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1. Introduction

The notion of quasi-Lie bialgebroid was introduced in [15]. It is a structure on a
pair (A, A*) of vector bundles, in duality, over a differentiable manifold M that is
defined by a Lie algebroid structure on A*, a skew-symmetric bracket on the space
of smooth sections of A and a bundle map a:A— T M, satisfying some compati-
bility conditions. These conditions are expressed in terms of a section ¢ of /\3 A*,
which turns out to be an obstruction to the Lie bialgebroid structure on (A, A*).
A quasi-Lie bialgebroid will be denoted by (A, A*, ¢). In the case where A is a Lie
algebroid, its dual vector bundle A* is equipped with a skew-symmetric bracket on
its space of smooth sections and a bundle map a,: A*— TM and the compatibility
conditions are expressed in terms of a section Q of /\3 A, the triple (A, A*, Q) is
called a Lie-quasi bialgebroid [9]. When ¢ =0 and Q =0, quasi-Lie and Lie-quasi
bialgebroids are just Lie bialgebroids. We note that, while the dual of a Lie bi-
algebroid is itself a Lie bialgebroid, the dual of a quasi-Lie bialgebroid is a Lie-
quasi bialgebroid, and conversely [9]. The quasi-Lie and Lie-quasi bialgebroids are
particular cases of proto-bialgebroids [9]. As in the case of a Lie bialgebroid, the
doubles A® A* of a quasi-Lie and of a Lie-quasi bialgebroid are endowed with a
Courant algebroid structure [9,15].

It was shown in [16] that the theory of quasi-Lie bialgebroids is the natural
framework in which we can treat twisted Poisson manifolds. These structures were



156 J. M. NUNES DA COSTA AND F. PETALIDOU

introduced in [17], under the name of Poisson manifolds with a closed 3-form
background, motivated by problems of string theory [14] and of topological field
theory [8].

The notion of Jacobi bialgebroid and the equivalent one of generalized Lie bial-
gebroid were introduced, respectively, in [3] and [5], in such a way that a Jacobi
bialgebroid is canonically associated to a Jacobi manifold and conversely. A
Jacobi bialgebroid over M is a pair ((A, ¢), (A*, W)) of Lie algebroids over M,
in duality, endowed with 1-cocycles ¢ €eI'(A*) and W €I'(A) in their Lie algebroid
cohomology complexes with trivial coefficients, respectively, that satisfy a compat-
ibility condition. Also, its double (A @ A*, ¢ + W) is endowed with a Courant—
Jacobi algebroid structure [4,11].

In order to adapt to the framework of Jacobi manifolds the concepts of twisted
Poisson manifold and quasi-Lie bialgebroid, we have recently introduced in [12]
the notions of twisted Jacobi manifold and quasi-Jacobi bialgebroid. The purpose of
the present paper is to develop the theory of quasi-Jacobi bialgebroids, as well as
of its dual concept of Jacobi-quasi bialgebroids, and to establish a very close rela-
tionship between quasi-Jacobi and quasi-Lie bialgebroids.

The paper contains four sections, besides Section 1, and one Appendix. In Sec-
tion 2 we recall the definition of quasi-Jacobi bialgebroid, we present some basic
results established in [12], we develop the examples of quasi-Jacobi and Jacobi-
quasi bialgebroids associated to twisted Jacobi manifolds and to quasi Jacobi
manifolds, and, finally, we study the triangular quasi-Jacobi bialgebroids. Sec-
tion 3 is devoted to the study of the structures induced on the base manifolds
of quasi-Jacobi and Jacobi-quasi bialgebroids. Several examples are presented. In
Section 4 we establish a one-to-one correspondence between quasi-Jacobi bialge-
broid structures ((A, ¢), (A*, W), ¢) over a manifold M and quasi-Lie bialgebroid
structures (A, A*, @) over M =M x R. Also, we prove that the structure induced
on M=M xR by (A~, A*, @) is the “quasi Poissonization” of the structure induced
on M by ((A, ¢), (A*, W), ¢). The dual version of these results is also presented.
Finally, in the Appendix, we define the action of a Lie algebroid with 1-cocycle
on a differentiable manifold, a concept that is used in the paper.

Notation: If (A, ¢) is a Lie algebroid with 1-cocycle ¢, we denote by d¢ the differ-
ential operator d of A modified by ¢, i.e., d?a=da+¢ Aa, for any a € F(/\k A*).
Moreover, we denote by § the usual de Rham differential operator on a mani-
fold M and by d the differential operator of the Lie algebroid TM x R, d(«, 8) =
(S, —8B), for (a, B) € T(AK(T*M x R)) = T(AF T*M) x T(A*"! T*M). We also
consider the identification T'(AX(TM x R)=T(A* TM) x (A~ Tm).

2. Quasi-Jacobi and Jacobi-Quasi Bialgebroids

Let ((A, @), (A*, W)) be a pair of dual vector bundles over a differentiable
manifold M endowed with a 1-form ¢ and W, respectively, and ¢ a 3-form of A.
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DEFINITION 2.1. A quasi-Jacobi bialgebroid structure on ((A, @), (A*, W), ¢)
consists of a Lie algebroid structure with 1-cocycle ([-, -]«, a4, W) on A*, a bun-
dle map a:A— TM and a skew-symmetric operation [-, -] on I'(A) satisfying, for
all X,Y,ZeI'(A) and feC*>(M,R), the following conditions:

(X, fYI=fIX, Y]+ (@a(X) ))Y;

a([X, YD =[a(X),a(Y)] —a.(p(X,Y,));

(X, Y], Z]+cp.=—d} (X, Y, 2)) = ((px.v,9d} Z) +c.p.);

dp—@(W,-,-)=0, where d is the quasi-differential operator on I'(\ A*) deter-
mined by the structure ([, -],a) on A;

d?¢=0, d? being the quasi-differential operator modified by ¢;

6. dV[P,Q1? =[dV P, 01? + (—1)PTI[P,d) Q1?, where [-,-]? is the bracket on
I'(A\ A) modified by ¢, PeT(A” A) and Q eT(A A).

=

W

As in the case of quasi-Lie and Lie-quasi bialgebroids, by interchanging the
roles of (A,¢) and (A*, W) in the above definition, we obtain the notion of
Jacobi-quasi bialgebroid over a differentiable manifold M. We have: If ((A, ¢),
(A*, W), @) is a quasi-Jacobi bialgebroid over a differentiable manifold M, then
(A*, W), (A, 9), ) is a Jacobi-quasi bialgebroid over M, and conversely.

In the case where both I-cocycles ¢ and W are zero, we recover, from Defi-
nition 2.1, the notion of quasi-Lie bialgebroid. On the other hand, if ¢ =0, then
(A, 9), (A*, W),0)=((A, ¢), (A*, W)) is a Jacobi bialgebroid over M.

Remark 2.2. In [12], we proved that the double of a quasi-Jacobi bialgebroid is
a Courant-Jacobi algebroid ([4,11]). By a similar computation, we may conclude
that the double of a Jacobi-quasi bialgebroid is also a Courant-Jacobi algebroid.

The rest of this section is devoted to some important examples of quasi-Jacobi
and Jacobi-quasi bialgebroids.

2.1. QUASI-JACOBI AND JACOBI- QUASI BIALGEBRAS

A quasi-Jacobi bialgebra is a quasi-Jacobi bialgebroid over a point, that is a triple
(G, ®), (G*, W), ), where (G*,[-,-]«, W) is a real Lie algebra of finite dimension
with 1-cocycle W € G in its Chevalley—Eilenberg cohomology, (G, ¢) is the dual
space of G* endowed with a bilinear skew-symmetric bracket [-, -] and an element
¢eG* and ¢ € /\3 G*, such that conditions 3-6 of Definition 2.1 are satisfied.

By dualizing the above notion, we get a Jacobi-quasi bialgebra, i.e. a Jacobi-
quasi bialgebroid over a point.

In the particular case where ¢ =0, we recover the concept of Jacobi bialgebra
[5]. When ¢ =0 and W =0, we recover the notion of quasi-Lie bialgebra due to
Drinfeld [2].
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We postpone the study of quasi-Jacobi bialgebras to a future paper. We believe
that they can be considered as the infinitesimal invariants of Lie groups endowed
with a certain type of twisted Jacobi structures that can be constructed from the
solutions of a twisted Yang-Baxter equation.

2.2. THE QUASI- JACOBI AND THE JACOBI- QUASI BIALGEBROIDS OF A TWISTED JACOBI
MANIFOLD

We recall that a twisted Jacobi manifold [12] is a differentiable manifold M
equipped with a section (A, E) of /\2(TM x R) and a 2-form o such that

%[(A, E), (A, D)V =(A, E)* b0, w),! ()
where [-, -]®D denotes the Schouten bracket of the Lie algebroid (TM xR, [-, -], )
over M modified by the 1-cocycle (0,1) and (A, E)* is the natural extension of
the homomorphism of C*(M,R)-modules (A, E)* :T(T*M x R) — I'(TM x R),
(A, EY*(a, f) = (A#(a) + fE, —(a, E)), to a homomorphism from F(/\k(T*M X
R)) to T(AY(TM x R)), k €N, given, for any (n,€) € T(AY(T*M x R)) and
(a1, f1), ..., (a, fi) eT(T*M x R), by

(A, EY (1, &) (1, fi)s -y (ks fi)) =
=(=D*m, &)(A, EY* (@, 1), s (A, E)F (o, 1))

and, for all feC>®(M,R), by (A, E)*(f)=f.

Examples of twisted Jacobi manifolds are twisted exact Poisson manifolds and
twisted locally conformal symplectic manifolds, both of them presented in [12], and
also twisted contact Jacobi manifolds described in [13].

If (M,(A,E),w) is a twisted Jacobi manifold and f a function on M that
never vanishes, we can define a new twisted Jacobi structure (A7, E/), w/) on M,
which is said to be f-conformal to ((A, E), w), by setting

A =fA; ET=A*6f)+fE; a)fz%w.

In the sequel, let (M, (A, E),w) be a twisted Jacobi manifold and (T*M x
R, [-,-]E"A’E),n o (A, E)# (—E,0)) its canonically associated Lie algebroid with
I-cocycle, [12]. The Lie bracket [-,~]‘(”A1E) on I'(T*M x R) is given, for all
(o, f), (B,g) eT(T*M xR), by

[(e. 1), (B (a gy =, 1), (B. )], By +
+ o, 0) (A, EY(a, ), (A, EY*(B, 9). ),
ISince, for any (¢, w) e "(A3(T*M x R)), dOD(p, w)= (89,9 —8w) and dOD(p, w)=(0,0) <

¢ =bw, Equation (1) means that J[(A, E), (A, E)I®D is the image by (A, E)* of a d®D-closed
3-form of TM x R.
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where [, -](a,£) is the usual bracket on I'(T*M x R) associated to a section (A, E)
of NX(TM xR) (7], [5)):

[ )y B Nr =L hsia ) B8 = Loy 500 @ ) =
—dOV (A, E) (@ f). (B, 8))- )

We consider, on the vector bundle TM x R— R, the Lie algebroid structure over
M with 1-cocycle ([-, -], m, (0,1)) and also a new bracket [-, -]’ on the space of its
smooth sections given, for all (X, f), (Y,g)e'(TM xR), by

[(X, 1), (Y, 1 =[(X, ), (¥, )] = (A, E)* (b, 0) (X, [), (Y, g), ).

We have shown in [12] that the triple (TM x R,[-,-],x, (0,1)),(T*M x R,
[- ~]?A7E), wo(A, E)*, (—E,0)), (5w, w)) is a quasi-Jacobi bialgebroid over M. Fur-
thermore, we have

THEOREM 2.3. The triple (TM xR, [-,-],7, (0,1)), (T*M xR, [-, -](a,E), T o (A, E)*,
(—E,0), (A, EY*Sw, w)) is a Jacobi-quasi bialgebroid over M.

Proof. Tt suffices to check that the dual versions of all conditions of Defini-
tion 2.1 are satisfied. Condition (1) can be checked directly, using (2). For Condi-
tion (2), we take into account that ((A, E), w) is a twisted Jacobi structure, hence
(1) holds, and we apply the general formula

A, EY (@, 1), (B, Ola.6) =[(A, EYF (e, ), (A, EY*(B, 9)] —
1
=31, B), (A, BNV, 1), 6,9,). )

By projection, we obtain Condition (2). Condition (3) can be checked directly,
after a long computation. In order to prove Condition (4), we remark that the
quasi-differential operator d, determined by ([-, -J(a.£), o (A, E)¥) is given [5], for
all (R, S)eT(AY(TM xR)), by

di(R,S)=(A,RI+kEAR+AAS,—[A,RI+(1—-k)EAS+[E, R]).
So, di(—E,0)=([E, A],0), and since (M, (A, E), w) is a twisted Jacobi manifold,
dy(—E.,0)=([E, A],0)= %[(A, E). (A, BP0, 1), =
= (A, EY* 6o, )((0. 1), -, ).
On the other hand, since di_E’O)(R, $)=[(A, E), (R, $)]OV, we have
dTEV (A, BYF b, ) =[(A, E). (A, E)* (0, )]V =
= %[(A, E).[(A, E). (A, E)OD)OD =(0,0),

whence we get Condition (5). Finally, Condition (6) can be established, as in the
proof of Theorem 8.2 in [12], by a straightforward but long computation. |
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In the case of twisted Poisson manifolds, the previous results were treated in
[16] and [9].

2.3. THE JACOBI- QUASI BIALGEBROID OF A QUASI JACOBI MANIFOLD

Let (G, [-,-]) be a Lie algebra, ¢ a 1-cocycle in its Chevalley-Eilenberg cohomology
and (-,-) a nondegenerate symmetric bilinear invariant form on G. We denote by
Y the canonical 3-form on G defined by ¥ (X, Y, Z):%(X, [Y,Z)]), forall X,Y,Ze
G, and by Qy € /\3 G its dual trivector that is given, for all u,v, & € G*, by

Oy, v,8) =9 Xy, Xy, X¢),

where X,,, X,, X are, respectively, dual to u,v,& via (-, -).

A (G, ¢)-manifold M is a differentiable manifold on which (G, ¢) acts infinitesi-
mally by a?:G— TM xR, a®(X)=a(X)+ (¢, X), for all X €G (see Appendix). We
keep the same notation a? for the induced maps on exterior algebras.

Let M be a (G, ¢)-manifold. A section (A, E) € F(/\z(TM x R)) is said to be
invariant (under the infinitesimal action a?) if, for any X € G,

©,1)
L3 (A E)=(0,0).

A natural generalization of the notion of quasi Poisson manifold, given in [1],
is the concept of (G, ¢)-quasi Jacobi manifold, that we introduce as follows.

DEFINITION 2.4. A (G, ¢)-quasi Jacobi manifold is a (G, ¢)-manifold M equip-
ped with an invariant section (A, E) € I'( /\2 (TM x R)) such that

1
LA E), (A, BV =a?(Qy).
A long, but not difficult computation, leads us to the following:

THEOREM 2.5. Let (M, A, E) be a (G, p)-quasi Jacobi manifold. Then, ((TM x
R, [, -], (0, 1)), (T*M x R, [-, -](a,E), T o (A, EY* (=E,0)), a‘P(Ql/,)) is a Jacobi-
quasi bialgebroid over M.

Remark 2.6. If M is a G-manifold equipped with a quasi Poisson structure, i.e an
invariant bivector field A on M such that [A, A]=2a(Qy), a similar result holds:
The triple (TM, [-,-1,id), (T*M,[-, ‘1A, A#), a(Qy)) is a Lie-quasi bialgebroid over
M, [-,-1a being the Koszul bracket associated to A.

2.4. TRIANGULAR QUASI-JACOBI AND JACOBI- QUASI BIALGEBROIDS

Let (A,[-,-],a,¢) be a Lie algebroid with 1-cocycle over a differentiable manifold
M, TI a section of /\2A and Q a trivector on A such that

1
SI, n’=. 4)
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We shall discuss what happens on the dual vector bundle A* of A when we
consider the vector bundle map a,:A*— TM, ay=aoll?, TI#: A* > A being the
bundle map associated to IT, and the Koszul bracket [-, -] on the space I'(A*) of
its smooth sections given, for all «, e T'(A¥), by

[, B = Lo 0B = Loys sy =4 (T (et, ). 5)
Let us set W =—I1%(¢). Taking into account that, for all «, 8,y e '(A%),

[, Blm, y1In +c.p.=—d?(Q(a, B, ¥)) — ((igw@.p.yd?y) +c.p.),

we can directly prove that

THEOREM 2.7. The triple ((A,[-,1,a, ), (A*, [, 11, ax, W), Q) is a Jacobi-quasi
bialgebroid over M, which is called a triangular Jacobi-quasi bialgebroid.

Clearly, the Lie-quasi bialgebroid associated to a twisted Poisson manifold [16]
and the Jacobi-quasi bialgebroid associated to a twisted Jacobi manifold (see
Theorem 2.3) are special cases of triangular Jacobi-quasi bialgebroids. Another
important type of triangular quasi-Jacobi bialgebroid is the triangular quasi-Jacobi
bialgebra, where IT is a solution of a Yang-Baxter’s type equation.

Now, we consider the particular case where Q = IT%(¢), with ¢ a d?®-closed
3-form on A, and the spaces I'(A*) and I'(A) are equipped, respectively, with the
brackets

[, B1F = [, Bl + (T (), T (), ), for all o, BT (AY),
[, -ln being the Koszul bracket (5), and
[X,Y]=[X,Y]-TT%(¢(X,Y,), forall X,Yel(A).
Under the above assumptions, by a straightforward calculation, we get

PROPOSITION 2.8. The vector bundle A* — M endowed with the structure ([-, -](1/3[, as)
is a Lie algebroid over M with 1-cocycle W = —T1%(¢).

Also, we have

THEOREM 2.9. The triple ((A,[-,-],a, ), (A", [, 1%, a., W), ) is a triangular
quasi-Jacobi bialgebroid over M.

Proof. The proof is analogous to that of Theorem 8.2 in [12] and so it is omit-
ted. O
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Remark 2.10. Obviously, if A is TM x R equipped with the usual Lie algebroid
structure with 1-cocycle, ([, ], 7, (0,1)), and IT=(A, E) eF(/\2(TM x R)) satisfies
(4), then the manifold M is endowed with a twisted Jacobi structure. The Lie al-
gebroid structure on A*=T*M x R given by Proposition 2.8, is the Lie algebroid
structure canonically associated with the twisted Jacobi structure on M.

3. The Structure Induced on the Base Manifold of a Quasi-Jacobi
Bialgebroid

In this section we will investigate the structure induced on the base manifold of a
quasi-Jacobi bialgebroid. Similar results hold for a Jacobi-quasi bialgebroid.

Let ((A, ¢), (A*, W), ¢) be a quasi-Jacobi bialgebroid over M. In [12], we have
already considered the bracket {-, -} on C*°(M, R) defined, for all f, g€ C>®(M,R),
by

{f.ey=(d?f.alg). (6)

We have proved that it is R-bilinear, skew-symmetric and a first-order differential
operator on each argument [12]. On the other hand, the quasi-differential opera-
tor d on I'(/\ A*) determined by (a, [, -]) is a derivation with respect to the usual
product of functions. Therefore, the map (f, g) — (df, d«g) is a derivation on each
argument and so, there exists a bivector field A on M such that, for all f,ge
C>*(M,R),

A@f, 8g)=(df dsg) =—(dg.dv [).

If E is the vector field a,(¢) =—a(W) on M then, from (6) and because (¢, W)=0
holds [12], we get

1,8y =(d"Vg, (a, EY*(d*V f)). )
Since, for all f e C®(M,R), d?f=(a?)*(dOVf) and dY f = (@))*d®D f) [12],
where (a?)* and (a))* denote, respectively, the transpose of a? and al, we
obtain

(A, EY =—a?o (@) =a) o (a?)". (®)
It is well known that any bracket of type (7) satisfies the following relation:

{f (g, h)} +cp.= %[(A, E), (A, ENOD@OD £,dODg dODp, )

Therefore, for the bracket defined by (6), in general, the Jacobi identity does not
hold.
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PROPOSITION 3.1. Let ((A, @), (A*, W), ¢) be a quasi-Jacobi bialgebroid over M.
Then, the bracket (6) satisfies, for all f,g,heC®(M,R), the following identity:

{filg. ) +ep=a¥ (@)dOVf,d%Dg dODp). (10)

In (10), alv denotes the natural extension of alv T(A") > T(TM xR) to a bundle
map from F(/\3A*) to F(/\S(TM x R)).

Proof. Let f, g and h be any three functions on C*°(M, R). Taking into account
the formule d){f, g} =[d¥ g,d) f1 (see [12]), (8) and (3), and the properties of a
quasi-Jacobi bialgebroid, after a simple computation, we get

wﬁﬁgH=H&fLM—%KAJD&mEﬂm”@“”ﬁd““&d“”m+

+al (@)D £.d Vg, d*Dn).

Consequently,

1
LA E), (A, BN ODAD £,dODg, dOVmy=a (o)™ f,d Vg, d D).
(11
Hence, from (9) and (11), we obtain (10). O

Looking at Equation (11), we remark that the obstruction for (M, A, E) to be
a Jacobi manifold, i.e. to have [(A, E), (A, E)]®D =(0,0), is the image by a¥ of
the element ¢ in I'( /\3 A*). This obstruction can also be viewed as the image of
¢ under the infinitesimal action of the Lie algebroid with 1-cocycle (A*, W) on M
(see Appendix). Thus, inspired by the analogous terms of quasi Poisson G-manifold
([1,9]) and of (G, ¢)-quasi Jacobi manifold (see Section 2.3), we say that the pair
(A, E) defines on M a (A*, W)-quasi Jacobi structure.

Thus, we have proved:

THEOREM 3.2. Let ((A,¢), (A*, W), @) be a quasi-Jacobi bialgebroid over M.
Then, the bracket {-,-}:C®°(M,R) x C*°(M,R)— C®(M,R) given by

{f.g}=(d"f.alg), for f.geC®(M,R),

defines a (A*, W)-quasi Jacobi structure on M.

Remark 3.3. In the case where ((A, ¢), (A*, W), Q) is a Jacobi-quasi bialgebroid
over M, we can easily prove that the Jacobi identity of the bracket defined by (6)
is violated by the image of Q under a®. For this reason, we shall call the struc-
ture (A, E) induced on M, an (A, ¢)-quasi Jacobi structure. We note that, for the
proof of this result, we use the relation [d? f,d?gl, =d®{f. g}, f, g€ C®(M,R),
which leads to

(A EYf =a? 0@y =—al o @®)*. (12)
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Examples 3.4. 1. A*-Quasi Poisson structures: If ((A, ¢), (A*, W), ¢) is a quasi-Lie
bialgebroid over M, i.e. both 1-cocycles ¢ and W are zero, Theorem 3.2 establishes
the existence of a structure on M, defined by the bracket

{f’g}z(dfad*g>’ f’gecoo(M’R)s

on C®°(M,R), which is associated to a bivector filed A on M satisfying [A, A]=
2a4(¢). In our terminology, A endows M with a A*-quasi Poisson structure. We
remark that this result was obtained in [6] by different techniques.

2. Jacobi structures: When ¢ =0, i.e. ((A, ¢), (A*, W)) is a Jacobi bialgebroid
over M, the structure (A, E) on M determined by Theorem 3.2 is a Jacobi struc-
ture, and we recover the well-known result of [5].

3. Twisted Jacobi structures: When ¢ is the image of an element (¢p, wy) €
I'(A*(T*M xR)) by the transpose map (a®)*:T'(A>(T*M x R)) — I'(A\> A*) of a?,
ie. o= (a?)*(pm, wn), then,

1
S E) A B =a) () =a (@) (om. om) D (A, By (our. om).
Also, we have

d?(@®)* (oum, om)) =0 (@®)*([dOV oy, wp)) =0,
N e’

=¢

which means that (¢a, wy) is d@P-closed on the distribution Im(a?). This distri-
bution is not, in general, involutive due to Condition (2) of Definition 2.1. How-
ever, when Im(a?) is involutive, as in the case where a? is surjective, ((A, E), wp)
defines a twisted Jacobi structure on the leaves of Im(a?®).

4. The case of the quasi-Jacobi bialgebroid associated to a twisted Jacobi
manifold: Let (M, (A1, E1),w) be a twisted Jacobi manifold and let ((TM x
R, [ 1,7, (0, 1), (T*M xR, [-,-1¢) | gy, o (A1, EN*, (—E1,0)), bw, w)) be its asso-
ciated quasi-Jacobi bialgebroid. Then, the (T*M x R, (—E{, 0))-quasi Jacobi struc-
ture induced on M coincides with the initial one (Aj, E1). In fact, for any f, g€
C>®(M,R) and taking into account that d'®D f=d©D £ d’ being the quasi-differ-
ential of TM x R determined by the structure ([-,-]’,7), and that (d®)~F1.0¢ =
—(A1, EN*(ODyg), we have

(£, gy =(d OV £, @) B0y = @OV, — (A1, EN*F(AOVg)) ={f. gh,

where {-,-}; denotes the bracket associated to (A, Ey).

Moreover, if we consider the Jacobi-quasi bialgebroid ((TM xR, [-, -], 7, (0, 1)),
(T*M xR, [-, I(a,.Ep)> T o (A1, EN?,(—E1,0)), (A, E*(w, w)) associated to the
twisted Jacobi manifold (M, (A1, E1), w), we get that the (TM x R, (0, 1))-quasi
Jacobi structure (A, E) induced on M is the opposite of (A, Eq). It suffices to
remark that
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(A EY* B 70D o (oA, EpH)Er0y =
= 7ODo((Ar, ENF) o (rOD)y =—(Ay, EN*. (13)

5. The induced structure on a quasi Jacobi manifold: We consider the Jacobi-
quasi bialgebroid ((TM x R,[-,-],7, (0, 1), (T*M x R, [-, I(a,.E)» T © (A1, ED¥,
(—El,())),ad’(Q,/,)) associated to a (G, ¢)-quasi Jacobi manifold (M, A, E}).
Then, repeating the computation (13), we conclude that, as in the previous case,
the (TM xR, (0, 1))-quasi Jacobi structure (A, E) induced on M is the opposite of
(A1, E).

6. The case of a triangular quasi-Jacobi bialgebroid: 1If we consider a triangu-
lar quasi-Jacobi bialgebroid over M of type ((A,[-, 1. a, ¢), (A*, [, 1%, ag, W), ),
presented in Theorem 2.9, then, for all f € C®°(M,R),

d f=-1"@’ f)=—M" o @)@V ).
So, the bracket (6) in C*°(M,R) is given by
{f.gy=(a’f.d) ¢)=(d"Vg, @ ol? o0 @@®)*)d"V f).

On the other hand, considering the (A*, W)-quasi Jacobi structure (A, E) on M,
we also have

{f,8)=(d%Vg (A, EY*dOV £)).
Hence,
(A, EY =a? o 1% 0 (a®)*,

which means that (A, E) is the image by a? of IT and that a? is a type of “twisted
Jacobi morphism” between (A, ¢, 1) and (TM xR, (0, 1), (A, E)).

4. Quasi-Lie Bialgebroids Associated to Quasi-Jacobi Bialgebroids

Given a Lie algebroid (A,[-,],a) over M, we can endow the vector bundle
A=A xR— M xR with a Lie algebroid structure over M x R as follows. The sec-
tions of A can be identified with the 7-dependent sections of A, ¢ being the canon-
ical coordinate on R, i.e., for any XeTl(A) and (x,H)e M xR, X(x,1) = X;(x),
where X; € '(A). This identification induces, in a natural way, a Lie bracket on
I'(A), also denoted by [-,-]:

(X, Y](x,)=[X;, Yi1(x), X,Yel(A), (x,t)eM xR,

and a bundle map, also denoted by a, a:A—T(M xR)=TM & TR with a(X)=
a(X,), in such a way that (A, [, ], a) becomes a Lie algebroid over M x R. If ¢
is a l-cocycle of the Lie algebroid A, we know from [5] that A can be equipped
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with two other Lie algebroid structures over M xR, ([,-]%,a?) and ([-,-] ,a?)
given, for all X,Y eT'(A), by

- -~ oy - 0X
¢ _ el va.
[X’ Y] _[Xt’Yl‘]+<¢aXt> 5t ( 7Yt> 6t ) (14)
~p % ~ = 0
a (X)=a(Xz)+<¢,X)5, (15)
and
Lo . ) . X -
[X,V]?=e"" ([Xr, Y1+ (o, Xt)(a_ —Y)— (o, Yi)(— —X)); (16)
t 193
a?(X)=e""@%X)). (17)

Let ((A,¢), (A", W),9¢) be a quasi-Jacobi bialgebroid over M. Then,
(A*, [+, -1, ax, W) is a Lie algebroid with 1-cocycle and we can consider on A* the
Lie algebroid structure ([-,-],", @) defined by (16) and (17). Although A is not
endowed with a Lie algebroid structure, we can still consider on I'(A) a bracket

[-,-]% and a bundle map a@? given by (14) and (15), respectively. We set ¢ =¢'¢p.

THEOREM 4.1. Under the above assumptions, we have

1. The triple ((A, ¢), (A*, W), @) is a quasi-Jacobi bialgebroid over M if and only
if (A, A*,§) is a quasi-Lie bialgebroid over M x R.

2. If A is the induced A*-quasi Poisson structure on M X R, then it is the “quasi
Poissonization” of the induced (A*, W)-quasi Jacobi structure (A, E) on M.

Proof. (1) Let us suppose that ((A, @), (A*, W), ¢) is a quasi-Jacobi bialgebroid
over M and let X, Y and Z be three arbitrary sections in I'(A) and f € C*®(M x
R, R). A straightforward computation gives

(X, fY1?=fIX, Y1+ @*X) /Y. (18)

Moreover,

e e . . . - .0
a®(X, V1% =[a(X,), a(¥)] —ax(p(Xy, Yz, ) + (¢, [X1, Vi o+

3 ay+ v O\ _ s 8)?)+ X 0\
T, X\ a(5 )+, 55 )= (@, V)| alg )+, 5o )=

=[@’X),a’m-ay (@X,7,),
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where, in the last equality, we have used d¢ — (W, -, -)=0. On the other hand,
B aLIAL AN o 5,0Z
[[X,Y]",Z]" +cp.= [[Xt,Yz],Zz]—dWXr,Yt)E +c.p.=

=—dY (X1, Y1, Zy))

. . . 07
. w t
‘((w,,f,,.)d* Zit oW, X, Y= )+c.p.)=

=-d" @& V. 2) - (izz.7.,4" Z+cp.). (19)

where 4,V is the differential operator of (A*,[-,-].",a)). Because d?¢ =0, we get

d®p=0, (20)

where d? is the quasi-differential operator determined by the structure ([-,-]%,a%)
on A. Finally, after a very long computation we obtain

dY[P,01?=[d" P, 017+ (1)r*'[P,dY 017, 1)
for P e T(A? A) and Q e I'(\ A). From relations (18)~(21), we conclude that
(A, A*, ¢) is a quasi-Lie bialgebroid over M x R.

Now, let us suppose that (A, A*, §) is a quasi-Lie bialgebroid over M x R and
take three sections X, Y and Z of A and f € C*®°(M,R). These sections can
be viewed as sections of A that do not depend on ¢, as well as the function
f can also be viewed as a function on C*®°(M x R,R). Condition (1) of Defi-
nition 2.1 is immediate from [X, fY]~¢ = flX, Y%+ @®(X)f)Y. The condition
a?([X,Y1®) =[a?X),a%)] —a¥ (@(X,Y,)) is equivalent to conditions (2) and
(4) of Definition 2.1. From d%$ =0 we deduce d®¢ =0. Finally, by similar com-
putations, we obtain the two remaining conditions that lead to the conclusion that
(A, ¢), (A*, W), ¢) is a quasi-Jacobi bialgebroid over M.

(2) Let A be the A*-quasi Poisson structure induced by (A, A*, @) on M x R.
For all f,geCOO(M x R, R), we have

{f.8)=AGf,8%)

and, on the other hand,
- o . of 95 .
{f.8y=d?f.d) g =e"((df,d*§) +7{a*(¢)(§)+a—fa(W)(f))-

If (A, E) is the (A*, W)-quasi Jacobi structure induced by ((A, ¢), (A*, W), ¢) on
M, since E =a,(¢p)=—a(W) and A(Sf,83)=(df,d.g), we get that A =e"(A +
9 AE) O
ot :

For the case of Jacobi-quasi bialgebroids we can prove a similar result. Let
((A, $), (A*, W), Q) be a Jacobi-quasi bialgebroid over M. We consider on A the

Lie zilgebroid structure ([-, -] ¢,a?%) defined by (16) and (17), on A* the structure
([-,-1,Y.a)) defined by (14) and (15), and we set Q =¢' Q.
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THEOREM 4.2. Under the above assumptions, we have

1. The triple ((A, @), (A*, W), Q) is a Jacobi-quasi bialgebroid over M if and only
if (A, A*, Q) is a Lie-quasi bialgebroid over M x R.

2. If A is the A-quasi Poisson structure induced on M x R, then it is the “quasi
Poissonization” of the (A, ¢)-quasi Jacobi structure (A, E) induced on M.

5. Appendix: Action of a Lie Algebroid with 1-Cocycle

In this Appendix, we extend the definition of Lie algebroid action [10] to that of
Lie algebroid with 1-cocycle action.

Let (A, [+, ],a) be a Lie algebroid on M and @ : F— M a fibered manifold with
base M, i.e. w:F — M is a surjective submersion onto M. We recall that an infin-
itesimal action of A on F ([10]) is a R-linear map ac:I'(A) — ['(T F) such that

1. for each X eT'(A), ac(X) is projectable to a(X),
2. the map ac preserves brackets,
3. ac(fX)=(fow)ac(X), for all feC>®(M,R) and X eT'(A).

DEFINITION 5.1. An infinitesimal action of (A, ¢) on F is a R-linear map ac? :
I'(A)— I'(TF xR) given, for each X €T'(A), by

ac?(X)=ac(X) + (¢, X),

where ac is an infinitesimal action of A on F.

In the particular case where M is a point and therefore A is a Lie algebra, we
obtain, from Definition 5.1, the notion of infinitesimal action of a Lie algebra with
1-cocycle on a manifold F, used in the definition of quasi Jacobi structures, in sec-
tion 2.3.

If, in the Definition 5.1, F=M and @ : M — M is the identity, we get the con-
cept of infinitesimal action of (A, ¢) on the base manifold M that we have used
to characterize the structure induced on the base manifold of a quasi-Jacobi bial-
gebroid.
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