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Abstract The paper presents a general optimization methodology for flexible multibody
systems which is demonstrated to find optimal layouts of fiber composite structures compo-
nents. The goal of the optimization process is to minimize the structural deformation and,
simultaneously, to fulfill a set of multidisciplinary constraints, by finding the optimal val-
ues for the fiber orientation of composite structures. In this work, a general formulation for
the computation of the first order analytical sensitivities based on the use of automatic dif-
ferentiation tools is applied. A critical overview on the use of the sensitivities obtained by
automatic differentiation against analytical sensitivities derived and implemented by hand is
made with the purpose of identifying shortcomings and proposing solutions. The equations
of motion and sensitivities of the flexible multibody system are solved simultaneously being
the accelerations and velocities of the system and the sensitivities of the accelerations and of
the velocities integrated in time using a multi-step multi-order integration algorithm. Then,
the optimal design of the flexible multibody system is formulated to minimize the deforma-
tion energy of the system subjected to a set of technological and functional constraints. The
methodologies proposed are first discussed for a simple demonstrative example and applied
after to the optimization of a complex flexible multibody system, represented by a satellite
antenna that is unfolded from its launching configuration to its functional state.
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1 Introduction

The use of new materials in the production of light mechanisms and structural components
not only puts new challenges to the analysis tools but also offers a large potential for more
advanced designs. Methodologies for the analysis of flexible multibody systems made of
composite materials constitute efficient numerical tools for the analysis and design of such
systems. The use of optimization methodologies, in the framework of the analysis of flexible
multibody systems, provide the necessary reanalysis tools that not only allow for the final
designs to be closer to the production product but also ensure that such product is the best
possible for selected functional goals. Optimization involves, in general, iterative schemes
where the cost function and constraints are obtained in an analysis step and the sensitivities
are computed to be used in the decision step of the optimization procedure. The computation
of the sensitivity of a structural response to changes in design variables is often the major
computational cost of the optimization process, and therefore, efficient algorithms for evalu-
ating these sensitivities are of fundamental importance. Therefore, the efficient and reliable
design methodology requires that (1) the analysis tool is able to represent the complex me-
chanics of the system, (2) the optimization methodology allows for finding the best design
for suitable optimal criteria and design constraints, and (3) the evaluation of the sensitivities
required for the optimization are accurate and cheap from the computational point of view.

Both nonlinear finite elements [1, 2] and flexible multibody dynamics [3–5] method-
ologies can be used to describe complex mechanisms for which the deformation plays a
major role. When the mechanical components experience generalized nonlinear material
deformations the use of nonlinear finite elements is basically unavoidable. However, if the
deformations are elastic and moderate, when referred to a body fixed coordinate frame, or
to a co-rotational frame, the use of flexible multibody dynamics methods leads to compu-
tational tools as general as the nonlinear finite element based tools, but more efficient from
the computational point of view [6]. The type of applications foreseen for the methodolo-
gies proposed in this work involves the study of mechanisms for which the components are
either rigid or flexible, but experiencing only linear elastic deformations. Therefore, flexible
multibody models are selected to represent them. Cartesian coordinates with Euler parame-
ters are used to represent the overall large motion of the rigid bodies of the system [7] and
of the flexible bodies’ reference frames [3, 4, 8]. Different formulations for the description
of flexible multibody systems have been proposed in the literature presenting relative ad-
vantages, and also drawbacks, with respect to the formulation used here [9–13]. However,
the flexible multibody descriptions based on generalized elastic coordinates relative to body
fixed frame not only use the standard linear finite element mass and stiffness matrices di-
rectly but also allow for the reduction of the number of elastic degrees of freedom, either
by applying substructuring techniques [14], the Craig–Bampton method [3, 15], the mode
superposition technique [8, 16–20] or other reduction techniques [21], leading to simpler
and computationally efficient models.

One of the distinctive features of flexible multibody systems concerns the description of
the relative motion between the system components using either kinematic joints or force
elements such as contacting surfaces or lumped deformable elements. The body of kine-
matic joints developed is not only vast but also well reported in many textbooks for rigid
multibody dynamics [7, 10]. More specialized kinematic joints, such as general spatial joint
curves [22] or spatial cam joints [23], are defined among rigid bodies. The complete set of
joints available in a general-purpose multibody code must include, for each particular type
of joint, restrictions involving only rigid bodies or only flexible bodies or a flexible and a
rigid body. Therefore, the effort put in the development and implementation of any joint is at
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least three times as much as the initial work done in the implementation of joints with rigid
bodies only [24]. The concept of virtual bodies provides a general framework to develop
general kinematic joints for flexible multibody systems with minimal effort, regardless of
the flexible coordinates used. Initially, only a rigid constraint between the flexible and a
massless rigid body is developed. Then, any kinematic joint that involve a flexible body is
set with the massless rigid body instead, using the kinematic joint library involving only
rigid bodies [24, 25]. When using the virtual bodies the only type of joints that require the
explicit use of generalized elastic coordinates are those that have deformable axis [26].

The flexible multibody involves, in general, beam and plate-like components that are
made of composite materials. In order to use the material properties of composites a design
variables for the optimal design it is necessary that the code in which the flexible multibody
methodology is implemented includes the explicit formulation of the composite finite ele-
ments that can be used to model the system components. In this work, the description of
composite beam elements follows the work proposed by Cesnik and Hodges [27] while the
plate element is described in the work by Augusta Neto et al. [28]. The use of these finite
elements in the framework of flexible multibody systems is described in different references
and is not repeated here [30, 31].

The simplest and cheapest optimal problems are continuous local problems with a small
number of design variables [32]. Global or integer optimization problems with a large num-
ber of variables are more complex and expensive to solve. Stochastic optimization algo-
rithms, like simulated annealing methods or genetic algorithms, allow performing global
optimization, generally requiring hundreds or even thousands of expensive simulation runs.
Eberhard and co-workers used a stochastic evolution strategy in combination with parallel
computing in order to reduce the computation times whilst keeping the inherent robust-
ness [33]. Deterministic optimization algorithms have the tendency to reach local minima,
not necessarily close to the global optimum [34]. When supported by efficient calculation of
the system sensitivities they often converge rapidly towards a local minimum with smaller
computation times. Due to the computational costs associated to the analysis of complex
flexible multibody systems deterministic optimization algorithms are used in this work.

The simplest procedure to calculate the sensitivity derivatives is the finite-difference ap-
proximation [35]. However, small perturbations may result in errors in the derivative due to
the limited accuracy of the dynamic response variation while large perturbations can lead to
truncation errors [36]. Another drawback of this method concerns its poor numerical perfor-
mance that results from requiring that additional analysis are performed for the perturbation
of each additional design variables [38]. Analytical sensitivity formulations are alternatives
for the exact evaluation of the derivatives of the dynamic response with respect to the de-
sign variables [39]. When the direct differentiation is used the integration of the dynamic
and sensitivities equations are all done at the same time, thus the control of the time inte-
gration errors becomes more effective. The main disadvantage of the direct differentiation
method is that it requires a large number of sensitivity equations to be derived analytically
and implemented computationally, which involves cumbersome and prone to coding errors
procedures. Recent developments in software technology have provided reliable automatic
differentiation tools, such as automatic differentiation performs a transformation of func-
tions, implemented computationally using Fortran 77, to obtain other functions also coded
in the same language, which are the derivatives of the output of the first set of functions with
respect to the design variables [40]. The use of automatic differentiation results in a new
computer code, which provides fast and accurate gradients of the functions even for large
and complex dynamic problems [41]. In order to use the advantages of the direct differentia-
tion of the sensitivity equations and avoid the difficulties of its computer implementation, the
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automatic differentiation tool ADIFOR is used here. However, it is shown in this work that
the code generated for the sensitivities cannot be used as a black box and, eventually, some
parts of the code generated must be substituted by special purpose alternative algorithms.

The optimization of the multibody composite components is performed by taking the ply
orientations of laminated as continuous design variables. The design of laminate materials
in structural optimization is still an area of intensive research work, as shown in the review
on structural optimization of composite structures by [42]. The multibody dynamic and
sensitivities analysis code is linked with general optimization algorithms included in the
package DOT/DOC [43]. The flexible slider-crank mechanism is used to present in detail
the numerical and methodological issues that arise in the optimization of flexible multibody
systems and a complex aerospace satellite antenna is used to present the application of the
procedures to the design of a real life system.

2 Flexible multibody systems analysis

2.1 Motion of a flexible body

Let it be assumed that a flexible body is described in a coordinate system rigidly attached
to a point on the flexible component, as depicted by Fig. 1. Let it also be assumed that
the deformation of the flexible body is represented using the finite element method, with a
condensed representation of the mass matrix, obtained by the diagonalization of the original
consistent mass matrix [44]. The reference frame, located by vector ri with respect to the
inertia frame is fixed to the body center of mass [8]. The system equations of motion of this
flexible body can be obtained by using Lagrange equations, as described by Gonçalves and
Ambrósio [8], and therefore, not repeated here.

Using the principle of virtual powers, the Lagrange equations or other procedure, the
equations of motion for a single flexible body are written as

Mi q̈i = gi + si − K iqi (1)

where the acceleration vector for a single flexible body i is represented by q̈i = [r̈T
i ω̇T

i üT
i
]T ,

which contains the body fixed frame translation accelerations and the vector of the local
nodal accelerations ü′

i = [δ̈′T θ̈ ′T ]Ti . δ̈′ and θ̇ ′ are vectors of the nodal translations and an-
gular accelerations, respectively, written with respect to the body fixed frame. The flexible

Fig. 1 Global position of node k

in the flexible body
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body mass matrix Mi is given by

Mi =

⎡
⎢⎢⎢⎢⎢⎣

∑
mkI −∑
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′
k

∑
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mkb̃′

k
T b̃′

k + ∑
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∑
μkI T

k

∑
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mkI kb̃′
k

∑
mkI kI T

k 0

0
∑

μkI k 0
∑

μkI kI T
k

⎤
⎥⎥⎥⎥⎥⎦

i

(2)

where A represents the transformation matrix from body i fixed to inertial coordinates, b′
k is

the position of node k of body i with respect to the body fixed frame, mk is the nodal mass,
μk the nodal inertia, I k is a matrix filled with zeros except for the identity matrix associated
to node k and ( ·̃ ) means the skew symmetric matrix associated to the quantity (·). In (1),
gi is the vector of external applied forces and si is the vector of gyroscopic forces of the
flexible body i.

When a consistent mass matrix is used in the finite element description of the flexible
body the inertia coupling terms, represented by the off-diagonal sub-matrices in (2), de-
pend on the particular finite element shape functions used to formulate the finite elements.
However, due to the diagonalization the structure of the mass matrix given by (2) becomes
independent of the formulation used to describe the flexible body deformations and no spe-
cial inertia-coupling coefficients have to be derived when using a particular finite element.

Finally, in (1) K i is an augmented stiffness matrix written as

K i =
[

0 0
0 Kff

]

i

(3)

where Kff the standard finite element stiffness matrix of the flexible body i. Let it be assumed
that the formulation is valid only for small linear elastic deformations, which implies that
matrix Kff is not dependent on the deformation of the flexible body. For more details on the
derivation of (1) the reader is referred to Ref. [8].

2.2 Flexible multibody equations of motion

For a multibody system a set of kinematic constraints associated to the joints is defined
as [8],

�(qr ,u′, t) ≡ 0 (4)

where qr are the coordinates associated to the rigid body motion and t refers to the kinematic
constraints that depend on time. Note that by using the virtual bodies to set the kinematic
constraints the only equations that involve the generalized elastic coordinates are those as-
sociated to the rigid constraints between the flexible bodies and the virtual bodies [24, 25].
All other constraints only involve rigid bodies.

The constraints equations are added to the equilibrium equations of all bodies in the
system, using Lagrange multipliers

Mq̈ + �T
q λ = g + s − Kq. (5)

The second time derivatives of the constraint equations are necessary to support the so-
lution of (5) and are represented as

�̈(q̈, q̇,q, t) ≡ �qq̈ − γ = 0. (6)
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Therefore, the system of equations for the flexible multibody system that needs to be
solved is

⎡
⎢⎣

Mr Mrf �T
qr

Mfr Mff �T
qf

�qr �qf
0

⎤
⎥⎦
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γ
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−

⎧⎪⎨
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0
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⎪⎭

−

⎧⎪⎨
⎪⎩

0

Kff u
′

0
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⎪⎭

. (7)

The Jacobian matrix �T
q and the right-hand side vector γ depend on the type of kinematic

constraints used. Due to the sparsity of the leading matrix of the left-hand side of (7), a sparse
matrix solver is employed to solve the system of equations [19, 45].

The component mode synthesis the flexible body is used to reduce the number of gener-
alized elastic coordinates required to describe the flexible multibody model. Consequently

u′ = Xw (8)

where vector w represents the contributions of the vibration modes towards the nodal dis-
placements and X is the modal matrix. Due to the reference conditions, the modes of vibra-
tion used here are constrained modes and due to the assumption of linear elastic deforma-
tions the modal matrix is invariant. The reduced equations of motion for the flexible body
are [8]
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(9)

where � is a diagonal matrix that has the squares of the natural frequencies associated to the
modes of vibration selected. It must be noticed that the choice of modes is an important mat-
ter that conditions accuracy and efficiency. For a more detailed discussion on the selection
of the modes used the interested reader is referred to Refs. [15–20, 46].

2.3 Composite materials finite elements

In this work, the composite finite element used for the study of laminated plates is based on
the Mindlin–Reissner plate theory. At the element level and in local coordinates, the element
stiffness matrix is written as [29, 47]

K
(e)

ff =
∫ 1

0

∫ 1−η

0

⎡
⎢⎣

BT
mDmBm BT

mDmbBb 0

BT
b DbmBm BT

b DbBb 0

0 0 BT
s DsBs

⎤
⎥⎦

(e)

|J|dξ dη. (10)

The strain-displacement matrix is denoted by B while D is the elasticity matrix and |J|
is the determinant of the Jacobian matrix. The subscripts m,b and s stand for membrane,
bending and shear, respectively. Because each layer may have different properties, the elas-
ticity matrix D is evaluated as a summations carried out over the thickness of all the layers.
Therefore, equivalent single layer theories produce equivalent stiffness matrices as weighted
averages of the individual layer stiffness through the thickness. These matrices are depen-
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Fig. 2 Coordinate system and layer numbering used for a typical laminated plate and orthotropic layer with
the principal material directions

dent of each layer orientation and given by

(Dm,Db,Dmb,Ds) =
n∑

k=1

(Dm,Db,Dmb,Ds)k

=
n∑

k=1

(
C1

3x3H1,C1
3x3H2,C1

3x3H3,C2
2x2H

)
k

(11)

with,

Hn =
∫ hl

hl−1

(
xn−1

3

)
dz = 1

n

(
hn

l+1 − hn
l

)
(12)

where hi is defined in Fig. 2. At element level, in local coordinates, the mass matrix is

M(e)

ff =
∫ 1

0

∫ 1−η

0
ρ(e)

(
ST mS

)(e)|J|dξ dη (13)

where m is a matrix that contains the inertial terms and ρ represents the specific mass of the
element. The diagonalization of the mass matrix is used in what follows [44].

In order to do the analysis of composite plates, a triangular finite element is developed.
The finite element is based in the theory described and has six degrees of freedom per node,
i.e., u0

1, u
0
2, u

0
3, φ1, φ2 and φ3. A detailed description of this composite plate element is given

in Ref. [47].
The composite beam element available for flexible multibody models is that proposed

by Cesnik and Hodges [48] where the cross-sections properties are found using an asymp-
totic procedure that involves a two-dimensional finite element analysis over the beam cross-
section. The elasticity matrix for the beam is obtained by using the code VABS, which is
a standard 2-D finite element code for arbitrary materials and geometries [49]. The source
code for the composite beam element, as well as for the composite plate element, is available
to be used for the automatic differentiation. A detailed description of this composite beam
element can be obtained in Refs. [49, 50].



124 J.A.C. Ambrósio et al.

3 Optimization of Multibody Systems

The general optimization problem is stated in a mathematically form as the problem of
finding the minimum of an objective function for a given vector b of design variables that
are subject to specific constraints. This is,

minimize Ψ0(b) (objective function),

subject to 	 i (b) ≤ 0, i = 1, . . . , p (inequality constraints),

	 i (b) = 0, i = p + 1, . . . , p + m (equality constraints),

bL ≤ (b) ≤ bU (side constraints)

(14)

where the indices Ui and Li refer to the upper and lower limit constraints of the design vari-
ables. These upper and lower limits result from technologic and/or physical requirements.

3.1 Optimization criteria

Different optimization problems in multibody systems require, in general, different criteria
and design constraints. In multibody systems all terms of the equations of motion may be
functions of the design parameters. The objective function is expressed by [51]

Ψ0 = Ψ0(b, z,λ, t) (15)

where the vector of the state variables z includes the system positions, velocities and accel-
erations. The variables of the state vector may depend on time and on the design variables
as

z(b, t) = (
q(b, t), q̇(b, t), q̈(b, t)

)
. (16)

Note also that the most common objective functions, in multibody problems, deal with
a maximum value or with the integral of a given quantity. The objectives for the flexible
multibody systems designs concern the stiffening of the flexible components. Therefore, the
objective functions considered here are measures of the structural deformations.

3.2 Minimization of the maximum deformation energy

The elastic deformation energy is used here as a global measure of deformation. For an
instant of time t, the elastic deformation energy of a body i is

Ui(u′
i , t) = 1/2u′T

i Kff i
u′

i . (17)

A mini-max optimization problem, for the time interval between t0 and te is defined to
minimize the maximum elastic deformation energy of body i. This optimization problem is

minimize Ψ max
0 = maxUi(u′

i , t), for t0 ≤ t ≤ te (18)

where t0 ≤ t ≤ te is the time interval in which the minimum is searched. However, the
instant, for which the function has its maximum value may vary during the optimization
process. One form of dealing with this problem is to introduce an extra design variable,
bn+1 and make the objective function equal to the value of such variable [37, 52]. The new
optimization problem is defined as

minimize Ψ0 = bn+1 (19)
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with the additional time-dependent constraint

Ψn+1 = Ui(u′
i , t) − bn+1 ≤ 0, for t0 ≤ t ≤ te (20)

this additional constraint ensures that the dynamic response is below the maximum value
defined by auxiliary variable bn+1. This approach poses some difficulties for the search
direction calculus, and can lead to small steps in the line search method, or even to the stall
of the optimization process. To overcome these difficulties, the max value point is handled
directly only in the optimization process [52].

3.3 Minimization of an integral type criteria

The integral type objective function may be used to represent mean values of the response
along time, accumulated values or other special criteria. This type of objective functions is
common in vehicle design, in which comfort or injury criteria are defined in this manner and
often are used in their optimization process [53]. The optimal problem can be expressed here
as the minimization of the integral of the deformation energy in the analysis time period

Ψ0 =
∫ te

t0

Ui(u′
i , t) dt. (21)

Note that the use of this type of functions generally requires that a constraint on the
maximum value of the quantity being integrated is also defined.

3.4 Time-dependent constraint

Mathematical programming algorithms generally cannot deal with parametric constraints
that are time dependent, such as

Ψi = fi

(
b, z(t),λ(t), t

) ≤ c, ti ≤ t ≤ te (22)

or even with constraints such as the one described by (20). Such constraints have to be
reformulated to remove their time dependency. The most straightforward way to remove the
time dependency of the original constraint is to discretize the time interval into time points.
Then, the original constraint represented by (27) is replaced by ntp constraints written as [54]

Ψi = fi

(
b, z(tk),λ(tk), tk

) ≤ c, k = 1, . . . , ntp. (23)

The distribution of the time points has to be sufficiently dense to avoid large constraints
violations between two adjacent time points [55]. However, discretizing time dependent
constraints can increase greatly the number of constraints, and thereby the cost of optimiza-
tion [37]. A balance can be achieved by using a discretization that involves only critical
points related with the existence of local maximums or minimums of the function [56].

3.5 Optimization algorithms

In dynamic problems, the evaluation of the system dynamic behavior requires the numeri-
cal integration of the equation of motion. The time dependency of this system makes these
optimization problems more complex and requires that special techniques must be used in
the solution process. Both deterministic and stochastic optimization methods can be applied.
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Eberhard et al. [33] and He and McPhee [57] have successfully used a stochastic evolution
strategy in a parallel computing environment to reduce computation time. However, when a
single processor computer is used the simultaneous analysis of different systems is not pos-
sible and, consequently, some of the advantages of stochastic optimization methodologies
disappear. In this work, a deterministic optimization method is used, the modified method
of feasible directions, as implemented in DOT [43].

4 Sensitivities of the flexible multibody system

The optimization process requires the evaluation of the gradients of the objective functions,
which must be supplied to the optimization algorithm. These gradients, or sensitivities, can
be obtained by finite differences or derived analytically and supplied as functions called by
the computer code that controls the optimization. To obtain the sensitivities let a typical
objective function be defined as

ψ0 = f0(b, z,λ, t) (24)

where the vector of state variables z denotes the positions, velocities and accelerations that
are dependent on time and on the design parameters, as

z(b, t) = z
(
q(b, t), q̇(b, t), q̈(b, t)

)
. (25)

The solution of the optimal problem, by the methods used in this work, requires the
computation of the derivative of all objective and constraint functions with respect to the
design variables. Such gradients are written as

∇ψ i = dψ i

db
, i = 0, . . . , n (26)

the derivatives are calculated by using the chain rule, as

dψi

db
= ∂ψi

∂b
+ ∂ψi

∂q
dq
db

+ ∂ψi

∂q̇
dq̇
db

+ ∂ψi

∂q̈
dq̈
db

+ ∂ψi

∂λ

dλ

db
. (27)

In a more compact notation, the partial derivatives of the state variables with respect to
the design variables, are represented as

dψi

db
= ∂ψi

∂b
+ ∂ψi

∂q
qb + ∂ψi

∂q̇
q̇b + ∂ψi

∂q̈
q̈b + ∂ψi

∂λ
λb. (28)

In evaluating (24), the computations associated with the terms ∂ψi/∂b, ∂ψi/∂q, ∂ψi/∂q̇,

∂ψi/∂q̈ and ∂ψi/∂λ are simple due to the fact that the design variables and the state vari-
ables are explicit. The computation of the sensitivities of the state variables with respect the
design variables is rather complex, requiring a large computational effort. These derivatives
can be obtained by numerical or by analytical methods.

4.1 Finite difference method

The finite-difference method is very often used as a technique to approximate the sensi-
tivities [35–37]. This method, based in the Taylor series expansion of a function f , for
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a perturbation 	b of the design parameters vector b, is expressed as

∇f (b) = f (b + 1/2	b) − f (b − 1/2	b)

	b
(29)

where the expression is the central finite difference. In applications to multibody dynam-
ics, the use of finite differences is an attractive approach due to its simplicity and simple
implementation. However, the accuracy of this method is lower than the analytical method.
The major drawback of this method is the high number of functions evaluations required.
For instance, the use of (29) requires for each design variable two new dynamic analysis to
evaluate the perturbed response.

In applying finite differences, the selection of difference step size 	b is also a concern.
The selection of a large step size leads to errors in the derivatives due to truncation of the
operator. The selection of a small step size can lead to condition errors in the derivative due
to the limited floating point precision of the computer or to the inaccurate calculation of
function f (b + 	b) in particular points. The time integration used in the dynamic response
optimization tends to aggravate the loss in accuracy of the finite differences. This approach
is used here, mostly, as a measure for the correct implementation of analytical sensitivities.

4.2 Direct differentiation of the equations of motion

For a rigid and flexible multibody system the equations of motion are given by (9). To cal-
culate the sensitivities, this equation is differentiated with respect to the design variables b,
leading to

⎡
⎢⎣

Mrr M̄rf �T
qr

M̄f r M̄ff �T
w

�qr �w 0

⎤
⎥⎦

⎡
⎢⎣

q̈rb

ẅb

λb

⎤
⎥⎦ =

⎡
⎢⎣

Q̄∗
b

R̄∗
b

γ̄ ∗
b

⎤
⎥⎦ (30)

where the notation used relates with that in (9) by defining M̄ff = XT Mff X,M̄rf =
Mrf X,M̄fr = XT Mfr,�w = �qf

X and �T

w
= XT �T

qf
. In (30) the quantities in the right-hand

side vector are given by

Q̄∗
b = ∂

∂qr

(
gr − sr − Mrr

ˆ̈qr − M̄rf ˆ̈w − �T
qr

λ̂
)
qrb + ∂

∂q̇r

(gr − sr )q̇rb

+ ∂

∂w

(
gr − sr − Mrr

ˆ̈qr − M̄rf ˆ̈w − �T
qr

λ̂
)
wb + ∂

∂ẇ
(gr − sr )ẇb

+ ∂

∂b

(
gr − sr − Mrr

ˆ̈qr − M̄rf ˆ̈w − �T
qr

λ̂
)
, (31)

R̄∗
b = ∂

∂qr

(
ḡf − s̄f − K̄ff w − C̄ff ẇ − M̄f r

ˆ̈qr − M̄ff ˆ̈w − �T
wλ̂

)
qrb

+ ∂

∂w

(
ḡf − s̄f − K̄ff w − C̄ff ẇ − M̄f r

ˆ̈qr − M̄ff ˆ̈w − �T
wλ̂

)
wb

+ ∂

∂b

(
ḡf − s̄f − K̄ff w − C̄ff ẇ − M̄f r

ˆ̈qr − M̄ff ˆ̈w − �T
wλ̂

)
,

+ ∂

∂q̇r

(ḡf − s̄f )q̇rb + ∂

∂ẇ
(ḡf − s̄f − C̄ff ẇ)ẇb, (32)
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γ̄ ∗
b = ∂

∂qr

(γ̄ − �qr
ˆ̈qr − �w ˆ̈w)qrb + ∂

∂w
(γ̄ − �qr

ˆ̈qr − �w ˆ̈w)wb

+ ∂

∂b
(γ̄ − �qr

ˆ̈qr − �w ˆ̈w) + ∂ γ̄

∂q̇r

q̇rb + ∂ γ̄

∂ẇ
ẇb (33)

where the overscript ·̂ denotes that the quantity · remains constant during the differentiation
process.

After the solution of (30), i.e., after solving the linear system of equations to obtain
the sensitivities, q̈rb , ẅb and λb the sensitivities of the positions and of the velocities are ob-
tained by direct integration of q̇rb , ẇb, q̈rb , ẅb. The numerical process is started by providing
the initial conditions of the sensitivities, calculated using the analytic sensitivities derived
with the automatic differentiation tool. Another alternative for providing the initial sensitiv-
ities and their time derivatives is the use of the numerical sensitivities expressed by (29) for
the initial conditions of the system.

The analytical derivation of the partial derivatives in (31), (32) and (33) is generally dif-
ficult for complex systems, as in the case of flexible multibody systems. The evaluation of
Q̄∗

b, R̄∗
b and γ̄ ∗

b, in particular, requires further considerations not only due to the need to
evaluate the sensitivities of the different matrices and vectors but also because the modal
matrix sensitivities calculations pose extra challenges. Consequently, a cumbersome and
error-prone to coding effort may be required. The use of automatic differentiation tool, AD-
IFOR [40] helps circumventing this difficulty, provided that the dynamic analysis code is
available, in FORTRAN, and structured in a convenient way.

A weakness of automatic differentiation tools concerns the reliability of the differential
algorithm used for the solution of the eigenproblem, which is required when the mode com-
ponent synthesis is used in the multibody formulation [58]. Therefore, a close look on the
use of the results of the eigenproblem in the framework of flexible multibody systems is
taken in this work, with the objective of devising a strategy that overcomes the deficiency
of the differentiated code used to calculate the sensitivities of the modes of vibration and
natural frequencies.

Due to the coordinate reduction, which uses the component mode synthesis, the nodal
displacements of the flexible body are described by (8). The sensitivity of the nodal dis-
placement vector is obtained by computing the derivative of (8) with respect the design
variables, as

du′

db
= ∂X

∂b
w + X

∂w
∂b

= Xbw + Xwb (34)

where Xb are the sensitivities of the eigenmodes to the design variables. Equation (34) re-
lates the modal sensitivities with the nodal sensitivities. Haftka and Gürdal [37], suggest
two different approaches to evaluate this transformation: the fixed-mode approach, where
the derivatives of vibration modes are neglected; the updated-mode approach, where the
derivatives of vibration modes are retained. The modal stiffness matrix derivative using the
updated-mode approach is computed as

∂

∂b

(
XT Kff X

) = ∂XT

∂b
Kff X + XT ∂Kff

∂b
X + XT Kff

∂X
∂b

. (35)

When using the fixed-mode approach the sensitivity of the modal stiffness matrix is

∂

∂b

(
XT Kff X

) = XT ∂Kff

∂b
X. (36)
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It should be noted that although automatic differentiation is used to calculate the modal
stiffness sensitivities, the problems that arise from having repeated eigenvalues are similar to
those observed when using direct implementations of analytic sensitivities. The computation
of the sensitivities of the eigenmodes can be evaluated using the Nelson scheme [59] for the
case of distinct eigenvalues. However, when repeated eigenvalues occur, Ojavo’s method is
used [60]. These methods are implemented and used in this work instead of the differentiated
part of the code that would ‘solve’ the eigenproblem.

5 Demonstrative example

A spatial slider-crank mechanism with a flexible connecting rod, modeled with composite
plates, is used to demonstrate the features of the methodology proposed. The objective is
to find the ply orientations of the plate laminate stacking sequence which is best suited to
the dynamic load conditions. The elastic energy of the flexible rod, the maximum deforma-
tion energy and local torsion measures are used as potential objective functions for the rod
design.

5.1 Slider-crank mechanism with flexible connecting rod

A slider-crank with the dimensions shown in Fig. 3 includes a connecting rod constituted by
a composite plate with a thickness of 0.0075 m and a depth of 0.04 m being its body fixed
coordinate frame attached to the plate middle surface, and its axis ξη parallel to the surface.
The composite material properties are E1 = 128 GPa, E2 = E3 = 10.1 GPa, G12 = G13 =
G23 = 5.36 GPa, ν = 0.23, ρ = 1586 kg/m3. The crank has a constant angular velocity of
124.8 rad/s. Three models of laminated plates, with one, two and three layers are used as
study cases.

Four different lay-ups, i.e., fiber orientations of a layer, described in Table 1, are con-
sidered in the plate models for the sensitivity analysis. In this case, only a single layer is
considered in each plate model. The objective of the sensitivity analysis is to show the per-
formance of the different procedures used to calculate the sensitivities of flexible multibody
systems made of composite materials.

The analytic sensitivities of the normalized displacement of the mid node of the plate are
plotted for lay-ups 1 and 7 in Figs. 4 and 5, respectively, using the fixed and the updated
mode approaches. The results emphasize that although for some lay-ups, the updated and
fixed mode approaches lead to the same results, such as for lay-up 7, in other cases, a major
difference between the sensitivities obtained by these methods may exist. Therefore, it is not
recommended in the use of fixed mode approach in the framework of the optimization of
flexible multibody systems with composite materials.

Fig. 3 Slider-crank mechanisms
with a composite plate
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Table 1 Fiber orientations of the
composite material in the four
lay-ups of the composite plates
used

Lay-ups 1 2 6 7

Layer orientation 0◦ 15◦ 75◦ 90◦

Fig. 4 Sensitivity of the
connecting rod mid-node
displacement using lay-up 1

Fig. 5 Sensitivity of the
connecting rod mid-node
displacement for lay-up 7

In Figs. 6 and 7, the analytic-numerical and numerical sensitivities, computed by the
update-mode approach and the forward difference method with several finite difference step
sizes, are presented for lay-ups 2 and 6, respectively.

Figures 6 and 7 show that the selection of the finite difference variation influences the
sensitivities obtained using the forward difference method. The sensitivities obtained by
the analytic and numerical methods are dependent on the lay-up considered and on the
finite difference variation. A relation between perturbation size and the accuracy of the finite
difference sensitivity is not always observed. For all these reasons, it is not recommended in
the use of finite differences in optimization of flexible multibody systems made of composite
materials.

5.2 Rod deformation optimization—integral of the deformation energy

The objective function represented by (21) is used here for the optimization of the material
of the connecting rod of the slider crank presented in Fig. 2. An extra constraint that limits
maximum value of the deformation energy not to exceed the maximum deformation energy
for the initial design, designated by c, is defined as

Ψ1(θ) = f0 ≤ c. (37)
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Fig. 6 Analytical and numerical
sensitivities of the mid-node
displacement with lay-up 2

Fig. 7 Analytical and numerical
sensitivities of the connecting rod
mid-node displacement for
lay-up 6

Table 2 Optimization design variables and boundary values

Laminate Layer Design Lower Initial Upper c (in (37))

thicknesses variable bound value bound

(mm)

L1 7.50 θ1 −90◦ 45◦ +90◦ 1.1572

L2 3.75 θ1/θ2 −90◦/−90◦ 45◦/−45◦ +90◦/+90◦ 0.8113

L3 2.50 θ1/θ2/θ3 −90◦/−90◦/−90◦ 45◦/−45◦/45◦ +90◦/+90◦/+90◦ 0.9841

The constraint expressed by (37) is added to the set of constraints of the optimal problem
described in (14). Three distinct composite plates, or laminates, for the model of the con-
necting rod, with one, two and three layers, are considered in this demonstrative example.
The characteristics of the composite plates are shown in Table 2.

The optimization problem is normalized, by scaling the design variables and objective
function to the unity, in the initial configuration. This avoids numerical difficulties in the
optimization procedure that arise from the difference of size of the design variables.

The optimization results are summarized in Table 3 for the three laminate models. The
optimization procedure reduces the deformation energy in the order of 90% and converges
to an optimum design, for all laminates. In Fig. 8, the normalized criteria value for several
orientations of the lamina in laminate 1 is presented. In this case, only a global optimum
exists and this is found in two iterations by the optimization algorithm. Note that for the
laminates with two and three layers, several minima exist, and therefore, the initial condi-
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Table 3 Optimization results summary

L1 (MFD) L2 (MFD) L3 (MFD)

Initial 0.0155818 0.011486 0.0135897

Optimum 0.0012237 0.001224 0.0012520

Reduction 92.2% 89.3% 90.8%

Optimum layer

orientations (6.7 × 10−7)◦ (5.8 × 10−4)◦/(6.7 × 10−7)◦ (−6.7 × 10−7)◦/−18.6◦/(5.87 × 10−4)◦

Fig. 8 Variation of the
normalized criteria value, for
laminate 1, with the orientation
of lamina

tions of the problem influence which one of them is reached. A good practice is to solve the
optimal problem several times with different initial values for the design variables.

The optimum designs for laminate 1 and 2 are coincident, but the optimum design of
laminate 3 is different from the other two laminates. This difference is due to the optimum
orientation of layer 2 in laminate 3. In fact, for laminate bending, the external layers are more
important than the internal layers. Therefore, the optimization algorithm tends to modify
orientations of layers 1 and 3, and to disregard the orientation of layer 2.

It should be noted that in any practical application of composite materials made of lam-
inated layers, there is a tolerance above which it is not possible to control the relative layer
orientations. The present technology limits the accuracy at which layer orientations can be
set to 5o increments. This fact more than constituting a constraint in the optimization process
enforces the use of optimization methods for discrete variables [61–65], which are not con-
sidered in this work.

5.3 Maximum deformation energy optimization

The stiffness optimization can be associated with the maximum value of the elastic deforma-
tion energy, which is formulated as the min-max optimization described by (19). The extra
design variable β∈]0,1] introduced serves as a moving limit for the elastic deformation
energy, being its initial value set to 0.8. This optimal problem has a constraint that is time-
dependent and, therefore, it is substituted by several time-independent constraints located at
the points with higher values of deformation energy in the initial design.

The optimization results are presented in Table 4 for the three laminate models of the rod.
The deformation energy responses obtained for this case and for the rod deformation energy
of laminate 3 is presented in Fig. 9 for the original design, optimal design with the integral
of the deformation energy and optimal solution that minimizes the maximum energy.
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Table 4 Optimization results summary for maximum deformation energy

L1 (MFD) L2 (MFD) L3 (MFD)

Initial 1.15718 0.81113 0.984053

Optimum 0.130411 0.101434 0.176677

Reduction 88.7% 87.5% 82.0%

Optimum layer orientations −10.71◦ −10.92◦/10.92◦ −16.6◦/−8.8◦/−16.7◦
Optimum β 0.126701 0.0980453 0.173684

Fig. 9 Deformation energy for
the original and optimum models
of laminate 3

Comparing the two formulations of the optimum design analyzed it is noticed that a high
number of function calls is required when using an extra variable that represents a moving
limit for the deformation energy. In this case, the method has difficulty in performing the line
search procedure and finding the correct step size due to the constraints that are being kept
active all the time. In this case, the objective function involving only the integral deformation
energy leads to better results.

5.4 Optimization of local torsion and deformation energy

Often it is required that the torsion of the plate is minimized while the maximum stiffness
of the plate is searched for. A multicriteria formulation is defined using the method of the
weighted objectives. The criterion representing the integral of the energy deformation and
the torsion of the plate are used in the definition of a new objective function, written as

Ψ0(θ) = w1

∫ te

t0

2Ui(θ , t) dt + w2

∫ te

t0

(
u′

3
A(θ , t) − u′

3
B(θ , t)

)2
dt. (38)

Although the values for the weights w1 and w2 are arbitrary, in what follows, the weight
values are chosen to be w1 = 0.6 and w2 = 0.4.

The optimization results for the multicriteria problem defined by (38) are summarized in
Table 5 for the three laminate models of the rod. For laminate 1, the optimization terminates
when the maximum number of iteration allowed is reached. The evolution of the criteria,
depicted by Fig. 10, can be better understood by observing Fig. 11 where the evolution of
the objective function value is presented for several lamina orientations of the laminate 1. For
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Table 5 Multicriteria Optimization results summary

L1 (MFD) L2 (MFD) L3 (MFD)

Initial 1 1 1

Optimum 0.978565 0.145417 0.632105

Reduction 2.14% 85.45% 36.789%

Optimum layer orientations 49.2◦ −10.53◦/13.37◦ 47.38◦/−18.25◦/47.38◦

Fig. 10 Evolution of criterion 1
and 2 during the optimization of
laminate 1

Fig. 11 Objective function for
several lamina orientations of the
laminate 1

the lamina orientation of 45◦ there is a neighborhood with local minima. The optimization
method converges to this local minimum, but because only the local properties of sensitivi-
ties are taken in consideration, the optimization does not progress any further.

For both cases of laminates 2 and 3, the optimization process only requires four iterations
to converge to a minimum. However, care must be used to ensure that such is a global
minimum, or at least that it is close to it.

The comments made with the previous study case, concerning the manufacturing tol-
erances of the layer orientation increments, remain valid for this study case. An industrial
application of the results obtained needs to take into account that it is not possible to obtain
layer orientation increments below 5o.
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6 Optimization of the deployment of a satellite antenna

The methodology for the optimal design of flexible multibody systems is demonstrated
through its application to the design of the unfolding process of a satellite antenna, the
Synthetic Aperture Radar (SAR), which is a part of the European research satellite ERS-1.
Several models for this antenna are found in references by Anantharaman and Hiller [65].

6.1 Description of the SAR antenna

During launching the SAR antenna and the solar array are folded, as shown in Fig. 12(a),
to be as compact as possible. Upon unfolding the satellite achieves the configuration repre-
sented in Fig. 12(b).

The SAR antenna consists in two identical subsystems, each with three coupled planar
four-bar links that unfold two panels on each side. The central panel is attached to the main
body of the satellite. Each unfolding system has two degree of freedom, driven individually
by actuators located in the joints A and B, shown in Fig. 13.

The unfolding process consists in two phases, schematically represented in Fig. 14. In
the first phase, the panel 3 is rolled out by a rotational spring-damper-actuator in joint A,
while the panel 2 is held down by locking joints D and E, identified in Fig. 13(a). The second
phase begins with the joint A locked being the panels 2 and 3 swung out to the final position
by a rotational spring-damped-actuator in joint B, as observed in Fig. 13(a).

The second half of the antenna, which has been omitted in Fig. 13, is unfolded in the same
way as the first half shown here. When the complete antenna is deployed, all five panels are
aligned in the final configuration. Functional requirements for the final configuration impose
that the alignment between panels is obtained within a tolerance smaller than 0.5o.

Fig. 12 Satellite with the SAR
antenna in (a) folded and
(b) unfolded configurations

Fig. 13 The SAR antenna:
(a) one half unfolded state
(b) folded antenna
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Fig. 14 Unfolding process of the
SAR antenna: (a) first phase
(b) second phase

Fig. 15 Multibody model of the
SAR antenna

Table 6 Characteristics of the
two lay-ups considered for the
composite panels

1st Layer 2nd Layer 3rd Layer 4th Layer

Lay-up 1 0◦ 0◦ 0◦ 0◦
Lay-up 2 0◦ 90◦ 90◦ 0◦
Thickness (m) 0.0005 0.0005 0.0005 0.0005

The model used for one half of the folding antenna, schematically depicted Fig. 15,
is composed by 12 bodies (B1, . . . ,B12), 16 spherical joints (S1, . . . ,S16) and 3 revolute
joints (R1,R2,R3). The central panel is attached to the satellite, defined as body B1. The
geometry of each panel is 1.994×1.300 × 0.002 m. All truss members have a circular cross-
section [47].

The material used in the model is a carbon reinforced plastic IM6/SC1081 with a matrix
of Epoxy SC1081 and fibers in Carbon IM6. Note that the material model used here is
not necessarily that of the real satellite antenna, as the characteristics of such material are
not publicly available. The properties of the composite material, for a single layer with an
orientation of 0◦ relatively to the X axis are: E1 = 177 GPa; E2 = 10.8 GPa; G12 = G13 =
7.6 GPa; G23 = 8.504 GPa; ν12 = 0.27; with a specific mass of 1600 kg/m3. Two different
laminates with four layers in each, described in Table 6, are considered in initial designs.

The application of the modal superposition technique is done by using of a small set of
modes of vibration, associated to the lower frequencies of each of the system components.
The modes of vibration for all flexible bodies in the antenna are obtained by performing a
modal analysis of each one of the flexible bodies independently. The structural attachment
conditions used in the eigenproblem are the same used to fix the body coordinate system,
i.e., the node in the center of mass is fixed to the body fixed frame. Some of the modes of
vibration used in model 2 are illustrated in Fig. 16.
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Fig. 16 Vibration modes of the panel 2

Fig. 17 Configuration of the composite panels with the original damped spring-actuator

6.2 First phase of the antenna unfolding process

The actuator that is applied in revolute joint R3 is modeled as a nonlinear spring and damper
actuator. The spring-damper-actuator is described by a piecewise-linear characteristic, given
by

M(θ, θ̇) = cθ̇ +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.10 + 9.00(3.12 − θ), 3.08 < θ ≤ 3.12,
0.45 + 60.41(3.08 − θ), 3.02 < θ ≤ 3.08,
4.03 − 5.19(3.02 − θ), 2.63 < θ ≤ 3.02,
2.00, 0.20 < θ ≤ 2.63,
10.00 θ, −0.20 ≤ θ ≤ 0.20,
−2.00 −0.20 > θ

(39)

where the damping coefficient used is c = 0.5 N m s. The actuation law presented here is
different from that reported by Anantharaman and Hiller [61], which was used to model
the SAR antenna with panels made of isotropic material. When the actuation law used by
Anantharaman and Hiller is used for the composite flexible models, the satellite antenna is
driven to a different equilibrium state than that obtained in the rigid model. The trusses con-
nected to actuator quickly reach their equilibrium, but the panel 3 hardly moves because the
unfolding trusses break through the panel, as represented in Fig. 17. This behavior is clearly
unfeasible because, before that happens, the contact between trusses and panels would take
place. Therefore, the reported results show that due to the deformations of the trusses the
undesirable contacts between trusses and panels are possible if the high torques associated
to the original actuator have been maintained. Consequently, the solution is to apply an
actuation law that prevents such contact.

When using composite material models, the problem of the first phase of the unfolding
process increases in importance not only because the bending of the panels is significant,
but also because the torsional modes come in play. In Fig. 18, the variation of the actuator
angle during the simulation period for the composite models is presented.

Figure 18 shows that the two models lead to simulation results with a similar behavior.
However, it is observed that after the equilibrium positions are reached for both models, in
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Fig. 18 Actuator angle for the
flexible antenna in the first phase

Fig. 19 Configuration of the antenna unfolded process: (a) in the first phase (b) in the second phase

the period from 7 to 8 s, the direction of rotation of the truss members of the panels made
with the lay-up 1 is opposite to that of the model made with lay-up 2. This discrepancy can
result from the difference between the vibration modes of the models. In fact, the lay-up 1
has no layers with the 90◦ orientation, thus the stiffness of this model in the Y direction is
smaller than that observed with lay-up 2. The same difference in stiffness is also visible in
the direction X of the lay-up 1.

The flexible model of the satellite antenna predicts interference between panel 2 and
panel 1, which is attached to the flexible base, when bodies B7 and B8 get aligned as shown
in the fourth frame of Fig. 19(a). This can be perceived as flaw in the design of the unfolding
process of the satellite.
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6.3 Optimization of the SAR antenna

As demonstrated with the application to the slider crank, the flexibility of the multibody
systems components made of composite materials is very sensitive to the layer orientation
of the lay-ups that form the laminate. In order to get a stiffer antenna, the optimization
problem is formulated as the minimization of the deformation energy of the panels defined
by (21) and rewritten here for panels 2 and 3 as

Ψ0 =
∫ te=3

t0=0
U2(u′

2, t) dt +
∫ te=3

t0=0
U3(u′

3, t) dt. (40)

The simulation period that is crucial for a correct deployment is ti = 0 s ≤ t ≤ te = 3 s. In
order to avoid that at a given instant the deformation of the panel exceeds predefined limits,
the maximum value of the deformation energy, in each panel, is constrained to be

Ψi(θ) ≤ ci; i = 2,3 (41)

with the values ci defined as the maximum value of deformation energy, in each panel,
observed in each initial design.

All material models considered herein are symmetric laminates being the number of lay-
ers fixed in each of them. Moreover, the laminate model used to model the material proper-
ties of panels 2 and 3 is the same. The two design variables used in the optimization process
correspond to the orientation of the layers that make up the laminate used to model the pan-
els. The initial design of laminate used in the panels is defined in Table 7. The optimization
method used is the Modified Method of Feasible Directions (MFD).

The optimization results are summarized in Table 8 for the flexible multibody of the
antenna. Figure 20 presents the evolution of the objective function for the antenna flexible
multibody model, being the progress of the design variables shown in Fig. 21.

For this optimization scenario it is possible verify that the optimization procedure con-
verges very fast to the optimum solution, reducing the deformation energy in the order of
95%, as seen in Fig. 20. The largest variation of the design variables that occurred is associ-
ated with the outside layers of the laminate, as observed in Fig. 21.

The evolution of the deformation energy of panels 2 and 3, for the initial and optimized
designs, are displayed in Figs. 22 and 23, respectively. It is visible in these figures that the
major contribution to the reduction of the deformation energy is provided by panel 2.

Table 7 Design variables for the satellite on the second optimization scenario

Panels Design variable Lower bound Initial value Upper bound

2 = 3 θ1/θ2/θ2/θ1 −90◦/−90◦/−90◦/−90◦ 55◦/−55◦/−55◦/55◦ +90◦/+90◦/+90◦/+90◦

Table 8 Summary of the optimization results of the satellite on the second optimization scenario

Panel 2 (MFD) Panel 3 (MFD)

Optimum layer orientations 1.06◦/−47◦/−47◦/1.06◦
Initial objective function 0.0219814

Optimum objective function 0.00097180

Reduction of objective function 95.6%
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Fig. 20 Objective function for
the second optimization scenario

Fig. 21 Evolution of the design
variables in the second
optimization scenario

Fig. 22 Deformation energy for
the initial and optimal model of
panel 2

Another aspect of the deployment requiring analysis concerns the interference detected
in the first phase of the deployment for the initial design, illustrated in Fig. 19. Figures 24
and 25 show the normal displacement of point B , in panel 2, and of node D, in panel 3 for
20 seconds of simulation. There it is possible to observe that the normal displacements of
the panels, with respect to the body fixed frame, are greatly reduced, favoring in this form
not only the possibility of interference between panels but also their torsion.

In Fig. 26, the actuator angle history during the first phase of the unfolding antenna is
presented for the original and the optimum designs. It is clear that both designs lead to
similar end alignments of the panels.
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Fig. 23 Deformation energy for
the initial and optimal model of
panel

Fig. 24 Normal displacements
of node B in panel 2 for the
initial and optimal laminates

Fig. 25 Normal displacements
of node D in panel 3 for the
initial and optimal laminates

7 Conclusions

A general method for the design optimization of flexible multibody systems made of com-
posite materials has been presented in this work, with emphasis on a flexible multibody
formulation involving composite materials and on the efficient evaluation of the sensitivi-
ties. For the type of problems demonstrated here, it can be concluded that the use of numeric
sensitivities is not recommended, not only because there is no clear rule on the size of the
perturbation that can be used, but also because not always do they allow the evaluation
of correct sensitivities. For flexible multibody systems with composite materials, in which
the design variables are the layer orientations, there is no alternative to the analytical sen-
sitivities. The use of automatic differentiation for the derivation of the system sensitivities
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Fig. 26 Actuator angle for the
initial and optimal laminates
during the first phase

demonstrated to be an accurate and efficient tool to obtain the computer code for the analyti-
cal sensitivities, provided that some of its parts are used with caution. The sensitivities of the
modes of vibration, in particular, cannot be handled by the code generated by the automatic
differentiation tool as choices in methodologies have to be made if repeated modes exist in
any of the structural components. Moreover, it has been concluded that for the sensitivity of
the modes of vibration only the updated mode approach is reliable. The demonstration of the
methodology with a simple slider-crank mechanism with a flexible connecting rod allows to
show not only the merits and drawbacks of different aspects of the methodology proposed
in this work but also to identify the suitable objective functions that aim at the stiffening of
the system components made of composite materials. A suitable objective function is the in-
tegral of the deformation energy with the addition of an extra constraint to the optimization
procedure to prevent that the deformation energy exceeds a predefined value at any time. The
methodology was finally applied to a complex system represented by the multibody model
of the SAR antenna. The results demonstrate a feasible design for the antenna in which no
interference between panels is observed as a result of the application of the methodology
proposed here.
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