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Abstract. The functional integration over the auxiliary bosonic variables of cubic order related with the ef-
fective action of the Nambu–Jona–Lasinio model with ’t Hooft term has recently been obtained in the form
of a loop expansion. Even numbers of loops contribute to the action, while odd numbers of loops are assigned
to the measure. We consider the two-loop corrections and analyse their effect on the low-lying pseudoscalar
and scalar mass spectra, quark condensates and weak decay constants. The results are compared to the
leading order calculations and other approaches.
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1 Introduction

The large distance dynamics of QCD is dictated to a great
extent by the spontaneous symmetry breaking of chiral
symmetry [1, 2]. The Nambu–Jona–Lasinio (NJL) model of
fermionic fields [3] suggests that the dynamical mechanism
for such breaking is in analogy with the Ginsburg–Landau
theory of superconductivity [4]. Numerous studies [5–7]
have been performed since that time with the respective ef-
fective mesonic action derived from four-quark interactions
of the NJL type. During these years the resolution of the
UA(1) problem has been found and, in particular, the rel-
evance of the U(3)L×U(3)R chiral symmetric NJL model
combined with the six-quark ’t Hooft flavour determinan-
tal interaction (NJLH) [8] for low-energy phenomenology
of mesons was noted [9–12]. The explicit breaking of the
unwanted UA(1) axial symmetry by the ’t Hooft determi-
nant is motivated by the instanton approach to low-energy
QCD [8, 13].
Originally written in terms of fermionic degrees of free-

dom, the NJLH model has been widely explored at mean
field level with Bethe–Salpeter and Hartree–Fock tech-
niques applied to quark–antiquark scattering in its various
channels of interaction [9, 14, 15].
In parallel, functional integral methods have been used

to obtain the Lagrangian in bosonized form [10, 16–18].
The bosonization gives rise to a doubling of the mesonic
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auxiliary fields, of which one set has to be integrated
out. This latter, in the presence of the ’t Hooft inter-
action, involves a term of cubic order, which cannot be
integrated out exactly. In [10] the leading order station-
ary phase approximation (SPA) was calculated. At this
order the effective potentials obtained with both methods
coincide [17].
Given its success in describing a large bulk of empir-

ical data, the question arises of whether corrections to
the leading order SPA result are small. By embarking on
this task, we came across a series of startling facts in our
investigations [18]:

(i) The stationary phase equations which one obtains in
the NJLH model have more than one root (critical
point). Only one has a regular behaviour in the limit
κ→ 0 of the six-quark coupling, the others are singu-
lar. The rigorous SPA treatment requires taking into
account all critical points, which give rise to an unsta-
ble vacuum for the theory.

(ii) The result obtained in [10] corresponds to the regu-
lar root contribution. It is an approximation which
leads to an effective potential with a well-separated
local minimum, which approaches smoothly the sta-
ble NJL vacuum as κ→ 0. Such a local minimum is
probably a good ground for phenomenological esti-
mates; at least all known calculations made in the
NJLH model are based on this approximation. It has
been shown recently [19] that eight-quark interac-
tions stabilize this vacuum state, opening the way to
justify this approach theoretically.

(iii) Two expansions of the effective action have been con-
sidered: the perturbative series in κ and the loop ex-
pansion. Both of them were never studied beyond the
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leading order. It is tacitly assumed that next to the
leading order corrections are small, although this fact
has never been proven.

In this paper we quantify the two-loop order contributions
to the Lagrangian derived previously by studying their im-
pact on the mass spectrum of low-lying mesons. We show
that the effect is of the order of a few percent compared
to the leading order masses, improving them slightly. We
think that it is rather safe to conclude that the loop expan-
sion is rapidly converging, at least for the mass spectra.
The paper is structured as follows. In Sect. 2 we col-

lect the essential information needed to extract the linear
and quadratic terms, which contribute to the gap equa-
tions and mass terms, respectively. In Sect. 3 we write out
the expressions for the gap equations, masses, weak decay
constants and condensates. Section 4 contains the numer-
ical results and discussion. Conclusions are presented in
Sect. 5.

2 The ‘tandem’ Lagrangian

To be self contained and define the notation we review
the main ingredients of our model calculations. The un-
derlying multi-quark Lagrangian is bosonized in a two-step
(tandem) process, in which a semi-bosonized functional,
quadratic in the fermionic fields, and another functional,
depending only on the auxiliary bosonic variables, can be
dealt with separately. The integration over the quadratic
fermionic degrees of freedom is formally exact and is cal-
culated using a generalized heat kernel method. We start
by presenting how these two types of functionals emerge
and how we obtain and calculate the loop expansion we are
after.

2.1 The stationary phase contribution

We consider the fermionic Lagrangian

LNJLH = q̄(iγ
µ∂µ−m)q+LNJL+LH, (1)

which contains the NJL four-quark vertices of the scalar
and pseudoscalar types

LNJL =
G

2

[
(q̄λaq)

2+(q̄iγ5λaq)
2
]

(2)

and the six-quark ’t Hooft interaction [8]

LH = κ(det q̄PLq+det q̄PRq), (3)

where m is the diagonal current quark matrix for quark
fields with Nf = 3 flavours and Nc = 3 colours. In (2) λa,
a = 0, 1...8, are the normalized (trλaλb = 2δab) matrices
in flavour space. The explicit form of these U(3) Hermi-
tian generators is λ0 =

√
2/3, and λa for a �= 0 are the

usual Gell-Mann matrices. The positive coupling G, [G] =
GeV−2, has order G ∼ 1/Nc. In (3) the negative coupling
κ of dimension [κ] = GeV−5 has the large-Nc asymptotics

κ ∼ 1/NNfc . Therefore, LNJL dominates over LH at large
Nc. The matrices PL,R = (1∓γ5)/2 are projectors on the
chiral states and the determinant is over flavour indices.
We are assuming that the quark fields transform like

the fundamental representations of the global U(3)L×
U(3)R chiral group, i.e.

δq = i(α+γ5β)q, δq̄ =−iq̄(α−γ5β), (4)

where the parameters of the infinitesimal transformations
are chosen as α= αaλa, β = βaλa. One now observes that

δLNJLH =iq̄ ([α,m]−γ5{β,m}) q

+2i
√
6β0κ (det q̄PRq−det q̄PLq) . (5)

The global chiral symmetry is broken explicitly by the cur-
rent quark mass term and the U(1)A axial symmetry is
broken too due to the ’t Hooft interaction.
The functional integral in bosonized form is derived

in [10], and has the form

Z =

∫ ∏

A

DΠA DqDq̄ exp

(
i

∫
d4xLq(q̄, q, σ, φ)

)

×

+∞∫

−∞

∏

A

DRA exp

(
i

∫
d4xLr(Π,∆;R)

)
, (6)

where

Lq = q̄(iγ
µ∂µ−M−σ− iγ5φ)q, (7)

Lr =RA(ΠA+∆A)+
G

2
R2A+

κ

3!
ΦABCRARBRC , (8)

with a cubic polynomial in the fields RA in the exponent.
The notation is as follows [18]: RA = (Ra, Rȧ) = (sa, pa)
and ΠA = (Πa,Πȧ) = (σa, φa) are a very compact way to
represent two sets of auxiliary bosonic variables, each con-
taining a scalar sa (σa) and a pseudoscalar pa (φa) nonet.
The indices (a, ȧ) run from 0 to 8 independently in flavour
space. We also define the related quantity ∆A = (∆a, 0) =
(Ma−ma, 0).
The external scalar fields σ = σaλa have been shifted

σa→ σa+Ma by the constituent quark mass Ma, so that
the expectation value of the shifted fields in the vacuum
corresponding to dynamically broken chiral symmetry van-
ish. The vacuum expectation value of the ‘unshifted’ scalar
field

〈
σ
〉
=Maλa = diag(Mu,Md,Ms) (9)

gives the point where the effective potential of the model
V (
〈
σ
〉
) achieves its local minimum. The corresponding

condition is known as the ‘gap’ equation. It eliminates tad-
pole graphs and determines the values of constituent quark
masses as functions of the model parameters and of the
cutoff Λ. The casemu �=md �=ms corresponds to the most
general breakdown of the SU(3) flavour symmetry, giving
Mu �=Md �=Ms. In this way the ground state of the system
includes effects of the explicit symmetry breaking. We will
assume in the following thatmu =md.
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The variables σa and φa must be replaced by the phys-
ical scalar and pseudoscalar states σpha and φpha deter-
mined through the appropriate normalization of their ki-
netic terms. Note that these terms, as well as other import-
ant contributions to the meson masses and interactions of
the effective mesonic Lagrangian, are obtained as a result
of integration over the quark fields in Z. One has

σa, φa = gσ
ph
a , gφ

ph
a (10)

at leading order of the heat kernel expansion of the effective
mesonic action (see Sect. 3). The quark–meson coupling g,
being a function of parameters of the model, fulfils in add-
ition the Goldberger–Treiman relation at the quark level:
g =Mu/fπ. Combining this relation with (9) and (10) one
finds the well-known linear sigma model result [20]

〈
σphu
〉
= fπ. (11)

Finally, the three index coefficients ΦABC are defined as

Φabc =−Φaḃċ =
3

16
Aabc , Φabċ = Φȧḃċ = 0, (12)

obeying

ΦABCδBC = 0. (13)

The totally symmetric constants Aabc are related to the
flavour determinant, and equal to

Aabc =
1

3!
εijkεmnl(λa)im(λb)jn(λc)kl. (14)

Now the functional integral over the auxiliary variables
RA in (6),

Z[Π,∆]≡

+∞∫

−∞

∏

A

DRA exp

(
i

∫
d4xLr(Π,∆;R)

)
,

(15)

can be written in the form [18]

Z[Π,∆]∼ exp

(
i

∫
d4xLst

)

×

+∞∫

−∞

∏

A

DR̄A exp

(
i

2

∫
d4xL′′ABR̄AR̄B

)

×
∞∑

n=0

1

n!

(
i
κ

3!
ΦABC

∫
d4xR̄AR̄BR̄C

)n
.

(16)

Here Lst is the stationary value of the Lagrangian
Lr(Π,∆;R) associated with the regular critical point,
around which the effective Lagrangian has been expanded.
The barred fields indicate that they are shifted with re-
spect to their stationary values R̄ = R−Rst. We denote
by L′′AB the coefficient of the expansion to second order in
the fields. The expansion stops exactly at the third order

L′′′ABC = κΦABC/3!, whose exponent is represented here as
an infinite series.
The terms with odd values of n do not contribute

in (16), because the corresponding functional integrals over
R̄A are equal to zero. The first term, n= 0, sums all tree
diagrams of a perturbative series in powers of the coupling
κ resulting in Lst. The n= 2 term represents the first non-
leading correction to the effective Lagrangian (for details
we refer the reader to [18], where we show that this cor-
rection can be associated with a ‘two-loop’ contribution of
quantum auxiliary bosonic fields)

Leff = Lst+

(
λ

2π

)8
3κ2M

32N(N+2)(N+4)
. (17)

The stationary Lagrangian reads to cubic order in the
fields [16, 17]

Lst=haσa+
1

2
h
(1)
ab σaσb+

1

2
h
(2)
ab φaφb

+
1

3
σa

[
h
(1)
abcσbσc+

(
h
(2)
abc+h

(3)
bca

)
φbφc

]

+O(field4). (18)

The two-loop corrections, contained in the second term
of (17), consist of a rather intricate dependence

M=
(
tr L′′

−1
)3
+6 tr L′′

−1
tr(L′′

−1
)2+8 tr

(
L′′
−1
)3

(19)

on flavour traces of powers of L′′ −1, which is the inverse of
the real and symmetricN ×N matrix (N = 18)

L′′AB(Rst) =

⎛

⎜
⎝
Gδab+

3κ

16
Aabcs

c
st −

3κ

16
Aabcp

c
st

−
3κ

16
Aabcp

c
st Gδab−

3κ

16
Aabcs

c
st

⎞

⎟
⎠ ,

(20)

calculated at the stationary points sast and p
a
st. These are

expressed in increasing powers of the external fields σa, φa
as

sast=ha+h
(1)
ab σb+h

(1)
abcσbσc+h

(2)
abcφbφc

+h
(1)
abcdσbσcσd+h

(2)
abcdσbφcφd+ . . . , (21)

past=h
(2)
ab φb+h

(3)
abcφbσc+h

(3)
abcdσbσcφd

+h
(4)
abcdφbφcφd+ . . . , (22)

with h
(i)
ab... depending on ∆a and coupling constants (see

the appendix). In particular, the coefficients have non-
vanishing components for a = (0, 3, 8) and are obtained,
with h = haλa = diag(hu, hd, hs), in the case of isotopic
symmetry (hu = hd) as [17]

⎧
⎪⎪⎨

⎪⎪⎩

Ghu+∆u+
κ

16
huhs = 0,

Ghs+∆s+
κ

16
h2u = 0.

(23)
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In (17) λ denotes an ultraviolet cutoff associated with
the stationary phase corrections to the functional integral
over auxiliary bosonic fields. It is a free parameter to be
fixed by phenomenology.
To handle the new contribution M, we expand

L′′AB(Rst), which we abbreviate from now on as L
′′, to sec-

ond order in the external fields σa, φa as

L′′ = L0+L1+L2+O(field
3), (24)

and its inverse

L′′−1 = L̄0+ L̄1+ L̄2+O(field
3). (25)

This is all one needs to extract the relevant terms for the
masses arising from the two-loop correction term. Here Li,
i = 0, 1, 2, denote the matrices which are constant, linear
and quadratic in the fields, respectively. The L̄i are con-
structed order by order, starting from the 0th order

L′′L′′−1 = L0L̄0 = 1, (26)

i.e. L̄0 = L
−1
0 .

The next terms are conditioned by this relation. Com-
bining the first-order Lagrangians and truncating at the
linear fields

(L0+L1)(L̄0+ L̄1)→ L0L̄0+L1L̄0+L0L̄1 = 1, (27)

one obtains the matrix L̄1, after using (26),

L̄1 =−L̄0L1L̄0. (28)

In a similar fashion one derives the matrix L̄2 as

L̄2 =−
(
L̄0L2L̄0+ L̄0L1L̄1

)

=−
(
L̄0L2L̄0− L̄0L1L̄0L1L̄0

)
. (29)

Using L̄i in (25) and inserting in (19), one obtains

M2=3
{(
trL̄0
) (
trL̄1
)2
+
(
trL̄0
)2 (
trL̄2
)

+8 tr
(
L̄0L̄

2
1+ L̄2L̄

2
0

)}

+6
{
tr
(
L̄0
) [
tr
(
L̄21
)
+2 tr

(
L̄0L̄2

)]

+ 2 tr
(
L̄1
)
tr
(
L̄0L̄1

)
+
(
trL̄2
)
tr
(
L̄20
)}
, (30)

whereM2 stands for the part ofMwhich contains only the
second-order terms in the fields σa, φa.
This expression is used in ‘Mathematica’ [21]. Although

the results, after evaluation of traces, are analytical they
are very lengthy and not illuminating, and will not be pre-
sented here. However, some structures are relevant for the
low-energy theorems and the results will be encrypted in
them, as shown in Sect. 3.

2.2 The heat kernel contribution

It still remains to evaluate the functional integral over the
quark degrees of freedom in (6). The Lagrangian Lq is in-
variant under the chiral transformations (4) and the trans-
formations

δσ = i[α, σ+M ]+{β, φ}, δφ= i[α, φ]−{β, σ+M},
(31)

induced by them for the external fields. All symmetry
breaking terms have been absorbed in Lr. This fact is of
importance, since one can use then the generalized asymp-
totic expansion of the quark determinant [22, 23]. This
method preserves the above-mentioned symmetry at any
order, taking into account the effects of the flavour symme-
try breaking contained in the mass matrix M . Thus, the
corresponding part of the effective action can be written as

ln |detD|=−
1

32π2

∫
d4xE

∞∑

i=0

Ii−1tr(bi), (32)

where D = iγµ∂µ−M −σ− iγ5φ is the Dirac operator
present in Lq (7), and the bi are generalized Seeley–DeWitt
coefficients [22], of which we show the first four for the case
of SU(2)I ×U(1)Y flavour symmetry:

b0= 1,

b1=−Y,

b2=
Y 2

2
+
∆us√
3
λ8Y,

b3=−
Y 3

3!
+
∆2us

6
√
3
λ8Y −

∆us

2
√
3
λ8Y

2−
1

12
(∂Y )

2
. (33)

In the present case the background-dependent structure Y
is given by

Y = iγµ(∂µσ+iγ5∂µφ)+σ
2+{M,σ}+φ2+iγ5[σ+M,φ].

(34)

We use the definition ∆ij ≡M2i −M
2
j . In (32) the trace is

to be taken over colour, flavour and Dirac 4-spinor indices
and the regulator-dependent integrals Ii are the weighted
sums

Ii =
1

3

(
2Ji(M

2
u)+Ji(M

2
s )
)

(35)

with

Ji(M
2
j ) =

∞∫

0

dt

t2−i
ρ(tΛ2) exp(−tM2j ). (36)

They are regularized with the Pauli–Villars regularization
scheme [24] with two subtractions and one ultraviolet cut-
off Λ

ρ(tΛ2) = 1− (1+ tΛ2)exp(−tΛ2). (37)
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We obtain, for instance [25]

J0(M
2)= Λ2−M2 ln

(
1+
Λ2

M2

)
, (38)

J1(M
2)= ln

(
1+
Λ2

M2

)
−

Λ2

Λ2+M2
. (39)

Both of them are divergent in the limiting case Λ→∞.
Note that Λ does not need to be the same cutoff as λ of
(17). In the following we restrict our study to the two non-
trivial terms, b1 and b2, in the asymptotic expansion of
ln |detD|. In this case only I0 and I1 are involved, related
to the quark one-loop integrals of one- and two-point func-
tions, respectively, at zero four-momentum transfer.

3 Gap equations, condensates
and meson spectra

3.1 Gap equations and condensates

The complete effective bosonized Lagrangian

Lb = LHK+Lst+Lc (40)

comprises contributions from the heat kernel expansion to
order b2, LHK, and from (17), where Lc stands for the two-
loop corrections.We restrict to the case of SU(2)I ×U(1)Y
symmetry, e.g.Mu =Md �=Ms. The first two contributions
remain the same as in the leading order calculations [12].
Equating the coefficient of σi, i = (u, d, s), in (40) to

zero we obtain the gap equations

hu+
Nc

6π2
Mu
[
3I0+(M

2
s −M

2
u)I1
]
+2cu = 0,

hs+
Nc

6π2
Ms
[
3I0−2(M

2
s −M

2
u)I1
]
+2cs = 0, (41)

where cu and cs denote the corrections arising from Lc.
They depend on hu, hs, λ, κ. These equations must be
solved self-consistently and in conjunction with the sta-
tionary phase conditions (23). The solutions Mi of (41)
allow us to calculate the condensates

〈
ūu
〉
and
〈
s̄s
〉
(see

(54))

〈
q̄iqi
〉
=−

Nc

4π2
[
MiJ0(M

2
i )−miJ0(m

2
i )
]
, (42)

where we have subtracted the contribution from the triv-
ial vacuum [9]. Although they are structurally identical
to the condensates calculated at leading order, they en-
code the information of the correction terms ci implicitly
throughMi.

3.2 Meson masses

The expressions for the leading order masses, i.e. with Lc
put to zero, will not be repeated here. They were obtained
in [12]. The correction mass terms can just be added to
the leading order terms in their ‘raw’ form, that is, as they

are directly extracted from LHK, depending on I0, I1 in-
tegrals. To check the low-energy theorems, one can then
use the new gap equations, with the correction terms ci in-
cluded, to eliminate these integrals. For example, for the
pion, φj (j = 1, 2, 3), one has

LHK(m
2
π) =

Nc

12π2
(3I0+∆suI1)φ

2
j , (43)

Lst(m
2
π) =−

φ2j
2G(1+ωs)

. (44)

With ‘Mathematica’ we are able to identify

Lc(m
2
π) =−

cuφ
2
j

(4G)2ωu(1+ωs)
, (45)

where ωi = κhi/(16G). This connection between the pion
mass correction and the gap equation correction term cu
is crucial to guarantee the Goldstone limit. Indeed we ob-
tain, after eliminating I0, I1 from (43) with help of the gap
equations,

m2π =
o
m
2

π

(
1+2

cu

hu

)
,

o
m
2

π =
g2mu

MuG(1+ωs)
, (46)

where
o
mπ is structurally identical with the leading order

pion mass; g2 = 4π2/(NcI1) renormalizes the pion fields to
the physical fields (see (10)). We also used

−
hu

∆u
=

1

G(1+ωs)
, (47)

which is a simple consequence of the stationary phase con-
ditions (23).
In an analogous way we are able to find for the kaon

mass

m2K =
o
m
2

K

(
1+2

cu+ cs
hu+hs

)
,

o
m
2

K =
g2(mu+ms)

G(Mu+Ms)(1+ωu)
, (48)

where
o
m
2

K has the form of the leading order kaon mass. We
again used (23) to obtain

−
hu+hs
∆u+∆s

=
1

G(1+ωu)
. (49)

Concerning the η, η′ corrections, we show here only
some relevant properties obtained with the help of ‘Math-
ematica’ in the SU(3) limit:

(∆m2π)c = (∆m
2
K)c = (∆m

2
88)c,

(∆m208)c = 0,

(∆m200)c− (∆m
2
88)c �= 0, (50)

where, for instance, (∆m2π)c is the contribution to the pion
mass obtained from the LagrangianLc. Therefore, the cor-
rections to the flavour (0, 8) components follow the same
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Table 1. The main parameters of the model: current quark masses,mu,ms, and corresponding con-
stituent masses, Mu,Ms, in MeV, couplings G (in GeV

−2) and κ (in GeV−5) and two cutoffs Λ, λ in
GeV. The values of condensates are given in MeV

mu ms Mu Ms G −κ Λ λ −
〈
ūu
〉1/3

−
〈
s̄s
〉1/3

a 6.3 194 398 588 13.5 1300* 0.82 0* 229 172
b 6.3 194 398 588 13.5 1300* 0.82 1.8* 229 172
c 6.3 194 398 588 13.4 1370* 0.82 0* 229 172
d 6.3 194 398 588 11.8 1370* 0.82 1.7* 229 172
e 2.8 92 216 385 3.14 120 1.37 0* 302 314
f 2.1 69 196 354 2.15 53 1.64 1.9* 333 363

patterns as in the leading order case [12], complying with
the low-energy requirements: the octet member m288 re-
mains degenerate with the pion and kaon, the mixing m208
vanishes and in the chiral limit the correction to the mass
of the singlet m200 is also non-vanishing, and will therefore
contribute to the singlet–octet splitting.
For the scalars we obtain in the SU(3) limit also that

the corrections to the masses behave as

(∆M2a0)c = (∆M
2
K∗0
)c = (∆M

2
88)c,

(∆M208)c = 0,

(∆M200)c− (∆M
2
88)c �= 0. (51)

3.3 Weak decay constants

We use the partially conserved axial current condition
(PCAC) and the Gell-Mann–Oakes–Renner (GOR) [26] re-
lation to extract the condensates. From PCAC the weak
decay constants are given as

fπ =
Mu

g
, fK =

Mu+Ms
2g

. (52)

Using this and the mass relations formπ andmK , (46) and
(48), one obtains the GOR equations with some model cor-
rections of higher order in the current quark masses and
from which one identifies the condensates

m2πf
2
π =mu(hu+2cu)

(
1+
mu

∆u

)

=−2mu
〈
0|ūu|0

〉
(
1+
mu

∆u

)
,

m2Kf
2
K =

1

4
(mu+ms)(hu+2cu+hs+2cs)

(
1+
mu+ms
∆u+∆s

)

=−
1

2
(mu+ms)

〈
0|ūu+ s̄s|0

〉
(
1+
mu+ms
∆u+∆s

)
.

(53)

Finally, by using the gap equations (41) in (53) and
expressing I0, I1 through J0(M

2
i ), J1(M

2
i ) with (35), we

obtain the condensates as

〈
0|q̄iqi|0

〉
=−

Nc

4π2
MiJ0(M

2
i )+O(J2), (54)

where the O(J2) terms are neglected, to conform with the
truncation of the heat kernel series. We recall that the
O(J2) emerge from a property of the generalized heat ker-
nel series in which differences of Jk(M

2
u)−Jk(M

2
s ) are ex-

pressed as an infinite series involving Jk+l, l > 0 [22].

4 Numerical results and discussion

There are six parameters in the model, mu,ms, G, κ, Λ, λ.
To see the effects of the new contribution, proportional
to the cutoff λ, we compare pairwise in the sets (a, b),
(c, d) and (e, f) of Tables 1–3 the results calculated
with λ = 0 and λ �= 0, keeping the remaining input un-
changed. In this way, within each pair of sets, a running
value of λ between the indicated ones will interpolate
smoothly between the calculated observables shown. In
a–d we fix four parameters through the pseudoscalar
sector, mπ,mK , fπ, fK , and adjust κ through the quark
condensate

〈
ūu
〉
. In sets (e, f) five parameters are fixed

through mπ,mK , fπ,mη′ , and the scalar a0. Input is indi-
cated through a *.
It is clear that the large differences observed among

different pairs of sets come from the leading order contri-
bution. For example, the condensates, fK and the η mass
are strongly dependent on the value of κ, which is one order
of magnitude larger in the sets (a–d) as compared to sets
(e, f). This observation applies also to the scalar spectrum,
with large changes resulting at leading order. They are best
described in set (f), but this implies rather large values for
fK and the condensates.

Table 2. The main characteristics of the light pseudoscalar
mesons in MeV. The singlet–octet mixing angle θp is given in
degrees

mπ mK fπ fK mη mη′ θp

a 138* 494* 92* 114* 476 986 −14
b 138* 494* 92* 114* 487 958 −15
c 138* 494* 92* 114* 480 1020 −13
d 138* 494* 92* 114* 472 959 −15
e 138* 494* 92* 129 533 1097* −1.2
f 138* 494* 92* 129 540 1097* 0.5
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Table 3. The characteristics of the light scalar nonet in MeV and the singlet–octet
mixing angle θs in degrees

ma0 ∼ a0(980) mK∗0 ∼K
∗
0 (800) mσ ∼ f0(600) mσ′ ∼ f0(980) θs

a 1040 1267 806 1438 24
b 981 1219 781 1427 24
c 1056 1280 805 1447 23.7
d 967 1208 762 1426 23.5
e 980* 1029 413 1123 19.5
f 980* 992 346 1073 18

One observes however that the corrections, although
small, have the correct trend, diminishing the splitting in
the singlet–octet members of the pseudoscalar and scalar
spectra. Comparing sets (a, b) with (c, d), one sees that by
enlarging the magnitude of κ, the effect of the corrections
becomes stronger, even for a smaller value of λ.
We also remark the interesting fact that λ cannot be ar-

bitrarily increased, maintaining the remaining input on ob-
servables fixed. At values quite close to the ones indicated,
solutions cease to exist. There is an intrinsic constraint on
the size of corrections.
One might be struck by the large variation in the values

of κ and their relation to the convergence of the loop ex-
pansion (16). This can be understood by identifying the
dimensionless expansion parameter of the series. Follow-
ing [18], where standard methods are used to justify the
stationary phase approach to functional integrals, one ob-
tains the dimensionless parameter

ζ =
κ2

32G3

(
λ

2π

)4
. (55)

Here the group structure factor 3/16 of Φabc in (12) as well
as the factor 1/3! appearing at each order in (16) have been
taken into account. Note also that each term of the ex-
pansion carries a further suppression factor 1/n!. In the
present case n = 2, so that one finds for sets (b), (d), (f)
that ζ2/2 is 0.0096, 0.021, 0.0023, respectively. This at-
tests for a fast convergence of the series.
For a comparison with empirical values, we take

from [27]:

mu = 1.5–4MeV,

md = 4–8MeV,

ms = 80–130MeV,

mπ± = 139.57018±0.00035MeV,

mK± = 493.677±0.016MeV,

mη = 547±0.12MeV,

mη′ = 957.78±0.14MeV, (56)

for the masses in the low-lying pseudoscalar sector. The
weak decay constants feπ = 130.7± 0.1± 0.36MeV, f

e
K =

159.8±1.4±0.44MeV relate to ours through a
√
2 normal-

ization factor; thus fπ � 92.4MeV and fK � 113MeV.

The low-lying scalar masses are presently1

ma0(980) = 984.7±1.2MeV,

mf0(600) = 400–1200MeV,

mf0(980) = 980±10MeV,

mK∗0 (800) = 701–970MeV. (57)

The recent update of the light-quark condensate is〈
(ūu+ d̄d)/2

〉
(1GeV) = −(242± 15MeV)3; the flavour

breaking ratio is known to be
〈
s̄s
〉
/
〈
(ūu+ d̄d)/2

〉
= 0.8±

0.3 [28].
Finally, as our numerical calculations do not differ sig-

nificantly from the leading order values, we refer the reader
to [12] where a thorough discussion of our leading order re-
sults is made in comparison with the ones obtained from
other approaches [29–35].

5 Conclusions

The bosonization of the model combining the NJL and
the ’t Hooft multi-quark interactions leads to correc-
tions associated with the stationary phase integration
over auxiliary bosonic variables in the functional inte-
gral of the theory. The purpose of the present work
has been to quantify the next to leading order (NLO)
corrections, and to study their phenomenological effect
on the mass spectrum of light pseudoscalar and scalar
mesons.
To this end, the first correction to the tree-level effect-

ive action has been considered. We have obtained the lin-
ear and quadratic terms (in the external mesonic fields) of
the NLO Lagrangian. The group structure of the SU(2)×
U(1) flavour symmetry considered leads to quite intri-
cate expressions for the mass corrections. We have shown
in a transparent way that they comply with the QCD
low-energy theorems. We have calculated the mass spec-
tra of the low-lying pseudoscalars and scalars, quark con-
densates and weak decay constants fπ, fK . The correc-
tions are small and improve slightly the leading order
results.
We conclude from these calculations that the series

considered is well convergent. It is an important conclu-
sion, because it justifies the leading order estimates made

1 As several data sets are presented in [27] for mK∗0 (800),
please consult it for details. Here we indicate the lowest and the
highest values collected from all samples.
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before, on one hand, and reports the self consistency of
the stationary phase approach applied to the bosoniza-
tion of effective multi-quark interactions, on the other
hand.
At the same time one may still expect some noticeable

effects of the NLO terms which can show themselves in
third and higher order mesonic amplitudes, especially in
the cases where there is a strong cancellation between the
tree-level contributions.
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Appendix

The equations and algebra leading to the coefficients h
(i)
ab...

of the series for sa and pa can be found in [17]. The ex-
plicit expressions for the case of one and two lower in-
dices are also given there. In this appendix we collect ex-
plicit expressions for the coefficients h

(1)
abc and h

(2)
abc enter-

ing in the expansion of sa and needed for the evaluation
of meson mass terms. Due to the trace structure of (30)
and since L̄0 contributes only in the block diagonal, with
non-vanishing entries in the diagonal and elements of 0, 8
mixing, only the elements of the diagonal and (0, 8) mix-
ing of L2 will contribute to the mass terms. For those we
need

h
(1)
0aa =

κ

16
√
6G3

1+ωs−2ωu
µ+(1−ωs)2

for a ∈ 1, 2, 3.

h
(1)
0aa =

κ

16
√
6G3

1

µ+(1−ωu)
for a ∈ 4, 5, 6, 7.

h
(1)
8aa =−

κ

16
√
3G3

1+ωs+ωu
µ+(1−ωs)2

for a ∈ 1, 2, 3.

h
(1)
8aa =

κ

32
√
3G3

1+2ωu
µ+(1−ωu)2

for a ∈ 4, 5, 6, 7. (A.1)

h
(1)
000 =−

κ

8
√
6G3µ3+

(1+ωs−2ωu)(1−ωu)
2

h
(1)
088 =

κ

16
√
6G3µ3+

(1+2ωu)[1+ωs(1−2ωu)]

h
(1)
008 = h

(1)
080 = h

(1)
800 =

κ

8
√
3G3µ3+

ωu(ωu−ωs)(1−ωu)

h
(1)
808 = h

(1)
880 =

κ

16
√
6G3µ3+

(1+ωs+2ωu−4ωsω
2
u)

h
(1)
888 =

κ

16
√
3G3µ3+

(1+ωu+ωs)(1+2ωu)
2 (A.2)

h
(2)
0aa =−

κ

16
√
6G3

1+ωs−2ωu
µ+(1+ωs)2

for a ∈ 1, 2, 3.

h
(2)
0aa =−

κ

16
√
6G3

1−ωu
µ+(1+ωu)2

for a ∈ 4, 5, 6, 7.

h
(2)
8aa =

κ

16
√
3G3

1+ωs+ωu
µ+(1+ωs)2

for a ∈ 1, 2, 3.

h
(2)
8aa =−

κ

32
√
3G3

1+2ωu
µ+(1+ωu)2

for a ∈ 4, 5, 6, 7. (A.3)

h
(2)
000 =

κ

24
√
6G3µ+µ2−

(1+ωu)(3+ωu−ωs+3ωuωs−6ω
2
u)

h
(2)
088 = −

κ

48
√
6G3µ+µ2−

(1−2ωu)[3−4ωu−ωs(5−6ωu)]

h
(2)
008 =h

(2)
080 =−

κ

24
√
3G3µ+µ2−

(ωu−ωs)(1+ωu−3ω
2
u)

h
(2)
800 =

κ

24
√
3G3µ+µ2−

(ωu−ωs)(1+ωu)(2+3ωu)

h
(2)
808 =h

(2)
880 =−

κ

48
√
6G3µ+µ2−

× (3+2ωu−4ω
2
u+ωs(1−8ωu−12ω

2
u))

h
(2)
888 =−

κ

48
√
3G3µ+µ2−

× (1−2ωu)(3+ωu−ωs−6ωuωs−6ω
2
u), (A.4)

where

ωi =
κhi

16G
, µ± = 1±ωs−2ω

2
u. (A.5)
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