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Abstract. The many-fermion Lagrangian which includes the ’t Hooft six-quark flavor mixing interaction
(Nf = 3) and the UL(3)×UR(3) chiral symmetric four-quark Nambu–Jona-Lasinio- (NJL-) type interactions
is bosonized by the path integral method. The method of the steepest descents is used to derive the effective
quark–mesonic Lagrangian with linearized many-fermion vertices. We obtain, additionally to the known
lowest order stationary phase result of Reinhardt and Alkofer, the next to leading order (NLO) contribution
arising from quantum fluctuations of auxiliary bosonic fields around their stationary phase trajectories (the
Gaussian integral contribution). Using the gap equation we construct the effective potential, from which
the structure of the vacuum can be settled. For some set of parameters the effective potential has several
extrema, that in the case of SU(2)I × U(1)Y flavor symmetry can be understood on topological grounds.
With increasing strength of the fluctuations the spontaneously broken phase gets unstable and the trivial
vacuum is restored. The effective potential reveals furthermore the existence of logarithmic singularities
at certain field expectation values, signalizing caustic regions.

1 Introduction

The global UL(3)×UR(3) chiral symmetry of the QCD La-
grangian (for massless light quarks) is broken by the UA(1)
Adler–Bell–Jackiw anomaly of the SU(3) singlet axial cur-
rent q̄γµγ5q. Through the study of instantons [1,2], it has
been realized that this anomaly has physical effects with
the result that the theory contains neither a conserved U(1)
quantum number, nor an extra Goldstone boson. Instead,
effective 2Nf quark interactions arise, which are known as
’t Hooft interactions. In the case of two flavors they are four-
fermion interactions, and the resulting low-energy theory
resembles the original Nambu–Jona-Lasinio model [3]. In
the case of three flavors they are six-fermion interactions
which are responsible for the correct description of η and
η′ physics, and additionally lead to the OZI-violating ef-
fects [4, 5],

L2Nf
= κ(det q̄PLq + det q̄PRq), (1)

where the matrices PL,R = (1 ∓ γ5)/2 are projectors and
the determinant is over flavor indices.

The physical degrees of freedom of QCD at low-energies
are mesons. The bosonization of the effective quark interac-
tion (1) by the path integral approach has been considered
in [6,7]. A similar problem has been studied by Reinhardt
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and Alkofer in [8], where the UL(3) × UR(3) chiral sym-
metric four-quark interaction

L4 =
G

2
[
(q̄λaq)2 + (q̄iγ5λaq)2

]
(2)

has been additionally included in the quark Lagrangian

Lint = L6 + L4. (3)

To bosonize the theory in both mentioned cases one has to
integrate out from the path integral a part of the auxiliary
degrees of freedom which are inserted into the original
expression together with constraints [8]

1 =
∫ ∏

a

DsaDpaδ(sa − q̄λaq)δ(pa − q̄iγ5λaq)

=
∫ ∏

a

DsaDpaDσaDφa (4)

× exp
{

i
∫

d4x [σa(sa − q̄λaq) + φa(pa − q̄iγ5λaq)]
}

.

The auxiliary bosonic fields, σa and φa (a = 0, 1, . . . , 8),
become the composite scalar and pseudoscalar mesons and
the auxiliary fields, sa and pa, must be integrated out. The
standard way to do this is to use the semi-classical or the
WKB approximation, i.e. one has to expand the sa and pa

dependent part of the action about the extremal trajec-
tory. Both in [6, 7] and in [8] the lowest order stationary



224 A.A. Osipov, B. Hiller: Path integral bosonization of the ’t Hooft determinant: quasi-classical corrections

phase approximation (SPA) has been used to estimate the
leading contribution from the ’t Hooft determinant. In this
approximation the functional integral is dominated by the
stationary trajectories rst(x), determined by the extremum
condition δS(r) = 0 of the action S(r)1. The lowest order
SPA corresponds to the case in which the integrals asso-
ciated with δ2S(r) for the path rst(x) are neglected and
only S(rst) contributes to the generating functional.

In this paper we obtain the �-correction to the leading
order SPA result. It contains not only an extended version
of our calculations which have been published recently [9]
but also includes new material with a detailed discussion
of analytic solutions of the stationary phase equations,
calculations of the effective potential to one-loop order,
solutions of the gap equations, general expressions for quark
mass corrections, and quark condensates. We also discuss
the results of the perturbative approach to find solutions
of the stationary phase equations.

There are several reasons for performing the present
calculation. First, although the formal part of the problem
considered here is well known, being a standard one-loop
approximation, these calculations have never been done
before. The reason might be the difficulties created by
the cumbersome structure of expressions due to the chiral
group. Special care must be taken in the way calculations
are performed to preserve the symmetry properties of the
theory. Second, it provides a nice explicit example of how
the bosonization program is carried out in the case with
many-fermion vertices. Third, since the whole calculation
can be done analytically, the results allow us to examine
in detail the chiral symmetry breaking effects at the semi-
classical level. By including the fluctuations around the
classical path related with the ’t Hooft six-quark determi-
nant, our calculations of the gap equations and effective
potential fill up a gap existing in the literature. Fourth,
the problem considered here is a necessary part of the
work directed to the systematic study of quantum effects
in the extended Nambu–Jona-Lasinio models with the ’t
Hooft interaction. It has been realized recently that quan-
tum corrections induced by mesonic fluctuations can be
very important for the dynamical chiral symmetry break-
ing [10,11], although they are 1/Nc suppressed.

Let us discuss briefly the main steps of the bosonization
which we are going to do in the following sections. As
an example of the subsequent formalism, we consider the
bosonization procedure for the first term of Lagrangian (1).
Using the identity (4) one has

exp
{

i
�

∫
d4x κ det(q̄PLq)

}

=
∫ ∏

a

DWa exp
(

i
�

∫
d4x(−q̄WPLq)

)
(5)

×
∫ ∏

a

DU†
a exp

{
i
�

∫
d4x

(
1
2
WaU†

a +
κ

64
det U†

)}
.

1 Here r is a general notation for the variables (sa, pa) and
S(r) is the r dependent part of the total action.

The variables W = Waλa, where Wa = σa− iφa, describe a
nonet of meson fields of the bosonized theory. The auxiliary
variables U† = U†

aλa, U†
a = sa + ipa must be integrated

out. The Lagrangian in the first path integral as well as
the Lagrangian L(W, U†) in the second one have order N0

c ,
because q̄q and U† count as Nc, κ ∼ N−3

c and W ∼ N−1
c .

Thus we cannot use large Nc arguments to apply the SP
method for evaluation of the integral. However, the SPA is
justified in the framework of the semi-classical approach.
In this case the quantum corrections are suppressed by cor-
responding powers of �. The stationary phase trajectories
are given by the equations

∂L

∂U†
a

=
Wa

2
+

3κ

64
AabcU

†
b U†

c = 0, (6)

where the totally symmetric constants, Aabc, come from
the definition of the flavor determinant:

det U† = AabcU
†
aU†

b U†
c ,

and are equal to

Aabc =
1
3!

εijkεmnl(λa)im(λb)jn(λc)kl (7)

=
2
3
dabc +

√
2
3

(3δa0δb0δc0 − δa0δbc − δb0δac − δc0δab) ,

with λa being the standard U(3) Gell-Mann matrices,
[λa, λb] = 2ifabcλc, {λa, λb} = 2dabcλc, normalized such
that trλaλb = 2δab, and a = 0, 1, . . . , 8.

The solution to (6), U†
st(W ), is a function of the 3 × 3

matrix W

U†
st(W ) = 4

√
1

−κ
W−1(det W )

1
2 . (8)

Expanding L(W, U†) about the stationary point U†
st(W )

we obtain

L(W, U†) = L(W, U†
st(W )) +

1
2
Ũ†

a

∂2L

∂U†
a∂U†

b

Ũ†
b

+
1
3!

Ũ†
a

∂3L

∂U†
a∂U†

b ∂U†
c

Ũ†
b Ũ†

c , (9)

where Ũ† ≡ U† − U†
st and, as one can easily see,

L(W, U†
st(W )) =

1
4
tr(WU†

st) +
κ

64
det U†

st

= 2

√
det W

−κ
. (10)

Therefore, we can present (5) in the form

exp
{

i
�

∫
d4x κ det(q̄PLq)

}
(11)

=
∫ ∏

a

DWa exp

{
i
�

∫
d4x

(
−q̄WPLq + 2

√
det W

−κ

)}
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×
∫ ∏

a

DŨ†
a exp

{
i
�

∫
d4x

(
1
2
Ũ†

a

∂2L

∂U†
a∂U†

b

Ũ†
b + . . .

)}
,

which splits up the object of our studies in two contributions
which we can clearly identify: the first line contains the
known tree-level result [7] and the second line accounts for
the �-suppressed corrections to it, which we are going to
consider. Unfortunately, the last functional integral is not
well defined. To avoid this problem, we will study the theory
with the Lagrangian (3). In this case the functional integral
with quantum corrections can be consistently defined in
some region F , where the field independent part, Dab, of the
matrix ∂2L(r)/∂ra∂rb has real and positive eigenvalues. In
order to estimate the effect of the new contribution on the
vacuum state we derive the modified gap equation and,
subsequently, integrate it, to obtain the effective potential
V (F). On the boundary, ∂F , the matrix Dab has one or
more zero eigenvalues, d0(k)(∂F) = 0, and hence Dab is
non-invertible. As a consequence, the effective potential
blows up on ∂F . This calls for a more thorough study
of the effective potential in the neighborhood of ∂F , since
the WKB approximation obviously fails here (region of the
caustic). Sometimes one can cure this problem going into
higher orders of the loop expansion [12,13]. Nevertheless,
V (F) can be analytically continued for arguments exterior
to ∂F , where d0(k) are negative. In fact, because of chiral
symmetry, we have two independent matrices D

(1)
ab and

D
(2)
ab associated with the two quadratic forms saD

(1)
ab sb and

paD
(2)
ab pb in the exponent of the Gaussian integral. The

eigenvalues of these matrices are positive in the regions
F1 and F2, respectively, and F1 ⊃ F2. Accordingly, the
SU(3) effective potential iswell defined on the three regions:
F1 = {d

(1)
0 , d

(2)
0 > 0}, F2 = {d

(1)
0 > 0, d

(2)
0 < 0}, and F3 =

{d
(1)
0 , d

(2)
0 < 0} separated by the two boundaries ∂F2 and

∂F1, where V → +∞. It means that the effective potential
has one stable local minimum in each of these regions.
However, we cannot say at the moment how much this
picture might be modified by going beyond the Gaussian
approximation near caustics.

Our paper is organized as follows: in Sect. 2 we describe
the bosonization procedure by the path integral for the
model with Lagrangian (3) and obtain �-corrections to
the corresponding effective action taking into account the
quantum effects of auxiliary fields ra. We represent the
Lagrangian as a series in increasing powers of mesonic
fields, σa, φa. The coefficients of the series depend on the
model parameters G, κ, m̂, and are calculated in the phase
where chiral symmetry is spontaneously broken and quarks
get heavy constituent masses mu, md, ms. We show that all
coefficients are defined recurrently through the first one,
ha. Closed-form expressions for them are obtained in Sect. 3
for the equal quark mass as well as mu = md �= ms cases. In
Sect. 3 we also study �-corrections to the gap equation. We
obtain �-order contributions to the tree-level constituent
quark masses. The effective potentials with SU(3) and
SU(2)I×U(1)Y flavor symmetries are explicitly calculated.
In Sect. 4 we alternatively use the perturbative method
(1/Nc-expansion) to solve the stationary phase equations.

We show that this approach leads to strong suppression of
quantum effects. The result is suppressed by two orders of
the expansion parameter. We give some concluding remarks
in Sect. 5. Some details of our calculations one can find in
three appendices.

2 Path integral bosonization
of many-fermion vertices

The many-fermion vertices can be linearized by introducing
the functional unity (4) in the path integral representation
for the vacuum persistence amplitude [8]

Z =
∫

DqDq̄ exp
(

i
∫

d4xL
)

. (12)

We consider the theory of quark fields in four-dimensional
Minkowski space, with dynamics described by the La-
grangian density

L = q̄(iγµ∂µ − m̂)q + Lint. (13)

We assume that the quark fields have color (Nc = 3) and
flavor (Nf = 3) indices which range over the set i = 1, 2, 3.
The current quark mass, m̂, is a diagonal matrix with ele-
ments diag(m̂u, m̂d, m̂s), which explicitly breaks the global
chiral SUL(3)×SUR(3) symmetry of the Lagrangian. The
second term in (13) is given by (3).

By means of the simple trick (4), it is easy to write
down the amplitude (12) as

Z =
∫

DqDq̄
8∏

a=0

Dsa

8∏
a=0

Dpa

8∏
a=0

Dσa

8∏
a=0

Dφa

× exp
(

i
∫

d4xL′
)

, (14)

with

L′ = q̄(iγµ∂µ − m̂ − σ − iγ5φ)q +
G

2
[
(sa)2 + (pa)2

]
+saσa + paφa +

κ

64
[det(s + ip) + det(s − ip)] ,

(15)

where, as everywhere in this paper, we assume that σ =
σaλa, and so on for all auxiliary fields: φ, s, p. Equa-
tion (14) defines the same expression as (12). To see this,
one has to integrate first over the auxiliary fields σa, φa.
This leads to δ-functionals which can be integrated out by
taking integrals over sa and pa and which bring us back
to the expression (12). On the other hand, it is easy to
rewrite (14), by changing the order of integrations, in a
form appropriate to accomplish the bosonization, i.e., to
calculate the integrals over the quark fields and integrate
out from Z the unphysical part associated with the auxil-
iary sa, pa bosonic fields,

Z =
∫ ∏

a

DσaDφaDqDq̄ exp
(

i
∫

d4xLq(q̄, q, σ, φ)
)
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×
∫ ∏

a

DsaDpa exp
(

i
∫

d4xLr(σ, φ, s, p)
)

, (16)

where

Lq = q̄(iγµ∂µ − m̂ − σ − iγ5φ)q, (17)

Lr =
G

2
[
(sa)2 + (pa)2

]
+ (saσa + paφa)

+
κ

32
Aabcsa (sbsc − 3pbpc) . (18)

The Fermi fields enter the action bilinearly; we can always
integrate over them, because in this case we deal with
a Gaussian integral. At this stage one should also shift
the scalar fields σa(x) → σa(x) + ∆a by demanding that
the vacuum expectation values of the shifted fields vanish,
〈0|σa(x)|0〉 = 0. In other words, all tadpole graphs in the
end should sum to zero, giving us the gap equation to fix
the constants ∆a. Here ∆a = ma − m̂a, with ma denoting
the constituent quark masses2.

To evaluate the functional integrals over sa and pa,

Z [σ, φ; ∆] ≡ N
∫ +∞

−∞

∏
a

DsaDpa (19)

× exp
(

i
∫

d4xLr(σ + ∆, φ, s, p)
)

,

where N is chosen so that Z[0, 0; ∆] = 1, one has to use
the stationary phase method. Following the standard pro-
cedure of the method we expand the Lagrangian Lr(s, p)
about the stationary point of the system ra

st = (sa
st, pa

st).
Near this point the Lagrangian Lr(s, p) can be approxi-
mated by the sum of two terms

Lr(σ + ∆, φ, s, p) ≈ Lr(rst) (20)

+
1
2

∑
α,β

r̃α(x)L′′
αβ(rst)r̃β(x),

where we have only neglected contributions from the third
order derivatives of Lr(s, p). The stationary point, ra

st, is
a solution of the equations L′

r(s, p) = 0 determining a flat
spot of the surface Lr(s, p):


Gsa + (σ + ∆)a +
3κ

32
Aabc(sbsc − pbpc) = 0,

Gpa + φa − 3κ

16
Aabcsbpc = 0.

(21)

This system is well known from [8]. We use in (20) the
symbols r̃α for the differences (rα − rα

st). To deal with the
multitude of integrals we define a column r̃ with eighteen
components r̃α = (s̃a, p̃a), with the real and symmetric

2 The shift by the current quark mass is needed to hit the
correct vacuum state; see e.g. [14]. The functional integration
measure in (16) does not change under this redefinition of the
field variable σa(x).

matrix L′′
αβ(rst) being equal to

L′′
αβ(rst) =


Gδab +

3κ

16
Aabcs

c
st −3κ

16
Aabcp

c
st

−3κ

16
Aabcp

c
st Gδab − 3κ

16
Aabcs

c
st


 .

(22)
The path integral (19) can now be concisely written as

Z [σ, φ; ∆] ≈ N exp
(

i
∫

d4xLr(rst)
)∫ +∞

−∞

∏
α

Dr̃α

× exp
(

i
2

∫
d4xr̃t(x)L′′

r (rst)r̃(x)
)

. (23)

The Gaussian multiple integrals in (23) define a function
of L′′

αβ(rst) which can be calculated by a generalization
of the well-known formula for a one-dimensional Gaussian
integral. Before we do this, though, some additional com-
ments should be made.
(1) The first exponential factor in (23) is not new. It has
been obtained by Reinhardt and Alkofer in [8]. A bit of
manipulation with the expressions (18) and (21) leads us
to the result

Lr(rst)

=
1
6
{
G
[
(sa

st)
2 + (pa

st)
2]+ 4 [(σ + ∆)asa

st + φapa
st]
}

=
G

12
tr(UstU

†
st) +

1
6
tr(WU†

st + W †Ust). (24)

Here the trace is taken over flavor indices. We also use
the notation W = Waλa and U = Uaλa where Wa =
σa + ∆a − iφa, Ua = sa − ipa. It is similar to the notation
chosen in (5) with the only difference that the scalar field σa

is already split as σa → σa + ∆a. This result is consistent
with (10) in the limit G = 0. For this partial case (21)
coincides with (6) and we know its solution (8). If G �= 0
we have to obtain the stationary point Ust from (21).

One can try to solve (21) exactly, looking for solutions
sa
st and pa

st in the form of increasing powers in the fields σa

and φa:

sa
st = ha + h

(1)
ab σb + h

(1)
abcσbσc + h

(2)
abcφbφc

+h
(1)
abcdσbσcσd + h

(2)
abcdσbφcφd + . . . , (25)

pa
st = h

(2)
ab φb + h

(3)
abcφbσc + h

(3)
abcdσbσcφd

+h
(4)
abcdφbφcφd + . . . , (26)

with coefficients depending on ∆a and coupling constants.
Putting these expansions in (21) one obtains a series of
self-consistent equations to determine ha, h

(1)
ab , h

(2)
ab and so

on. The first three of them are

Gha + ∆a +
3κ

32
Aabchbhc = 0,(

Gδac +
3κ

16
Aacbhb

)
h(1)

ce = −δae , (27)
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(
Gδac − 3κ

16
Aacbhb

)
h(2)

ce = −δae .

All the other equations can be written in terms of the
already known coefficients; for instance, we have

h
(1)
abc =

3κ

32
h

(1)
aā h

(1)
bb̄

h
(1)
cc̄ Aāb̄c̄,

h
(2)
abc = −3κ

32
h

(1)
aā h

(2)
bb̄

h
(2)
cc̄ Aāb̄c̄,

h
(3)
abc = −3κ

16
h

(2)
aā h

(2)
bb̄

h
(1)
cc̄ Aāb̄c̄,

h
(1)
abcd =

3κ

16
h

(1)
aā h

(1)
bb̄

h
(1)
c̄cdAāb̄c̄,

h
(2)
abcd =

3κ

16
h

(1)
aā

(
h

(1)
bb̄

h
(2)
c̄cd − h

(2)
cb̄

h
(3)
c̄db

)
Aāb̄c̄, . . . (28)

It is assumed that coupling constants G and κ are chosen
such that (27) can be solved. Let us also give the relations
following from (27) which have been used to obtain (28):

hb = (Gha + 2∆a)h(1)
ab = −(3Gha + 2∆a)h(2)

ab . (29)

As a result the effective Lagrangian (24) can be expanded
in powers of the meson fields. Such an expansion, up to and
including the terms which are cubic in σa, φa, looks like

Lr(rst) = haσa +
1
2
h

(1)
ab σaσb +

1
2
h

(2)
ab φaφb

+
1
3
σa

[
h

(1)
abcσbσc +

(
h

(2)
abc + h

(3)
bca

)
φbφc

]
+O(field4). (30)

This part of the Lagrangian is responsible for the dynamical
symmetry breaking in the quark system and for the masses
of the mesons in the broken vacuum.
(2) The coefficients ha are determined by the couplings G, κ
and the mean field ∆a. This field has in general only three
non-zero components with indices a = 0, 3, 8, according
to the symmetry breaking pattern. The same is true for
ha because of the first equation in (27). It means that
there is a system of only three equations to determine
h = haλa = diag(hu, hd, hs):



Ghu + ∆u +
κ

16
hdhs = 0,

Ghd + ∆d +
κ

16
hshu = 0,

Ghs + ∆s +
κ

16
huhd = 0.

(31)

This leads to a fifth order equation for a one-type variable
and can be solved numerically. For two particular cases,
m̂u = m̂d = m̂s and m̂u = m̂d �= m̂s, (31) can be solved
analytically, because they are of second and third order,
respectively. We shall discuss this in the next section.
(3) Let us note that the Lagrangian (18) is a quadratic
polynomial in pa(x) and cubic with respect to sa(x). It
suggests to complete first the Gaussian integration over

pa and only then to use the stationary phase method to
integrate over sa. In this case, however, one breaks chiral
symmetry. This is circumvented by working with the col-
umn variable rα, treating the chiral partners (sa, pa) on
the same footing. It is easy to check in the end that the
obtained result is in agreement with chiral symmetry.

Let us turn now to the evaluation of the path integral
in (23). After the formal analytic continuation in the time
coordinate x0 → ix4, we have3

K [rst] = (32)

N
∫ +∞

−∞

∏
α

Dr̃α exp
(

−1
2

∫
d4xEr̃t(xE)L′′

r (rst)r̃(xE)
)

,

where the subscripts E denote Euclidean quantities. To
find an expression for K [rst], we split the matrix L′′

r into
two parts L′′

r (rst) = D − L, where

Dαβ = −
(

h
(1)−1
ab 0
0 h

(2)−1
ab

)
αβ

,

Lαβ =
3κ

16
Aabc

(−(sc
st − hc) pc

st

pc
st sc

st − hc

)
αβ

. (33)

The matrix D corresponds to L′′
r evaluated at the point

sa
st = ha, pa

st = 0 and is simplified with the help of (27). The
field dependent exponent with matrix L can be represented
as a series. Therefore, we obtain

K [rst] = N
∫ +∞

−∞

∏
α

Dr̃α exp
(

−1
2

∫
d4xEr̃αDαβ r̃β

)

×
∞∑

n=0

1
n!

(
1
2

∫
d4xEr̃αLαβ r̃β

)n

. (34)

The real symmetric matrix Dαβ can be diagonalized by
a similarity transformation, r̃α = Sαβ r̃′

β . We are then
left with the eigenvalues of the matrix D in the path
integral (34). These eigenvalues are real and positive in
a finite region fixed by the coupling constants. For in-
stance, if m̂u = m̂d = m̂s the region is (−κ∆u) < 12G2

where, as usual in this paper, we assume that G > 0
and κ < 0. In this region the path integral is a Gaus-
sian one and converges. To perform this integration, we
first change variables r̃′

β = Uβσqσ, such that U rescales
the eigenvalues to 1. The quadratic form in the exponent
becomes r̃αDαβ r̃β = r̃′

α(StDS)αβ r̃′
β = qαqα. The matrix

of the total transformation, Vασ = SαβUβσ, has the block-
diagonal form

Vαβ =

(
V

(1)
ab 0
0 V

(2)
ab

)
αβ

, h
(1)
ab = −V (1)

ac V
(1)
bc ,

3 It differs from the standard Wick rotation by a sign. The
sign is usually fixed by the requirement that the resulting
Euclidean functional integral is well defined. Our choice has
been made in accordance with the convergence properties of
the path integral (23).
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h
(2)
ab = −V (2)

ac V
(2)
bc . (35)

Then the integral (34) can be written as

K [rst] = N det V

∫ +∞

−∞

∏
α

Dqα exp
(

−1
2

∫
d4xEqαqα

)

×
∞∑

n=0

1
n!

(
1
2

∫
d4xEqα(V tLV )αβqβ

)n

. (36)

By replacing the continuum of spacetime positions with
a discrete lattice of points surrounded by separate regions of
very small spacetime volume Ω, the path integral (36) may
be reexpressed as a Gaussian multiple integral over a finite
number of real variables qα,x, where

∫
d4xE . . . → Ω

∑
x . . .

K [rst] = N det V

∫ +∞

−∞

∏
α,x

dqα,x exp

(
−Ω

2

∑
α,x

q2
α,x

)

×
∞∑

n=0

1
n!


Ω

2

∑
αx,βy

qα,xWαx,βyqβ,y




n

, (37)

where the matrix W is given by Wαx,βy = (V tLV )αβδx,y.
The Gaussian integrals in this expression are well known

∫ +∞

−∞

N∏
i

dqi (qk1qk2 . . . qk2n) exp

(
−Ω

2

N∑
i

q2
i

)

=
1

Ωn

(
2π
Ω

)N/2

δk1k2...k2n
. (38)

Here δk1k2...k2n is a totally symmetric symbol which gen-
eralizes an ordinary Kronecker delta symbol, δij , with the
recurrent relation

δk1k2...k2n = δk1k2δk̂1k̂2...k2n
+ δk1k3δk̂1k2k̂3...k2n

+δk1k2nδk̂1k2...k̂2n
. (39)

The hat in this formula means that the corresponding index
must be omited in the symbol δ. Let us also recall that
integrals of this sort with an odd number of q-factors in
the integrand obviously vanish. The multiple index k is
understood as a pair k = α, x, with the Kronecker δk1k2 =
δα1α2δx1x2 .

By performing the Gaussian integrations one can finally
fix the constant of proportionality N and find that

K [rst] = 1 +
1
2
δk1k2Wk1k2 + . . . (40)

+
1

n!2n
δk1k2...k2nWk1k2 . . .Wk2n−1k2n + . . .

The infinite sumhere is nothing else than 1/
√

Det (1 − W).
The determinant may be reexpressed as a contribution to
the effective Lagrangian using the relation Det (1 − W) =
exp Tr ln(1 − W). Thus, we have

K [rst] = exp
(

−1
2
Tr ln(1 − W)

)
, (41)

with the logarithm of a matrix defined by its power se-
ries expansion,

ln(1 − W) = −W − 1
2
W2 − 1

3
W3 − . . .

= δx,y

(
ln(1 − V tLV )

)
α,β

. (42)

The path integral (34) defines a function of Dαβ that is
analytic in Dαβ in a region around the surface where the
eigenvalues of Dαβ are real positive and the integral con-
verges. Since (41) equals to (34), it provides the analytic
continuation of (34) to the whole complex plane, with a
cut required by the logarithm.

Let us now return back from the spacetime discrete
lattice to the spacetime continuum. For that one must
take the limit N → ∞ in (41), and replace

∑
x . . . →

Ω−1
∫

d4xE . . . As a result we have

K [rst] = exp
(

−1
2
Ω−1
∫

d4xE tr ln(1 − V tLV )
)

= exp
(

−1
2
Ω−1
∫

d4xE tr ln(1 + F )
)

, (43)

where “tr” is to be understood as the trace in an ordinary
matrix sense. In the second equality we have used the
property of matrix V , given by (35). This property can be
used because of the trace before the logarithm. The matrix
F is equal to

Fαβ =
3κ

16
Acbe

(
−h

(1)
ac (se

st − he) h
(1)
ac pe

st

h
(2)
ac pe

st h
(2)
ac (se

st − he)

)
αβ

.

(44)
The factor Ω−1 may be written as an ultraviolet divergent
integral Ω−1 = δ4

E(x − x). This singular term needs to
be regularized, for instance, by introducing a cutoff ΛE
damping the contributions from the large momenta kE

Ω−1 = δ4
E(0) ∼

∫ ΛE/2

−ΛE/2

d4kE

(2π)4
=

Λ4
E

(2π)4
. (45)

To finish our calculation one needs to return back to
the Minkowski space by replacing x4 → −ix0. It follows
then that the functional integral (23) is given by4

Z [σ, φ; ∆] ∼ eiSr , (46)

Sr =
∫

d4x

{
Lr(rst) − Ω−1

2

∞∑
n=1

(−1)n

n
tr
[
Fn

αβ(rst)
]}

.

The action (46) contains in closed form all informa-
tion about �-order corrections to the classical Lagrangian
Lr(rst). Nevertheless it is still necessary to do some work
to prepare this result for applications. In the following we
deal mainly with the first term of the series, since it is the
only one that contributes to the gap equation,

Lr = Lr(rst) +
3κ

32
Ω−1Aabc

(
h

(2)
ab − h

(1)
ab

)
(sc

st − hc) + . . .

(47)
4 The sign of the term ∼ Ω−1 must be corrected accordingly

in (34) of [9].
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Here one should sum over the indices a, b, c = 0, 1, . . . , 8. In
the next section we will calculate these sums for the cases
with exact SU(3) and broken SU(3) → SU(2)I × U(1)Y

flavor symmetry.
To give some additional insight into the origin of for-

mula (46) let us note that �-order corrections to Lr(rst)
can be obtained without evaluation of the Gaussian path
integral in (23). Instead one can start directly from the La-
grangian (30) and obtain the one-loop contribution using
the canonical operator formalism of quantum field the-
ory [15]. Since the Lagrangian does not contain kinetic
terms the time-ordered products of meson fields have a
pure singular form: 〈T{σa(x)σb(y)}〉 = iδ(x − y)h(1)−1

ab ,
〈T{φa(x)φb(y)}〉 = iδ(x − y)h(2)−1

ab . It is easy to see, for
instance, that the tadpole contribution, coming from the
cubic terms in (30), exactly coincides with the term linear
in σ in (47).

3 The ground state
in the semi-classical expansion

The considered model belongs to the NJL-type models
and therefore at some values of the coupling constants the
many-fermion interactions can rearrange the vacuum into
a chirally asymmetric phase, with mesons being the bound
states of quark and antiquark pairs and unconfined quarks
with reasonably large effective masses. The process of the
phase transition is governed by the gap equation, and, as
we already know from (47), the gap equation is modified
by the additional contribution which comes from the term
∼ Ω−1. Our aim now is to trace the consequences of this
contribution for the ground state.

An effective potential V (σa) that describes the system
in the chirally asymmetric phase has a minimum at some
non-zero value of σa = ∆a. The effective Lagrangian con-
structed at the bottom of this well does not contain linear
terms in the σ fields. It means that the linear terms in (47)
must be canceled by the quark tadpole contribution. This
requirement can be expressed in the following equation:

hi +
Nc

2π2 miJ0(m2
i ) = zi ,

zi =
3κ

32
Ω−1
(
h

(1)
ab − h

(2)
ab

)
Aabch

(1)
ci . (48)

The relation of the flavor indices i = u, d, s and the indices
a, b, c . . . is given below in (51). The first term, hi, and the
term on the right-hand side, zi, are the contributions from
the Lagrangian (47). The second one is the contribution of
the quark loop from (17) with a regularized quadratically
divergent integral J0(m2) being defined as

J0(m2) = 16π2i
∫

Λ

d4q

(2π)4
1

q2 − m2

=
∫ ∞

0

dt

t2
e−tm2

ρ(t, Λ2)

= Λ2 − m2 ln
(

1 +
Λ2

m2

)
. (49)

This integral is a positive definite function for all real values
of the cutoff parameter Λ and the mass m. The kernel
ρ(t, Λ2) = 1 − (1 + tΛ2) exp(−tΛ2) is introduced through
the Pauli–Villars regularization of the integral over t, which
otherwise would be divergent at the point t = 0. Assuming
that hi is a known solution of (31), being a function of
parameters G, κ and the vacuum expectation values ∆i of
scalar fields,we call (48) a gap equation.The right-hand side
of this equation is suppressed by a factor � in comparison
with the first two terms. Thus an exact solution to this
equation, i.e. the constituent quark masses mi (i = u, d, s),
would involve all powers of �, but higher powers of � in
such a solution would be affected by order �

2-corrections
to the equation. It is apparent that one has to restrict our
solution only to the first two terms in an expansion of mi

in powers of �, obtaining mi in the form mi = Mi + ∆mi.
It is important to stress for physical applications that (48)
gets at � order an additional contribution from the meson
loops [10, 11] which we do not consider here. We restrict
our attention only to the new kind of contribution of order
� which is essential for the Nf = 3 case and has not yet
been discussed in the literature.

3.1 Gap equation at leading order:
SU(3) case, two minima

The first two terms of (48) are of importance at leading
order. Combining this approximation for (48) (i.e. setting
zi ≡ 0) together with (31), one obtains the gap equa-
tion already known from the mean field approach [4, 16],
which self-consistently determines the constituent quark
masses Mi as functions of the current quark masses and
coupling constants:

∆i = −Ghi − κ

32

∑
j,k

tijkhjhk, (50)

hi = − Nc

2π2 miJ0(m2
i ) ≡ 2〈q̄iqi〉 ≡ 2αi(mi).

Here the totally symmetric coefficients tijk are equal to
zero except for the case with different values of the indices
i �= j �= k when tuds = 1. The latin indices i, j, k mark the
flavor states i = u, d, s which are linear combinations of
the states with indices 0, 3 and 8. One projects one set to
the other by the use of the matrices ωia and eai defined by

eai =
1

2
√

3




√
2

√
2

√
2√

3 −√
3 0

1 1 −2


 ,

ωia =
1√
3




√
2

√
3 1√

2 −√
3 1√

2 0 −2


 . (51)

Here the index a runs a = 0, 3, 8 (for the other values of
a the corresponding matrix elements are assumed to be
zero). We have then ha = eaihi, and hi = ωiaha. Similar
relations can be obtained for ∆i and ∆a. In accordance
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with this notation we use, for instance, that h
(1)
ci = ωiah

(1)
ca .

The following properties of the matrices (51) are straight-
forward: ωiaeaj = δij , eaiωib = δab and eaieaj = δij/2.
The coefficients tijk are related to the coefficients Aabc by
the embedding formula 3ωiaAabcebjeck = tijk. The SU(3)
matrices λa with index i are defined in a slightly different
way: 2λi = ωiaλa and λa = 2eaiλi. In this case it follows
that, for instance, σ = σaλa = σiλi = diag(σu, σd, σs), but
2σa∆a = σi∆i.

It is well known [4] that the gap equation at leading
order has at least one non-trivial solution, Mi(m̂j , G, κ, Λ),
if κ, m̂i �= 0. This important result is a direct consequence of
the asymptotic behavior of the quark condensate αi(mi) :
αi(0) = αi(∞) = 0, αi(mi) < 0 if 0 < mi < ∞, on the one
hand, and the monotonical decrease of the negative branch
of the function hi(∆j) on the semi-infinite interval m̂i ≤
mi < ∞, on the other hand. Stronger statements become
possible if we have more information. Let us assume that
SU(3) flavor symmetry is preserved. If m̂u = m̂d = m̂s, one
can conclude that ∆u = ∆d = ∆s and, as a consequence,
we have hu = hd = hs =

√
2/3h0. Instead of a system of

three equations in (50) there is only one quadratic equation
with two solutions:

h(1)
u = −8G

κ

(
1 −
√

1 − κ∆u

4G2

)
,

h(2)
u = −8G

κ

(
1 +

√
1 − κ∆u

4G2

)
. (52)

The second solution is always positive (for κ < 0, G > 0)
and, due to this fact, cannot fulfill the second equation
in (50). On the contrary, the solution h

(1)
u , as κ → 0, gives

h
(1)
u = −∆u/G, which leads to the standard gap equation

2π2∆i = NcGmiJ0(mi) for the theory without the ’t Hooft
determinant. Alternatively one could consider the theory
with only the ’t Hooft interaction (1) taking the limitG → 0
in (52). In this case we obtain for h

(1)
u

h(1)
u =

4
κ

√
−κ∆u = 4 sign(κ)

√
∆u

−κ
(G = 0). (53)

In Fig. 1 we plot three different stationary trajectories
hu = hu(mu) (with corresponding parameter values given
in the caption) as functions of the quark massmu. To be def-
inite we put the current quark mass equal to m̂u = 6 MeV
and the cutoff parameter is chosen to be Λ = 860 MeV.
By fixing Λ we completely fix the curve corresponding to
the right-hand side of the gap equation, i.e. the function
2αu = −NcmuJ0(m2

u)/(2π2). This function starts at the
origin of the coordinate system, being always negative for
positive values of mu. At the point mu = m̄ 
 0.74Λ it
has a minimum α

(min)
u = −Λ4m̄/[3(Λ2 + m̄2)]. All station-

ary trajectories cross the mu-axis at the point mu = m̂u.
The straight line corresponds to the case κ = 0. The
second limiting case, G = 0, is represented by the solu-
tion (53) and marked by G = 0. The solid curve corresponds
to (52), starts at the turning point A with the coordinates

Fig. 1. The function hu(mu) (here [hu] = GeV3, [mu] = GeV)
at fixed values m̂u = 6 MeV, Λ = 860 MeV for G = 0, κ =
−5000 GeV−5 (large dashes), G = 5 GeV−2, κ = 0 (dash-dotted
line), G = 5 GeV−2, κ = −5000 GeV−5 (solid line). The small-
dashes line corresponds to the function 2αu(mu)

A(mu, hu) = (m̂u + 4G2/κ, −8G/κ) and goes monoton-
ically down (h(1)

u ) and up (h(2)
u ) for increasing values of

mu. The standard assignment of signs for the couplings G
and κ: G > 0, κ < 0 is assumed. The points where hu(mu)
intersects 2αu are the solutions of the gap equation. Let us
recall [4] that there are two qualitatively distinct classes of
solutions. The first one is known as a solution with barely
broken symmetry. We have this solution when hu intersects
2αu on the left side of its minimum (the minimum of αu

is outside the region shown in the figure). If hu crosses
2αu on the right side of its minimum it corresponds to the
case with the firmly broken symmetry. It is known that
the theory responds quite differently to the introduction of
a bare quark mass for these two cases. The barely broken
regime is characterized by strong non-linearities reflected
in the behavior of expectation values of the scalar quark
densities, q̄iqi, in the physical quark states. Nevertheless,
the solutions with the barely broken symmetry are likely
to be more reliable from the physical point of view, in
particular, when Λ 
 0.5 GeV and higher.

The six-quark interactions add several important new
features into the picture. For instance, for some set of
parameters, when 4G2 ∼ m̂u|κ| or G = 0, one can get three
solutions of the gap equation, instead of one when κ = 0.
One of these cases is illustrated in Fig. 1 for the parameter
set G = 5 GeV−2, κ = −5000 GeV−5. The first solution is
located quite close to the current quark mass value and,
being a minimum of the effective potential, corresponds to
the regime without the spontaneous breakdown of chiral
symmetry. The next solution is a local maximum. The third
one is a minimum and belongs to the regime with barely
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Fig. 2. The � leading order effective potential V (mu) corre-
sponding to the pattern shown by the solid line on Fig. 1. We
use the units [V ] = [mu] = GeV

broken phase. The types of extrema are shown in Fig. 2,
where we used (70) with Ω−1 = 0 for the effective potential
at leading order.

The second new feature is that the stationary trajec-
tories hu(mu) in the case κ �= 0 are real only starting from
some value of mu ≥ mmin. For other values of mu where
mu < mmin the effective energy is complex. To exclude this
unphysical region the effective potential V (mu) must be
defined as a single-valued function on an half-open interval
mu ≥ mmin.

3.2 NLO corrections: zi in the case of SU(3) symmetry

The functions zi can be evaluated explicitly. To this end it
is better to start from the case with SU(3) flavor symme-
try. This assumption involves a significant simplification
in the structure of the semi-classical corrections, giving us
however a result which possesses all the essential features
of the more elaborate cases. Noticing that as a consequence
of SU(3) symmetry the function ha has only one non-zero
component h0, one can find

Aacbhb = Aac0h0 =
1
3

(2δa0δc0 − δaαδcα) hu, (54)

where α = 1, 2, . . . , 8. This result determines in general the
structure of all flavormulti-indices objects like, for instance,
h

(1,2)
ab defined by (27). Indeed, taking into account (54), one

can represent algebraic equations for h
(1,2)
ab in the form

G [δa0δc0 (1 ± 2ω) + δaαδcα (1 ∓ ω)] h(1,2)
cb = −δab ,

ω =
κhu

16G
, (55)

where we follow the notation explained in Appendix A.
Since this expression is a diagonal matrix, one can eas-
ily obtain

h
(1,2)
cb = − δc0δb0

G (1 ± 2ω)
− δcαδbα

G (1 ∓ ω)
, (56)

with h
(1)
cb associated with the upper sign.

Consider now the perturbation term of (48). One can
verify that

(h(1)
ab − h

(2)
ab )Aabc =

κhu

8G2




2A00c

1 − 4ω2 −

8∑
α=1

Aααc

1 − ω2




=
κhu

2G2

√
2
3
δc0

1 − 3ω2

(1 − 4ω2)(1 − ω2)
. (57)

Here we used the properties of the coefficients Aabc,

A00c =
2
3

√
2
3
δc0, Aabb ≡

8∑
b=0

Aabb = −2

√
2
3
δa0. (58)

The quantum effect of auxiliary fields to the gap equation
stems from the term

(h(1)
ab − h

(2)
ab )Aabch

(1)
ci (59)

= −κhu

3G3

1 − 3ω2

(1 + 2ω)(1 − 4ω2)(1 − ω2)
,

where the right-hand side is the same for the three possible
choices of the index i = u, d, s. We conclude that in the
SU(3) limit the functions zi are uniquely determined by

zu = − κ

2G2 Ω−1 ω(1 − 3ω2)
(1 + 2ω)(1 − 4ω2)(1 − ω2)

. (60)

A direct application of (60) is the evaluation of the
corrections ∆mi to the constituent quark mass,

∆mu =
κ

2G
Ω−1 ω(1 − 3ω2)

(1 − 4ω2)(1 − ω2)
Qu . (61)

This result is based on (A.11) and Appendix B. The right-
hand side must be calculated with the leading order value
of mu = Mu. The factor Qu is

Qu =
1

1 − (1 + 2ω)Iu(m2
u)

. (62)

Here the function Ii(m2
i ) is proportional to the derivative

of the quark condensate 〈q̄iqi〉 with respect to mi:

Ii ≡ NcG

2π2

[
J0(m2

i ) − 2m2
i J1(m2

i )
]
, i = u, d, s, (63)



232 A.A. Osipov, B. Hiller: Path integral bosonization of the ’t Hooft determinant: quasi-classical corrections

where the integral J1 is given by

J1(m2) = − ∂

∂m2 J0(m2) =
∫ ∞

0

dt

t
e−tm2

ρ(t, Λ2)

= ln
(

1 +
Λ2

m2

)
− Λ2

Λ2 + m2 . (64)

One can show that Qu is related to the expectation
values of the scalar quark density, q̄iqi in the physical quark
state |Qu〉. To be precise we have Qu = Quu +Qud +Qus,
where the expectation values Qui are given in Appendix B.
It is of interest to know the sign of the quasi-classical
correction ∆mu. In general the answer on this question
depends on the values of coupling constants, which should
be fixed from the hadron mass spectrum. All that we know
at the moment is only that G > 0, κ < 0, m̂u 
 6 MeV
and Λ ∼ 1 GeV. One can expect also that the dynamical
masses of the quarks Mu are close to their empirical value
Mu 
 MN/3 ∼ 300 MeV, with MN the nucleon mass. Let
us suppose now that 0 < ω � 1, which actually means
that the coupling constants belong to the interval 0 <
−κ(Mu − m̂u)/(4G)2 � 1. This range is preferable from
the point of view of 1/Nc counting. In this case we have

∆mu 
 κω

2G
Ω−1Qω=0

u , (65)

and one can conclude that the sign of ∆mu is opposite to
the sign of Qω=0

u . In turn the function Qω=0
u is positive in

some physically preferable range of values of G such that
G ∼ 5 GeV−2.

It must be emphasized that the approximation made
in (61) is legitimate only if the quasi-classical correction
∆mu is small compared with the leading order result Mu.
In particular, it is clearly inapplicable near points where
the function Qu(mu) has a pole. One sees from (62) that
this takes place beyond some large values of G or κ. There is
a set of parameters for which the function (1+2ω)Iu(m2

u)
is always less than 1. This is the case, for instance, for
the choice just considered above. For large couplings, Qu

may have a pole, and one has to check that the mean field
result Mu is located at a safe distance from them before
using formula (61). The large couplings contain also the
potential danger to meet the poles at the points ω = 1
and ω = 1/2. These poles are induced by caustics in the
Gaussian path integral and occur as singularities in the
effective potential.

We conclude this section with the expression for the
quark condensate at next to leading order in �,

〈q̄uqu〉 = 〈q̄uqu〉0 − ∆mu

2G
Iu(M2

u), (66)

where the subscript 0 denotes that the expectation value
has been obtained in the mean field approximation.

3.3 NLO contribution to the effective potential:
SU(3) symmetric result

The expectation value of the energy density in a state
for which the scalar field has the expectation value ∆i is

given by the effective potential V (∆i). The effective po-
tential is a direct way to study the ground state of the
theory. If V (∆i) has several local minima, it is only the
absolute minimum that corresponds to the true vacuum.
A sensible approximation method to calculate V (∆i) is
the semi-classical expansion [17]. The first term in the ex-
pansion of V is the classical potential. In the considered
theory it contains the negative sum of all non-derivative
terms in the bosonized Lagrange density which includes
the one-loop quark diagrams and the leading order SPA
result (30). The second term contains semi-classical correc-
tions from (46) and the one-loop meson diagrams. However,
one can obtain the effective potential directly from the gap
equation. Indeed, let us assume that the potential U(σa, φa)
of the Lagrange density of the bosonized theory is known;
then 〈U(σa, φa)〉 = V (∆i). To explore the properties of
the spontaneously broken theory, we restrict ourselves to
the part of the total potential, U(σi), involving only the
fields which develop a non-zero vacuum expectation value,
〈σi〉 = ∆i. Expanding U(σi) about the asymmetric ground
state, we find

U(σi) = U(∆i) +
∂U

∂σi

∣∣∣∣
σi=∆i

(σi − ∆i) + . . . (67)

It is clear that U(∆i) = V (∆i), and the derivatives are
functions of ∆j :

∂U

∂σi

∣∣∣∣
σi=∆i

=
〈

∂U

∂σi

〉
=

∂V (∆j)
∂∆i

= fi(∆j). (68)

This means, in particular, that we can consider (68) as a
system of linear differential equations to extract the effec-
tive potential V (∆i), if the dependence fi(∆j) is known.

Further, (67) tells us that the fi(∆j) are determined by
the tadpole term in a shifted potential energy, U(σ′

i +∆i),
wherewedefine a newquantumfieldwith vanishing vacuum
expectation value σ′

i = σi −∆i. In the case of SU(3) flavor
symmetry, we have fi = f where i = u, d, s and f is given by

f(mu) = −hu

2
− Nc

4π2 muJ0(m2
u)

− κΩ−1ω(1 − 3ω2)
4G2(1 + 2ω)(1 − 4ω2)(1 − ω2)

. (69)

Therefore, the condition for the extremum ∂V (∆u)/∂∆u =
0 coincides with the gap equation (48). In Appendix C we
obtain from (68) in the SU(3) limit the effective potential

V (∆u) =
1
4

(
3Gh2

u +
κ

4
h3

u

)
− 3

2
v(m2

u)

−1
2
Ω−1 ln

∣∣(1 − 4ω2)(1 − ω2)8
∣∣− C. (70)

The free constant C can be fixed by requiring V (0) = 0.
In this expression v(m2

u) is defined according to (C.7) and
hu is the first of the two solutions of the stationary point
equation given by (52). Notice that these solutions are
complex when 4G2 < κ∆u. Hence the function V (∆u) is
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not real as soon as the inequality is fulfilled. The most
efficient way to go round this problem and to define the
effective potential as a real function on the whole real axis is
to treat hu as an independent variational parameter instead
of ∆u in (70). In this approach, which actually corresponds
more closely to the BCS theory of superconductivity, one
should consider (C.2) as the one which yields the function
∆u(hu). One can check now that the extremum condition
∂V (hu)/∂hu = 0 is equivalent to the gap equation (48),
where the quark mass is expressed in terms of hu [16]. Thus,
the effective potential in the form of V (hu) provides for a
direct way to determine the minimum of the vacuum energy
irrespectively of the not well-defined mapping ∆u → hu.

There is a direct physical interpretation of (70): classi-
cally, the system sits in a minimum of the potential energy,
Ucl, determined by the first two terms, and its energy is
the value of the potential at the minimum, Ucl(Mu). To get
the first quantum correction, ∆U , to this picture, we add
the third term (∼ Ω−1), and approximate the potential,
V (Mu + ∆mu), near the classical minimum by a function
Ucl(Mu) + ∆U(Mu).

In Fig. 3 we show the effective potential calculated for
κ = −1800 GeV−5, G = 10 GeV−2, m̂ = 0 and Λ =
860 MeV depending on the strength of the fluctuations,
indicated by the Euclidean cutoff ΛE. In absence of fluc-
tuations the minimum occurs at mu = Mmin = 340 MeV
(outside the range of this figure). Increasing the effect of
fluctuations, the minima Mmin appear at smaller values
and the potential gets shallower. Simultaneously a bar-
rier develops between V (0) and V (Mmin). At some critical

Fig. 3. The effective potential V (mu) to � order corresponding
to the case κ = −1800 GeV−5, G = 10 GeV−2, m̂ = 0 and
Λ = 860 MeV, where the values of ΛE are a measure for the
strength of the NLO corrections in the effective potential. The
units are [V ] = [mu] = GeV

value of ΛE the point V (0) becomes the stable minimum
and the trivial vacuum is restored5. This effect has a sim-
ple explanation. In the neighborhood of the trivial vacuum
where mu is small the effective potential V (mu) can be
well described by the first terms of the series in powers
of mu:

V (∆u)|m̂=0 =
3m2

u

4G

[
1 − NcGΛ2

2π2 +
κ2

32G3

(
ΛE

2π

)4
]

+O(m3
u). (71)

The trivial vacuum always exists when

1 − NcGΛ2

2π2 +
κ2

32G3

(
ΛE

2π

)4

≥ 0. (72)

This inequality generalizes the well-known result for κ = 0.
The local minima Mmin in the broken phase are the

exact solutions of the full gap equation (48). We find
that at leading � order Mpert

min = Mu + ∆mu, where ∆mu

is the correction (61), follows within a few percent the
pattern shown for Mmin in Fig. 3. For instance, one has
at ΛE = 1.25 GeV, Mpert

min = 214 MeV, and at ΛE =
1.31 GeV, Mpert

min = 188 MeV. It is clear that the phase
transition shown in Fig. 3 is a non-perturbative effect. In-
stead the perturbative result yields Mpert

min → 0 smoothly
with increasing ΛE up to the value ΛE 
 1.6 GeV.

Going to higher values of mu (not shown in Fig. 3)
one can come to caustics, i.e. singularities in V (∆u). From
the logarithm in (70) we obtain the values ∆u where this
happens. There are two singular points

∆(1)
u = −12

G2

κ
, ∆(2)

u = −32
G2

κ
. (73)

For given values of couplings G and κ we have ∆
(1)
u =

667 MeV and ∆
(2)
u = 1.78 GeV. The indicated curves with

ΛE �= 0have as asymptotic the vertical line crossing themu-
axis at the point ∆

(1)
u . It is clear that for other parameter

choices the ordering ∆
(1)
u < Mu < ∆

(2)
u , or even ∆

(1)
u <

∆
(2)
u < Mu are possible,whereMu is the classicalminimum.

In these cases a careful treatment of the caustic regions
must be done.

3.4 Gap equation at leading order:
SU(2)I × U(1)Y case, general properties

Wewill nowapply the same strategy to the case m̂u = m̂d �=
m̂s, which breaks the unitary SU(3) symmetry down to
the SU(2)I × U(1)Y (isospin–hypercharge) subgroup. In
full agreement with the symmetry requirements it follows
then that mu = md �= ms and hu = hd �= hs. Thus, we
have a system of two equations (from (31)) to determine

5 Away from the chiral limit the barrier between the two
vacua ceases fast to exist and the transition from one phase to
the other occurs smoothly.
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the functions hu and hs. These equations can be easily
solved in the limit G → 0:

hu = −4

√
∆s

−κ
, hs =

4
κ

∆u

√−κ

∆s
(G = 0). (74)

Obviously the result (53) follows from these expressions.
For G �= 0 the system is equivalent to the following one:


( κ

16G

)2
h3

u + (xs − 1)hu =
∆u

G
,

Ghs + ∆s +
κ

16
h2

u = 0,

(75)

where we put xs = κ∆s/(4G)2 in accordance with our
notation in Appendix A. From the physics of instantons
we know that the strength constant κ < 0. It makes xs

negative. Hence the left-hand side of the first equation is
not a monotonic function of hu (see Fig. 4). The right-hand
side is a positive constant, if ∆u > 0 and G > 0, which is
usually assumed.Therefore, the equationhas three different
real solutions, h

(n)
u (∆u, ∆s), n = 1, 2, 3, in some interval of

values for ∆u/G. The boundaries of the interval are given
by the inequality −∆(xs) < ∆u < ∆(xs), where

∆(xs) =
32G2

|κ|
(

1 − xs

3

)3/2

. (76)

Fig. 4. Graphical solution of the cubic equation in (75). The
left-hand (f1) and the right-hand (f2) sides of this equation are
plotted as a function of hu for xs < 1. The region bounded by the
dashed lines corresponds to the interval D < 0, where the cubic
equation has three real solutions. The local maximum A and
the local minimum B have coordinates A : {hu = −√−Q, f =
∆(xs)/G} and B : {hu =

√−Q, f = −∆(xs)/G}

Fig. 5. The stationary trajectory hu(∆u) at fixed ∆s. Inside
the interval |∆u| < ∆(xs) it is a multi-valued mapping. The
monotonic curves: BC, CD, DE correspond to the three well-
defined single-valued functions: h

(n)
u , n = 1, 2, 3

By means of the discriminant D of the cubic equation,
D = Q3 + R2, where

Q =
(

16G

κ

)2
xs − 1

3
, R =

(
16G

κ

)3
xu

2
, (77)

this region can be briefly identified by D < 0. The qual-
itative picture of the dependence hu(∆u) at a fixed value
of ∆s is shown in Fig. 5. The three solutions in the region
D ≤ 0 can be parametrized by the angle ϕ:

h(1)
u = 2

√
−Q cos

ϕ

3
, h(2)

u = 2
√

−Q sin
(ϕ

3
− π

6

)
,

h(3)
u = −2

√
−Q sin

(ϕ

3
+

π
6

)
, (78)

where

cos ϕ =
R√
−Q3

, sin ϕ =

√
1 +

R2

Q3 . (79)

The angle ϕ can always be converted to values of ϕ such that
0 ≤ ϕ ≤ π. The boundaries ϕ = 0 and ϕ = π correspond
to the value D = 0. When the argument ϕ increases from
0 to π, the solutions h

(1)
u , h

(2)
u and h

(3)
u run along the curves

BC, DC and DE accordingly. These curves intersect the
hu-axis at ϕ = π/2, where R = 0. One can show that h

(2)
u →

−∆u/G at κ → 0 in full agreement with our previous result
following from (52). On the other hand h

(3)
u leads to the

result (74) in the limit G → 0. Previously, studying the
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SU(3) case, we have obtained both of these limits from
one solution (52). Now one has to use either solution h

(2)
u

or solution h
(3)
u depending on the values of the parameters

κ, G, ∆u, and ∆s which correspond to the minimum of the
energy density. There is no chance to join the partial cases
G = 0 and κ = 0 in one solution, because they lead to
systems of quadratic (in the first case) and linear (in the
second case) equations without intersection of their roots.
The stationary trajectory h

(1)
u is a positive definite function

and thus the solution of the gap equation does not belong
to this branch.

Let us suppose that the system of two equations which
describe the vacuum state of the theory in the case of the
SU(2)I × U(1)Y symmetry at leading order has a solu-
tion, i.e., the constituent quark masses Mu(1) and Ms(1),
corresponding to a local extremum of the effective poten-
tial V (mu, ms), are known. We may assume that Mu(1)
belongs to the region with the barely broken symmetry,
Mu(1) < m̄u. As we already know, it is the most preferable
pattern from the physical point of view. Then there is not
any other solution M ′

u(1) �= Mu(1) for this set of parameters
G, κ, Λ, m̂u, m̂s and already fixed value Ms(1). This follows
from the pure geometrical fact that the second order deriva-
tives for curves hu(∆u) and 〈q̄uqu〉 have opposite signs in
the region considered. Suppose further that there are other
solutions Mu(n), Ms(n) with n = 2, 3. This statement does
not contradict our previous result corresponding to the case
with the SU(3) symmetry, where we were able to find out
three solutions for some sets of parameters. The functions
Mu(n) and Ms(n) can be understood as chiral expansions
about the SU(3) symmetric solutions. The coefficients of
the chiral series are determined by the expectation values
Qij(Mu) and their derivatives. This means that solutions
in the case of SU(3) symmetry are related to the solutions
for the more general SU(2)I × U(1)Y case. Hence, there
are only three sets of solutions (Mu(n), Ms(n)) at maximum
(for the considered region). The effective potential helps
us to classify these critical points as will be discussed in
Sect. 3.6.

3.5 NLO corrections:
zi and ∆mi in the case of SU(2)I × U(1)Y symmetry

Our next task is to take into account quantum fluctuations
and compute the corresponding corrections to the leading
order result Mu, Ms. For this purpose we need to find zu

and zs. Consider first the sum Aacbhb which can be written
as a 9 × 9 matrix in block-diagonal form:

Aacbhb = −1
3


Ω1 0 0

0 Ω2 0
0 0 Ω3


 , (80)

with 2 × 2, 3 × 3 and 4 × 4 blocks

(Ω1)rs =
1
3

(−2(2hu + hs)
√

2(hu − hs)√
2(hu − hs) (4hu − hs)

)
rs

,

(Ω2)nm = hsδnm , (Ω3)fg = huδfg . (81)

The indicies r, s of the first matrix range over the subset
r, s = 0, 8 of the set a, c = 0, 1, . . . , 8. In the matrix Ω2
we assume that n, m = 1, 2, 3 and in Ω3 the indices take
values f, g = 4, 5, 6, 7.

Using this result one can solve the last two equations
in (27), rewriting them in the form

G




1 ∓ κΩ1

16G
0 0

0 1 ∓ κΩ2

16G
0

0 0 1 ∓ κΩ3

16G




ac

h(1,2)
ce = −δae (82)

and find the functions h
(1,2)
ce . We obtain

h(1,2)
nm =

−δnm

G(1 ∓ ωs)
, h

(1,2)
fg =

−δfg

G(1 ∓ ωu)
, (83)

where the ωi are defined in Appendix A. For the 2 × 2
matrix with indices 0, 8 we have

h(1,2)
rs =

−1
3G(1 ± ωs − 2ω2

u)
(84)

×
(

3 ∓ (4ωu − ωs) ±√
2(ωu − ωs)

±√
2(ωu − ωs) 3 ± 2(2ωu + ωs)

)
rs

.

In particular, if the terms ωu and ωs are equal, these ex-
pressions coincide with (56).

We now calculate the sum Aabchab, where hab ≡ h
(1)
ab −

h
(2)
ab . Using the properties of coefficients Aabc and solutions

for h
(1,2)
ab obtained above, one can find that

Aabchab = −1
3

√
2
3
(h88 − 2h00 + 3h11 + 4h44)δc0

− 2
3
√

3
(h88 +

√
2h08 − 3h11 + 2h44)δc8

≡ H1δc0 + H2δc8. (85)

Again, from this equation the related formula (57) can be
established by equating ωu = ωs. In this special case we
have H2 = 0. As a next step let us contract the result with
functions h

(1)
ci

Aabchabh
(1)
ci =

1√
3

(86)

×




H1(
√

2h
(1)
00 + h

(1)
08 ) + H2(

√
2h

(1)
08 + h

(1)
88 ),

i = u, d,

H1(
√

2h
(1)
00 − 2h

(1)
08 ) + H2(

√
2h

(1)
08 − 2h

(1)
88 ),

i = s.

These contributions can be evaluated explicitly. It leads to
the final expressions for the semi-classical corrections zi to
the gap equation (48). They are given by

zu = zd
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= −κΩ−1ωu

8G2µ

×
[
2(1 − 2ω2

u) − ωs

(1 − 2ω2
u)2 − ω2

s

+
2

1 − ω2
u

− 3ωs

1 − ω2
s

]
,

zs = −κΩ−1

8G2µ
(87)

×
[
4ω2

u(3ω2
u − 2) + 1 + ωs

(1 − 2ω2
u)2 − ω2

s

+
3

1 − ωs
− 4

1 − ω2
u

]
,

where µ = (1 + ωs − 2ω2
u). Each of these formulas has

the same limiting value at ωs = ωu = ω, which coincides
with (59).

We apply this result to establish the �-order correction
to the masses of constituent quarks. To this end we must
use the general expressions obtained in Appendices A and
B, which for the considered case we rewrite in a way that
stresses the quark content of the contributions

∆mi = −G

2∑
j,k=1

zjMjkQ(i)k, (88)

where i = u, s, the �-corrections zj are written as a line
matrix zj = (zu, zs), and obviously ∆mu = ∆md. The 2×2
matrix Mjk and the column Q(i)k are defined as follows:

Mjk =
(

1 + ωs 2ω

ω 1

)
, Q(i)k =

(Qiu + Qid

Qis

)
k

. (89)

Observe that detM = µ. The �-corrections to the quark
masses must be calculated at the point (Mu, Ms), being
a solution of the gap equation at leading order. The ex-
pression (61) is a straightforward consequence of the more
general result (88). Let us also note that formula (88) clearly
shows which part of the correction is determined by the
strange component of the quark sea and which one by the
non-strange contributions.

3.6 Effective potential:
the SU(2)I × U(1)Y symmetry

We can now generalize the result obtained in Sect. 3.3 to
the case of SU(2)I ×U(1)Y symmetry. To find the effective
potential for this case one has to evaluate the line integral
of the form∫

γ

2fudmu + fsdms = V (∆u, ∆s), (90)

where the independent variables mu and ms are linear
combinations of the SU(3) singlet and octet components
mu = (

√
2m0 + m8)/

√
3, ms = (

√
2m0 − 2m8)/

√
3. We

also know that

fu(mu, ms) = −hu

2
− Nc

4π2 muJ0(m2
u) +

zu

2
,

fs(mu, ms) = −hs

2
− Nc

4π2 msJ0(m2
s) +

zs

2
. (91)

The functions fu, fs lie on the surface S(mu, ms) defined by
the stationary point equation (75), and γ is contained in S.
There are some troubles caused by the singularities in zu, zs.
The poles are located on curves which divide the surface
S(mu, ms) on distinct parts Σn. The integral (90) is well
defined inside each of these regions Σn. It is characterized
by the property that the integral over an arc γ, which is
contained in Σn, depends only on its end points, i.e., the
integral over any closed curve γc contained in Σn is zero.
This follows from the fact that the integrand is an exact
differential. Indeed, one can simply check that the one-form
2fudmu + fsdms is closed on Σn:

2
∂fu

∂ms
− ∂fs

∂mu
= 0. (92)

On the other hand, the open set Σn is diffeomorphic to R2

and, by Poincaré’s lemma, the one-form is exact.
Direct verification is relatively cumbersome and can be

done along the lines of our calculation in Appendix C, as
follows. Since each of the differentials 2hudmu+hsdms and
2zudmu +zsdms is closed, let us consider them separately.
We begin by evaluating the first one-form

−(2hudmu +hsdms) = d
(

Gh2
u +

G

2
h2

s +
κ

8
h2

uhs

)
, (93)

where we have used (31) to extract dmu and dms.
Noting that 3κ2(h2

u + Q) = −µ(16G)2, one can obtain
for the second one-form

2zudmu + zsdms =
3κ

16
(zs + 2ωuzu) dQ − 2Gµzudhu.

(94)
Let us note also that

zs + 2ωuzu = −κΩ−1ωs

8G2

[
1

(1 − 2ω2
u)2 − ω2

s

+
3

1 − ω2
s

]
.

(95)
Putting this expression in (94), we have after some algebra

2zudmu + zsdms (96)

= Ω−1
[
dω2

s + 4(1 − 2ω2
u)dω2

u

(1 − 2ω2
u)2 − ω2

s

+
3dω2

s

1 − ω2
s

+
4dω2

u

1 − ω2
u

]

= −Ω−1d ln
∣∣[(1 − 2ω2

u)2 − ω2
s

]
(1 − ω2

s)3(1 − ω2
u)4
∣∣ .

Finally, we obtain the effective potential

V (∆u, ∆s) (97)

=
1
2

(
Gh2

u +
G

2
h2

s +
κ

8
h2

uhs

)
− v(m2

u) − 1
2
v(m2

s) − C

−Ω−1

2
ln
∣∣[(1 − 2ω2

u)2 − ω2
s

]
(1 − ω2

s)3(1 − ω2
u)4
∣∣ ,

where v(m2
i ) has been introduced in (C.7). The constant

C depends on the initial point of the curve γ, and in the
region Σ which includes the point ∆u = 0, ∆s = 0, it can
be fixed by requiring V (0, 0) = 0. This result coincides
with (70) in the SU(3) limiting case.
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Fig. 6. Classical effective potential V [GeV], see (97), with
Ω−1 = 0, as a function of the condensates [GeV−3] hu =
2〈ūu〉, hs = 2〈s̄s〉 for Λ = 860 MeV, G = 14 GeV−2, κ =
−1000 GeV−5, m̂u = 6 MeV, m̂s = 150 MeV

In Fig. 6 we show the effective potential calculated as
function of condensates without the fluctuations, Ω−1 = 0,
for the parameter set given in the caption. There are alto-
gether nine critical points: four minima, four saddle points
and one maximum. Only one critical point is localized in
the region of physical interest, the minimum for mu, ms > 0
(or hu, hs < 0). In the chiral limit and otherwise the same
parameters one has three critical points of interest, themax-
imum at the origin, the saddle point at mu = 0, ms > 0
(hu = 0, hs < 0), and the minimum. This distribution
and behavior of critical points is common to a large set
of parameters.

The behavior of V (∆u, ∆s) in terms of the strength
of the fluctuation term ∼ Ω−1 is qualitatively the same
as for the SU(3) case: fluctuations tend to restore the
trivial vacuum in the region prior to the singularities. We
also see from (97) that now the picture of singularities is
more elaborated. Nevertheless attractive wells still develop
between them.

These results are in agreement with the following topo-
logical consideration. The effective potential V is a smooth
function defined on the space of paths S(hu, hs) diffeomor-
phic to R2 (before the onset of caustics). The Euler char-
acteristic of the surface S, χ(S) = 1, can be expressed, by
Morse’s theorem, through the number of non-degenerate
critical points of the function V :

χ(S) = C0 − C1 + C2, (98)

where C0 is a number of critical points with index 0 (min-
ima), C1 is a number of critical points with index 1 (saddle
points), and C2 is a number of critical points with index 2
(maxima).

4 The ground state in the 1/Nc-expansion

We have considered till now the semi-classical approach to
estimate the integral Z[σ, φ; ∆] in (19). However, rather
than using � as the parameter of the asymptotic expansion,
we could also have used 1/Nc to estimate it. In this case the
stationary phase equations (21) involve terms with different
orders of 1/Nc and must be solved perturbatively. For this
purpose let us represent (21) in a complex form:

GUa + Wa +
3κ

32
AabcU

†
b U†

c = 0. (99)

Indeed the first two terms are of order (1/Nc)0, since G ∼
1/Nc, U ∼ Nc, and W ∼ N0

c , while the last one is of order
1/Nc. Casting the solutions Ua

st as a series in 1/Nc up to
and including the terms of order 1/Nc, we have

Ua
st = − 1

G

(
Wa +

3κ

32G2 AabcW
†
b W †

c + O(1/N2
c )
)

.

(100)
It yields for Lr(rst)

Lr(rst) = − 1
4G

tr(WW †) − κ

(4G)3
(
det W + det W †)

+O(1/Nc). (101)

The contribution from the auxiliary fields can be ob-
tained directly from (47) by expanding our solutions hab

and hc in a series in 1/Nc. One can already conclude from
that expression, without any calculations, that the term
∼ Ω−1 is at most of order ∼ 1/Nc. Therefore it is beyond
the accuracy of the considered approximation and can be
neglected. Actually, it follows from (27), that the difference
hab = h

(1)
ab −h

(2)
ab has order ∼ N0

c , additionally suppressing
this contribution, i.e. for the correction to the result (101)
we have only a term starting from the 1/N2

c order

∆Lr

= −κ2Ω−1

8(2G)4

[
tr(WW †) +

3κ

(4G)2
(
det W + det W †)]

+O(1/N3
c ). (102)

It means, in particular, that one can neglect this type of
quantum fluctuations in the discussion of the gap equa-
tion up to and including the terms of 1/Nc order in the
meson Lagrangian. These corrections cannot influence sig-
nificantly the dynamical symmetry breaking phenomena
in the model and only the quantum effect of mesons (the
one-loop contributions of σ and φ fields) together with the
leading order contribution from the ’t Hooft determinant
(see (101)) are relevant at N0

c order here.
If the model allows us to utilize the 1/Nc-expansion,

the vacuum state is defined by the gap equation obtained
from (48) in the large Nc limit, or, equivalently, on the
basis of Lagrangian (101). We have

∆i +
κ

32G2 tijk∆j∆k =
NcG

2π2 miJ0(mi). (103)
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At leading order in an 1/Nc-expansion we have the standard
gap equation 2π2∆i = NcGmiJ0(mi). The terms arising
on the next step already include the quantum correction
from the ’t Hooft determinant. It is not difficult to obtain
the corresponding contribution of order 1/Nc to the mass
of the constituent quarks:

mi = Mi + ∆mi ,

∆mi = − κ∆j∆k

(4G)2(1 − Ii)
(i �= j �= k), (104)

where ∆mi is calculated at the point mi = Mi, which is the
solution of the gap equation (103) at leading order, and Ii is
given by (63). One can show that ∆mi > 0, thus increasing
the effect of the dynamical chiral symmetry breaking. This
is an immediate consequence of the formula

1 − Ii(M2
i ) =

m̂i

Mi
+

NcG

π2 M2
i J1(M2

i ) > 0. (105)

Let us stress that the first equality is fulfilled only at the
point Mi.

We did not clarify yet the counting rule for the cur-
rent quark masses m̂i, assuming that they are counted as
the constituent quark masses. Actually, these masses are
small and following the standard rules of ChPT one should
consider m̂i ∼ 1/Nc. In this case in the large Nc limit the
model possesses the U(3) × U(3) symmetry and the gap
equation at leading order, 2π2 = NcGJ0(mi), leads to a
solution with equal masses Mu = Md = Ms ≡ M . The
1/Nc-correction includes the κ dependent term and the
term depending on the current quark masses

∆mi =
π2

NcG

(
m̂i − κM2

16G2

)
1

M2J1(M2)
. (106)

Returning back to (101) one can conclude that the large-
Nc limit corresponds to the picture which is not affected
by six-quark fluctuations. This can be realized also directly
from the Lagrangian (30). Indeed, the couplings of meson
vertices are determined here through the functions ha given
in the case of SU(3) flavor symmetry by h

(1)
u in (52). The

large-Nc limit forces a series expansion for h
(1)
u with a

small parameter

ε =
|κ|∆u

4G2 ∼ 1
Nc

� 1 (107)

and the leading term h
(1)
u = −∆u/G + . . . which does not

depend on κ.
This observation leads us to the second important con-

clusion. It is easy to see that the parameter ε is an internal
model parameter and the series expansion in ε closely corre-
sponds to the 1/Nc-expansion of the model. The existence
of this small parameter allows us to consider the 1/Nc se-
ries as a perfect approximation for the system with small
vacuum six-quark fluctuations

|κ| � 4G2

∆u
, ∆u = ∆u(G, Λ). (108)

What to do if ε is not too small? A large value for ε can
simply destabilize the 1/Nc series, implying large 1/Nc-
corrections. It has been observed recently [18] that the
abundance of strange quark–antiquark pairs in the vacuum
can lead to non-negligible vacuum correlations between
strange and non-strange quark pairs. If this happens one
can try to understand the behavior of the quark system
on the basis of the �-expansion. This approximation can
be considered as the limit of large six-quark fluctuations.
Although QCD does not contain an obvious parameter
which could allow one to describe this limit, the model
under consideration, as one can see, for instance, from (72),
suggests this dimensionless parameter:

ζ =
κ2Ω−1

32G3 � 1. (109)

On the basis of this inequality one can conclude that val-
ues of κ, corresponding to large six-quark fluctuations are
determined by the condition

|κ| � 2
√

(2G)3Ω. (110)

One can see that |κ|l ∼ √
Nc|κ|s, where we used the letters

l, s to mark possible values of |κ| for large and small six-
quark fluctuations respectively. These two regimes lead to
different patterns of chiral symmetry breaking. In the first
case the mass of the η′ meson goes to zero when Nc → ∞.
In the second case the ground state does not have the η′
Goldstone boson even at leading order.

5 Concluding remarks

The purpose of this paper has been to use the path in-
tegral approach to study the vacuum state and collective
exitations of the ’t Hooft six-quark interaction. We started
from the bosonization procedure following the technique
described in the papers [6,8]. The leading order stationary
phase approximation made in the path integral leads to
the same result as obtained by different methods, based
either on the Hartree–Fock approximation [4], or on the
standard mean field approach [16]. The stationary trajec-
tories are solutions for the system of the stationary phase
equations and we find them in analytical form for the two
cases corresponding to SU(3) and SU(2)I × U(1)Y flavor
symmetries. The exact knowledge of the stationary path is
a nesessary step to obtain the effective bosonic Lagrangian.
We give a detailed analytical solution to this problem.

As the next step in evaluating the functional integral we
have considered the semi-classical corrections which stem
from the Gaussian integration. We have found and analyzed
the corresponding contributions to the effective potential
V , masses of constituent quarks and quark condensates.
The most interesting conclusions are the following.
(a) We have found that already the classical effective po-
tential V (∆u) for the case in which the chiral symmetry
SUL(3) × SUR(3) is broken down to the SU(3) subgroup,
has a metastable vacuum state, although the values of
the parameters G, κ, m̂i, Λ corresponding to this pattern
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are quite unnatural from the physical point of view: the
couplings G and Λ must be small to fulfill the inequality
NcΛ

2G ≤ 2π2, which is known in the NJL model with-
out the ’t Hooft interaction as a condition for the trivial
vacuum; the coupling κ must be several times bigger (in
absolute value) of the value known from the instanton pic-
ture. Besides, the window of parameters for the existence
of metastable vacua is quite small. We show then that
semi-classical corrections, starting from some increasing
critical value of the strength ΛE, transform any classical
potential with a single spontaneously broken vacuum to the
semi-classical potential with a single trivial vacuum. Close
to the chiral limit this transition goes through a smooth
sequence of potentials with two minima. There are other
known cases of effective chiral Lagrangians which confirm
the picture with several vacua [19,20].
(b) If the symmetry is broken up to theSU(2)I×U(1)Y sub-
group the smooth classical effective potential V (∆u, ∆s)
defined on the space of stationary trajectories S may have
several non-degenerate critical points. It is known that the
properties of the critical points are related to the topology
of the surface S. We used this geometrical aspect of the
problem to draw conclusions about an eventual more elab-
orate structure of the hadronic vacuum already at leading
order in �. We find for some parameter sets the existence
of a minimum, a maximum and a saddle point. For van-
ishing current quark masses, for example, the minimum
corresponds to the spontaneous breakdown of chiral sym-
metry, the maximum is at the origin, and the saddle point
at mu ∼ 0 and ms finite. Similar as in the SU(3) case, the
inclusion of fluctuations tends to destroy the spontaneous
broken phase and to restore the trivial vacuum.

Our work raises some issues which can be addressed
and used in further calculations.
(1)TheGaussian approximation leads to singularities in the
effective potential. To study this problem which is known
as caustics in the path integral, it is necessary to go beyond
this approximation and take into account quantum fluc-
tuations of higher order than the quadratic ones. To the
level of accuracy of the WKB approximation the effective
potential is elsewhere well defined and has stable minima
between the singularities. It is interesting to trace the fate
of these minima going beyond the WKB approximation,
since in this work we have analyzed the effective potential
mainly at a safe distance from the first caustic.
(2) Our expressions for the mass corrections (A.7) have a
general form and can be used, for instance, to include the
one-loop effect of mesonic fields. One can use it as well to
find the relative strength of strange and non-strange quark
pairs in this contribution.
(3) We have chosen � and independently 1/Nc as two possi-
ble parameters for the systematic expansion of the effective
action. As we saw the 1/Nc-expansion is a much more re-
strictive procedure. They are of interest for the study of
the lowest lying scalar and pseudoscalar meson spectrum.
There is a qualitative understanding of this spectrum at
phenomenological level (see, for instance, [21]). A more
elaborate study might lead to the necessity of including ei-
ther additional many-quark vertices or taking into account

systematically quantum corrections. Our results might be
helpful in approaching both of the indicated developments.
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Appendices

A The semi-classical corrections
to the constituent quark masses

To derive the explicit formula for the semi-classical next
to the leading order corrections ∆mi to the constituent
quark masses Mi one has to solve the system of equations,
following from (48):



Iu

G
∆mu +

∑
i=u,d,s

∂hu

∂∆i
∆mi = zu,

Id

G
∆md +

∑
i=u,d,s

∂hd

∂∆i
∆mi = zd,

Is

G
∆ms +

∑
i=u,d,s

∂hs

∂∆i
∆mi = zs,

(A.1)

where the functions Ii(m2
i ) are given by (63). Both the

partial derivatives and integrals Ii(m2
i ) must be calculated

for mi = Mi. From the first system of equations in (50)
we may express the derivatives ∂hi/∂∆j in terms of the
functions hi. To simplify the work it is convenient to change
the notation and rewrite (31) in the form


ωu + xu + ωdωs = 0,

ωd + xd + ωuωs = 0,

ωs + xs + ωuωd = 0.

ωi ≡ κhi

16G
, xi ≡ κ∆i

(4G)2
,

(A.2)
Straightforwardalgebra on thebasis of these equations gives

∂ωi

∂xi
= − 1

A
(1 − ω2

i ),
∂ωi

∂xj
= − 1

A
(ωiωj − ωk) =

∂ωj

∂xi
.

(A.3)
Here A = 1 − ω2

u − ω2
d − ω2

s + 2ωuωdωs. We assume that
the indices i, j, k range over the set {u, d, s} in such a way
that i �= j �= k, and a sum over repeated indices is implied
only if the symbol of the sum is explicitly written.

The main determinant of the system (A.1) is equal to

D = − D

AG3 ,

D = 1 −
∑

i=u,d,s

Ii + (1 − ω2
u)IdIs (A.4)

+(1 − ω2
d)IsIu + (1 − ω2

s)IuId − AIuIdIs,
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with Ii given by (63). The other related determinants are
written in the compact form

Di =
1

AG2 (ziBjk + zjBjik + zkBkij) (i �= j �= k),

(A.5)
where

Bij = 1 − (1 − ω2
i )Ij − (1 − ω2

j )Ii + AIiIj ,

Bijk = (ωiωj − ωk)Ik + ωk. (A.6)

Hence the �-correction to the mean field value of the con-
stituent quark mass is given by

∆mi =
Di

D = −G

D
(ziBjk + zjBjik + zkBkij) , (A.7)

where i �= j �= k. This formula gives us the most general
expression which has to be specified by the explicit form
for zi.

Let us also write out the two partial cases for this result.
If ωu = ωd ≡ ω and Iu = Id = I, which happens when
the group of flavor symmetry is broken according to the
pattern SU(3) → SU(2)f × U(1)f , one can find

A = (1 − ωs)µ, µ ≡ (1 + ωs − 2ω2),

D = [1 − (1 − ωs)I][1 − Is − (1 + ωs)I + µIIs],

AG2Du = [1 − (1 − ωs)I][zu(1 + ωs − µIs) + zsω],

AG2Ds = [1 − (1 − ωs)I][zs(1 − µI) + 2zuω]. (A.8)

This determines the coefficients in ∆mi, and we obtain the
following form of mass corrections:

∆mu = G
zuµIs − zu(1 + ωs) − zsω

1 − Is − (1 + ωs)I + µIIs
,

∆ms = G
zs(µI − 1) − 2zuω

1 − Is − (1 + ωs)I + µIIs
. (A.9)

The second partial case for the formula (A.7) corresponds
to the SU(3) flavor symmetry. It is clear that now we have

A = (1 + 2ω)(1 − ω)2,

D = [1 − (1 + 2ω)I][1 − (1 − ω)I]2,

AG2Du = zu(1 + 2ω)[1 − (1 − ω)I]2. (A.10)

Then (A.7) yields the following result for the mass correc-
tion:

∆mu = −G
zu(1 + 2ω)

1 − (1 + 2ω)I
. (A.11)

B Particle expectation values Qij

The knowledge of the constituent quark mass Mi gained
from (50), combined with the Feynman–Hellmann theo-
rem [22], have been used for finding the expectation values
of the scalar quark densities, q̄jqj , in the physical quark
state |Qi〉 [4]. The matrix element 〈Qi|q̄jqj |Qi〉 describes

the mixing of quarks of flavor j into the wavefunction of con-
stituent quarks of flavor i. One can determine these particle
expectation values by calculating the partial derivatives

〈Qi|q̄jqj |Qi〉 =
∂Mi

∂m̂j
≡ Qij . (B.1)

The functions Qij have been calculated in [4] for the case
m̂u = m̂d. There are a number of physical problems in
which these matrix elements are useful. We have found the
presence of them in the expression for the semi-classical
corrections to the mean field quark masses Mi.

Both the mass corrections ∆mi and the particle ex-
pectation values Qij are solutions of a similar system of
equations and can be derived on an equal footing. Indeed,
Qij are the solutions of the equations obtained from (50)
by differentiation with respect to m̂j . These equations dif-
fer from the system (A.1) only up to the replacements
of variables ∆mi → Qij and zi → ∂hi/∂∆j . Therefore
we have

Qij =
Di(j)

D . (B.2)

With this way of writing the determinants Di(j) we wish
to stress that one can simply obtain them from Di in (A.5)
through the above replacements zi → ∂ωi/(G∂xj). The
main determinant D is not changed. By use of these for-
mulas we are led to the explicit expressions

Qii =
1
D

[
(1 − Ij)(1 − Ik) − ω2

i IjIk

]
,

Qij =
1
D

IiBijk, i �= j �= k (no sum), (B.3)

which correspond to the most general case m̂u �= m̂d �= m̂s.
The notation has been explained in Appendix A.

C Effective potential

The models which are considered here lead in the most
general case to the potential V (∆u, ∆d, ∆s) = V (∆i). This
function is a solution of (68). One can reconstruct V (∆i)
by integrating the one-form

dV =
∂V

∂mu
dmu +

∂V

∂md
dmd +

∂V

∂ms
dms =

∑
i=u,d,s

fidmi.

(C.1)
Thus, the derivation of the effective potential in the fu =
fd = fs case is simply a question of representing the gap
equation f(mu) = 0 in the form of an exact differential,
3f(mu)dmu = dV (mu), wheremu =

√
2/3m0. One should

also take into account the constraint

Ghu + ∆u +
κ

16
h2

u = 0, (C.2)

which implies that

dmu = −
(
G +

κ

8
hu

)
dhu = −16G2

κ
(1 + 2ω)dω. (C.3)
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Using this result one can obtain for the first term in (69),
for instance,

−hudmu = hu

(
G +

κ

8
hu

)
dhu = d

(
G

2
h2

u +
κ

24
h3

u

)
.

(C.4)
A similar calculation with the third term in (69) gives

κΩ−1

2G2

ω(1 − 3ω2)dmu

(1 + 2ω)(1 − 4ω2)(1 − ω2)

= −4Ω−1 (1 − 3ω2)dω2

(1 − 4ω2)(1 − ω2)

=
1
3
Ω−1d ln

∣∣(1 − 4ω2)(1 − ω2)8
∣∣ . (C.5)

To conclude the procedure we must then add to the effective
potential V (∆u) the corresponding contribution from the
second term,

− Nc

2π2 muJ0(m2
u)dmu = −dv(m2

u), (C.6)

where we have defined

v(m2
i ) ≡ Nc

8π2

[
m2

i J0(m2
i ) + Λ4 ln

(
1 +

m2
i

Λ2

)]
. (C.7)

All this amounts to a calculation of the effective potential
in the form given by (70).
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