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c© 2005 Birkhäuser Verlag, Basel
DOI 10.1007/s00021-005-0153-y

Journal of Mathematical
Fluid Mechanics

Superconvergence of Piecewise Linear Semi-Discretizations

for Parabolic Equations with Nonuniform Triangulations

S. Barbeiro, J. A. Ferreira and J. Brandts

Abstract. In this paper we study the convergence properties of semi-discrete approximations
for parabolic problems defined on two dimensional polygonal domains. These approximations
are constructed using a nonstandard piecewise linear finite element method based on nonuniform
triangulations of the domain and considering a variational formulation with a sesquilinear form
which can be no strongly coercive. In order to increase accuracy a post-process procedure is
studied.

Mathematics Subject Classification (2000). 65M06, 65M20, 65M15.

Keywords. Semi-discrete approximation, superconvergence, piecewise linear finite element
method, nonuniform triangulation.

1. Introduction

Advection-diffusion-reaction equations are usually used on the description of the
behaviour of reactive flows. In the literature an approach widely used for the
computation of numerical approximations to the solution of those equations is the
so called method of lines. This approach is based on the spatial discretization of
the spatial operator involving only partial derivatives with respect to spatial vari-
ables, for instance by finite differences or finite element methods (FEM). Using this
approach an ordinary differential system is obtained and the numerical approxi-
mation to the solution of the time dependent problem is computed considering an
efficient time integrator.

The study of such approximation was largely considered in the literature during
the eighties. Without being exhaustive we mention [32] as the state of the art in
the 80’s for semi-discrete approximations defined using FEMs and for the semi-
discrete approximations defined using finite difference operators we mention [31].
Nevertheless nowadays the study of semi-discrete approximations defined using
FEMs under smooth assumptions on the spatial grid remains subject of research
as we can see in [1] and [6].

Our aim is to study the convergence properties of the semi-discrete approxi-
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mations for the class of time dependent problems





∂u

∂t
+ Au = g in (0, T ] × Ω,

u(0, .) = u0 in Ω,
u = 0 on [0, T ] × ∂Ω,

(1)

where Ω is a polygonal domain in R
2 with boundary ∂Ω and A is the elliptic

operator
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where a, b, c, d, e and f are coefficient functions that are smooth enough.
The spatial discretization is defined using the nonstandard piecewise linear

FEM introduced in [10] and [11] and considered in [2] and [3]. In the mentioned
papers the method studied is based on nonuniform triangulations and the vari-
ational formulation of the elliptic problem is defined using a sesquilinear form
which can be no strongly coercive. Those assumptions are less restrictive then
those considered in the literature (for instance [5], [26], [33]).

We are interested in carrying over to the semi-discrete approximation for the
solution of (1) the recent superconvergence results proved in the mentioned papers
([2], [3], [10], [11]). Attending to that, in Section 2 we define the semi-discrete
approximation introducing the nonstandard piecewise linear FEM. In Section 3
for the elliptic equation associated with (1) we present superconvergence results
for the nonstandard linear piecewise linear FE approximation established in [10]
when smooth assumptions are assumed to the solution and analogously to those
established in [11] when the solution satisfies weaker conditions. In these results
the error estimated is the difference between the interpolation of the solution
and the FE approximation. In order to compare the FE approximation with the
solution we introduce in this section a way how to post-process the gradient of
the solution such that it becomes of higher order accuracy. In order to prove
the accuracy of the post-process procedure some smoothness assumptions on the
triangulation are assumed.

Using the results presented in Section 4 we prove superconvergent upper bounds
to the error of the nonstandard semi-discrete piecewise linear FE approximation
under the assumptions mentioned before.

In Section 5 the semi-discrete approximation studied is related with the semi-
discrete approximation defined using a certain finite differences method and so
in the language of finite differences our superconvergence results are supracon-
vergence results (see for example [12]–[14], [16], [18], [23], [24], [28]). Numerical
results illustrating the performance of the methods are also presented.

Finally, we remark that following this paper similar results can be obtained for
parabolic systems of equations using the estimates proved in [2] and [3].
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2. The piecewise linear semi-discrete approximation

In what follows we introduce the discrete variational problem which allows us to
compute the semi-discrete FE approximation to the solution of (1).

Let h = (hj)Z and k = (kℓ)Z be two sequences of positive numbers. We define
the grid

R1 := {xj ∈ R : xj+1 = xj + hj , j ∈ Z}

with x0 ∈ R given and a corresponding grid R2 with the mesh-size vector k in
place of h. Let

RH := R1 × R2 ⊂ R
2.

Define also

ΩH := Ω ∩ RH , ∂ΩH := ∂Ω ∩ RH , ΩH := Ω ∩ RH .

The grid ΩH is assumed to satisfy the following regularity condition with respect
to the region Ω.

(Geo) Let be any rectangle (xj , xj+1) × (yℓ, yℓ+1) formed by the grid RH .
Then either ∩ ∂Ω is empty or it is a diagonal of .

Let TH be any triangulation of Ω such that the nodes of TH coincide with
ΩH . By PHvH we denote the continuous piecewise linear interpolation of a grid

function vH with respect to TH . By
◦

WH we represent the space of grid functions
defined in Ω̄H and vanishing on ∂ΩH .

Considering the sesquilinear form

a(v, w) =
(
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∂x
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e
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)
+ (fv, w), v, w ∈ H1

0 (Ω)

and the finite dimensional subspace SH of H1
0 (Ω), SH = {PHwH , wH ∈

◦

WH}, the
standard semi-discrete Galerkin approximation PHuH(t) := PHuH(t, .) ∈ SH , is
introduced as the solution of the initial variational problem

( ∂

∂t
PHuH(t), PHvH

)
+ a(PHuH(t), PHvH) = (g(t), PHvH), t > 0,

PHuH(0) = w,
(2)

for PHvH ∈ SH , where (· , ·) is the L2 inner product, g(t) ∈ L2(Ω) is such that
g(t)(x, y) = g(t, x, y), (x, y) ∈ Ω and w ∈ SH is an approximation of u0 in SH .

It is known that for certain kind of domains, if the family of triangulations
(TH)H is regular and the sesquilinear form a(· , ·) is strongly coercive then PHuH(t)
is second order convergent to u(t, .) with respect to the L2-norm. By regular we
mean that

∃C ∈ R, ∀TH ∈ (TH)H , ∀∆ ∈ TH , |∆| ≥ C(diam ∆)2.
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We would like to warn the reader that different authors have different naming
conventions when it comes to this. For example, in his book [32], Thomée calls
this condition quasi-uniformity of the mesh.

In what follows we define a semi-discrete approximation to the solution u which
has the latter convergence property under weaker assumptions:

(H1) nonuniform triangulations such that the nodes coincide with ΩH ;
(H2) sesquilinear forms a(., .) such that the variational problem

find v ∈ H1
0 (Ω) such that a(v, w) = 0, w ∈ H1

0 (Ω),
has only the solution v = 0.

We remark that if the sesquilinear form is strongly coercive then (H2) holds.
Otherwise (H2) does not imply that a(., .) is strongly coercive.

Let us consider two special triangulations related to the set ΩH , which we call

T
(1)

H and T
(2)

H . They are obtained from the disjoint decomposition

RH = R
(1)
H ∪̇ R

(2)
H ,

where the sum j + ℓ of the indices of the points (xj , yℓ) in R
(1)
H and in R

(2)
H is even

or odd, respectively. To simplify the following definition we introduce R
(3)
H := R

(1)
H .

With each point (xj , yℓ) ∈ RH we associate the triangles ∆
(i)
j,ℓ, i = 1, 2, 3, 4, which

have a right angle at (xj , yℓ) and two of the four closest neighbour grid points of
(xj , yℓ) as further vertices. We then define the triangulations

T
(s)

H,1 := {∆
(i)
j,ℓ ⊂ Ω̄, (xj , yℓ) ∈ R

(s)
H , i ∈ {1, 2, 3, 4}}

T
(s)

H,2 :=

{
∆

(i)
j,ℓ ⊂

(
Ω̄\

⋃

∆∈T
(s)

H,1

◦

∆
)
, (xj , yℓ) ∈ R

(s+1)
H , i ∈ {1, 2, 3, 4}

}

T
(s)

H := T
(s)

H,1 ∪ T
(s)

H,2, s = 1, 2,

(3)

of Ω (
◦

∆ denotes the interior of ∆). Figure A shows an example of one of these
triangulations.
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Fig. A. Triangulation T
(s)

H . T indicates triangles of T
(s)

H,2.
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With respect to these triangulations, the continuous piecewise linear interpo-

lations P
(s)
H vH of vH ∈

◦

WH , s = 1, 2, are well-defined.
Now we define the sesquilinear form aH(. , .) as the arithmetical mean

aH =
1

2
(a

(1)
H + a

(2)
H ) (4)

of two sesquilinear forms, each of which has the form

a
(s)
H = a(s) + b(s) + c(s) + d(s) + e(s) + f (s), s = 1, 2. (5)

The sesquilinear forms on the right-hand side of (5) are all constructed in a similar
way by summing particular approximations of the “energy” related to each corre-

sponding differential term over the triangles of T
(s)

H . So let ∆ ∈ T
(s)

H . We define
a∆ to be the value of a at the midpoint of the side of ∆ parallel to the x-axis.
Then let

a(s)(vH , wH) :=
∑

∆∈T
(s)

H

a∆

∫

∆

∂

∂x
P

(s)
H vH

∂

∂x
P

(s)
H wH dx dy. (6)

Similarly, let c∆ be the value of c at the midpoint of the side of ∆ parallel to the
y-axis and

c(s)(vH , wH) :=
∑

∆∈T
(s)

H

c∆

∫

∆

∂

∂y
P

(s)
H vH

∂

∂y
P

(s)
H wH dx dy. (7)

In the approximation of the mixed derivative terms we need

b∆ := b(x∆, y∆), (8)

where (x∆, y∆) is the vertex of ∆ associated with the angle π
2 of ∆. Then

b(s)(vH , wH) :=
∑

∆∈T
(s)

H

b∆

∫

∆

[
∂

∂x
P

(s)
H vH

∂

∂y
P

(s)
H wH +

∂

∂y
P

(s)
H vH

∂

∂x
P

(s)
H wH

]
dx dy.

(9)
For approximating the first order terms let

(P
(s)
H vH)∆,x := P

(s)
H vH(x∆, y∆), ∆ ∈ T

(s)
H , (10)

where (x∆, y∆) is the midpoint of the side of ∆ parallel to the x-axis. Correspond-

ingly, we introduce (P
(s)
H vH)∆,y, where in this case (x∆, y∆) is taken to be the

midpoint of the side of ∆ parallel to the y-axis. Then we define

d(s)(vH , wH) :=
∑

∆∈T
(s)

H

[P
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H (dwH)]∆,x

∫
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∂
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P
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H vH dx dy, (11)
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∆∈T
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H
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H (ewH)]∆,y

∫
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∂

∂y
P

(s)
H vH dx dy. (12)



Vol. 7 (2005) Superconvergence of Piecewise Linear Semi-Discretizations S197

Let j,ℓ be [xj−1/2, xj+1/2]×[yℓ−1/2, yℓ+1/2]∩Ω with xj−1/2=xj−hj−1/2, xj+1/2

= xj +hj/2 being yℓ−1/2 and yℓ+1/2 defined analogously and let | j,ℓ| be the area
of j,ℓ. Finally

f (s)(vH , wH) :=
∑

(xj ,yℓ)∈ΩH

| j,ℓ|f(xj , yℓ)vj,ℓwj,ℓ. (13)

In the following we consider the discrete L2 inner product

(vH , wH)H =
∑

(xj ,yℓ)∈Ω̄H

| j,ℓ|vH(xj , yℓ)wH(xj , yℓ) (14)

for vH , wH ∈
◦

WH .
Replacing, in (2), a(PHuH(t), PHvH) by aH(uH(t), vH) and the continuous L2

inner product by its discrete version (., .)H we obtain a semi-discretization,

(∂uH

∂t
(t), vH

)
H

+ aH(uH(t), vH) = (gH(t), vH)H , t > 0,

uH(0) = RHu0,

(15)

for vH ∈
◦

WH , where

gH(t) = RHg(t, .) (16)

and RH denotes the restriction operator.
If g does not allow us to compute its value at each point of the grid then we

can’t use the last method. In this cases another method is defined replacing gH(t)
by g̃H(t),

g̃H(t)(xj , yℓ) =
1

| j,ℓ|

∫

j,ℓ

g(t, x, y) dx dy, (17)

and another discrete variational problem is obtained

(∂uH

∂t
(t), vH

)
H

+ aH(uH(t), vH) = (g̃H(t), vH)H ,

uH(0) = RHu0,

(18)

for vH ∈
◦

WH .
The estimate for the error ‖RHu(t, .) − uH(t)‖H where uH is the semidiscrete

solution computed with (15) or (18) is obtained using the corresponding estimate
for the stationary case. Attending to that, in the next section we summarize
some superconvergence results obtained for this case. We also develop a post-
process procedure which enable us to compute a second order approximation to
the gradient of the solution in the stationary case.
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3. The stationary case

3.1. Some superconvergence results for the nonstandard linear FE so-
lution

Let us consider in what follows the elliptic boundary value problem




Av = g∗ in Ω,

v = 0 on ∂Ω.
(19)

Let vH ∈
◦

WH be the approximation to v computed using the following two
nonstandard piecewise linear FEMs

aH(vH , wH) = (g∗H , wH)H (20)

for wH ∈
◦

WH , being the first one defined by (20) with g∗H = RHg∗ and the second
one defined by (20) with g∗H given by (17) with g replaced by g∗.

We now consider a sequence of grids RH such that the maximal mesh-size
Hmax tends to zero. We use the symbol “H ∈ Λ” to indicate the sequence of
discretizations considered and write “(H ∈ Λ)” for the convergence with respect
to H running through this sequence. By Hmax we denote the maximal mesh-size
in both x and y directions. We write ‖ · ‖r for the standard norm in the Sobolev
space Hr(Ω), r ∈ N0, and ‖ · ‖r,D if the underlying region is the domain D. The
notation ‖ · ‖r,∞ is used for the standard norm in W r,∞(Ω).

We start by noting that for the sesquilinear form a(., .) coercivity holds ([17]). In

[10] was proved that |aH(vH , wH)−a(PHvH , PHwH)| → 0 (H ∈ Λ), vH , wH ∈
◦

WH .
So the following result holds:

Proposition 1. For Hmax small enough

aH(wH , wH) ≥ CE‖PHwH‖2
1 − CK‖wH‖2

H , (21)

for all wH ∈
◦

WH where CE > 0 and CK denote constants depending on the coeffi-

cients of A but not on the triangulation TH or wH .

This proposition means that aH(., .) is “coercive” in
◦

WH×
◦

WH . One main
ingredient for convergence analysis is the inverse stability of aH(., .) which follows
from the inequality above. So, for the nonstandard linear FE solution defined by
the described first method we have the following result ([10], Theorem 1):

Theorem 1. Assume that the grids ΩH satisfy condition (Geo) and that (H2)
holds. If the solution v of (19) is in C4(Ω̄) then, for Hmax small enough, the vari-
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ational problem (20) with g∗H = RHg∗ has a unique solution vH ∈
◦

WH satisfying

‖PHvH − PHRHv‖1 ≤ C

(
∑

∆∈TH

|∆|(diam ∆)4 ‖v‖2
4,∞,∆

)1/2

, (22)

where C denotes a positive constant depending on the coefficients of A but not on

the triangulation TH or v.

Remark 1. In [10], it was observed that if the boundary ∂Ω contains a straight
line segment which is not parallel to a coordinate axis then in (22) arises also the

term
∑

∆∈TH,2

|∆|(diam ∆)2‖v‖2
4,∞,∆.

Remark 2. The condition v ∈ C4(Ω̄) was weakened in [11] for a nonstandard
piecewise linear FE solution analogous to the one defined by (20) with g∗H given by
(17) with g replaced by g∗ and considering general boundary conditions. Following
the procedure introduced in that paper it can be proved that

1. if Ω is a union of rectangles then

‖PHvH − PHRHv‖1 ≤ C

(
∑

∆∈TH

(diam ∆)4 ‖v‖2
3,∆

)1/2

, (23)

assuming that v ∈ H3(Ω);
2. if ∂Ω has a straight line segment not parallel to a coordinate axis and b = 0

then in (23) arises also the term
∑

∆∈TH,2

(diam ∆)2|∆|‖u‖2
W 2
∞

(∆).

3.2. Post-processing

In this section we will present a way how to post-process the gradient of the discrete
solution in such a way, that it becomes of higher order accuracy and we assume
for simplicity that Ω is the union of rectangles. The reason to be interested in
post-processing is the following. We know that the gradient of the standard linear
FE solution satisfies the following bound,

‖∇(u − PHuH)‖0 ≤ CHmax‖u‖2. (24)

Apart from that, one of the main results from [11] is that for nonuniform triangu-
lations, we have

‖∇PH(RHu − uH)‖0 ≤ C

(
∑

∆∈TH

(diam ∆)4‖u‖2
3,∆

)1/2

. (25)
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This bound reduces to

‖∇PH(RHu − uH)‖0 ≤ CH2
max‖u‖3. (26)

This result, which is well-known for the standard FEM on uniform triangulations of
the domain ([30]), is merely a comparison between the gradients of the nonstandard
FE solution and the continuous piecewise linear interpolant of the exact solution.
In spite of the fact that it constitutes an O(H2

max) bound, it is not automatically
clear that it is the key to construct a better approximation of ∇u than ∇PHuH .
As a matter of fact, since ∇PHuH is piecewise constant, the bound (24) is of
optimal order and cannot be improved by performing a better analysis. Only after
a suitable post-processing step, that we will explain now, it is indeed possible to
find a global O(H2

max) approximation of ∇u, which necessarily lives in a space that
allows O(H2

max) approximations. The procedure, of which the computational costs
are negligible compared to the computation of PHuH , combines several standard
ideas from the superconvergence community (see for example [15, 22, 25]), but
applied to nonuniform meshes.

3.2.1. Main idea and implementation of the post-processing

The main observation is not very difficult. Basically, it states that the top of a
parabola is located at the average of its zeros.

Proposition 2. Let ∆ ∈ TH be given, and q in the space of the second order

polynomials over ∆, P2(∆). Then with z denoting either x or y, we have

∂

∂z
(PHRHq)(Mz) =

∂

∂z
q(Mz) (27)

at the midpoint Mz of the edge of ∆ parallel to the z-axis.

The consequence is that a vector field that is locally equal to the gradient of a
quadratic polynomial q, can be recovered from its interpolant PHRHq by sampling
derivatives at the proper points. Moreover, those points are situated within a patch
of neighbouring elements, and the number of elements in such a patch is uniformly
bounded. We will now give an example how this reconstruction may take place.

Example of the reconstruction process

In Figure B, part of a mesh is shown. Suppose we are given the piecewise
constant gradient of the interpolant PHRHq of some unknown quadratic polyno-
mial q that is defined on this part. We will now recover the linear vector field ∇q
on the triangle with vertices P,Q and R. The first step is to observe, that it is
sufficient to find the exact (vector)-values of ∇q at the points P,Q and R. Linear
interpolation between those values will then result in ∇q itself.
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Fig. B. Post-processing of the gra-

dient of the continuous piecewise

linear interpolant of a quadratic

function.
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So, we will concentrate on finding the exact value of ∇q at the point P . Around
P , we see four midpoints of edges, denoted by N,E, S and W . Since q is quadratic,
by Proposition 2 we know that

∂

∂x
(PHRHq)(E) =

∂

∂x
q(E) and

∂

∂x
(PHRHq)(W ) =

∂

∂x
q(W ). (28)

But since
∂

∂x
q is a linear function on the line through the points E and W , we

can easily compute its value at P in terms of its values at E and W , which results
in

∂

∂x
q(P ) =

E − P

E − W

∂

∂x
(PHRHq)(W ) +

P − W

E − W

∂

∂x
(PHRHq)(E). (29)

Moreover, since the x-derivatives of the interpolant are piecewise constant, for
later purposes we may choose to employ only nodal values of PHRHq and write
(29) accordingly as

∂

∂x
q(P ) =

T − P

P − R

q(P ) − q(R)

T − R
+

P − R

T − P

q(T ) − q(P )

T − R
, (30)

which is in fact a reconstruction in the form of a so-called long difference quotient.
Clearly, the y-derivative at the point P can be computed similarly, using the
values of the y-derivative of PHRHq at the points N and S in the form (29), or
the closest-by nodal values of PHRHq in the y-direction in the form (30). Finally,
by doing the same at the points Q and R, we obtain the five scalar values that are
necessary to find ∇q on the triangle PQR.

Remark 3. In case that P would happen to be a node at the boundary, we
compute the exact value of ∇q at P by extrapolation of the nearest midpoints.
For example, supposing that in Figure B the point T is at the boundary, we
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compute
∂

∂x
q(T ) by extrapolating the x-derivatives of PHRHq at the points W

and E. An alternative is to firstly compute the reconstructed values at P and R
and to do an extrapolation on those two values.

3.2.2. Post-processing of the interpolant

We will now study the reconstruction process first applied to gradients of in-
terpolants of arbitrary functions w ∈ H3(Ω). Then, in Section 3.2.3, we will make
the step towards the nonstandard FE approximations.

Definition 1. Let wH be a grid function. We denote by KH the linear opera-
tor that maps the function ∇PHwH onto the continuous piecewise linear vector
function KH∇PHwH obtained by means of the reconstruction process explained
above. Moreover, for each ∆, we denote the convex hull of the patch of elements
that is needed to obtain the reconstructed function on ∆ by P (∆).

The following technical lemma will be needed. Note that it necessarily exploits
an L∞ setting, since the corresponding result does not hold in L2.

Lemma 1. Let w ∈ H3(Ω). Then for all ∆ ∈ TH ,

‖KH∇PHRHw‖∞,∆ ≤ 2‖∇w‖∞,P (∆). (31)

Proof. Let w ∈ H3(Ω) be given. First, assume that ∆ is a triangle whose nodes
are not on ∂Ω. The maximum of a linear function over a triangle is taken at one
of the nodes. Hence, since the nodal values of KH∇PHRHw on ∆ are convex
combinations of values of partial derivatives of PHRHw on neighbouring triangles,
we get

‖KH∇PHRHw‖∞,∆ ≤ ‖∇PHRHw‖∞,P (∆). (32)

Second, if ∆ is a triangle such that one of its nodes lies on ∂Ω, then the recon-
structed value is obtained by linear extrapolation, as mentioned in Remark 3. So,
the reconstructed value is not a convex combination of neighbouring values any-
more, so (32) does not hold. However, since the extrapolation does not go over
a longer distance than half the edge length (i.e., the length between the points E
and T in Figure B), it holds that

‖KH∇PHRHw‖∞,∆ ≤ 2‖∇PHRHw‖∞,P (∆). (33)

Finally, since w ∈ H3(Ω), by the Mean Value Theorem we have that

‖∇PHRHw‖∞,P (∆) ≤ ‖∇w‖∞,P (∆), (34)

and the lemma is proved. ¤
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Theorem 2. Let ∆ ∈ TH be given. Denote by ρ(P (∆)) the radius of the largest

ball that is included in P (∆). Then for all w ∈ H3(Ω),

‖∇w − KH∇PHRHw‖0,∆ ≤ C

√
|∆|

|P (∆)|

(diam P (∆))3

ρ(P (∆))
|w|3,P (∆). (35)

Proof. Switching from the L2-norm to the supremum-norm gives, using a crude
triangle inequality, that for arbitrary w ∈ H3(Ω),

‖∇w − KH∇PHRHw‖0,∆ ≤ C|∆|1/2‖∇w − KH∇PHRHw‖∞,∆

≤ C|∆|1/2 (‖∇w‖∞,∆ + ‖KH∇PHRHw‖∞,∆)

≤ C|∆|1/2‖∇w‖∞,P (∆),

(36)

where in the latter bound we have used Lemma 1. Since the constant C in (36)
does not depend on w, the following holds for all polynomials q that are quadratic
on P (∆), since on ∆ we have that ∇q = KH∇PHRHq by construction, so

‖∇w − KH∇PHRHw‖0,∆ ≤ ‖∇(w − q) − KH∇PHRH(w − q)‖0,∆

≤ C|∆|1/2‖∇(w − q)‖∞,P (∆).
(37)

Now, due to the continuous embedding of H3(Ω) in W 1,∞(Ω), interpolation theory
in Sobolev spaces (see Ciarlet [7], Chapter 3) yields that by choosing for q the best
approximation for w on P (∆) in the W 1,∞ sense,

‖∇(w − q)‖∞,P (∆) ≤ C|P (∆)|−1/2 (diam P (∆))3

ρ(P (∆))
‖w‖3,P (∆). (38)

Combining (37) and (38), this Bramble–Hilbert approach proves the theorem. ¤

Clearly, in order for this bound to be of interest, we need certain relations
between the geometry of P (∆) in comparison with ∆. From now on, we will
therefore assume that the family of meshes is regular. We will also assume that
the grids are patch-regular, in the sense that

∃C ∈ R, ∀TH ∈ (TH)H , ∀∆ ∈ TH , |P (∆)| ≥ C(diam P (∆))2.

This last assumption guarantees that the diameter of the largest ball included in
the patch is of the same order of magnitude as the diameter of the patch.

Corollary 1. Under the additional assumption of patch-regularity, the bound (23)
can be written as

‖∇w − KH∇PHRHw‖0,∆ ≤ C(diam P (∆))2‖w‖3,P (∆). (39)

3.2.3. Post-processing of the nonstandard FE solution

We are now able to prove, that our post-processing operator KH is also suc-
cessfully applicable to the gradient of the nonstandard FE approximation in the
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elliptic setting. One extra assumption is needed on the meshes, and that is that the
quotient of the smallest and the longest diameter of elements within a patch P (∆)
is bounded from both sides, uniformly over all triangulations. We will assume this
from now on.

Lemma 2. Under the above assumption on the mesh within a patch P (∆), we

have for all grid functions wH that,

‖KH∇PHwH‖0,∆ ≤ C‖∇PHwH‖0,P (∆). (40)

Proof. Again, we work through the supremum-norm. This gives

‖KH∇PHwH‖0,∆ ≤ |∆|1/2‖KH∇PHwH‖∞,∆

≤ 2|∆|1/2‖∇PHwH‖∞,P (∆),
(41)

where the latter inequality is borrowed from the proof of Lemma 1. The proof
is now completed by the discrete inverse inequality (Ciarlet [7]) for continuous
piecewise linear FE functions,

‖∇PHwH‖∞,P (∆) ≤ C|∆|−1/2‖∇PHwH‖0,P (∆), (42)

for which we have used the above additional assumption on the mesh. ¤

Theorem 3. Under all previous assumptions on the meshes and if the solution u
is in H3(Ω), we have

‖∇u−KH∇PHuH‖0 ≤ C

(
∑

∆∈TH

(diam ∆)4‖u‖2
3,P (∆)

)1/2

+ C‖PH(RHu− uH)‖1.

(43)

Proof. We start off with a simple triangle inequality,

‖∇u − KH∇PHuH‖0 ≤ ‖∇u − KH∇PHRHu‖0 + ‖KH∇PH(RHu − uH)‖0. (44)

The first term in the right-hand side of (44) can be bounded by splitting it into
contributions over each triangle, and applying Corollary 1. Note that by the
final assumption on the mesh made in this section, the diameter of the patch is
a constant times the diameter of the element itself. To the second term in the
right-hand side of (44) we apply Lemma 2. By adding the two contributions, we
arrive at the bound (43). ¤

4. The time-dependent problem

Using the main results of Section 3 we are able to present the convergence results
for the time dependent problem.
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Theorem 4. Assume that ∂Ω is the union of straight line segments parallel to the

coordinate axes, the grids ΩH satisfy condition (Geo) and that (H2) holds. Then,

for Hmax small enough, the solution uH(t) of (15) satisfies

‖uH(t) − RHu(t, .)‖H

≤ C

(( ∑

∆∈TH

|∆|(diam ∆)4 ‖u(t, .)‖2
4,∞,∆

)1/2

+ exp(CKt)

(
CTH ,4(u, |∆|2)

+

∫ t

0

exp(−CKτ)

( ∑

∆∈TH

|∆|(diam ∆)4 ‖
∂u

∂t
(τ, .)‖2

4,∞,∆

)1/2

dτ

))
,

(45)

where CTH ,4(u, |∆|2) =
[ ∑

∆∈TH

|∆|(diam ∆)4 ‖u(0, .)‖2
4,∞,∆

]1/2

and provided that

∂u

∂t
(t, .) ∈ C4(Ω̄).

Proof. For each t ∈ [0, T ] let us define uH,t as the solution of (20) with g∗H(t) =
g(t, .)− ∂u

∂t (t, .) in ΩH . According to Theorem 1 and with θH(t) := uH,t−RHu(t, .)

∈
◦

WH , we have

‖θH(t)‖H ≤ C‖PHθH(t)‖1 ≤ C

(
∑

∆∈TH

|∆|(diam ∆)4 ‖u(t, .)‖2
4,∞,∆

)1/2

, (46)

C > 0. Furthermore we also have

∥∥∥∂θH

∂t
(t)

∥∥∥
H

≤ C

(
∑

∆∈TH

|∆|(diam ∆)4
∥∥∥∂u

∂t
(t, .)

∥∥∥
2

4,∞,∆

)1/2

. (47)

By eH(t) ∈
◦

WH we represent the error uH(t) − uH,t. It can be shown that

(∂eH

∂t
(t), wH

)
H

+ aH(eH(t), wH) = −
(∂θH

∂t
(t), wH

)
H

(48)

for wH ∈
◦

WH . Choosing wH = eH(t) and attending to Proposition 1 we get

(∂eH

∂t
(t), eH(t)

)
H

+ CE‖PHeH(t)‖2
1 − Ck‖eH(t)‖2

H ≤ ‖
∂θH

∂t
(t)‖H‖eH(t)‖H .

Since we have

(
‖eH(t)‖2

H + ε2
)1/2 d

dt

(
‖eH(t)‖2

H + ε2
)1/2

=
(∂eH

∂t
(t), eH(t)

)
H

attending to (21) we obtain

d

dt

(
‖eH(t)‖2

H + ε2
)1/2

− CK‖eH(t)‖H ≤
∥∥∥∂θH

∂t
(t)

∥∥∥
H

. (49)
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Considering Gronwall’s Lemma in (49) and letting ε 7→ 0 we obtain

‖eH(t)‖H ≤ exp(CKt)

(
‖eH(0)‖H +

∫ t

0

exp(−CKτ)
∥∥∥∂θH

∂t
(τ, .)

∥∥∥
H

dτ

)
. (50)

Finally, from (46), (47) and (50) we conclude the proof. ¤

Remark 4. Attending to Remark 1, if the boundary ∂Ω contains a straight line
segment which is not parallel to a coordinate axis then (45) holds with an addi-
tional term obtained considering a summation over triangles ∆ ∈ TH,2.

Let us consider now the case that A is the Laplace operator. It is known that the
semi-discrete approximation defined by using the standard piecewise linear FEM,
has second convergence order with respect to norm ‖.‖0, if the triangulations are
regular. For the Laplace operator we observe that the nonstandard piecewise linear
FEM coincides with the classical piecewise linear FEM combined with a special
quadrature formula. In the next result we establish that ‖PHuH(t)−PHRHu(t, .)‖1

has second convergence order when nonuniform grids are considered.

Theorem 5. Let Ω be such that ∂Ω is the union of straight line segments. Assume

that the grids ΩH satisfy condition (Geo). Then, for Hmax small enough, the

solution uH(t) of (15) with the Laplace operator satisfies the following

‖PHuH(t) − PHRHu(t, .)‖1 ≤ C




(
∑

∆∈TH

|∆|(diam ∆)4 ‖u(t, .)‖2
4,∞,∆

)1/2

+

(
CTH ,4(u, |∆|2) +

∑

∆∈TH

|∆|(diam ∆)4
∫ t

0

‖
∂u

∂t
(τ, .)‖2

4,∞,∆ dτ

)1/2



(51)

where CTH ,4(u, |∆|2) =

[ ∑

∆∈TH

|∆|(diam ∆)4 ‖u(0, .)‖2
4,∞,∆

]
and provided that

∂u

∂t
(t, .) ∈ C4(Ω̄).

Proof. As before we write uH(t)−RHu(t, .) = eH(t) + θH(t). According to Theo-
rem 1 we have

‖PHθH(t)‖1 ≤ C

(
∑

∆∈TH

|∆|(diam ∆)4 ‖
∂u

∂t
(t, .)‖2

4,∞,∆

)1/2

. (52)

In order to estimate ‖∇PHeH(t)‖0, we use (48) with wH =
∂eH

∂t
(t). Since

aH

(
eH(t),

∂eH

∂t
(t)

)
=

(
∇PHeH(t),∇PH

∂eH

∂t
(t)

)
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and C2‖PHwH‖0 ≤ ‖wH‖H ≤ C1‖PHwH‖0, we have

C2
2

∥∥∥PH
∂eH

∂t
(t)

∥∥∥
2

0
+

1

2

d

dt
‖∇PHeH(t)‖2

0 ≤ C2
1ξ2

∥∥∥PH
∂eH

∂t
(t)

∥∥∥
2

0
+

1

4ξ2

∥∥∥PH
∂θH

∂t
(t)

∥∥∥
2

0

for arbitrary positive constant ξ. Choosing ξ such that ξ2 <
C2

2

C2
1

we get

‖∇PHeH(t)‖0 ≤

(
‖∇PHeH(0)‖2

0 +
1

4ξ2

∫ t

0

∥∥∥PH
∂θH

∂t
(τ, .)

∥∥∥
2

0
dτ

)1/2

. (53)

We conclude the proof using Theorem 1 and Remark 4. ¤

For the semi-discrete approximation defined by (18) we have:

Theorem 6. Let Ω be a union of rectangles. Assume that the grids ΩH satisfy

condition (Geo) and that (H2) holds. Then, for Hmax small enough, the solution

uH(t) of (18) satisfies the following

‖uH(t) − RHu(t, .)‖H

≤ C

(( ∑

∆∈TH

(diam ∆)4 ‖u(t, .)‖2
3,∆

)1/2

+ exp(CKt)

(
CTH ,3(u, |∆|2)

+

∫ t

0

exp(−CKτ)

(( ∑

∆∈TH

(diam ∆)4
∥∥∥∂u

∂t
(τ, .)

∥∥∥
2

3,∆

)1/2

+
∥∥∥∂u

∂t
(τ, .) −

∂̃u

∂t
(τ, .)

∥∥∥
H

)
dτ

)

(54)

with
∂̃u

∂t
(t, .) defined by (17) replacing g by

∂u

∂t
(t, .),

CTH ,3(u, |∆|2) =
[ ∑

∆∈TH

(diam ∆)4 ‖u(0, .)‖2
3,∆

]1/2

and provided that
∂u

∂t
∈ H3(Ω).

Proof. The proof follows the proof of Theorem 4. We only remark that uH,t must
be considered as the solution of the discrete variational problem

aH(uH,t, wH) =
(
g̃H(t) −

∂̃u

∂t
(t), wH

)
H

(55)

for wH ∈
◦

WH . ¤

Remark 5. If the domain contains a section which is not parallel to a coordinate
axis then on the estimation of ‖uH(t) − RHu(t, .)‖H we must take into account
Remark 2.
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Remark 6. For simplicity we assume in what follows that Ω is the union of rect-
angles. Attending that for functions w with bounded second order derivatives in
Ω we have

|w̃(xj , yℓ) − w(xj , yℓ)|

≤
1

4

∣∣∣∣
∂w

∂x
(xj , yℓ)

∣∣∣∣ |hj − hj−1| +
1

4

∣∣∣∣
∂w

∂y
(xj , yℓ)

∣∣∣∣ |kℓ − kℓ−1|

+ ‖w‖2,∞, j,ℓ

(
1

24

(
|h2

j − hjhj−1 + h2
j−1| + |k2

ℓ − kℓkℓ−1 + k2
ℓ−1|

)

+
1

16
|hj − hj−1||kℓ − kℓ−1|

)

(56)

we conclude from Theorem 6 a first order estimate for the error ‖uH(t)−RHu(t, .)‖H .

Considering in above inequality w replaced by
∂u

∂t
and assuming that ΩH is

uniform in both directions x and y, from (54) we conclude that the solution of
(18) is second order accurate. The same order can be obtained for nonuniform
grids Ω̄H which are the image of uniform grids in x and y directions and which
are widely used on the computation of numerical approximations to solutions of
partial differential equations. In fact if (xj , yℓ) = (φ(ξj), ψ(βℓ)) with {ξj}, {βℓ}
uniform grids and φ and ψ with bounded second order derivatives we conclude
from (56) and (54) that the solution of (18) is second order accurate.

Another procedure widely used on the computation of numerical approxima-
tions for the solution of a partial differential equation with nonuniform grids is
the equidistribution principle ([9], [21], [27]). We consider in what follows Ω =
(0, 1)×(0, 1). Let us assume that spatial grid {(xj , yℓ), j = 0, . . . , N, ℓ = 1, . . . ,M}
is computed by equidistributing a monitor function M , that is x0 = y0 = 0, xN =
yM = 1 and

∫ xj+1

xj

∫ yℓ+1

yℓ

M(t, x, y) dy dx =
1

NM

∫

Ω

M(t, x, y) dy dx. (57)

If M is smooth enough then it can be proved the following

|hj − hj−1| ≤
1

N

∣∣∣∣∣∣∣

∫

Ω

M(t, x, y) dy dx

∫ 1

0
Mx(t, ξ, y) dy

(∫ 1

0
M(t, ξ, y) dy

)2

∣∣∣∣∣∣∣
(hj + hj−1),

ξ ∈ (xj−1, xj+1)

and

|kℓ − kℓ−1| ≤
1

M

∣∣∣∣∣∣∣

∫

Ω

M(t, x, y) dy dx

∫ 1

0
My(t, x, η) dx

(∫ 1

0
M(t, x, η) dx

)2

∣∣∣∣∣∣∣
(kℓ + kℓ−1),

η ∈ (yℓ−1, yℓ+1).

Then, from (54) we conclude that the solution of (18) is second order accurate.
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Remark 7. The post-processing procedure described before in the stationary case
can be applied for time dependent problems. We note that

‖∇u(t, ·) − KH∇PHuH(t)‖0 ≤ ‖∇u(t, ·) − KH∇PHRHu(t, ·)‖0

+ ‖KH∇PH(RHu(t, ·) − uH(t))‖0.
(58)

This shows that the post-processing is successfully applicable to the parabolic
problem at time t if u(·, t) ∈ H3(Ω). In that case, the left term in (58) can be
bounded as in Theorem 3, and using the fact that the reconstruction operator KH

is bounded, the right-hand side term in (58) can be bounded by

‖KH∇PH(RHu(t, ·) − uH(t))‖0 ≤ C‖∇PH(RHu(t, ·) − uH(t))‖0, (59)

of which the right-hand side was successfully bounded in Section 3.2 at least for
Laplace operator.

5. Numerical results

Let us define a finite difference scheme which allows us to compute the semi-
discrete approximation uH(t). For each grid point (xj , yℓ) ∈ RH we define the
central finite difference quotients

δ(1/2)
x wj,ℓ =

wj+1/2,ℓ − wj−1/2,ℓ

xj+1/2 − xj−1/2
, δ(1/2)

x wj+1/2,ℓ =
wj+1,ℓ − wj,ℓ

xj+1 − xj
,

δxwj,ℓ =
wj+1,ℓ − wj−1,ℓ

xj+1 − xj−1
.

Correspondingly, the central finite difference quotients with respect to the variable
y are defined. Let AH be defined by

AHuH := −δ(1/2)
x (aδ(1/2)

x uH)−δx(bδyuH)−δy(bδxuH)−δ(1/2)
y (cδ(1/2)

y uH)

+ dδxuH + eδyuH + fuH in ΩH .
(60)

Attending that the following equality holds

aH(vH , wH) = (AHvH , wH)H , vH , wH ∈
◦

WH ,

choosing in (15) a grid function vH to vanish in all but one single point in ΩH , it
is easy to verify that (15) is equivalent to

d

dt
uH(t, xj , yℓ) + AHuH(t, xj , yℓ) = g(t, xj , yℓ), (xj , yℓ) ∈ ΩH , t ∈ (0, T ],

uH(t, xj , yℓ) = 0, (xj , yℓ) ∈ ∂ΩH , t ∈ [0, T ],

uH(0, xj , yℓ) = u0(xj , yℓ), (xj , yℓ) ∈ ΩH .

(61)

Integrating the last initial boundary value problem we get uH(t) for t > 0.
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Analogously the computation of the solution of the discrete variational prob-
lem (18) is made solving numerically the ordinary differential system (61) with
g(t, xj , yℓ) replaced by g̃(t, xj , yℓ).

Let un
j,ℓ be the numerical solution obtained combining (15) or (18) with the

Crank–Nicolson method at time level tn and at the grid point (xj , yℓ). By un
H

we denote the grid function un
H(xj , yℓ) = un

j,ℓ. Attending to the behaviour of the
Crank–Nicolson method, the error

u(tn, xj , yℓ) − un
j,ℓ = u(tn, xj , yℓ) − uH(tn, xj , yℓ) + uH(tn, xj , yℓ) − un

j,ℓ

is dominated by the space discretization error uH(tn, xj , yℓ)−un
j,ℓ. So, in all numer-

ical experiments we took log ‖RHu(tn, .)−un
H‖ as an estimate to log ‖RHu(tn, .)−

uH(tn, .)‖ being the time step equal to 0.025.

Example 1 – Method (15). Let us consider the boundary problem (1) with
the Laplace operator, defined in the rectangle Ω = (0, 1) × (0, 1), with solution
u(t, x, y) = t sin(πx) sin(πy), and corresponding right-hand side g and initial con-
dition u0.

In Figure 1 we plot the logarithm of the error RHu(tn, .) − un
H (with tn = 1)

against the logarithm of square of the maximum step-size, where ‘⋆’ corresponds to
the ‖.‖1-norm and ‘•’ corresponds to the ‖.‖H -norm. Attending that ‖RHu(tn, .)−
un

H‖H/H2
max ≃ Constant we conclude that the results are satisfactory. The same

happens when we use the norm ‖.‖1 which is according to Theorem 5.
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Fig. 1. Numerical results obtained with method (15)

Example 2 – Method (18). For the problem from Example 1 we obtain the
numerical results plotted in Figure 2. We use ‘⋆’ for log ‖.‖1 and ‘•’ for log ‖.‖H -
norm.
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We remark that this method is recommended when the right-hand side of the
partial differential equation does not allow us to compute its value at all grid points.
This implies an increasing of the error comparing with the previous example.
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Fig. 2. Numerical results obtained with method (18).

Example 3. We consider problem (1) with the Laplace operator and with solution
u(t, x, y) = 10tx sin(πy)(y +2x−2) defined in the polygonal domain Ω = {(x, y) ∈
R

2 : 0 < x, y < 1, y < −0.5x + 1}.

In Figure 3 we plot the numerical results obtained with method (15).
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Fig. 3. Numerical results obtained with method (15) and
Ω = {(x, y) ∈ R

2 : 0 < x, y < 1, y < −0.5x + 1}.
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Example 4. On the proof of the convergence results was only assumed that the
bilinear form a(., .) need to be coercive. In the following example we illustrate the
behaviour of method (15) in this case (when a(., .) is not elliptic). We consider





∂u

∂t
− ∆u − u = g in Ω × (0, T ],

u(0, x) = u0(x) in Ω,
u(t, x) = 0 on ∂Ω × [0, T ],

with Ω = (0, 1) × (0, 1). The initial condition and g are such that this problem
as the solution u(t, x, y) = 10t sin x sin y(x − 1)2(y − 1)2. In Figure 4 we plot the
numerical results obtained.
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Fig. 4. Numerical results obtained with method (15) with a non coercive bilinear form.
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Fig. 5. Numerical results illustrating the performance of the post-processing mechanism.

Example 5 – Post-processing mechanism. We consider the same problem
as in Example 1, the same discretization and then we apply the reconstruction
process. In Figure 5 we plot log ‖∇u(tn, .) − KH∇PHun

H‖0 with tn = 1 (which is
an estimate to log ‖∇u(1, .) − KH∇PHuH(1)‖0) against log H2

max.
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6. Conclusions

The convergence properties of nonstandard semi-discrete piecewise linear FE ap-
proximations defined by (15) and (18) are studied. The convergence results were
established under weaker assumptions on the regularity of the triangulation than
those usually considered in the literature. Attending that the convergence anal-
ysis is performed comparing PHuH(t, .) with PHRHu(t, .), in Section 3.2 a post-
processing procedure is introduced for the stationary case wish allows us to com-
pare ∇PHuH with ∇u. An estimate for the last error was obtained under stronger
regularity conditions for the mesh than those assumed in Section 3.1. Several
numerical experiments were presented illustrating the convergence studies.
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