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Abstract In this paper, an algorithm for solving a mathematical programming prob-
lem with complementarity (or equilibrium) constraints (MPEC) is introduced, which
uses the active-set methodology while maintaining the complementarity restrictions
throughout the procedure. Finite convergence of the algorithm to a strongly station-
ary point of the MPEC is established under reasonable hypotheses. The algorithm
can be easily implemented by adopting any active-set code for nonlinear program-
ming. Computational experience is included to highlight the efficacy of the proposed
method in practice.
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1 Introduction

A mathematical programming problem with equilibrium constraints (MPEC) is an
optimization problem in which the constraints include complementarity restrictions
or parametric variational inequalities. Complementarity problems and variational in-
equalities are related typically with phenomena of balance that appear in several im-
portant practical applications in engineering and economy. MPECs can be viewed as
extensions of bilevel programs and are also known as mathematical programs with
optimization constraints. A detailed study on this type of problems is presented in
[1, 2] and a number of algorithms are described in [1–9].

The objective of the present paper is to develop a local solution algorithm for
MPECs when the constraint functions are linear. Thus, we focus on the following
problem

(MPEC) min f (y, z,w), (1a)

s.t. Ew = q + Mz + Ny, y ∈ Ky, (1b)

z ≥ 0, w ≥ 0, zT w = 0, (1c)

where q ∈ R
l , z,w ∈ R

n, y ∈ R
m, E ∈ R

l×n, M ∈ R
l×n, N ∈ R

l×m, f : R
m×n → R

is twice continuously differentiable in an open set that contains the feasible set asso-
ciated with (1) and Ky ⊆ R

m is a convex polyhedron in y. In many applications of
MPEC, the matrices E and M are square, with E an identity matrix and M a positive-
semidefinite (PSD) matrix, or the problem can be transformed into an MPEC having
these properties.

Contrary to the approaches mentioned above, we exploit directly the generalized
linear complementarity problem (GLCP) given the constraints of the MPEC (1). As
in [10], the approach to be discussed in this paper uses the active-set methodology
and maintains complementarity during the entire procedure. Finite termination for
the procedure to a strongly stationary point [8] of the MPEC is established under a
nondegeneracy assumptions. A number of improvements of the procedure are intro-
duced in order to deal with degenerate cases. As the active-set algorithm is based on
the use of complementary solutions, the solution of the GLCP associated with the
MPEC is a key point for the algorithm. This topic is also addressed in this paper.
Computational experience is included to highlight the efficiency of the algorithm in
dealing with MPECs related to bilevel problems [11], NP-hard LCPs through their
equivalence to bilinear programs [12], and from other known sources [6].

In Sect. 2, a complementarity active-set algorithm (CASET) for finding a strongly
stationary point for MPEC is discussed in detail. The convergence of CASET is es-
tablished in Sect. 3. The implementation of CASET as well as degenerate cases are
treated in Sect. 4. Finally, we conclude the paper with some computational experience
and remarks on implementing the proposed algorithm.

2 Complementarity Active-Set Algorithm

In this section, we discuss in detail a complementarity active-set algorithm (CASET)
for finding a strongly stationary point for MPEC, that is, a solution satisfying the
necessary first-order KKT conditions of the nonlinear program (NLP), which is ob-
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tained from MPEC (1) by considering the complementarity conditions ziwi = 0,
i = 1, . . . , n, as constraints. Thus, this NLP has the following form:

(NLP) min f (y, z,w),

s.t. Ew = q + Mz + Ny, Ay = b,

z ≥ 0, w ≥ 0, y ≥ 0,

ziwi = 0, i = 1, . . . , n.

⎤
⎦ (GLCP)

The proposed algorithm is similar to a procedure described by Scholtes [10] and
consists essentially of using an active-set technique on the set of solutions of the
GLCP given by the constraints of the MPEC. Thus, at each iteration k, the corre-
sponding solution (w, z, y) satisfies the constraints of (1) and the set of the active
constraints at this solution is given by

Ew − Mz − Ny = q, (2a)

Ay = b, (2b)

wi = 0, i ∈ Lw ⊆ {1, . . . , n}, (2c)

zi = 0, i ∈ Lz ⊆ {1, . . . , n}, (2d)

yi = 0, i ∈ Ly ⊆ {1, . . . ,m}, (2e)

where Lz, Ly , Lw are the sets of the currently active constraints corresponding to
the nonnegative constraints on the variables z, y, w, respectively and Lz ∪ Lw =
{1, . . . , n}.

The active constraints (2) constitute a linear system of the form Dkx = gk where
x = (wT , zT , yT )T and Dk ∈ R

t×(2n+m), with t = l + p + |Lw| + |Lz| + |Ly |, and
where |H | is the cardinal of the set H. Recall that p and l are the number of rows of
the matrices A and [E,−M,−N ], respectively. The first-order optimality conditions
for the problem

min
{
f (x) : Dkx = gk

}

can be written in the form

∇f (x) = DT
k μ, Dkx = gk. (3)

In order to facilitate a unique set of Lagrange multipliers μ, we assume that the
following condition holds throughout the proposed procedure:

Nondegeneracy Assumption t ≤ 2n + m and rank(Dk) = t .

As we show later, this hypothesis is not restrictive under the usual full row rank as-
sumption of the matrices A and [E,−M,−N ]. Consequently, the active-set is always
linearly independent. Furthermore, let us partition the Lagrange multipliers vector μ

into three subvectors denoted by β → subvector associated with the first set of equal-
ity constraints in (2), ϑ → subvector associated with the second set of equality con-
straints in (2), λx

i → subvector associated with xi = 0 in the last three sets of equality
constraints in (2).
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The main steps of the complementary active-set algorithm are described below.

Complementarity Active-Set Algorithm—CASET

Step 0. Set k = 1 and find a solution xk of the GLCP associated with MPEC. Let
Dkx = gk be the set of active constraints at xk and let Ly , Lz, Lw be the
index sets associated with the nonnegative active constraints yi = 0, zi = 0,
wi = 0, respectively.

Step 1. Optimality Conditions
If xk is not a stationary (KKT) point (see [13]) for the equality problem

(EP) min f (x), (4a)

s.t. Dkx = gk, (4b)

then go to Step 2. Otherwise, there exists a unique μ such that DT
k μ =

∇f (xk) and two cases can occur:

(1.1) If λ
y
i ≥ 0 ∀i ∈ Ly, λz

i ≥ 0 ∀i ∈ Lz ∩Lw and λw
i ≥ 0 ∀i ∈ Lz ∩Lw , stop;

xk is a strongly stationary point for MPEC (see Theorem 3.1 below).
(1.2) If there exists at least one i such that λy

i < 0 for i ∈ Ly or λz
i < 0 for i ∈

Lz ∩ Lw or λw
i < 0 for i ∈ Lz ∩ Lw , remove an active constraint yi =

0, or zi = 0, or wi = 0, associated with the most negative Lagrange
multiplier. Let Dki

x = gk
i be the row removed from Dkx = gk and

rearrange the rows of Dkx = gk in the following way:

Dk =
[

D̄k

Dki

]
, gk =

[
ḡk

gk
i

]
.

Find a direction d such that ∇f (xk)T d < 0, D̄kd = 0, and Dki
d > 0

(Theorem 3.2 establishes below that such d exists). Replace Dk by D̄k

and go to Step 3.

Step 2. Determination of Search Direction
Find a descent direction for f in the set of active constraints, i.e., find d such
that

∇f (xk)T d < 0, Dkd = 0.

Step 3. Determination of Stepsize

(3.1) Find the largest value αmax of α such that xk + αd ≥ 0, i.e.,

αmax = min

{
xk
i

−di

: di < 0, i /∈ (Ly ∪ Lz ∪ Lw)

}
.

(3.2) Compute 0 < αk ≤ αmax such that xk + αkd provides a sufficient de-
crease for f using any line search technique [13]. If αk = +∞, stop;
MPEC is unbounded.
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Step 4. Update of Iterate
Compute xk+1 = xk + αkd . If αk = αmax, add to the active set the constraint
xi ≥ 0 for which αmax was attained such that the nondegeneracy assumption
remains true. Return to Step 1.

3 Convergence of the Complementarity Active-Set Algorithm

In this section, the convergence of the complementarity active-set algorithm to a
strongly stationary point for MPEC is proved. To begin, we establish a sufficient
condition for a stationary point to problem (4) in Step 1 to be a strongly stationary
point for MPEC.

Theorem 3.1 At any iteration k, let xk be a stationary (KKT) point with Lagrange
multipliers μ for the problem

min
{
f (x) : Dkx = gk

}
, (5)

where Dkx = gk represents all the active constraints of MPEC at xk and the
xk-components for the inactive constraints are positive. If λ

y
i ≥ 0, ∀i ∈ Ly , and

(λz
i , λ

w
i ) ≥ 0, ∀i ∈ Lz ∩ Lw , then xk is a strongly stationary point for MPEC.

Proof By definition, xk is feasible to the linear constraints of MPEC. Moreover xk

satisfies the complementarity constraints, since Lz ∪ Lw = {1, . . . , n} in each itera-
tion. By the KKT conditions for (5), we have

DT
k μ = ∇f (xk). (6)

Hence, to prove that xk is a strongly stationary point for MPEC, we need to show
that there exist μ̄ and ψ̄ such that

DT
k μ̄ +

n∑
i=1

[ξi]ψ̄i = ∇f (xk), (7a)

λ̄
y
i ≥ 0, ∀i ∈ Ly, λ̄z

i ≥ 0, ∀i ∈ Lz, λ̄w
i ≥ 0, ∀i ∈ Lw, (7b)

where the variables λ̄
y
i , λ̄z

i , λ̄w
i are the components of μ as defined above, and where

[ξi] = [
0 · · · 0 wk

i zk
i 0 · · · 0

]T
, i = 1, . . . , n (8)

↑ ↑
position for zi position for wi

and ψ̄i is the Lagrange multiplier associated with the constraint ziwi = 0, i =
1, . . . , n.

Now, let us define μ̄ to have the same components as μ for the first two sets of
equalities in (2), the remaining components of μ̄ being given as follows:
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λ̄
y
i = λ

y
i , ∀i ∈ Ly, (9a)

λ̄z
i =

{
λz

i , if λz
i ≥ 0,

0, otherwise, ∀i ∈ Lz,
(9b)

λ̄w
i =

{
λw

i , if λw
i ≥ 0,

0, otherwise, ∀i ∈ Lw,
(9c)

ψ̄i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λz
i

wk
i

, if λz
i < 0,

λw
i

zk
i

, if λw
i < 0,

0, otherwise, ∀i = 1, . . . , n.

(9d)

Then, (7b) is satisfied. Furthermore, note that ψ̄ is well defined, since {i ∈ Lz :
λz

i < 0} ∩ {i ∈ Lw : λw
i < 0} = ∅. In fact:

(i) λz
i ≥ 0 and λw

i ≥ 0 for all i ∈ Lz ∩ Lw .
(ii) λz

i < 0 ⇒ i ∈ Lz \ (Lz ∩Lw) ⇒ i /∈ Lw ⇒ wk
i > 0 ⇒ λw

i = 0 by the hypothesis.
(iii) λw

i < 0 ⇒ λw
i = 0, as in (ii).

Now if λz
i < 0, let ez

i denote the unit vector in R
n that represents the column of

DT
k corresponding to λz

i in (6). Then, it follows from (8) and (9d) that

[ez
i ]λz

i = [ξi]ψ̄i , ∀i ∈ Lz such that λz
i < 0.

Similarly, considering i ∈ Lw for which λw
i < 0, we get

[ew
i ]λw

i = [ξi]ψ̄i , ∀i ∈ Lw such that λw
i < 0. (10)

Hence, from (6) and from (9a) to (10), we have that μ̄ and ψ̄ given by (9) satisfy (7),
and this completes the proof. �

Note that this theorem also holds if the nondegeneracy condition xk
i > 0 for all in-

active i is replaced by wk
i + zk

i > 0 for all i = 1, . . . , n. However, this latter condition
does not assure that αmax in Step 3 is always positive.

Next, we prove that whenever the sufficient conditions identified in Theorem 3.1
are not satisfied, the objective function value of MPEC can be improved via Case 1.2
of Step 1.

Theorem 3.2 At any iteration k, consider the situation described by Theorem 3.1,
but suppose that some Lagrange multiplier μi , say, is negative, where μi might be λ

y
i

for i ∈ Ly , or λz
i for i ∈ Lz ∩ Lw , or λw

i for i ∈ Lz ∩ Lw . Denote Dki
x = gk

i as the
corresponding row of Dkx = gk , and rearrange the rows of Dkx = gk according to

Dk =
[

D̄k

Dki

]
, gk =

[
ḡk

gk
i

]
, μk =

[
μ′
μi

]
. (11)

Then, the problem

min
{
f (x) : D̄kx = ḡk

}
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has a feasible descent direction d satisfying

∇f (xk)T d < 0, D̄kd = 0, Dki
d > 0. (12)

Proof Note that the KKT conditions for (5) assert that

D̄T
k μ′ + DT

ki
μi = ∇f (xk). (13)

Let d be any solution to the system

[
D̄k

Dki

]
d = en, (14)

where en is the nth column of the identity matrix of order n.
Note that by the nondegeneracy assumption (full row-rank of Dk), such a d exists.

Moreover, from (13) and (14), we get

∇f (xk)T d = μ′T D̄kd + μiDki
d = μi < 0. (15)

Noting that (14) asserts D̄kd = 0 and Dki
d > 0, we have that (12) holds and this

completes the proof. �

The following theorem establishes the convergence of the CASET algorithm in a
finite number of iterations to a KKT point for MPEC, if it exists.

Theorem 3.3 Consider the algorithm CASET, and assume that the KKT solution
to problem (5) in Theorem 3.1 is finitely determined (if it exists) at each iteration.
Furthermore, assume that the set of KKT solutions to any such problem (5) takes
on only finitely many objective function values. Then, CASET finitely terminates with
a strongly stationary point for MPEC or an indication of either infeasibility or un-
boundedness of MPEC.

Proof If GLCP is infeasible, then so is MPEC. Otherwise, we know that MPEC is
feasible. If unboundedness is detected when solving problem (5) at any iteration,
then MPEC is unbounded. This follows from the fact that Lz ∪ Lw = {1, . . . , n} is
maintained and complementarity is enforced in the procedure. Otherwise, the algo-
rithm returns to Step 1 in a finite number of iterations. At this stage, it either detects
a strongly stationary point for MPEC as in Theorem 3.1, or determines a feasible
descent direction d satisfying (12) of Theorem 3.2. In the former case, termination
occurs. In the latter case, by the condition (12) and since αmax > 0 by the hypotheses
of Theorem 3.1, the next iterate xk+1 satisfies f (xk+1) < f (xk). This strict descent
property, along with the assumption on the finite number of possible objective values
taken on by the set of KKT solutions for any combination of active constraints, en-
sures that any given set of active constraints appears only finitely often at Step 1. As
the number of possible active sets is finite, the proof is complete. �

A particular case of this theorem is presented below.
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Theorem 3.4 If either f is convex or at each iteration the KKT solution xk de-
termined for problem (5) has the least objective function value, then the algorithm
CASET is finitely convergent.

Proof If f is convex, then the KKT solutions to problem (5) have a unique objective
value and the proof follows from Theorem 3.3. On the other hand, if the KKT solution
to problem (5) that is found at each iteration is a global minimum, then the proof again
follows from the argument given in the proof of Theorem 3.3. �

Therefore we have shown that the active-set algorithm is able to find a strongly
stationary point of the MPEC if the hypotheses of Theorem 3.1 and the nondegen-
eracy assumption hold. In practice, in order to fulfil this assumption, some of the
nonnegativity constraints i, such that xk+1

i = 0, may have to keep their inactive sta-
tus. Therefore cycling may occur. However, well known anticycling techniques are
implemented in active-set codes such as MINOS to prevent cycling in practice. Note
that if f is nonconvex, we are not always assured of finding a global minimum for
problem (5).

4 Implementation and Degenerate Cases

It follows from the description of the complementarity active-set algorithm that an
initial feasible solution of the MPEC is required for the algorithm to work. Such a
feasible point is a solution of the following generalized complementarity problem
(GLCP):

Ew = q + Mz + Ny, Ay = b, (16a)

z ≥ 0, w ≥ 0, y ≥ 0, (16b)

ziwi = 0, i = 1, . . . , n. (16c)

As discussed in [12], if GLCP is feasible, E is the identity matrix and M is positive
semidefinite (PSD), then such a solution can be found as a stationary point of the
following nonconvex quadratic program:

min zT w,

s.t. Ew = q + Mz + Ny, Ay = b,

z ≥ 0, w ≥ 0, y ≥ 0.

Therefore, the GLCP can be solved by an active-set algorithm. This is also valid
if the matrices of the GLCP satisfy these properties after some elementary opera-
tions. In the general case, the GLCP can be solved by an enumerative method as
described in [12]. It is also possible to implement this enumerative method by using
an active-set methodology [14]. Computational experience reported in [14] shows
that the active-set version of the enumerative method is in general more efficient that
the one described in [12] for finding a solution to the GLCP. Hence we come to the
conclusion that a solution of the GLCP can always be found by using an active-set
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code, such as MINOS [15]. In order to understand the material of this section, it is
important to recall how a solution is represented in the MINOS implementation. Let
us write the linear constraints of the GLCP (16) in the form

Gx = f, x ≥ 0, (17)

where G has full row rank. Any feasible solution for this system (17) has three types
of variables, the so-called basic, nonbasic, and superbasic variables [15, 16]. These
variables are associated with the following partition of the matrix G:

G = [B, S, N ], (18)

where B is a square nonsingular matrix associated with the basic variables, and S

and N contain the columns of the superbasic and nonbasic variables, respectively.
Furthermore, such a solution is basic if and only if there are no superbasic variables,
that is, S does not exist in the partition (18).

Now suppose that a solution x̄ = (w̄, z̄, ȳ) of the GLCP has been found. If x̄ sat-
isfies the hypothesis of Theorem 3.1, all the active constraints x̄i = 0 are associated
with the nonbasic variables and the nondegeneracy assumption holds at x̄. However,
some difficulties may arise when the solution found by the algorithm is degenerate,
that is, if there are some basic or superbasic variables x̄i with a zero value. To illus-
trate this case, consider the following MPEC:

min f (w1,w2, z1, z2, y) = −y,

s.t.

[
w1
w2

]
=

[
0 1
1 0

][
z1
z2

]
+

[
1
0

]
y +

[
0

−1

]
,

z ≥ 0, w ≥ 0, 0 ≤ y ≤ 2, zT w = 0.

The enumerative algorithm determines the following solution of the GLCP:

w̄ = (0,0)T , z̄ = (1,0)T , ȳ = 0.

An initial solution x1 for the CASET algorithm and the corresponding active con-
straints D1x

1 = g1 are as below

x1 = (0,0,1,0,0), D1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 −1
0 1 −1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, g1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Therefore, D1 ∈ R
6×5 and the nondegeneracy assumption is violated. Note that the

nondegeneracy assumption holds if we remove a nonnegativity active constraint from
the set of active constraints. However, the choice of the active constraint set is not
arbitrary. For the algorithm to be able to make some progress, it is recommended
that for each pair of complementary constraints zi = 0 and wi = 0 exactly one of
them is considered as active. In the previous example this is achieved by considering
y = 0 as inactive. Then y = 0 and z1 = 1 are the basic variables and all the remaining
variables are nonbasic. So the solution is basic, as there are no superbasic variables.
Furthermore, it satisfies the nondegeneracy assumption and can be an initial point for
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the CASET algorithm. As the nonnegative active constraints correspond to nonbasic
variables, we suggest the following process to be applied, if necessary, before the
Algorithm CASET comes into operation.

4.1 Procedure for Finding an Initial Solution for the Caset Algorithm

Let x̄ = (w̄, z̄, ȳ) be a solution of the GLCP.

(i) If for each i = 1, . . . , n, at least one of the variables zi or wi is nonbasic, then
use x̄ as the initial solution for the algorithm CASET.

(ii) If there is a pair of complementary variables (z̄i , w̄i), where both of them are
zero and one is superbasic, change the status of this variable with a nonba-
sic variable yj or a zj (or wj ) variable from a nonbasic complementary pair
(z̄j , w̄j ), j �= i. Repeat this procedure until there are no such complementary
pairs.

(iii) If there is a zero basic complementary variable (say zi ) whose complementary
variable wi is basic or superbasic, perform pivot steps to make zi nonbasic.
These pivot steps should maintain as nonbasic all the variables whose comple-
mentary variables are basic or superbasic. If such pivot steps are possible, repeat
until the situation (i) occurs. Otherwise, the procedure terminates with a failure.

Another difficulty may arise when the solution x̄ = (w̄, z̄, ȳ) found by the algo-
rithm CASET has a complementary pair (z̄i = 0, w̄i = 0), such that one of the con-
straints, say zi ≥ 0, is considered to be inactive (zi is basic or superbasic) and the
other active (wi is nonbasic). The following example illustrates this case:

min f (w1,w2, z1, z2, y) = w2 − y, (19a)

s.t.

[
w1
w2

]
=

[
0 −1

−1 0

][
z1
z2

]
+

[
1
1

]
y +

[−1
−1

]
(19b)

zi ≥ 0, wi ≥ 0, i ∈ {1,2}, 0 ≤ y ≤ 2, (19c)

ziwi = 0, i ∈ {1,2}. (19d)

If the algorithm CASET is applied to problem (19) using an initial basic solution with
basis

w1 y1

B =
[

1 −1
0 −1

]

associated with the variables w1 and y, then the following solution is obtained:

w = 0, z = 0, y = 1. (20)

Furthermore, the corresponding multipliers are

λw = 0, λz = [−1 0]T , λy = 0.
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This shows that there exists a pair of complementary variables (z1,w1), both zero,
with z1 being nonbasic and w1 basic. Therefore, w1 ≥ 0 is considered as inactive
and the CASET algorithm stops without producing a stationary point for MPEC. As
in this case, the Lagrange multiplier λz

1 (reduced gradient) associated with z1 = 0 is
negative and w1 = 0, there is an advantage to increase the value of z1. To perform
this operation, it is necessary to first make nonbasic the variable w1. If this operation
can be performed, then z1 can next be increased from zero without destroying the
complementarity of the solution. So the following procedure can be used after the
CASET algorithm terminates with a degenerate solution.

4.2 Improvement Step

Let x̄ = (w̄, z̄, ȳ) be a degenerate solution found by the algorithm CASET. If there
exists a complementary pair with nonbasic wi = 0 (or zi = 0) and basic or superbasic
variable zi = 0 (or wi = 0) such that λw

i < 0 (λz
i < 0) for i ∈ (Lz ∪ Lw) \ (Lz ∩ Lw)

make this latter variable nonbasic by pivot steps in such a way that no nonbasic vari-
able, whose complementary variable is either basic or superbasic, is allowed to be-
come basic. Repeat the procedure if necessary.

If we solve problem (19) by the algorithm CASET with this extension, then the
solution w = 0, z = [1 1]T and y = 2 is obtained and the corresponding multipliers
are given as follows: λw = [0 1]T , λz = 0, λy = 1.

The objective function associated with this solution has a smaller value than the
corresponding solution presented in (20). Actually, this solution is a global minimum
for MPEC, as the Lagrange multipliers associated with the active constraints are non-
negative.

It is important to point out that this modification might fail when the restricted
basis entry rule blocks the process from proceeding.

5 Computational Experience

In this section we present some computational experience to exhibit the efficacy of
the complementarity active-set algorithm (CASET) described in this paper for obtain-
ing a strongly stationary point for MPEC, as well as to compare this algorithm with
some existing methods in the literature. All computations have been performed on a
Pentium IV 2.4 GHz machine having 256 MB of RAM.

5.1 Test Problems

The test problem generator for linear and quadratic bilevel problems used in our
computations was developed by P. Calamai and L. Vicente [11, 17] and allows the
generation of problems having known optimal solutions. With this generator [11], it
is also possible to perform modifications in the test problems to obtain new instances
that have precisely the same characteristics and solutions as those for the initial linear
bilevel problems (LBPs), but are less sparse. In this paper, modifications for the three
first problems were performed to generate three new LBPs. These are denoted with
the same name as the original problem with the addition of the letter “M” (LV1M,
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LV2M, and LV3M, respectively). For creating these modifications, the parameters
described in [11] were used.

For additional test problems, we generated also five quadratic bilevel problems
QBPs [17] assuming that the feasible region is restricted to the nonnegative orthant,
i.e., x ≥ 0 and y ≥ 0. This modification does not alter the set of local and global
minima for these test problems.

As a second class of test problems, we considered the NP-hard LCPs (linear com-
plementarity problems) that are associated with knapsack problems [12]. The LCPs
can be transformed into MPECs using the transformations described in [12].

5.2 Determination of a Strongly Stationary Point for MPEC

Since the MPECs associated with the foregoing collection of test problems can be
degenerate, it becomes necessary to incorporate the extensions recommended in
Sect. 4. In particular, we focus on the improvement step of CASET, which is de-
noted by CASET-I in Table 1. In this table, N represents the dimension of the MPEC,
NC and NI are, respectively, the total number of pairs of complementary variables
and iterations performed by CASET, T is the total CPU time in seconds for solving
the MPEC, OBJ. is the value attained for the objective function, and OP.OBJ. is the
known optimal value.

Table 1 presents the computational results of Algorithm CASET for solving the
MPECs associated with the bilevel problems of Calamai and Vicente [11, 17] and the
LCPs corresponding to knapsack problems. These results show that, in general, the
proposed complementarity active-set algorithm was able to find a strongly station-
ary point for all problems in a reasonable amount of time and with few iterations.
This stationary point is, in some cases, a global minimum for the bilevel problem.
For the LCPs associated with knapsack problems, the version CASET-I sometimes
achieved better values of the objective function as compared with the original version
of CASET with a few more iterations and in the same order of computational effort.

In [7], Leyffer considers a MPEC with optimal solution is (x, y,w)∗ = (−1,2,0).
However, it was shown in [7] that the IPPA [1] converges to a limit point
(x∞, y∞,w∞) with −.4828 ≤ x∞ ≤ 0, 1 ≤ y∞ ≤ 1.4828, and w∞ = 0.0, which
satisfies the nondegeneracy assumption required in [1] for the convergence of the
IPPA algorithm, but is not a stationary point of this problem. Analyzing the behavior
of the CASET algorithm in solving this problem, we verified that the algorithm indeed
achieved a strongly stationary point, which happens to be a global minimum of the
problem, in a reduced computational effort.

Fukushima et al. [9] have introduced a sequential quadratic programming algo-
rithm (SQP) for finding a stationary point for an MPEC of the following form:

min f (x, y),

s.t. w = q + Mx + Ny, Ay ≤ b,

x ≥ 0, y ≥ 0, w ≥ 0, xT w = 0,

where f : R
n+m → R is a continuously differentiable function, N ∈ R

n×m, M ∈
R

n×n is a P0 matrix [18], A ∈ R
p×m, q ∈ R

n, b ∈ R
p , and (x,w,y) ∈ R

2n+m. We
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Table 1 Performance of the CASET algorithm for the LCP and bilevel problems

PROB NC N CASET CASET-I OP.OBJ.

NI T OBJ. NI T OBJ.

LBP LV1 12 12 × 28 8 0.02 8.000 8 0.03 8.000 6.000

LV1M 12 12 × 28 10 0.00 6.000 10 0.03 6.000 6.000

LV2 30 30 × 70 20 0.00 20.000 20 0.02 20.000 16.000

LV2M 30 30 × 70 21 0.02 16.000 21 0.01 16.000 16.000

LV3 55 55 × 125 35 0.00 40.000 35 0.03 40.000 30.200

LV3M 55 55 × 125 36 0.00 33.200 36 0.03 33.200 30.200

LV4 48 48 × 116 29 0.00 8.000 29 0.02 8.000 6.000

LV5 48 48 × 116 31 0.00 16.000 31 0.00 16.000 14.000

LV6 110 110 × 250 53 0.02 12.000 53 0.02 12.000 7.500

LV7 110 110 × 250 57 0.02 28.000 57 0.05 28.000 23.500

LV8 190 190 × 410 94 0.03 56.000 94 0.05 56.000 50.500

QBP NLV1 8 8 × 20 6 0.06 0.500 6 0.00 0.500 0.313

NLV2 16 16 × 38 10 0.03 1.000 10 0.00 1.000 0.593

NLV3 20 20 × 50 16 0.02 1.000 16 0.02 1.000 0.790

NLV4 60 60 × 145 50 0.01 1.250 50 0.00 1.250 1.040

NLV5 80 80 × 190 57 0.03 3.250 57 0.02 3.250 2.436

LCP - 1NA1 44 44 × 110 40 0.02 0.499 41 0.02 0.280 0.000

KNAPSACK 1NA2 104 104 × 260 120 0.05 0.500 121 0.03 0.440 0.000

1NA3 204 204 × 510 203 0.05 0.346 203 0.05 0.346 0.000

1NA4 304 304 × 760 295 0.08 0.321 295 0.09 0.321 0.000

1NB1 44 44 × 110 12 0.03 0.499 13 0.02 0.310 0.000

1NB2 104 104 × 260 59 0.05 0.353 59 0.02 0.353 0.000

1NB3 204 204 × 510 111 0.06 0.263 111 0.03 0.263 0.000

1NB4 304 304 × 760 168 0.10 0.500 169 0.05 0.200 0.000

1NC1 44 44 × 110 9 0.08 0.497 10 0.00 0.030 0.000

1NC2 104 104 × 260 35 0.01 0.425 35 0.02 0.425 0.000

1NC3 204 204 × 510 63 0.05 0.318 63 0.01 0.318 0.000

1NC4 304 304 × 760 96 0.05 0.500 97 0.03 0.080 0.000

conducted a small computational experiment using some test problems defined in
[3] and [9], which have been solved by alternative methods. Table 2 displays the
results achieved by using the CASET algorithm, the SQP algorithm described in [9],
and the AS method (approached stationary point—differentiable method) introduced
in [3] for solving these problems. In this table, P.FUK. and P.FAC. represent the
particular test problems given in [9] and [3], respectively, while (m,n,p) represents
the dimension of the problem. Also, of the two values presented for the number of
iterations in the SQP algorithm, the first one is obtained using the same parameter
values for the SQP program in the three test problems, while the value in the brackets
is achieved with specifically chosen parameter values for each problem. The results
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Table 2 Comparison between the CASET, SQP and AS algorithms

P.FUK. P.FAC. (m,n,p) AS SQP CASET

NI OBJ. NI OBJ. NI OBJ.

1 6 (1, 1, 2) 5 −3266.67 22(6) −3266.67 2 −3266.67

2 9 (2, 2, 4) 7 0.36E-26 48(6) 0.36E-26 4 0.25E-29

3 10 (4, 4, 9) 51 −6600.00 31 −6600.00 15 −6600.00

presented in Table 2 show that, for Problems 1 and 3, all three methods were able
to obtain solutions having the same value of the objective function, which is the
global minimum of the problem [3]. In Problem 2, CASET has evidently found a
strongly stationary point with a better objective value than the one obtained by the
other algorithms. Moreover, the CASET algorithm needed only a few of iterations to
find these solutions. As the dimension of the problems is small, the computational
time is of little significance, and therefore is not presented.

As a main conclusion from this computational experience, we can state that the
complementarity active-set algorithm (CASET) is a robust and efficient process to
find a strongly stationary point of MPEC. Although it is difficult to establish con-
clusions regarding comparisons with alternative techniques due to lack of available
information, the numerical results generally indicate that the algorithm is compet-
itive with, and sometimes more efficient than, other local methods that have been
considered for finding a stationary point for MPEC.
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