (yi)⊕ f (yi))
⊇ (f (zi)∗ ⊕ f (zi)∗) ∨ (f (wi)⊕ f (wi)) = Ef (zi),f (wi).

So(f ⊕ f )(E) ⊇ ⋂n
i=1Ef (zi),f (wi). Since, by hypothesis,f (zi) �2 f (wi), then

(f ⊕ f )(E) ∈ E(�2).
Conversely, ifx �1 y then (f ⊕ f )(Ex,y) ∈ E(�2). As (f ⊕ f )(Ex,y) ⊆

Ef (x),f (y), the entourageEf (x),f (y) also belongs toE(�2) and we may write⋂n
i=1Exi,yi ⊆ Ef (x),f (y) for x1, y1, . . . , xn, yn ∈ L2 with xi �2 yi for every

i ∈ {1, . . . , n}. It suffices now to recall again Lemma IV.6.7 of [21] to conclude
thatf (x)�2 f (y). 2

As it is well-known, the concepts of proximity and totally bounded uniformity
are still equivalent for frames (the proof is due to Frith [12]). This motivates the
following definition:

A Weil entourageE is finite provided there exist elementsx1, y1, . . . , xn, yn
in L such thatxi ≺ yi , for every i ∈ {1, . . . , n}, and

⋂n
i=1Exi,yi = E. By Re-

mark 3.1(b), the conditionsxi ≺ yi are redundant since eachExi,yi by containing
E is also a Weil entourage.

Now Theorem 3.4 affirms that

“The categoryPFrm is isomorphic to the full subcategory ofWUFrm of Weil
uniform frames with a base of finite entourages”,

which is the entourage version of Frith’s result.
When the frameL is normal (i.e.,x ∨ y = 1 implies there existu, v ∈ L such

thatx ∨ u = 1= y ∨ v andu ∧ v = 0) our notion of finiteness may be stated in a
way very likely to the spatial one:
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PROPOSITION 3.5.If L is normal, the filter FWEnt(L) of (WEnt(L),⊆) gener-
ated by all finite Weil entourages coincides with the filter generated by{ n∨

i=1

(xi ⊕ xi) | n ∈ N, x1, . . . , xn ∈ L,
n∨
i=1

xi = 1

}
.

Proof.ConsiderE ∈ FWEnt(L). Then there arex1, y1, . . . , xn, yn ∈ L such that
xi ≺ yi for everyi ∈ {1, . . . , n} and

⋂n
i=1Exi,yi ⊆ E. Since eachExi,yi belongs to

the set{ n∨
i=1

(xi ⊕ xi) | n ∈ N, x1, . . . , xn ∈ L,
n∨
i=1

xi = 1

}
,

E belongs to the filter generated by it.
Conversely, consider

∨n
i=1(xi ⊕ xi) with

∨n
i=1 xi = 1. From the normality ofL

we may ensure the existence ofy1, . . . , yn ∈ L such that
∨n
i=1 yi = 1 andyi ≺ xi

for any i ∈ {1, . . . , n}. Since(L ⊕ L,∩,∨) is a frame, one can easily prove, by
induction onn ≥ 1, that

n⋂
i=1

Eyi,xi =
∨

z1∈{y∗1,x1}
· · ·

∨
zn∈{y∗n,xn}

(z1 ∧ · · · ∧ zn ⊕ z1 ∧ · · · ∧ zn).

But (y∗1 ∧ · · · ∧ y∗n) ⊕ (y∗1 ∧ · · · ∧ y∗n) = O. Hence
⋂n
i=1Eyi,xi ⊆

∨n
i=1(xi ⊕ xi)

and therefore
∨n
i=1(xi ⊕ xi) ∈ FWEnt(L). 2

REMARKS 3.6. (a) By dropping the symmetry ofE in the definition of the objects
of the categoryWUFrm(W4) we obtain the theory of quasi-proximities in terms of
Weil entourages. The isomorphism betweenWQUFrm andQUFrm yields an iso-
morphism between this category of ‘quasi-proximal frames’ and the covering one
of Frith ([11], p. 68).

(b) The isomorphism betweenPFrm andWUFrm(W4) suggested to us the notion
of finite Weil entourage. It also justifies the fact that we name the Weil nearness
frames satisfying (W4) as ‘Weil contigual frames’. This is the analogous notion
to the contigual frames of Dube [6] in the setting of nearness frames. One natural
question is this: are these two categories equivalent? Another interesting problem
is whether the corresponding category of ‘Weil contigual spaces’ (as a full sub-
category ofWNear) is equivalent to the category of contigual nearness spaces of
Herrlich [14] and, consequently, equivalent to the classical category of contigual
spaces and contigual maps in the sense of Ivanova and Ivanov [17].

In this paper we have tried to emphasize the point that our language of Weil
entourages allows us to get frame versions of spatial results concerning entourages,
and to formulate them in a very similar way to the corresponding classical results.
We end it with another illustration of this. Although not entirely surprising, it is
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still noteworthy that Weil entourages also serve the same purpose for uniform-like
structures in frames as entourages for spaces and that, after all, covers much wider
ground, since there are structured frames which are not spatial.

4. INFINITESIMAL RELATIONS

The notion of proximity in classical topology was originaly introduced by Efre-
movič [7] in terms of the infinitesimal relation ‘A is nearB’ (usually denoted by
AδB [19]) for subsetsA andB of any set. We conclude this article with a brief
discussion of the corresponding axiomatization for frames.

PROPOSITION 4.1.If (L,�) is a proximal frame, the binary relation onL given
byxδy ≡ x 6� y∗ satisfies the following properties:

(I1) xδy impliesyδx;

(I2) xδ(y ∨ z) if and only ifxδy or xδz;

(I3) xδy impliesx 6= 0 andy 6= 0;

(I4) If x/δy then there isz ∈ L such thatx/δz andy/δz∗;

(I5) x∗ ∨ y∗ 6= 1 impliesxδy;

(I6) For everyx ∈ L, x =∨{y ∈ L | y ≤ x andy/δx∗}.
Proof.Straightforward. 2
Note that, sincex ∧ y 6= 0 impliesx∗ ∨ y∗ 6= 1, (I5) says, in particular, thatxδy

wheneverx∧y 6= 0. WhenL is Boolean the converse is also true and condition (I5)
is equivalent to the condition(x ∧ y 6= 0⇒ xδy).

We say that a binary relationδ satisfying all properties (I1)–(I6) of 4.1 is an
infinitesimal relationand that, in this case,(L, δ) is aninfinitesimal frame.

The correspondence of 4.1 is invertible for Boolean frames:

PROPOSITION 4.2. If (L, δ) is an infinitesimal frame, the binary relation�
given byx � y ≡ x/δy∗ is a proximity onL if and only ifL is Boolean.

Proof. If � is a proximity then, for anyx ∈ L, x∗∗ = ∨{y ∈ L | y � x∗∗}.
But y � x∗∗ ⇔ y/δx∗∗∗ ⇔ y � x. Consequently,x∗∗ = ∨{y ∈ L | y � x} = x
andL is Boolean.

Since in any Boolean frame the DeMorgan law(x1∧ x2)
∗ = x∗1 ∨ x∗2 also holds,

the proof that� is a proximity whenL is Boolean follows immediately from the
properties ofδ. 2

These two results show that the description of proximities in terms of infinites-
imal relations is also valid for Boolean frames.
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It is a well-known result of proximal spaces that, given a uniform space(X,E),
there is a way of defining an infinitesimal relation onX byAδB if and only if one
of the following three equivalent conditions holds:

(i) For everyE ∈ E , (A× B) ∩ E 6= ∅;
(ii) For everyE ∈ E there isa ∈ A such thatE[a] ∩ B 6= ∅;

(iii) For everyE ∈ E there isb ∈ B such thatA ∩ E[b] 6= ∅.
In frames, we have a similar situation. In fact, the next proposition, together

with Remark 3.1(a) and Proposition 4.1, says that any Weil uniformityE on L
induces an infinitesimal relationδ onL by xδy if and only if one of the following
three equivalent conditions is satisfied:

(i) For everyE ∈ E , (x ⊕ y) ∩ E 6= O;
(ii) For everyE ∈ E there existsx′ ∈ ↓{x} \ {0} such thatE[x′] ∧ y 6= 0;

(iii) For everyE ∈ E there existsy′ ∈ ↓{y} \ {0} such thatx ∧ E[y′] 6= 0.

PROPOSITION 4.3.Let E be a Weil nearness onL and letx, y ∈ L. Denoting
byE[x] (E ∈ E) the element

∨{y ∈ L | (x, y) ∈ E}, the following assertions are
equivalent:

(i) x
E
C y∗;

(ii) (x ⊕ y) ∩ E = O for someE ∈ E ;
(iii) There isE ∈ E such that, for every nonzerox′ ∈ ↓{x}, E[x′] ∧ y = 0;
(iv) There isE ∈ E such that, for every nonzeroy′ ∈ ↓{y}, x ∧ E[y′] = 0.

Proof.The equivalence between (i) and (ii) is a consequence of the equivalence
between(x⊕y)∩E−1 = O andE ◦ (x⊕x) ⊆ y∗ ⊕y∗, that we prove next. So, let
(x ⊕ y) ∩ E−1 = O and consider(a, b) ∈ E and(b, c) ∈ x ⊕ x with a, b, c 6= 0.
Then(b, a ∧ y) ∈ E−1∩ (x⊕ y) = O anda ∧ y = 0, that is,a ≤ y∗. On the other
handx ≤ y∗, i.e.,x ∧ y = 0. In fact,x ∧ y = ∨{x ∧ y ∧ a | (a, a) ∈ E} and, for
any(a, a) ∈ E, (x ∧ y ∧ a, x ∧ y ∧ a) ∈ (x ⊕ y) ∩ E = O. Thusc ≤ x ≤ y∗ and
(a, c) ∈ y∗ ⊕ y∗. The reverse implication is also clear.

The equivalence (ii)⇔ (iii) is obvious. By symmetry, (ii) is then also equivalent
to (iv). 2
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