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Abstract. Multiple objective linear fractional programming (MOLFP) is an impor-
tant field of research. Using some branch and bound techniques, we have developed
a new interactive method for MOLFP that drastically reduces the computational
effort needed, while providing guidance for the decision maker in the choice of
his/her preferred solutions. The basic idea of the computation phase of the algo-
rithm is to optimize one of the fractional objective functions while constraining
the others. Several linear programming problems, organized in a tree structure, are
generated as the search evolves. The whole idea is simple and it results in a fast and
very intuitive approach to exploring the non-dominated set of solutions in MOLFP,
and eventually to finding the preferred solution.

Keywords: Fractional programming – Multiple objective programming – Interac-
tive methods

1 Introduction

Fractional programming has been attracting the attention of a fair amount of re-
search all over the world. A bibliography with 386 entries presented by Stancu-
Minasian (1999), mainly covering the years from 1990 to ‘96, gives a clear idea
of the amount of work that has been done in the field in recent years. It should be
noted that this bibliography is an extension of four other bibliographies previously
published by the same author that cover previous periods. Schaible (1981) has pub-
lished a comprehensive review of the work in fractional programming, outlining
some of its major developments. Stancu-Minasian’s textbook (1997) contains the

� This work was supported by the Fundação para a Ciência e Tecnologia and FEDER,
project POCTI/32405/GES/2000.
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state-of-the-art theory and practice of fractional programming, allowing the reader
to quickly become acquainted with what has been done in the field.

The main reason for the interest in and importance of fractional programming
stems from the fact that various problems, ranging from engineering to economics,
consider the optimization of a ratio between physical and/or economic linear func-
tions. In many linear applications, for example, the programming models could
better fit the ‘real problem’ if we used linear fractional goals (see Kornbluth and
Steuer, 1981a; Schaible, 1981; Schaible and Ibaraki, 1983; Craven, 1988; Goedhart
and Spronk, 1995; Stancu-Minasian, 1997; among others).

The explicit use of several criteria or objectives can also make a model to better
fit most decision situations where several conflicting, or at least different, points of
view have to be considered. These situations usually need not only mathematical
tools and techniques to support the determination of one solution (or a small set of
solutions), but they also need some decision aid in order to help elicit the decision
maker’s (DM) preferences. Interactive methods are usually chosen to support both
these needs, when a multiobjective linear programming (MOLP) problem is used
to model the decision situation.

Although the interactive character of a method may have distinct, particular pur-
poses (ranging from a free learning search to targeted and fast convergent searches),
it can still be modelled by the repetition of two basic phases: i) the dialogue with
the DM (seeking more information about preferences), and ii) the computation of
non-dominated solutions (using the newly-elicited information). Reference may
be made to Steuer (1986) for a review of the more representative existing MOLP
interactive methods, while noticing the existence of improved methods or versions
of the same methods.

The computation phase of a MOLP method is very easy when compared with
the complexity and computational burden usually needed to compute one non-
dominated solution in multiple objective linear fractional programming (MOLFP).
Knowing that in an interactive method the computation phase can be repeated
several times (more or less times, depending on the particular method) one becomes
aware of the difficulty of developing this kind of method in MOLFP; it is necessary
to use a simple and straightforward process in the computation phase.

This paper presents a new interactive method for computing non-dominated
solutions and finding the preferred one in MOLFP. As in MOLP, we have two
sequential phases (dialogue/computation) performed repeatedly. A special effort
has been made to develop an easy and fast process for the computation phase,
while keeping the elicitation of preference information as natural and comfortable
(for the DM) as possible and guiding the DM in his/her search for the preferred
solution. The basic idea of the computation phase of the algorithm is to optimize
one of the fractional objective functions while constraining the others. Several
linear programming problems, organized in a tree structure, are generated as the
search progresses. The whole idea is simple and it results in a fast and very intuitive
approach to the exploration of the non-dominated set of solutions in MOLFP and
eventually to finding the preferred solution. The proposed method can also be
applied to other kinds of multiple objective programming problems. For instance,
in the case of MOLP the method can be applied directly and the computations are
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even easier. Other types of problem may require significant adaptations, focusing
on the computation phase.

Kornbluth and Steuer (1981a) can be considered the seminal work on MOLFP.
In this paper they describe its main characteristics, difficulties and differences
from MOLP. They also present one method to compute all the non-dominated
(and weakly non-dominated) solutions of a MOLFP problem. This method is com-
plicated by having to know the ‘break point’ of the ‘broken edges’, which is the
point where a feasible edge changes from dominated to non-dominated or vice-
versa. Benson (1985) presents another approach to computing these break-points.
Nykowski and Zolkiewski (1985) describe a procedure for choosing the DM’s
preferred non-dominated solution based on the method of Kornbluth and Steuer
(1981a). In it, they first generate the set of weakly non-dominated solutions and
then work on it to choose the preferred solution.

Goal programming ideas have also been applied to MOLFP, resulting in the
development of interactive methods. Kornbluth and Steuer (1981b) present the
mechanism of a method, based on weighted goal programming and needing the
Kornbluth and Steur (1981a) method to generate all the weakly non-dominated
vertices of a given feasible sub-region. By choosing a non-dominated solution the
DM implicitly chooses a sub-region of the weight space. The objective function
values of the selected solution can be used to further reduce the feasible region and
the corresponding weight space. This mechanism results in complex computations
because it needs to generate all the weakly non-dominated vertices of a region.
Goedhart and Spronk (1995) present an interactive goal programming method,
where the DM sets minimum goals for each objective function. The maximum
value that each objective function can achieve, taking those minimum goals into
account, are then computed (straightforwardly) and presented to the DM. Then
s/he can change the minimum goals so as to compute the next range of values.
The presentation of this method does not include a proof of convergence to a non-
dominated solution. Other approaches have also been applied to MOLFP, e.g. the
trade-off satisficing method (Nakayama, 1991). This is a general method whose
application to MOLFP requires the use of an iterative algorithm for solving a linear
fractional min-max problem. Nakayama (1991) uses a Dinkelbach type algorithm
which implies the resolution of a sequence of auxiliary linear programming prob-
lems. Ferland and Potvin (1985) compare the performance of several algorithms of
this kind for solving the so called generalized fractional programming problem.

The paper is structured as follows. First we present the notation and formulation
of a MOLFP problem. We also describe a straightforward process that has been
used to compute a monocriterion linear fractional programming problem, because
this is the calculation base of the method presented in this paper. Section 3 formally
develops the algorithm and gives a general idea of its usage. We also supply a proof
of the convergence of the algorithm. The next section presents an illustration and
discusses certain issues of the method’s usage. Finally, in the last section we present
the conclusions.
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2 The MOLFP

In this paper we formulate the multiple objective linear fractional programming
(MOLFP) problem, like the one below:

max
{

z1 =
c1x + α1

d1x + β1

}
· · ·
max

{
zp =

cpx + αp

dpx + βp

}
s.t. : x ∈ S = {x ∈ Rn|Ax = b, x ≥ 0, b ∈ Rm}

where ck, dk ∈ Rn, and αk, βk ∈ R, k = 1, ..., p and dkx + βk > 0, k = 1, ..., p
and x ∈ S.

We want to find the DM’s preferred solution among the set of all non-dominated
solutions defined by this problem. We will differentiate between the weakly non-
dominated solutions – a point x′ ∈ S is weakly non-dominated if and only if there
does not exist another point x ∈ S such that zk(x) ≥ zk(x′), for all k = 1, ..., p –
and the non-dominated solutions – a point x′ ∈ S is non-dominated if and only if
there does not exist another point x ∈ S such that zk(x) ≥ zk(x′), for k = 1, ..., p,
and zk(x) > zk(x′) for at least one k.

Kornbluth and Steuer (1981a) present and illustrate several aspects of a MOLFP
problem that distinguish it from a MOLP problem, and make MOLFP a far more
complex problem to deal with:

– The set of non-dominated solutions does not need to be closed.
– Some interior solutions may be non-dominated while others, from the same

hyper-face, can be dominated.
– Two non-dominated vertices (in the simplex method sense) do not have to be

connected by a path of non-dominated edges.
– There may exist some edges that are partially non-dominated and partially

dominated.

They also give two other results:

– The set of all weakly non-dominated solutions is closed.
– If the feasible set is bounded, the set of weakly non-dominated vertices is

connected by a finite number of weakly non-dominated line segments.

We can consider three main techniques – widely used by practitioners and re-
searchers in multiobjective programming – for computing a non-dominated solution
by transforming the multiple criteria in a single criterion problem.

i) The weighted sum of the objective functions formulated as:

max
{

λ1
c1x + α1

d1x + β1
+ · · · + λp

cpx + αp

dpx + βp

}
s.t. x ∈ S

where λ ∈ Rp is defined according to the preferences of the DM. Usually∑p
k=1 λk = 1 in order to normalise the weights and λk > 0, k = 1, ..., p, in

order to prevent the result from being a weakly non-dominated solution.
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We can see that the linear numerator and denominator of the fractional criteria
turn out to be (as a rule) polynomials of degree p in the single criterion problem.
This transformation of the MOLFP to a single criterion problem therefore leads to a
problem that is very hard to solve by the techniques currently available. Konno and
Yamashita (1999) present an algorithm that computes, with a pre-defined error, the
solution of this problem. The algorithm uses a convex approximation of the objec-
tive function and solves a series of non-linear programs, each time enhancing the
objective function approximation. Costa and Lourenço (2001a,b) present another
algorithm for computing the solution of this problem, also with a pre-defined error,
but using branch and bound linear techniques.

ii) The reference point approach:
The following achievement scalarizing function (or a similar one) can be defined:

s(q, z) = max
k=1,...,p

(qk − zk) − ε

p∑
k=1

zk

where q ∈ Rp is a reference point in the criterion space and is defined according
to the DM’s preferences, the parameter ε ∈ R+ is used to prevent the result from
being a weakly non-dominated solution and must be sufficiently small (to allow for
the possibility of determining all the interesting non-dominated solutions).

The scalarized problem can be formulated as:

min

{
δ − ε

p∑
k=1

ckx + αk

dkx + βk

}

s.t. : δ ≥
(

qk − ckx + αk

dkx + βk

)
, k = 1, · · · , p

x ∈ S

δ ∈ R

We can see that the objective function turns out to be as complicated as in the
weighted sum approach. Moreover (even if we consider ε = 0, disregarding the
weakly non-dominated solutions issue), the auxiliary constraints, corresponding to
the objective functions, are not linear because there are some terms with the variable
δ multiplied by x. Thus, the scalarized problem in MOLFP is also a very difficult
problem to solve. Metev and Gueorguieva (2000) report several characteristics of the
scalarizing function and of the auxiliary problem that allows non-linear algorithms
to be used to give local maximums.

iii) Constraining the objective functions:
In this technique we maximize one of the objective functions while constraining
the others; that is, we solve the problem:

max
{

cix + αi

dix + βi

}

s.t. :
ckx + αk

dkx + βk
≥ z̄k ⇔ (ck − z̄kdk)x ≥ z̄kβk − αk; k = 1, · · · , p; k /= i

x ∈ S
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Where z̄k ∈ R and is defined according to the preferences of the DM.
In the set of alternative optima of this problem there will be at least one non-

dominated solution or the set is empty (the other solutions will be weakly non-
dominated). The computations required to solve this problem are far easier than
those required by the earlier approaches. There is a variable change technique
developed by Charnes and Cooper (1962) (and used by Steuer, 1986; Goedhart and
Spronk, 1995; among others) that turns this problem into a linear program, making
it very simple.

Consider the following single criterion problem:

max
{

z =
cx + α

dx + β

}
s.t. : x ∈ S = {x ∈ Rn : Ax = b, x ≥ 0, b ∈ Rm}

where c, d ∈ Rn; α, β ∈ R and ∀x ∈ S, dx + β > 0.
We define the new variables:

t =
1

dx + β
and y = xt.

Substituting the variables we arrive at the following linear program:

max {z = cy + αt}
s.t. : Ay − bt = 0

dy + βt = 1
y ∈ Rn, y ≥ 0, t ∈ R, t > 0

So, having achieved an easy calculus technique, two problems remain in the objec-
tive function constraining technique: which function to maximize and how to define
the limits, z̄k, on the other objective functions, in order to find the DM’s preferred
non-dominated solution. The method presented in this paper uses this calculus
technique and has been specially designed to determine the objective function to
maximize and the limits on the others, in an interactive way. The dialogue with
the DM consists of presenting some typical non-dominated solutions, of which the
DM must choose one to continue the search for other solutions that are closer to
his/her preferences. It is on the basis of this chosen non-dominated solution that
the method determines the function to maximize and the new limits on the other
objective functions. The next section gives full details of the method.

3 The interactive method

In this section we present a new interactive method for computing the preferred
non-dominated solution of a MOLFP. The method has two sequential phases (com-
putation/dialogue) performed repeatedly.

Section 2 shows that a simple linear programming problem can be used to
obtain the solution. This is done for each objective function, initially without con-
straining the objective functions, thus computing the pay-off table (Step 2.1 of
the method). One more non-dominated solution, approximately in the middle of
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the non-dominated region, is also computed (Step 2.2). This ‘middle’ solution is
computed with the help of an auxiliary constraint dividing into two equal parts the
objective function variation interval whose the range is the biggest in the pay-off
table, and, by maximizing the objective function that corresponds to the pay-off
table solution, having the minimum value for the objective function to constrain.
The computed (p + 1) non-dominated solutions characterize the non-dominated
region and are presented to the DM (Step 3). S/he must choose the non-dominated
solution closest to her/his preferences in order to proceed (or the method stops if
the DM is already satisfied). The method uses this solution to define the objective
function’s lower limits for use in the next iteration, making several sub-sets of the
non-dominated region (Step 4). This process is then repeated for each sub-set. That
is, for each sub-set (p + 1), non-dominated solutions are calculated and presented
to the DM and s/he must choose the solution to proceed. The method is formalized
as follows.

The method:

Step 1 – Starting
g = 1;h = 1.gh is the label of each sub-set of the feasible region. g represents
the current level of search and h the sub-set associated with the improvement of
objective function h, relative to the current chosen non-dominated solution.

S(gh) is the feasible region associated with the sub-set gh. Initially S(gh) =
S(11) = S.

Step 2 – Characterizing the sub-set gh

Step 2.1 – Computing the pay-off table of the sub-set gh

Compute zk = z(x∗k); k = 1, . . ., p; where x∗k is non-dominated and optimizes
the program (k = 1, ..., p):

max zk(x)
s.t. : x ∈ S(gh)

Step 2.2 – Computing the solution in the ‘middle’ of the non-dominated region
The index of the objective function to constrain, denoted r, corresponds to the one
having the biggest column range in the pay-off table, computed in Step 2.1:

r = k : max
k=1,...,p

{
∆zk =

(
zk
k − min

k /=j

{
zj
k

})}
The index of the objective function to maximize, denoted by v, corresponds to the
row of the solution that has the minimum value in the pay-off table in column (r)
to constrain:

v = j : min
j=1,...,p

zj
r

Compute zp+1 = z(x∗), where x∗ is a non-dominated solution that optimizes:

max zv (x)
s. t. : x ∈ S

(
gh

)
zr (x) ≥ zv

r + 1/2∆zr



640 J.P. Costa

Step 3 – Choosing the solution to proceed or to stop
The DM chooses an incumbent solution z∗ from the non-dominated solutions com-
puted in the last step. If the DM is satisfied with this solution the method stops.
If not, the DM sets γ(gh) ∈ R+. By default γ is a small positive number, but the
DM can change it. This parameter will define how far from z∗ the next generated
solutions will be. It also defines the part of the non-dominated region that the DM
does not want to search any more. A small γ will make the search proceed more
slowly than a bigger γ, but it should be settled as the minimum amount of increase
of the objective functions values that will make the next z* more interesting for
the DM, in order to make sure that the DM will not jump potentially interesting
solutions.

Note that it is possible to set different values for γ according to the amount of
improvement that the DM wants for each objective function. In this case, γ ∈ Rp,
γk ≥ 0, k = 1, . . ., p, and γk > 0 for at least one k. Some of the γ can be
set to zero, meaning that the DM is satisfied with the value of the corresponding
objective function and does not want to search for solutions with a bigger value on
those objective functions. For simplicity, the method as presented will use the same
value of γ for all objective functions.

Step 4 – Dividing the region S(gh)

I =
{

i : zi
i ≥ z∗

i + γ
(
gh

)}
S

(
(g + 1)i

)
= S

(
gh

) ∩ {
x ∈ Rn : zi ≥ z∗

i + γ
(
gh

)}
; i ∈ I

There will be as many sub-sets of the non-dominated (feasible) region as the ele-
ments of the set I . In the case where I = Ø then return to Step 3 to low γ(gh) or
to stop.

In a gh sub-set, the parameter g indicates the level of search and the h indicates
which objective function is improved (relative to the last chosen solution), by the
amount γ(gh), in the non-dominated solutions of the sub-set.

Step 5 – Return to Step 2 with g = g + 1 and h ∈ I .
In this method several linear programming problems, organized in a tree structure
are generated during the evolution of the search. Figure 1 presents the general idea

Starting set: S(11)
p non-dominated sol. (pay-off table) 
+ 1 non-dominated sol. in the middle 

Sub-set S(2h)
p non-dominated sol. (pay-off table) 
+ 1 non-dominated sol. in the middle 

Sub-set S(2h)
p non-dominated sol. (pay-off table) 
+ 1 non-dominated sol. in the middle 

h ∈ I

DM choose: 
- sol. to proceed 
- γ

...

DM choose: 
- sol. to proceed 
- γ

h ∈ I ...

Fig. 1. Representing the tree search
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of this tree search. The whole idea is simple, it results in a fast and very intuitive
approach to exploring the non-dominated set of solutions in MOLFP and eventually
to finding the DM’s preferred solution.

3.1 Convergence of the method

First, we will formalise the preferences of the DM according to the weighted sum of
the objective function approach. Then we will establish a set of rules to be followed
by the DM while interacting with the algorithm. After that, we will prove that the
non-dominated solution computed by the algorithm running under those DM’s rules
is (one of) the achievable solution(s) that maximizes the preferences of the DM.
This proves the convergence of the method. Nevertheless, in order to show that the
interactive method can also be applied under the reference point approach, we will
also formalise the preferences of the DM according to that approach, adjust the set
of rules to be followed by the DM and again supply the proof of convergence of
the method.

We must make it clear that we do not think this is the ‘right way’ of using the
algorithm. Moreover, we acknowledge that this kind of usage is contradictory to the
design of the method, the aim of which is not only to provide a solution in keeping
with the DM’s preferences, but to support the DM in building and adjusting his/her
preferences while searching the non-dominated region.

3.1.1 Objective function weighted sum

Consider a DM with the following pre-defined value function, explicitly given as
the weighted sum of the objective functions.

max
{

λ1
c1x + α1

d1x + β1
+ · · · + λp

cpx + αp

dpx + βp

}
s. t. : x ∈ S

where λp ∈ Rp and
∑p

k=1 λk = 1 and λk > 0, k = 1, . . ., p.
The set of rules to be followed by the DM in order to control the algorithm

(Step 3) is:

(i) Always choose the solution from the ‘middle’ of the non-dominated sub-region
under consideration;

(ii) Always set γ = 0;
(iii) Ignore (that is, do not sub-divide) the sub-regions s(gh) where the weighted

sum of their ideal point, zIP , is lower than the weighted sum of at least one
of the non-dominated solutions computed so far (the ideal point is the point
of the objective function space whose co-ordinates are equal to the maximum
that can be achieved by each objective function in the feasible region):

∃zk :
p∑

k=1

λkzIP
k <

p∑
k=1

λkzk
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(iv) When the objective function ranges of the pay-off table of all the active sub-
regions are lower than a pre-specified error value, stop the algorithm and
choose the computed non-dominated solution that maximizes the weighted-
sum of the objective functions.

Property 1 Condition to ignore a sub-region – rule (iii).

Assume that zIP is the ideal point of the sub-region A of S and that z1 is
a solution of the sub-region B of S. If

∑p
k=1 λkzIP

k <
∑p

k=1 λkz1
k holds, then

the non-dominated solution, z∗, that maximizes
∑p

k=1 λkzk (x), x ∈ S, does not
belong to the sub-region A.

Proof. Assume that z∗ belongs to the sub-region A and that
p∑

k=1

λkz∗
k ≥

p∑
k=1

λkz1
k >

p∑
k=1

λkzIP
k . Then

p∑
k=1

λk

(
z∗
k − zIP

k

)
> 0 .

The last expression means that there is at least one k′ such that z∗
k′ > zIP

k′ , and
so zIP would not be the ideal point of the sub-region A. ��
Property 2 Sub-division of a sub-region – rule (ii).

Assume that z1 is a non-dominated solution ofS and thatZ is the non-dominated
solution set in the objective function space, Z = {z : z(x) is non-dominated and
x ∈ S}. So, by definition, z1 ∈ Z.

If Zk = {z : z(x) is non-dominated, x ∈ S and zk(x) ≥ z1
k} then Z =

∪p
k=1Z

k.

Proof. Assume that z2 belongs to Z but does not belong to any of the Zk, k =
1, . . ., p. Thus z2

k < z1
k, for all k = 1, . . ., p, or else z2 would belong to at least one

of the Zk, k = 1, . . ., p. If z2
k < z1

k for all k = 1, . . ., p, then z2 is dominated by z1

and cannot belong to Z. ��
Property 3 Conclusion.

If the DM follows the above set of rules when interacting with the algorithm,
the method will compute a non-dominated solution that maximizes the preferences
of the DM.

Proof. This property follows directly from the other two: the only non-dominated
solutions that are ignored are the ones that belong to the sub-regions, which can be
proven not to contain the solution that maximizes the preferences of the DM.

3.1.2 Reference points

Consider a DM that, now, wants to ‘come close’ to the reference point q ∈ Rp in
the sense of the following achievement scalarizing function:

s(q, z) = max
k=1,...,p

(qk − zk) − ε

p∑
k=1

zk.

The parameter ε ∈ R+ is used to prevent the result from being a weakly non-
dominated solution and it must be small enough (to allow for the possibility of deter-
mining all the interesting non-dominated solutions). Reference point (Wierzbicki,
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1980) methods and techniques can be considered as ‘generalized goal program-
ming’. Their essence is that a reference point is a goal, but the sense of ‘coming
close’ to it does not mean the minimization of a distance, but the minimization of
an achievement scalarising function. The characteristics of this function enable it
to provide non-dominated solutions, even if the goals are fixed below them (that is,
‘better’ solutions than the settled goals if they are feasible).

Let us adjust the rules (iii) and (iv) presented in the last sub-section which are
to be followed by the DM in order to control the algorithm (Step 3):

(iii) Ignore (that is, do not sub-divide) the sub-regionss(gh) for which the following
condition holds:[

max
k=1,...,p

(
qk − zIP

k

) − ε

p∑
k=1

zIP
k

]
>

[
max

k=1,...,p

(
qk − z1

k

) − ε

p∑
k=1

z1
k

]

where, zIP , is the ideal point of the sub-region to be ignored and z1 is one of
the non-dominated solutions computed so far.

(iv) When the objective function ranges of the pay-off table of all the active sub-
regions are lower than a pre-specified error value, stop the algorithm and
choose the computed non-dominated solution that minimizes the achievement
scalarizing function.

Property 4 Condition for ignoring a sub-region – rule (iii).
Consider that zIP is the ideal point of region A, from S, and z1 is one solution of

region B from S. If the following condition holds, then the non-dominated solution,
z∗, minimizing s(q, z), x ∈ S, does not belong to region A.[

max
k=1,...,p

(
qk − zIP

k

) − ε

p∑
k=1

zIP
k

]
>

[
max

k=1,...,p

(
qk − z1

k

) − ε

p∑
k=1

z1
k

]

Proof. Consider that z∗ belongs to A, then if z∗ minimizes s(q, z) over S:

max
k=1,...,p

(qk − z∗
k) − ε

p∑
k=1

z∗
k ≤ max

k=1,...,p

(
qk − z1

k

) − ε

p∑
k=1

z1
k

< max
k=1,...,p

(
qk − zIP

k

) − ε

p∑
k=1

zIP
k

That is:

max
k=1,...,p

(qk − z∗
k) − ε

p∑
k=1

z∗
k < max

k=1,...,p

(
qk − zIP

k

) − ε

p∑
k=1

zIP
k

max
k=1,...,p

(qk − z∗
k) − max

k=1,...,p

(
qk − zIP

k

)
+ ε

p∑
k=1

(
zIP
k − z∗

k

)
< 0

Consider i, without loss of generality, such that qi−z∗
i ≥ qk −z∗

k , k = 1, ..., p and
remember that zIP

k ≥ z∗
k; k = 1, ..., p , because zIP is the ideal point of A. Then

qi−z∗
i ≥ qk−zIP

k , k = 1, ..., p and k=1,...,p(qk − z∗
k) ≥ maxk=1,...,p(qk − zIP

k ).
Concluding: maxk=1,...,p(qk − z∗

k) −k=1,...,p (qk − zIP
k ) ≥ 0.
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Due to this last equation, it is necessary that ε
∑p

k=1 (zIP
k − z∗

k) < 0. This
implies that there is at least one k, lets say k′, for which z∗

k′ > zIP
k′ and so zIP

could not be the ideal point of A. ��
Properties 2 and 3 can also be applied in this sub-section.

4 Illustrative example

In this section we will illustrate the interactive method presented in the previous
section. We will use the example given by Kornbluth and Steuer (1981a):

max
{

z1 =
x1 − 4

−x2 + 3

}

max
{

z2 =
−x1 + 4
x2 + 1

}
max {z3 = −x1 + x2}
s.t. :

−x1 + 4x2 ≤ 0
x1 − 1/2x2 ≤ 4
x1, x2 ≥ 0

S is the feasible region defined by the constraints of the problem. Figure 2 presents
the feasible region – the triangle defined by the points A, B and C – and the non-
dominated region – the bold (dashed) points – of the problem. The points B and D
are weakly non-dominated solutions.

B

C = z1

D

x1

x2

A (0,0) 
B (4,0) 
C (4.6,1.1) 
D (1.3,0.3)

z4A= z2 = z3

Z2 = 1.867 

Fig. 2. Feasible and non-dominated region for the problem with S(11)

Step 1 – Starting.
g = 1;h = 1.

Step 2.1 – Computing the pay-off table for S(11) = S.
To compute

max z1

s.t. : x ∈ S(11),
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Table 1. Four non-dominated solutions characterizing the problem S(11)

z1 z2 z3

z1 0.308 −0.267 −3.429
Pay-off z2 −1.333 4 0

z3 −1.333 4 0

Middle z4 −0.622 1.867 −2.133

we solve the problem:

max {y1 − 4t}
s.t. : −y1 + 4y2 ≤ 0

y1 − 1/2y2 − 4t ≤ 0
−y2 + 3t = 1
y1, y2, t ≥ 0

where t = 1
−x2+3 ; y1 = x1t and y2 = x2t.

There are no alternative optima and so the optimum of the problem is a non-
dominated solution, z1: y1 = 2.462; y2 = 0.615; t = 0.538; x1 = 4.6; x2 = 1.1;
z1 = 0.308; z2 = −0.267 and z3 = −3.429.

Repeating the same process over the other objective functions we compute the
pay-off table for S(11) presented in Table 1. These solutions are also presented in
Figure 2.

Step 2.2 – Computing the mid-point solution.

∆z1 = 0.308 − (−1.333) = 1.638; ∆z2 = 4.267; ∆z3 = 3.429

Hence, r equals 2. v will be equal to 1 because the minimum of the z2 column of
Table 1 is (−0.267).

We will solve the problem:

max z1

s.t. : x ∈ S(11); z2 ≥ 1.867.

The non-dominated solution resulting from this problem, z4, is given in Table 1
and is the mid-point solution of the non-dominated region of S(11). The auxiliary
constraint (z2 ≥ 1.867) is depicted in Figure 2.

Step 3 – Choosing the solution to proceed.
The DM chooses to continue the search through z4 (Table 1) and sets γ = 0.2.
Note that it is possible to set different values for γ according to the amount of
improvement that the DM wants for each objective function. In this case, γ ∈ R3

, γk ≥ 0, k = 1, 2, 3. Some of the γ can be set to zero, meaning that the DM is
satisfied with the value of the corresponding objective function and does not want to
search for solutions with a bigger value in those objective functions. For simplicity,
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Table 2. Four non-dominated solutions characterizing the problem S(21)

z1 z2 z3

z1 0.308 −0.267 −3.429
Pay-off z2 −0.422 1.266 −2.734

z3 −0.422 0.535 −2.292

Middle z4 −0.167 0.5 −3.5

the method as presented used the same value of γ for all objective functions and
the illustrative example will follow the same rule.

This first choice of the DM is the middle solution from the non-dominated
region of the MOLFP problem. This means that the DM does not want a solution
near the maximum of any of the objective functions but a more balanced solution.
Nevertheless, s/he is not satisfied and sets γ = 0.2 in order to explore other solutions
that are greater than z4 (Table 1) by the amount of at least 0.2 in one of the objective
functions. Therefore the DM is excluding from further searches the part of the non-
dominated region that surrounds z4 and that is defined by γ.

Step 4 – Dividing the region S(11).

I = {1, 2, 3}. We will have 3 sub-sets:

S(21) = S(11) ∩ {x ∈ Rn|z1 ≥ −0.422}
S(22) = S(11) ∩ {x ∈ Rn|z2 ≥ 2.067}
S(23) = S(11) ∩ {x ∈ Rn|z3 ≥ −1.933}

Figure 3 presents the constraints defining the sub-sets. Note that the parameter
γ = 0.2 sets the sub-region that will not be searched any more.

x1

x2 Z2 = 2.067 Z1 = -0.422 

Z3 = -1.933 

Fig. 3. The constraints defining the sub-sets S(21), S(22) and S(23)

Step 5 – We return to Step 2.

Step 2 – S(21); S(22); S(23).
The non-dominated solutions, for S(21), computed at this step are presented in
Table 2.
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Table 3. Four non-dominated solutions characterizing the problem S(22)

z1 z2 z3

z1 −0.689 2.067 −1.933
Pay-off z2 −1.333 4 0

z3 −1.333 4 0

Middle z4 −1.012 3.035 −0.965

Table 4. Four non-dominated solutions characterizing the problem S(23)

z1 z2 z3

z1 −0.604 0.865 −1.933
Pay-off z2 −1.333 4 0

z3 −1.333 4 0

Middle z4 −0.812 2.435 −1.565

Note that for computing the solution z4 we solve the following program:

max {y1 − 4t}
s.t. : −y1 + 4y2 ≤ 0

y1 − 1/2y2 − 4t ≤ 0
−y2 + 3t = 1
y1 − 0.422y2 − 2.734t ≥ 0 (Partition const.)
y1 + 0.5y2 − 3.5t ≤ 0 (Middle const.)
y1, y2, t ≥ 0

The non-dominated solutions, for S(22) and S(23), computed at this step, are
presented in Tables 3 and 4, respectively.

Step 3 – Choosing the solution to proceed.
The DM chooses to continue the search through the solution z4 of the sub-set S(21)
(Table 2) with γ = 0.1. This second choice of the DM is the middle solution of
the sub-set S(21), i.e. the sub-set where the non-dominated solutions have the first
objective function greater than the last choice of z∗ by the amount of at least 0.2.

Note that the method formally presented in Section 3 determines the compu-
tation of the characteristic solutions of all the sub-sets resulting S(21), S(22) and
S(23). It is clear that another possibility would be to ask the DM, in Step 3, which
objective function s/he would like to improve (by at least the amount of γ) and to
generate only the corresponding sub-set in Step 4. This modification of the method
would result in a version with fewer computations and fewer non-dominated solu-
tions to present to the DM, but with more questions to ask to the DM. The version
presented in Section 3 may be better for a more exploratory (almost free) search
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while the alternative version seems to be better suited to more targeted searches
where a fast convergence to the preferred non-dominated solution is desirable. A
computer implementation of the method should offer both versions.

By choosing the middle solution of S(21) − z4 of Table 2 – the DM improves
the first objective function by more than the amount of the parameter γ. That is
γ(11) = 0.2 was fixed at a conservative value. It is clear that the improvement in the
first objective function was achieved by decreasing the other objective functions.
The DM is not yet satisfied and wants to explore beyond the neighbourhood of z4

from S(21), defined by γ(21). S/he fixes γ(21) to the value of 0.1.

Step 4 – Dividing the region S(21).

I = {1, 2, 3}
S(31) = S(21) ∩ {x ∈ Rn|z1 ≥ −0.067}
S(32) = S(21) ∩ {x ∈ Rn|z2 ≥ 0.6}
S(33) = S(21) ∩ {x ∈ Rn|z3 ≥ −3.4}

Figure 4 presents the new constraints defining the sub-sets. In this figure we
only depict the sub-set S(21).

x1

x2

Z1 = -0.422 

Z2 = -0.6 

Z1 = -0.067 Z3 = -3.4 

Fig. 4. The constraints defining the sub-sets S(31), S(32) and S(33)

Step 5 – We return to Step 2.

Step 2 – S(31); S(32); S(33).
The non-dominated solutions, for S(31), S(32) and S(33), computed at this step
are presented in Tables 5, 6 and 7, respectively.

Step 3 – Choosing the solution to proceed.
The DM chooses to continue the search through the solution z1 from the sub-set
S(32) (Table 6) with γ = 0.2.

The third choice of the DM is the non-dominated solution that maximizes the
first objective function in sub-set S(32). So, the DM chooses to improve his/her last
chosen solution in the second objective function – this is the meaning of choosing
S(32) – by the amount of γ(21) = 0.1, giving up as little as possible of the first
objective function – this is the meaning of choosing z1. It seems that the DM feels
that s/he did lost too much in objective function 2 with his/her choice in the previous
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Table 5. Four non-dominated solutions characterizing the problem S(31)

z1 z2 z3

z1 0.308 −0.267 −3.429
Pay-off z2 −0.067 0.201 −3.799

z3 −0.067 0.069 −2.898

Middle z4 −0.067 0.114 −3.348

Table 6. Four non-dominated solutions characterizing the problem S(32)

z1 z2 z3

z1 −0.2 0.6 −3.4
Pay-off z2 −0.422 1.266 −2.734

z3 −0.422 0.6 −2.354

Middle z4 −0.298 0.6 −2.878

Table 7. Four non-dominated solutions characterizing the problem S(33)

z1 z2 z3

z1 0.286 −0.25 −3.4
Pay-off z2 −0.422 1.266 −2.734

z3 −0.422 0.535 −2.292

Middle z4 −0.183 0.508 −3.4

interaction. This choice corresponds to a tuning of the non-dominated solution
according to the DM’s preferences. Nevertheless, the DM remains dissatisfied with
the solution z1 from the sub-set S(32) (Table 6) and wants to continue the search
by exploring beyond its neighbourhood, defined by γ(32) = 0.2.

Step 4 – Dividing the region S(32).

I = {2, 3}; S(42) = S(32)∩}x ∈ Rn|z2 ≥ 0.8};
S(43) = S(32) ∩ {x ∈ Rn|z3 ≥ −3.2}

Figure 5 presents the new constraints defining the sub-sets. In this figure we
only depict the sub-set S(32).

Step 5 – We return to Step 2.

Step 2 – S(42); S(43).
The non-dominated solutions, for S(42) and S(43), computed at this step are pre-
sented in Tables 8 and 9, respectively.

Step 3 – Choosing the solution to proceed.
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5

x1

x2

Z1 = -0.422 

Z2 = -0.6 

Z2 =  0.8 

Z3 = -3.2 

Fig. 5. The constraints defining the sub-sets S(42) and S(43)

Table 8. Four non-dominated solutions characterizing the problem S(42)

z1 z2 z3

z1 −0.267 0.8 −3.2
Pay-off z2 −0.422 1.266 −2.734

z3 −0.422 0.8 −2.514

Middle z4 −0.339 0.6 −2.857

Table 9. Four non-dominated solutions characterizing the problem S(43)

z1 z2 z3

z1 −0.235 0.6 −3.2
Pay-off z2 −0.422 1.266 −2.734

z3 −0.422 0.6 −2.354

Middle z4 −0.341 0.6 −2.678

The DM chooses the solution z1 from the sub-set S(43) as the final solution, and
the algorithm stops. The fourth and last choice of the DM is the non-dominated
solution that maximizes the first objective function over the sub-set S(43). So the
DM now chooses to improve the non-dominated solution in objective function 3 by
exactly the amount of γ(32) = 0.2 (see Table 5), losing as little as possible in the
first objective function. The DM is once more tuning the non-dominated solution,
like s/he did in the last interaction, but in another objective function. The DM is
now satisfied with the non-dominated solution and the method stops.

Table 10 presents the solutions that the DM did choose on the route to finding
his/her preferred solution. This illustrative example shows that the method proposed
in this paper is very easy and intuitive to use, and allows both a fast convergence to
the preferred non-dominated solution and a sensitive tuning at the end of the search.
Furthermore, the computations that it requires are very easy and straightforward
(linear programming problems), especially if we use some post-optimal techniques
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Table 10. The solutions that the DM did choose during the search for his/her preferred
solution

gh z z1 z2 z3 γ

11 z4 −0.622 1.867 −2.133 0.2
21 z4 −0.167 0.5 −3.5 0.1
32 z1 −0.2 0.6 −3.4 0.2
43 z1 −0.235 0.6 −3.2 Stop

(not shown in this example) for introducing a new constraint in the simplex tableau
when moving from a level of the search tree (an interaction) to the next one (next
interaction). A free learning search of the non-dominated region of a MOLFP is also
very easy to perform with the help of this method. The DM just needs to continue
the search thorough several sub-sets of the non-dominated region at the same level
of search, building a wider search tree.

The possible incoherence of the choices of the DM can also be dealt with
by going back in the search tree to a node before the mistake was made and by
proceeding with the search through other non-dominated solutions, or the same one
again, but with another value for the parameter γ.

5 Conclusions

This paper has presented a new interactive method for computing the preferred non-
dominated solution in multiple objective linear fractional programming (MOLFP).
We have two sequential phases performed repeatedly: i) the dialogue with the DM,
where s/he chooses the non-dominated solution that better fits her/his preferences
and the amount of improvement s/he wants, and ii) the computation of other non-
dominated solutions, using the newly-elicited information. The basic idea of the
computation phase of the algorithm is to optimize one of the fractional objective
functions while constraining the others. Several linear programming problems,
organized in a tree structure, are generated as the search evolves.

The method proposed in this paper is very easy and intuitive to use and allows
for both a fast convergence to the preferred non-dominated solution and a sensitive
tuning at the end of the search. Moreover the computations that it requires are
quite straightforward and simple (linear programming problems), especially if we
use some post-optimal techniques for introducing a new constraint in the simplex
tableau when moving from a level of the search tree (an interaction) to the next one
(next interaction). A free learning search of the non-dominated region of a MOLFP
can also be very easily performed with the help of this method. The DM just needs
to continue the search through several sub-sets of the non-dominated region at the
same level of search, building a wider search tree.

The whole idea is simple and it results in a fast and very intuitive approach to
exploring the non-dominated set of solutions in MOLFP, and eventually to find the
preferred solution. We have also proved the convergence of the method.
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