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Abstract. The external forces method is a numerical methodf@alculation based on the finite element method.

It uses the work of the external forcé8g for the calculation of the energy release rate and is particularly
advantageous when that forces are applied far from the crack front. The method was applied to a corner crack
geometry with the objective of studying its accuracy. Good results were obtained for a wide range of virtual crack
displacement$0.03% < Aa/a < 6%) considering 4 values dVg along with a polynomial regression of order

3. For that choice of parameters the inaccuraci 6§ mainly due to FEM errors. A great sensitivity Kfto FEM

errors was observed, however accurate valuds wfere obtained, with errors lower than 2 percent. So, the use of

the external forces method for the calculationkofs recommended, considering its simplicity and accuracy.
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1. Introduction

The stress intensity factdt is a parameter that characterises the magnitude of the singular
stress field existing in the neighbourhood of a crack tip. It is a central concept of linear elastic
fracture mechanics, being widely used in the study of brittle fracture, fatigue, stress corrosion
cracking, and to some extent for creep crack growth.

Many stress intensity factor solutions are now available in the literature for cracks under
quasi-static loading. However, there are many situations for wkiichnot available and must
be calculated. Its calculation can be done using numerical methods (finite element method,
boundary element method, etc.) which, due to increasing computer power, are able to solve
approximately all problems.

The numerical calculation ok based on the finite element method (FEM) can be done
using:

— displacement matching methods — extrapolation method (Chan et al., 1970) or singular
elements based method (Ingraffea et al., 1980);

— energy based methods — total energy method (Irwin, 1958), stiffness derivative formula-
tion (Parks, 1974; Hellen, 1975), mapping technique (DeLorenzi, 1982, 198bjegral
method (Rice, 1968; Murakami et al., 1983), energy domain integral (Li et al., 1985;
Shih et al., 1986) or crack closure integral method (lrwin, 1957; Rybicki et al., 1977;
Shivakumar et al., 1988; Roeck et al., 1995).
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In the matching methods the displacement field obtained with the FEM is compared with the
analytical displacement field, which contaifsin its formulation. In the energy methods,

is calculated from the energy release raie In the total energy method, proposed by Irwin
(1958), the total potential energy of the body is calculated for the initial and virtually extended
crack using the FEM. The energy release rate is obtained directly from its definition. The
stiffness derivative method also uses a virtual crack extension technique, but only the finite
elements distorted by that extension are involved in the analysis. It is now outdated, but it was
the precursor to the modern approaches. DelLorenzi (1982, 1985) improved this method by
calculatingG from a continuum mechanics viewpoint. This methodology docalculation

is not restricted to the FEM, in opposition to the stiffness derivative approach which was
developed solely through a finite element approach. JHietegral method is an alternative
technique, however the evaluation of pointwise values is difficult in three-dimensional cracked
bodies. More recent formulations df (Li et al., 1985; Shih et al., 1986) apply a volume
integration, that provides much better accuracy and are much easier to implement numerically.
Finally, in the crack closure integral method, first proposed by Irwin (1957} estimated
considering a crack extension and evaluating the work done to close the crack to the original
configuration. In order to avoid the need of two FEM analysis, Rybicki et al. (1977) used the
nodal forces ahead of the crack tip and the displacements behind it. Shivakumar et al. (1988)
and Roeck et al. (1995) extended the formulation for three-dimensional problems.

The objective of the present work is to study the calculatioR dfased on the total energy
method. Since the work of external forces is used to calculate the energy release rate of the
cracked body, the method can be called the external forces method (EFM). This method is very
simple and is particularly advantageous when the external forces act far from the crack front.
In that case, the quantities involved in the analysis are not much affected by the difficulties of
the FEM simulating the A./r stress singularity existing near the crack front. The method was
applied to a corner crack geometry and the accurady-ofilues was studied. A comparison
was made with the extrapolation method and with the crack closure integral method.

2. K calculation using the external forces method

In this method the calculation & is done in an indirect way from the energy release €ate
according to the relationship

EG
K=,—, 1
12 @
whereE is the Young's modulus andis Poisson’s ratio. This relationship is valid for plane
strain conditions (for plane stress conditifn= +/ EG). Usually a plane strain condition is
assumed along the whole crack front, except at the free surfaces where a plane stress situation
is assumed. However, Bakker (1992) stated that a plane strain state exists in the-tit
along all the crack front, s& should be always calculated using (1).
G is the derivative of the potential energy of the body with respect to crack area, for fixed
load or fixed displacements
dr
G=——, 2
m 2
where rr is the potential energy of the loaded body andl i@ a virtual crack increment.
This quantity is physically meaningful as it can be considered the crack driving force. If the
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infinitesimal crack incrementA4l is confined to a zone of the crack froGtis a local value
and a distribution o&G can be obtained along the crack front. The crack increment must be in
the plane of the crack and normal to the crack front, because this is expected to be the easiest
path for the crack in a homogeneous and isotropic material. When the virtual crack increment
occurs uniformly along all the crack front and in the plane of the créacis a mean value.

The potential energy for a cracked body, statically loaded with point, surface and body
forces,{F},, {F}s, {F};, respectively, is given by

. =/V%{0}T{e}dV—{u}T-{F}p—/S{u}T-{F}st—/v{u}T-{F}bdv, 3)

where{o}, {¢} and{u} are the stress, strain and displacement vectors, respectivétythe

volume of the body and its surface. The first term is the elastic deformation energy of the
body U and the last three terms are the potential of the external forces. According to this
expression, the energy available for crack extension (energy release rate) has two sources: the
work of applied external forces and the energy stored in the body. According to the principle of
energy conservation (1st law of thermodynamics), the work performed by the external forces
in an adiabatic and reversible way, is stored as deformation energy in theéBodgince the

work done by the external forces acting on a body is given by

We =3 (F), + [ 3 (F1sds + [ T (mn v, @
the potential energy is

T =—Wg. (5)
So,G is also given by

dwg
G = A

(6)
This derivative can be approximately calculated considering two valug&dbr the initial

and extended virtual crack areAsandA + AA

G AV
AA

(7)

The error of this approximation increases with the virtual crack incremeft Antunes
(1993) in a two-dimensional analysis obtained good results with crack increments less than 15
percent of the crack length. An alternative solution proposed was to consider the virtual crack
extensions-AA and+AA, and calculate; doing

~ (We)ataa — (Wg)a—aa (8)

G
2AA

The results obtained were clearly better than the ones given by (7). However, the best solution
is to consider several values @f; for different virtual crack increments, as Figure 1 shows, fit
a polynomial curve to the results by regression and obtain the derivative of that polynomial for
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Wg

AA
Figure 1. Plot of Wg versusA A for G calculation.

AA = 0. The accuracy oK increases in general with the number of virtual crack increments
considered, but this means an increase in the computational effort.

The values ofW, can be obtained numerically using the finite element method (FEM).
Since in the FEM the external forces are replaced by equivalent nodal forces, the work of
external forces is given by

NN
We =Y 3(Fu+ Fyo+ Fw);, (9)
i=1

whereN N is the number of nodesF,, F,, F); are the Cartesian components of the nodal
force on node (directly applied or reaction) an@, v, w); are the displacements of the same
node.

2.1. ADVANTAGES AND DISADVANTAGES OF THE METHOD

The methodology presented f&r calculation is very simple, so can be easily implemented.
The only results of the FEM needed are the nodal displacements and the nodal forces. Since
the nodal displacements are the primary variables of the FEM analysis, they are the most
accurate results of this method. A great advantage is obtained when the external loads act
far from the crack front, or acting close to it do not produce work. In this case, the nodal
displacements close to the crack front, which are the most affected by simulation difficulties
of the crack singularity, are not necessary.

An important disadvantage of the EFM is that it needs more than one FEM analysis to
calculateK, while with other methods only one analysis is necessary. This is particularly
important whenk is to be obtained at several positions along a crack front. When focal
values are sought, these are affected by the extension of crack front involved in the virtual
crack propagation. To obtain a pointwi€ean infinitesimal crack extension, extending over
an infinitesimal crack front segment, in the plane of the crack and in the direction normal to
the crack front should be considered. However, since extends over a finite extension of
the crack front in the vicinity of the point under study, a local weighted average validéf
obtained. The approach used also does not account for the fact that, in general, the direction
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Figure 2. Corner crack geometry (surface 1: restriction to movement alpsgrfaces 2: restrictions to movement
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Figure 3. Finite element mesh.

of the local virtual crack extension does not coincide with that of the local energy release rate.
Finally, the method is not adequate to study mixed mode problems, because skpaahies
cannot be obtained.

3. Application of the method to a corner crack geometry

3.1. THE CORNER CRACK GEOMETRY

For the study oK calculation based on the EFM, the corner crack (CC) geometry presented in
Figure 2 was considered. The body is tension loaded, so mode | loading exists along the whole
crack front. The load is static and a magnitude of 60 kN was considered, that corresponds to
a remote stress of 600 MPa. The boundary conditions are also indicated in Figure 2. There
are restrictions tg movement at the cracked section and f¢ movement at the head of the
body, so the problem of rigid body movement does not exist in the FEM analysis. The restric-
tions at the head restrain its rotation and bending. The material was considered continuous,
homogeneous, isotropic and with linear elastic behaviour. The elastic properties considered
wereE = 1.7 x 10! Pa (Young’'s Modulus) and = 0.3 (Poisson’s ratio).

The FEM code used was MODULEF (INRIA, 1987). The division of the cracked body
of Figure 2 into a mesh of finite elements was done considering quadratic isoparametric
elements: 20-node hexaedric elements and 15-node pentaedric elements (Onéate, 1992). At
the crack front, singular pentaedric elements with 15 nodes were used, in which the desired
singularity (1/4/r) is achieved moving the mid-side nodes to quarter-point positions (Freese
et al., 1976; Banks-Sills et al., 1989). A full Gaussian numerical scheme was used for these
elements (3« 3 x 3 integration points for the 20-node element, and 21 points for the 15-node
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Figure 4. (a) Distribution of nodes along the crack front; (b) spider web mesh around each crack front point.

element). Figure 3 shows the finite element mesh considered for a quarter-circular crack with
5mm, which has 3930 nodes and 861 elements. This mesh was changed for different dimen-
sions and shapes of the crack, however the number of elements and nodes was maintained
constant. It has three main parts; a spider web mesh around the crack front, a transition mesh
and a regular mesh far from the crack front, with 270, 195 and 396 elements, respectively.
Special care was taken in the definition of the spider web mesh, because the errors of the FEM
arise mainly due to the difficulty of simulation of the singularity existing around the crack
front. In the direction longitudinal to the crack front 18 elements were considered, with a total
number of 37 nodes, as shown in Figure 4(a). The angular distribution of elements is more
refined near the surface, to account for boundary layer effects. The geometry of the spider web
around each crack front point can be seen in Figure 4(b).

The virtual crack displacement of the corner nodes was made always along a disection
as indicated in Figure 4(a). The movement of the two mid-side node neighbours of the corner
node displaced was half of the displacement of the corner node, as represented in the same
figure. The crack increment was accomplished by a repositioning of the quarter-point nodes,
in order to maintain the simulation of the singularity"/2.

3.2. ACCURACY OF K-VALUES

During K calculation there are several approximations that affect its accuracy. Naturally it is
important to have correct valuek. results can be considered satisfactory when the error is
within the range 5-10 percent, since material toughness has normally a great spread. When
K-values are used in fatigue, a better accuracy is required, due to fatigue crack propagation
laws. In these AK appears to power 2 or greater, so an accuracy of 1-2 percent is necessary,
if possible. The accuracy of the results obtained with the EFM was studied and the results are
presented next.

In the EFM the effective relation existing betwe®dfy and A (crack area) is approximately
defined considering several virtual crack increments and fitting a regression curve to the nu-
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Figure 5. Influence of FEM errors on the accuracy offFigure 6. Percentage variation of displacemei;, G
K. and K, produced by the replacement of regular elements
by natural singular elements at the crack front.

merical values oW, as indicated in Figure 1. The error associated with this approximation
depends on: accuracy of nodal displacements (i.e., accuracy of data), number of virtual crack
increments, values ak A and regression curve used for fitting the value$Vpf

3.2.1. Influence of FEM errors on the accuracy of K
In the FEM the accuracy depends on the capacity of the finite elements to simulate the real
displacement field, so the parameters are: the finite element mesh (the distribution of elements
along and around the crack front being particularly important); the type of elements and the
order of integration of element matrices. In the present mesh only the mesh can be varied,
because the other parameters have already been defined. Small variations of the external forces
work (W) were obtained, less than 0.1 percent, for a wide range of finite element dimensions,
which indicates a good accuracy. This good accuracy is explained by the remote location of the
nodes involved in the calculation & relative to the crack front, where the FEM performs
worst.

Although the estimation oWy is very accurate, the small errors that inevitably exist
influence the accuracy df -values. If the FEM errors were zero, the valuesigf would
be correct and; would not be affected. This would also happen if the several valuég:of
had identical errors, because the cuwg/ A (see Figure 1), would only be translated without
rotation. In fact, the slope of tangentat = 0, i.e.G would not be affected because the FEM
errors would cancel. However, the virtual crack increments produce always a change in the
accuracy of the FEM, so the cur¥&; /A has always a small rotation in relation to its correct
angular position. If the virtual crack increments produce an improvement of FEM accuracy,
the curveWy /A is rotated anti-clockwise ank is higher than its correct value. On the other
hand, a decrease of accuracy with the virtual crack increments producesKevatues. So,
the influence of FEM errors on the accuracyis due to different errors existing before and
after virtual crack increment, and not due to the errors themselves.

Figure 5 shows the variation of the curi: /A A when regular elements are replaced by
singular elements at the crack front of a quarter-circular crack with 5 mm radiua &et 0,
the variation ofW; is 0.109 percent, while foA A = 2.6 x 10~" m? this variation is slightly
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Figure 7. Influence of the way the virtual crack increment is produced.

higher (0.111 percent). This higher variationWf; indicates that the FEM errors are higher

for the crack virtually extended, which means that the virtual increment produces a finite
element mesh that gives worse results than the initial mesh. The FEM errors rotate the curve
We/AA clockwise, giving aG-value lower than its correct value. The improvement of FEM
analysis with the use of singular elements at the crack front produces a rotafip/af A
anti-clockwise, approaching to its correct value. The improvement of FEM results reduces
the error inG because the variation of accuracy with virtual crack increment is attenuated. The
variation of G in Figure 5 is 1.94 percent, so one order of magnitude higher than the variation
of Wg. This means that the derivative Bfz amplifies its error. The influence of FEM errors
during K calculation procedure can be visualised in Figure 6. This figure shows the variations
of displacementsig, G andK produced by the replacement of regular elements by singular
elements at the crack front, for a quarter-circular crack with 5mm radius. It can be seen that
the variations in displacements afid; are very small, which indicates that they are very
accurate. However, the variation @ is significantly higher, which indicates the important
influence that small errors 8%z can have orG. Finally, the variation oK is slightly smaller

than the variation o6. It is evident that the accuracy &f is very sensitive to FEM errors.

An interesting result was obtained for quarter-circular cracks. It was observed that when
the virtual crack increment is produced by displacing only the crack front node the results
are lower than when the increment is produced by displacing one section of the spider web.
The results presented in Figure 7 show that the difference reduces with crack length, being 29
percent fou = 1 mm and 0.6 percent far= 6 mm. This is explained by the different changes
in the accuracy of the FEM produced by the two virtual crack increments. In fact, when all the
spider web section is displaced, this affects the size of elements in the transition mesh, which
is the main source of FEM errors for cracks with small length. In this case, associated with the
virtual crack increment there is an important change of the accuracy. Since the virtual crack
increment produces an improvement of FEM resukisyalues are higher than the correct
values. The displacement of the crack front node produces a distortion only of the crack front
elements, which has a lower effect on the accuracy of the FEM. For higher crack lengths, the
influence of the size of elements in the transition mesh reduces, so the differences between the
two virtual propagation modes are lower. This reinforces the idea that the changes produced
by the virtual crack increments in the accuracy of FEM must be as small as possible.
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3.2.2. Influence of virtual crack increments and regression curve

The accuracy oK is also influenced by the number of virtual increments, by the magnitude
of that incrementgA A) and by the regression curve used to fit the results. Figure 8 presents
the results obtained for the crack front poiats= 45° anda = 88.5° of the crack represented,
considering local virtual crack increments. The spider web mesh used had dimensions

20 percentL,/a = 5 percent,L3/a = 6.6 percent (see Figure 4(b)), wheatds the crack
length fora = 45°. Fora = 885°, the range ofA A is lower than fora = 45°, although

the virtual displacement&Aa) of the crack front nodes are the same. In general, two aspects
influence the relation existing betweexu and AA: the extent of crack front involved in
virtual crack increment and the direction of virtual displacement relatively to the crack front.
In the case presented in Figure 8, tor= 45° the crack increment is normal to the crack
front, while for« = 885° this does not happen due to the tunnelling effect, which reduces
A A for the sameAa. It can also be seen in Figure 8 that the concavity of the plotsversus

AA is negative and is more important fer= 88.5°. The concavity can affect the accuracy
of K because with the increase of concavity, the correct definition of the dlip/A A is
difficulted. This concavity depends @k, increasing with it.
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Figure 10. Errors ofK for different Aa and number of points (2 or 4).

The accuracy of the relatioi; versusA is expected to increase with the number of virtual
crack increments considered, however this means an increase in the computational effort in-
volved. In the two cases presented in Figure 8, 17 valu®g:ofvere considered, which enable
a good approximation to the real relation existing betwd@&nand AA. However, it is not
possible always to consider so many points, so the two options presented in Figures 9(a) and
9(b) were assumed. In the first case, 4 value®gfare considered, one corresponding to the
initial crack (AA = 0) and the others corresponding to virtual crack incrememsA, AA
and 2A A. The relationWy versusA A can be approximately defined from the 4 points using
a polynomial regression of order 2 or 3. In the alternative solution presented in Figure 9(b),
only two symmetrical virtual incrementgyA and —AA are considered. In this casé, is
approximately given by the slope of the straight line defined by these two values, according
to (8). This option has the advantage of requiring only two FEM analysis, instead of the four
necessary in the other option. The dashed curves presented in Figures 9(a) and 9(b) are the
‘correct’ curves obtained with 17 points, as Figure 8 shows.

In Figure 10, the accuracy obtained with these solutions can be compared. The values
considered as correct were obtained with 17 points and a polynomial regression of order 3, as
indicated in Figure 8. It can be seen that the consideration of 4 points gives better results than
the consideration of 2 points. With 4 points, better results are obtained considering a polyno-
mial of order 3. The use of 2 points gives good results if relatively small virtual increments
are considered. Near the surfgoe= 88.5°) the results are worse than fer= 45°, whether
4 or 2 points are used. This can be attributed to the higher concavity of the rélgtiorrsus
AA.

Higher virtual crack displacemeni{\a) produce worse results, so small virtual crack
increments must be used. This can be explained by an increasing effect of the distortion
produced in the finite element mesh by the virtual crack increment. It can also be related
to the concavity of théVy; versusA A relation, because higher concavities are expected to
give worse results. On the other hamtly cannot be so small that the changeWg is not
adequately measured, due to the limitations existing in the representation of numbers by the
computer. This effect was observed far/a < 0.002 percent. In the selection &fa, the
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Figure 11. Comparison between results obtained for Figure 12. Variation of K45 with the size of crack
quarter-circular cracks using the EFM and other front elementgL1) for a quarter-circular crack with
methods ofK calculation. 3mm.

dimension of crack front elements must also be considered, so that the distortion due to that
increment is not exaggerated.

According to the results presented in Figure 10, very accurate results are obtained with 4
points and an order of regression 3 for a wide range of virtual crack increments0Bét &
Aa/a < 6%, the maximum errors obtained were 0.08 percentxfer 45° and 0.5 percent
for « = 885°. In that case, the errors & are mainly due to FEM errors. An accuracy
of approximately 2 percent is expected to be obtained with the EFM if the parameters that
influence it are correctly chosen.

3.3. COMPARISON WITH OTHER METHODS

The extrapolation method (Chan et al., 1970) and the crack closure integral method (Rybicki
etal., 1977; Shivakumar et al., 1988) were used to validate the results obtained with the EFM.
That methods have the advantage of needing only one FEM analysis, in opposition to the
EFM which needs more than one analysis to obtak-@alue. Figure 11 presents the results
obtained for the crack front point = 45° of quarter-circular cracks with different lengths.
The K-values obtained with the EFM are between the results obtained with the other two
methods. The differences between the EFM and each of the other methods are lower than 2
percent, which is a good indication for its accuracy.

The results presented in Figure 11 were obtained.fglu = 10 percent, where Lis the
radial size of the crack front elements anis the crack length. Figure 12 shows the values of
K obtained with crack front elements of different sizés) for a quarter-circular crack with
a = 3mm. It can be seen that the crack closure integral method is much more sensitive to
L, than the EFM, which indicates that it is more affected by errors. In fact, the crack closure
integral method uses results of the FEM (nodal displacements and nodal reactions) close to
the crack front, which are the most affected by errors. Rybicki and Kanninen (1977) did a
two-dimensional analysis of a finite plate with a central crack and obtained accuracies within
6 percent of the reference solution for valued.gfup to 20 percent of the crack length. The
extrapolation method is also expected to be less accurate than the EFM because it uses FEM
results relatively close to the crack front.
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Figure 13. K distribution along the crack front of a quarter-circular crack with a length of 5 mm.

In conclusion, the EFM can be recommended for the calculatidt imfstead of the other
two methods analysed here. The crack closure integral method is adequate for the study of
mixed mode problems.

3.4. K-VALUES ALONG A QUARTER-CIRCULAR CRACK FRONT

The K distribution along the crack front of a quarter-circular crack with 5mm length is
presented in Figure 13. This distribution is symmetric in relatiom te= 45°, which was
expected since the physical problem is symmetric in relation to that plane. Thekneane
is represented and is also qualitatively correct.

It can be seen th& is not constant along the crack front, having a variation of 10 percent
for the crack studied. The lowest value is obtaineddfos 45° and an increase is observed
from there to the free surfaces. However, a decrease is observed near the surface, which is
explained by the weaker singularity of the stress field existing at the corner points. In fact,
since the crack/surface angleds= 9¢° andv = 0.3, the singularity is==* with A < 0.5
and K should be zero (Benthem, 1977; Bazant et al., 1979; Leung et al., 1996), because this
is defined as the magnitude of the singularity>. However, values obtained are finite and of
the same order as elsewhere along the crack front. This indicates that the surface values have
not converged to their correct values because the finite elements used near the corner points
cannot model the discontinuity & along the crack front. In fact, the elements used can only
accommodate a quadratic variation of displacements and the region in Whieduces to
zero from its near surface value has a small extent. The method us&ddalculation also
explains the finite value at the surface. In fact, a virtual crack increment extending over the
crack front is considered, sk is not a pointwise value but a weighted average that includes
all the crack front points involved. This way, tli&-value obtained at the surface is increased
by the near surface nonzero values. The mesh refinement near the surface along the thickness
direction, would reduce the surface valuelf So, K surface values, although finite and of
the same order as elsewhere, cannot be considered valid. The difficulties of the FEM near the
surface are not expected to affect the results for the interior crack front. In fact, Bakker (1992)
observed that only the calculated free surface valug ofas affected by the mesh refinement
in the thickness direction, while the effect at interior crack front points was negligibly small.
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Stress intensity factor calculation based on the work of external forck3

4. Conclusions

The main conclusions are:

— the external forces method (EFM) can be easily implemented as it only needs the nodal
displacements and nodal forces resulting from the finite element method (FEM). It is
particularly advantageous when the external forces are applied far from the crack front, or
acting there do not produce work;

— the accuracy oK -values is very sensitive to the accuracy of the FEM results. The influ-
ence of FEM errors oK is due to the variation of the accuracy of the FEM produced
by the virtual crack increments. This way, the distortion produced by the virtual crack
increment on the finite element mesh must be as small as possible;

— for K calculation, the consideration of 4 valuesigf along with a polynomial regression
of order 3 gives good results for a wide range of virtual crack displaceni@®3% <
Aa/a < 6%). For this choice of parameters, the inaccurackaf mainly due to FEM
errors;

— accurate results, with an error lower than 2 percent, can be obtain&difdne different
parameters are adequately defined. However, higher errors are obtained for corner points;

— due to its simplicity and accuracy, the EFM can be recommended for the calculation of
stress intensity factors in two- and three-dimensional situations.
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