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me deram. Mãe! Pai! Amo-vos muito!

– Finally but not least, my beloved little princess Adriana. The precious gem, which like

many great things in science and life, I unexpectedly discovered. The tenderness of your

being has given me the strength I needed to face and overcome many problems and your

love continuously rejuvenated my spirit. It was never easy to deal with the spatial distance

that has kept us apart. However, day by day it became clear that is nothing compared

to the proximity of our hearts. I am glad that our paths once crossed and we could walk

together during the past two years. I wish our love endures with the passing years. I love

you, my sweet little flower!

xiii





Abstract
Continuous experimental effort has been undertaken using the low-energy pion

beam at the Paul Scherrer Institut (PSI), Switzerland, to extract with high precision

the isospin scattering lengths of pion-nucleon strong interaction [116]. The experimen-

tal technique relies on the cyclotron trap and high resolution spectroscopy methods [77]

to measure X-ray transitions feeding the ground state of pionic hydrogen and determine

the strong interaction shift ε1s and width Γ1s of the fundamental level.

The extraction of Γ1s faces particular difficulties as it is masked by Doppler broad-

ening induced by Coulomb deexcitation. The interplay of the deexcitation mechanisms

during the cascade of exotic hydrogen is very complex and not yet understood in detail

although advanced cascade models exist [32, 33, 38]. Muonic hydrogen, which can be

regarded as the twin system of pionic hydrogen can be used to improve our understand-

ing of the cascade, because the µH system does not experience the strong interaction

and, thus, any broadening of the X-ray transitions additional to the response function

of the apparatus is related exclusively to the Doppler effect.

Results are reported from the dedicated µH experiment carried out at PSI by mea-

suring X-rays of the (3p − 1s) transition with a high-resolution crystal spectrometer.

For the first time, the hyperfine splitting of the ground state of muonic hydrogen could

be resolved. A Doppler effect broadening of the X-ray line was clearly identified and

could be attributed to different Coulomb deexcitation steps preceding the measured

transition.

The assumption of a statistical population of the hyperfine levels of the ground state

was directly confirmed by experiment and measured values for the hyperfine splitting

can be reported.

The results allow a decisive test of advanced cascade model calculations and es-

tablish a “model-free” method to extract the strong-interaction width from the pionic

hydrogen data.

In addition, the characterization of the Si(111) crystal for the µH measurement is

reported as well.
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Sumário
Durante os últimos anos têm vindo a ser realizadas, no feixe de piões de baixa

energia do acelerador de protões do Instituto Paul Scherrer (Suiça), experiências que

visam a determinação do comprimento de dispersão em termos de isospin da interacção

forte pião-nucleão com elevada precisão [116]. As técnicas experimentais baseiam-se na

cyclotron trap e nos métodos de espectroscopia de alta resolução para medir transições

radiativas (raios X) [77] e, deste modo, determinar o desvio ε1s e a largura Γ1s do estado

fundamental do hidrogénio piónico causados pela interacção forte.

A determinação de Γ1s levanta dificuldades acrescidas uma vez que é camuflada pelo

efeito Doppler induzido pela desexcitação de Coulomb. A interacção entre os diferentes

mecanismos presentes na cascata de desexcitação do hidrogénio exótico é bastante

complexa e embora existam modelos avançados (ESCM) [32, 33, 38], muitos detalhes

carecem de explicação. O hidrogénio muónico, que pode ser visto como um “sistema

gémeo” do hidrogénio piónico, pode ser utilizado para melhorar o conhecimento acerca

da cascata de desexcitação; sendo um sistema que não “sente” a força forte, a largura

adicional das transições radiativas (raios X) que não é devida à função resposta do

espectrómetro é devida exclusivamente ao efeito Doppler.

No presente trabalho apresentam-se os resultados da experiência realizada no PSI,

cujo objectivo foi a detecção dos raios X da risca espectral 3p−1s do hidrogénio muónico

com um espectrómetro de cristal de alta resolução. A estrutura hiperfina do estado

fundamental do µH foi observada e resolvida pela primeira vez. O alargamento da

linha espectral devido ao efeito de Doppler foi iniquivocamente identificado e pode ser

atribúıdo a diferentes desexcitações de Coulomb que antecedem a deexcitação radiativa.

O preenchimento estat́ıstico da estrutura hiperfina do estado fundamental foi con-

firmado experimentalmente, e apresentam-se os resultados para a separação entre os

subńıveis de energia do tripleto e do singleto.

Os resultados permitem testar os cálculos do modelo avançado da cascata de de-

sexcitação (ESCM) e estabelecer um método independente de modelos teóricos para

analisar os dados existintes em hidrogénio piónico e extrair o valor de Γ1s.

A caracterização do cristal Si(111) utilizado nas medições efectuadas em µH é

também discutida em detalhe.
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Chapter 1

Introduction

In 1998 a collaboration which involved several institutes from different countries and

different expertises proposed to measured the strong interaction shift and width of the

ground state of pionic hydrogen (πH) at the Paul Scherrer Institut (PSI – Switzerland)

with an accuracy of one order of magnitude better than previously known [108]. This

should be achieved by combining high resolution crystal spectroscopy techniques with

the cyclotron trap operated at a low high intensity and low momentum π− beam line.

The main goal of this experimental effort is to extract the pion-nucleon scatter-

ing lengths for both isospin components (related to the measurable quantities) with

an unprecedent precision. Hence, it constitutes a very important test of the funda-

mental theories in quantum chromodynamics at low energy, thus constraining future

theoretical developments.

In order to accomplish the desired accuracy, several aspects related to the atomic

cascade dynamics of the πH system needed to be clarified. Therefore, a measurement in

muonic hydrogen (µH) was planned to overcome the lack of knowledge in the theoretical

description of the cascade mechanisms of these exotic systems. A detailed discussion

of the µH measurement and its analysis is the main subject of this work. In addition,

a characterization of the spectrometer was planned by using narrow atomic spectral

lines from highly charged ions.

A series of measurements were consequently planned and executed during the fol-

lowing years, with the first measurement of the strong interaction shift in πH being

done in 2000 and concluded in 2001. The determination of the strong interaction width

has started in 2001, carried on in 2002 and concluded in 2005. The µH experiment was

done in 2004 and the characterization of the spectrometer was performed in several

steps from 2002 till 2007. The strong interaction shift has been determined but the

analysis related to the strong interaction width of the ground state of πH is still in
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progress, at a very advanced stage. On the other hand, the analysis of the µH data

has been successfully accomplished in 2007.

The present work reports the measurement of an X-ray transition in muonic hy-

drogen feeding the ground state by using a high resolution crystal spectrometer. The

characterization of the Si(111) crystal used is the second main subject of this work.

A detailed overview about the experimental techniques, challenges, data analysis and

results will be addressed. Furthermore, subsequent investigations on the crystal char-

acterization, which were not initially foreseen but prompted by puzzling preliminary

results, are additionally outlined.

1.1 Layout

The main stream of the ideas behind the theoretical development of the strong

interaction at low energies is presented very briefly in Chapter 2. The motivation for

the pionic hydrogen investigations is resumed shortly and the relations that connect the

scattering lengths with the measurable quantities are pointed out. The fundamentals

of the hyperfine splitting of the ground state of muonic hydrogen are presented as well

for the leading order term.

In Chapter 3 the present knowledge about the atomic cascade of the light exotic

atoms is addressed. The different mechanisms involved during the cascade as well

as their interplay are discussed. Additionally, the evolution of the cascade model is

presented together with its latest predictions for some measurable quantities. At the

end of the chapter, the issues related to development of the kinetic energy during the

cascade of the exotic system and their effect on the measurable X-ray transitions are

pointed out. A simplified model, which was used in the analysis of the muonic hydrogen

data to overcome the lack of theoretical knowledge on this topic, is presented.

The items related to high resolution spectroscopy with bent crystals are discussed in

detail in chapter Chapter 4. A short presentation of the most relevant aspects behind

the theory of X-ray diffraction in crystals is given. The geometrical constraints of the

image construction from a vertically extended and spherically bent crystal are carefully

worked out. Furthermore, the impact of some geometrical parameters on the response

function is studied by using the tracking routine developed inside the collaboration

[114]. Finally, the spectrometer employed in all investigations is described.

Chapter 5 presents the investigations done on the characterization of the Si(111)

crystal. A brief introduction about the electron cyclotron resonance ion sources is given.

The experimental setup as well as the procedure to extract the response function of
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the spectrometer equipped with Si(111) is discussed in detail. The analysis of the data

is meticulously explained together with the puzzling aspects which prompted further

investigations on the characterization of the crystal. The results of these investigations

are presented as well. A model to extrapolate the response function from the one

measured at 3.1, 2.7 and 2.4 keV to the energy of the µH(3p−1s) transition (2.25 keV)

is delivered at the end of the chapter.

The µH experiment and the subsequent data analysis are discussed in Chapter 6.

The layout of the setup as well as the experimental routines are explained in detail.

The logics of the analysis is presented step-by-step.

The results and conclusions of the present investigation are summarized in

Chapter 7. Two publications have already been originated directly from this work.

One at Review of Scientific Instruments and a second which was accepted to be pub-

lished in January 2009 at Physical Review Letters. A third publication about the

characterization of the crystals with an ECRIT is foreseen.
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Chapter 2

Theoretical background

The investigations on the muonic hydrogen µH constitute an important and crucial

step of the measurement of the strong interaction shift (ε1s) and width (Γ1s) of the

ground state of the pionic hydrogen system πH, which is the major goal of the πH

collaboration [108]. The results obtained from this experiment will test the low en-

ergy approach to quantum chromodynamics about the strong interaction and constrain

further theoretical development.

A detailed description of the theory about the pion-nucleon interaction is far from

the scope of the present work. However, a brief insight into the main theoretical ideas

which have stimulated the experimental activities in πH will be addressed. A deeper

theoretical understanding can be found in the references mentioned.

2.1 Motivation

Prompted by the outstanding success of the predictions of quantum electrodynam-

ics (QED), quantum chromodynamics (QCD) arose in the second half of the twen-

tieth century as an expansion of QED in order to explain the strong interaction of

quarks. QCD is a part of the standard model theory which is a gauge theory with a

SU(3)⊗SU(2)⊗U(1) local symmetry [1, 2, 3, 4].

A gauge theory is based on the idea that systems can remain unchanged by applying

a certain transformation. Hence, exhibiting global or local symmetries if they remain

unchanged in time or not, respectively. Furthermore, according to Noether’s theorem,

for each continuous symmetry of the action of a physical system there is a conserved

quantity. For instance, by translating a system in space the system remains unchanged,

exhibiting a translational global symmetry which corresponds to linear momentum

conservation. Thus, as QED is associated to the U(1) symmetry group and to electric
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charge conservation, QCD is associated with the SU(3) symmetry group and to the

color conservation of quarks. The SU(2) symmetry is related to the weak interaction.

In a similar way as QED requires photons to mediate the electromagnetic interac-

tion, strong interaction is mediated by gluons. Unlike the massless and neutral photons,

gluons carry color. Several types of gluons exist which can couple among each other.

This renders calculations hard to compute even when applied to simple systems. More-

over, QCD does not exhibit a linear behavior at different scales as QED does. The

coupling constants, which evaluate the strength of the strong interaction, changes with

distance, therefore named running coupling constants.

However, at very high energies the quarks can be treated as free particles because

of the decreasing strength of the strong interactions as described by the running cou-

pling constants. This is called asymptotic freedom and it allows to apply perturbative

methods to QCD at large energies with great success.

At low energies, QCD becomes non-perturbative and none information can be ex-

tracted by the methods mentioned. Hence, a different method has been developed: the

chiral perturbation theory (ChPT). ChPT is nowadays considered to be the theory to

describe the strong interaction phenomena at low energies. ChPT is an effective field

theory at low energy and introduces the quark masses as perturbation [5]. The general

idea behind an effective field theory is, that it is not necessary to know all the physics

of a process to make useful predictions about a specific part [6, 7]. In fact, ChPT

resumes the quark world to the three lighter quarks (up, down and strange) which is

sufficient to describe the pion-pion and meson-nucleon interaction.

Constructed upon the assumption of massless quarks, ChPT works best for the

lightest quarks up and down combined with the lightest strongly interacting particle

– the pion, and hence to describe the pion-pion interaction [8, 9]. On the other hand,

when applied to the meson-nucleon interaction it is often denoted as heavy baryon

chiral perturbation theory (HBChPT) [5, 4, 10].

Therefore, experiments involving pion-pion (ππ) and pion-nucleon (πN) interaction

are of major interest to test ChPT and HBChPT [77]. The measurement of the lifetime

of the pionium (π+π−) system from the DIRAC experiment checks the predictions of the

ChPT to the pion-pion interaction [11]. On the same way, the experiment performed

by the πH collaboration [108] will allow accurate tests on the pion–nucleon interaction,

thus testing HBChPT which constitutes the main motivation of the investigations on

pionic hydrogen.

However, the determination of the experimental quantities in πH can be masked by

the collisional interactions of the exotic systems with their surroundings, in particular
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for the extraction of strong interaction width of the ground state Γ1s. The dynamics

of these collisional processes is not yet fully understood. Here, the importance of

the muonic hydrogen measurement, which is the main subject of the present work, is

revealed. It constitutes a crucial part of the overall investigation in order to achieve

the desired accuracy and will give important indications to overcome the intrinsic

difficulties on the understanding of the atomic cascade dynamics in exotic hydrogen.

Here the measurements with kaonic systems like the ones intended by the DEAR

and SIDDHARTA should be mentioned, as they involve the third lightest quark –the

strange quark [12, 13].

2.2 Pion-nucleon interaction and pionic hydrogen

In the understanding of the strong interaction, experimentally available quantities

play an important role as their determination tests the fundamental theories. The

so-called scattering lengths make up that link. The scattering lengths are parameters

describing the scattering at very short distance and low energy, roughly speaking when

the wavelength of the incoming particle is too large to resolve the scattering center.

Hence, they are defined at zero energy.

The scattering lengths of the ππ interaction can in principle be obtained via ππ

scattering at higher energies by extrapolating to zero and by performing other impor-

tant corrections [14]. However, experimental difficulties constrained the accuracy to

values higher than the few percent level required to a decisive test of the ChPT [14].

On the other hand, the determination of the scattering lengths in πN systems does

not suffer from that problems, despite their own intrinsic experimental difficulties, and

constitute a milestone to test ChPT via its HBChPT expansion.

The πN processes experimentally accessible are the two elastic scattering reactions

and the charge exchange reaction, with a respective scattering length being assigned

to each one:

π+ + p −→ π+ + p ⇒ aπ+p→π+p (2.1)

π− + p −→ π− + p ⇒ aπ−p→π−p (2.2)

π− + p −→ π0 + n ⇒ aπ−p→π0n (2.3)

The πN systems can be described in terms of isospin I. The isospin is a quantum

number related with the strong interaction which describes particles with a similar

mass as different states of the same particle. Therefore, the proton and the neutron

form an isospin doublet of a nucleon with isospin I = 1
2

and different components of
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the isospin projection Iz = 1
2

and Iz = −1
2
, respectively. On a similar way, the pion

family π−, π0, π+ are different states of an isospin triplet I = 1 with different isospin

projection Iz = −1, 0, 1, respectively. Consequently each πN system is a superimposed

state of the initial π and N states with a resultant isospin of 1
2

or 3
2
.

Within the formalism of the quantum theory of scattering, at low energy (whith

momentum p → 0) the scattering lengths can be expressed in terms of the isospin

[15, 16, 17]:

aπ+p→π+p = a3/2

aπ−p→π−p =
1

3
(2a1/2 + a3/2) (2.4)

aπ−p→π0n =

√
2

3
(a3/2 − a1/2)

And two basic parameters can be defined, related to the elastic scattering channels,

the isoscalar(isospin-even) and isovector(isospin-odd) scattering lengths a+ and a−:

a± =
1

2
(aπ+p→π+p ± aπ−p→π−p) (2.5)

a+ =
1

3
(a1/2 + 2a3/2) (2.6)

a− =
1

3
(a1/2 − a3/2) (2.7)

Assuming that the isospin symmetry is exactly fulfilled, i.e. the masses of the up

and down quarks are the same, the elastic channels are related to the charge exchange

by:

aπ−p→π−p − aπ+p→π+p = −
√

2aπ−p→π0n (2.8)

Therefore, the isovector scattering length can be obtained directly from the charge

exchange reaction:

aπ−p→π0n = −
√

2a− (2.9)

and the isoscalar one from the elastic scattering channel involving the negative pion

by using the isovector information:

aπ−p→π−p = a+ + a− (2.10)

The isovector part is of particular interest because it is directly related to the pion-

nucleon coupling constant.

Experimentally, they can be obtained via a Deser-type formula [18] which relates

the scattering lenghts with the strong interaction shift ε1s and width Γ1s of the atomic

ground state of the pionic hydrogen:
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ε1s

E1s

= − 4

rB
aπ−p→π−p(1 + δε) (2.11)

Γ1s

E1s

= 8
Q0

rB

(
1 +

1

P

)
[aπ−p→π0n(1 + δΓ)]2 (2.12)

E1s being the binding energy of the ground state as predicted by QED, rB the Bohr

radius of the π−p system, Q0 the π0 momentum in the CMS system and P the Panofsky

ratio (see page 33).

Correction parameters δε and δΓ do not allow a direct extraction of the scattering

lengths from the measurable quantities ε1s and Γ1s. They are of the order of a few

percent and account for electromagnetic corrections and isospin breaking effects. Many

efforts have been made in their calculation with several approaches available [19, 20, 21].

Within the framework of HBChPT calculations have been made up to fourth order.

Thus, it is desirable to obtain the strong interaction shift ε1s and width Γ1s of the

atomic ground state in pionic hydrogen at least with an accuracy which is good enough

to reach the order of the corrections and the precision of the calculations.

A detailed discussion about the physics of the pion-nucleon interaction and the

pionic hydrogen experiment can be found in [8, 24, 25, 26, 77, 144] and references

therein.

2.3 The hyperfine splitting of the ground state of

the muonic hydrogen

The proton (as well as a neutron) also exhibits spin as an intrinsic property and

consequently a magnetic moment:

~µp = gp
e

2mp

Sp (2.13)

e being the unitary charge, mp the proton mass, Sp the proton spin operator and gp

the so-called g-factor of the proton which is a scaling factor determined experimentally

as gp = 5.585694701(56) [22]. With the proton spin being one-half (Sp = 1/2)§, the

value of the magnetic moment in terms of nuclear magnetons is:

µp =
gp
2
µN (2.14)

§for simplicy, along this section the quantum numbers will be denoted by the italic form of the
corresponding quantum operators
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µN being the nuclear magneton (µN = eh̄/2mp).

Due to the mass relation between the proton and the electron, the nuclear magneton

is close to 2000 times smaller than the Bohr magneton (µB = eh̄/2me) which renders the

nuclear magnetism far less important compared to the electronic magnetism. Therefore,

the magnetic interactions due the proton spin are very week. Nevertheless, a small

perturbation in the energy levels of the hydrogen atom is accounted by the interaction

between the magnetic moment of the nucleus and the magnetic dipole moment of the

electron.

In the case of the 1s state of the hydrogen atom, the energy correction ∆Hhs on

the Hamiltonian describing the atomic states is introduced in the following way [23]:

∆Hhs =
4

3
gp
me

mp

mec
2α4

f

(
1 +

me

mp

)−3
1

h̄2 Sp ·Se (2.15)

αf being the fine structure constant (≈ 1/137) and Se the electron spin operator. By

using (2.14) gp is replaced by µp in nuclear magnetons in (2.15):

∆Hhs =
8

3
c2α4

fµp
m2
em

2
p

(me +mp)
3

1

h̄2 Sp ·Se = A Sp ·Se (2.16)

where A stands for all constant terms.

Similar to the total angular momentum of the electron (spin-orbit coupling, J =

L + Se), a total momentum operator F can be attributed to this perturbation:

F = Sp + J = Sp + Se + L (2.17)

which in the case of the s state (orbital quantum number L = 0 ) is reduced to:

F = Sp + Se (2.18)

thus,

Sp − Se < F < Sp + Se ⇒ 0 < F < 1 (2.19)

which means that the hydrogen 1s state is degenerated in a singlet (F = 0, Fz = 0)

and a triplet state (F = 1, Fz = −1, 0, 1). By squaring (2.18), Sp ·Se is found to be:

F2 = S2
p + S2

e + 2 Sp ·Se

Sp ·Se =
F2 − S2

p − S2
e

2
(2.20)

Therefore, the eigenvalues of the operator A Sp ·Se are given by:

Ah̄2

2
[F (F + 1)− Sp(Sp + 1)− Se(Se + 1)] (2.21)
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and they only depend on F (Sp and Se are equal to 1/2 for both triplet and singlet

states). The energy shift of the ground state of the hydrogen is then:

1

4
Ah̄2, F = 1 (2.22)

−3

4
Ah̄2, F = 0 (2.23)

resulting in the hyperfine splitting:

∆hs = ∆HF=1
hs −∆HF=0

hs = Ah̄2 =
8

3
c2α4

fµp
m2
em

2
p

(me +mp)
3 (2.24)

which holds in leading order for muonic hydrogen by replacing the electron mass (me)

for the muon mass (mµ). By performing the numerical substitution the leading order

of the hyperfine splitting is 182.443 meV.

The precise theoretical value is obtained by applying higher order QED corrections

together with the finite size of the proton. According to [161] and references therein,

the hyperfine splitting is calculated to be 182.725± 0.062 meV which is the value used

as reference in the evaluation of the µH(3p− 1s) transition.

Moreover, by assuming that the states |F, Fz〉 of the 1s energy level are equally

fed in a µH(np − 1s) radiative transition, a statistical distribution 3:1 is expected

for the triplet-to-singlet population. However, it can not be excluded that hyperfine

interaction at excited states may change the statistical population.

11



Chapter 2. Theoretical background

12



Chapter 3

Cascade Processes in Light Exotic
Hydrogen Atoms

Exotic atoms are formed by stopping negative particles (µ−, π−, K−, p, generally

denoted by x−) in matter. The particles are captured in outer shells and the highly

excited atoms undergo a deexcitation process until the ground state is reached, a

nuclear reaction takes place or a weak interaction occurs.

The cascade kinematics in exotic atoms formed with hydrogen is completely dif-

ferent from atoms with Z ≥ 3. The atomic systems formed with hydrogen (x−p) are

electrically neutral, which allow them to penetrate deeper in the electron cloud of the

surrounding hydrogen molecules.

The theoretical and experimental studies on the kinematics of the exotic hydrogen

cascade have a long history. The first detailed calculations were performed by Leon and

Bethe back in the sixties for π−p andK−p atoms [27]. Further theoretical developments

resulted in a first standard cascade model (SCM) [28, 29, 30, 31] able to provide some

good agreement with the experimental results. The subsequent work of Jensen and

Markushin upgraded the SCM to the extended standard cascade model (ESCM) [32, 33]

by including some important new features.

Despite all the theoretical developments, the kinematics of the exotic hydrogen cas-

cade is not yet fully understood and some aspects remain unexplained. Particularly,

the non-existence of reliable cross sections for some mechanisms in a molecular hy-

drogen target is a major drawback. The present work constitutes itself a test to the

ESCM.

In this chapter, a description of the present knowledge of the cascade kinematics of

the exotic hydrogen will be given.
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Chapter 3. Cascade Processes in Light Exotic Hydrogen Atoms

3.1 Capture

The negative charged particles (µ−, π−, K−, p ...) after being slowed down in the

target matter to a kinetic energy of a few tens of eV are captured in the Coulomb field

of the atoms/molecules. They become bound into highly excited states.

A study of the physics of the capture in hydrogen is described by Cohen and

references therein [34, 35]. The probability of a charged particle to be captured at a

certain n and l in atomic and molecular hydrogen and deuterium follows curves similar

to the ones shown in figure 3.1 for the muon capture [35].

where the brackets designate the greatest integer function.
Rigorous calculation of the distributions of the capturedp̄

andm2 in dense mediawould require a complete treatment
of the slowing-down kinetics as well as the capture cross
sections@15,6#. The slowing-down cross sections have not
been calculated in the present work at energies much higher
than where capture occurs. However, the slowing down is
expected to occur mostly by the same mechanism as capture,
namely ionization and dissociation, and thus the energy steps
in the slowing down are expected to be similar to the ener-
gies where capture occurs. This being the case, the arrival
functionFarr(E), which is the probability of the freep̄ or m2

having energyE at some time in its history before capture,
will be flat. A flat arrival function allows calculation of cap-
ture distributions as quadratures over the capture cross sec-
tions, e.g., in the case of principal quantum numbern,

Pn~n!'NnE
0

`

Fn~n;E!
scapt~E!

s tot~E!
dE, ~29!

whereFn(n;E) is the distribution calculated for incident en-
ergy E and Nn is a normalization constant such that
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` Pn(n)51.3 The probability that the particle is captured
before it is slowed to energyE is given by
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E

`scapt~E8!

s tot~E8!
dE8, ~30!

whereN is such thatPcapt(0)51. The median capture ener-
gies, wherePcapt(Ēcapt)50.5, are given in Table IV. This
energy is largest forp̄1H2, which has the best projectile-
target nucleus mass match, and smallest form21D2.

The calculatedn and l distributions are shown in Figs.
4~a! and 4~b!, respectively, for capture of antiprotons. The
analogous distributions for capture of negative muons are
shown in Figs. 5~a! and 5~b!. Let us first examine then
distributions. The peaks for the distributions coming from
capture by the atomic targets occur precisely atn
5(mab /me)

1/2, which is the exotic orbital that has maximal

overlap with the electronic ground-state orbital as well as
binding energy equal to that of the original bound electron.
The distributions cut off rapidly on the low-n side since
lower n requires the electron to carry off the additional bind-

3The subscript‘‘n’’ here is part of the function name, not a vari-
able. InFn(n;E), then before the semicolon is the variable of the
distribution determined for a given value of the parameterE.

TABLE IV. Mediancapture energiesĒcapt in the unmixed gases
and the relative capture probabilitiesPcapt

( i ) in a mixture of H2 ~frac-
tion c1) and D2 ~fractionc2), c11c251. To a good approximation,
Pcapt
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(2) 5qc1 /c2 , where q is independent ofci and equal to

1.585 for p̄1H2 /D2 and to 1.186 form21H2 /D2 .

Ēcapt
c.m. (a.u.) Ēcapt

lab (eV) Pcapt
( i ) (c15c2)

p̄ capture
H2 0.610 24.9 0.61
D2 0.534 18.2 0.39

m2 capture
H2 0.456 13.1 0.54
D2 0.432 12.1 0.46

FIG. 4. ~a! Principal quantum numbern distributions and~b!
angular-momentum quantum numberl distributions for p̄ capture
by hydrogen and deuterium atoms and molecules.

FIG. 5. ~a! Principal quantum numbern distributions and~b!
angular-momentum quantum numberl distributions form2 capture
by hydrogen and deuterium atoms and molecules.
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Ēcapt
c.m. (a.u.) Ēcapt
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Figure 3.1: In (a) and (b) the n and l distributions are shown, respectively,
for the µ− capture by hydrogen and deuterium atoms and molecules [35].

The probability distributions for the capture by atomic hydrogen and deuterium

targets would peak at:

n ≈
√
µxp
me

(3.1)

n being the principal quantum number of the highly excited bound state where the

capture occurs, me the electron mass and µxp the reduced mass of the x−p bound

system. x− is a general negative charged particle.

That is the principal quantum number which corresponds to the orbital of the exotic

system whose overlap with the electronic ground-state is maximal with its binding

energy being equal to the binding energy of the ground-state electron. For muons and

pions, this happens to be n equal to 14 and 16, respectively.

The distribution falls abruptly for lower n. In this case, the additional binding
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energy should be carried away by the ejected electron as kinetic energy. However,

according to the concept of adiabatic ionization [34], which describes the capture of

heavy charged particles (m >> me), this is unlikely for the small energies involved. At

higher n the distribution goes approximately with 1
n3 .

The l distribution for atomic hydrogen and deuterium is almost statistical up to

some peak, i.e., proportional to 2l+1. Nevertheless, a modified statistical distribution

Pl ∝ (2l + 1)eαl is mostly used as an approximation to the initial population. The

parameter α is fitted to the data and is approximately equal to 0.2 or less [36].

In molecular targets the capture occurs at slightly lower n and l, compared to the

atomic targets. The distributions (figure 3.1) are shifted towards lower values and

very large initial n are suppressed. The capture is more complex in molecular targets

and the shift is mainly due to the molecular dissociation dynamics of the intermediate

complex formed during the capture process [35].

ward direction for p̄1D2. The transient complex often
formed in p̄1H2 and p̄1D2 collisions affects the angular
deflections of the exotic atoms formed. The large angles nor-
mally resulting from close encounters are further increased
by rotation of the intermediate complex before dissociation.
The nonreactive scattering is strongly forward peaked since
most close collisions result in some particle rearrangement.

Another quantity relevant to interpretation of experiments
stopping m2 in dense targets is the distribution of initial
kinetic energies of the exotic atoms formed. The kinetic en-
ergy is important in light of recent predictions that the in-
elastic and muon-transfer cross sections are sensitive to the
collision energy and that elastic collisions may not be ad-
equate to thermalize the hot atoms on their time scale@17#.
We have calculated the kinetic energy distributions, under
assumptions like those leading to Eq.~29!, by integrating
over the distributions for given incident muon energiesElab.
The results are shown in Figs. 8~a! and 8~b! for pm2 and
dm2, respectively. In the case of theatomic targetthe phys-
ics is elementary — conservation of linear momentum re-
quires that the kinetic energy of, for example, thepm2 atom
is just @mm /(mp1mm)#Elab, slightly broadenedby the en-
ergy of the ejected electron. The interpretation of the kinetic-
energy distributions for themolecular targetis a little more
complicated; in this case, the exotic atom is not always emit-
ted in the forward directionand the distribution~for a given
Elab) is further broadened by the cascade/dissociation dy-
namics. These effects, as well as the capture cross section
which reaches to higher energies in the case of the molecular
target, make for significantly higher kinetic energies of ex-
otic atoms formed in collisions with molecular targets. Prac-

tically speaking, only the molecular targets are subject to
experiments that slow and capture them2 in a dense me-
dium.

IV. CONCLUSIONS

Target molecular structure has been shown to have large
effects on capture of bothp̄ andm2. Extant experiments on
capture by hydrogen have all been done with molecular tar-
gets. Thus most previous theoretical calculations, done for an
atomic target, are of dubious relevance. Experiments with
target molecules containing different isotopes have been
done and more are planned of increasing specificity. In
agreement with a recent experiment@18# on stopping anti-
protons in H2 1 D2 mixtures, we have found that stopping by
H2 is more probable than stopping by D2. In fact, our cal-
culations onm2 as well asp̄ capture show a uniform trend:
as the mass match between the negative projectile and a
nucleus in the target approaches unity, the capture cross sec-
tions increase and reach out to higher collision energies. Pro-
posed experiments@3# utilizing a p̄ beam of selected energy
will provide more stringent tests. We are led to speculate that
the relevant match is with the effective nuclear mass, which
may be altered by molecular binding@19#. To test this specu-
lation, antiproton experiments with isotopically substituted
organic molecules, such as used in pastp2 experiments
@20#, may be useful. In the future, direct experimental com-
parison of capture by H and H2 will also be feasible@3,21#.

Our test calculations, in which the vibrational and rota-
tional motions of the target molecule were artificially re-
stricted, demonstrate that the vibrational degree of freedom
is most important in distinguishing the behavior of the mol-
ecule from the atom and in distinguishing different molecu-
lar isotopes. However, the effects of rotation, two-center
charge distribution, and mass-dependent nonadiabaticity are
also significant in determining the cross sections.

Then and l distributions of the exotic atoms formed with
molecular targets are found to be quite different from those
for atomic targets. In the case of the molecular targets, the
maxima of both then and l distributions are shifted to lower
values and the very largen values are suppressed. These
quantum-number differences between atomic and molecular
targets are largely due to the breakup dynamics of the inter-
mediate complex formed in molecular capture. The
quantum-number difference between the two molecular iso-
topes is mainly a reduced-mass effect, as it is for the differ-
ent atomic isotopes.

We have calculated the relative initial capture ofp̄ and
m2 in H2 1 D2 mixtures ~Table IV!. The initial capture of
p2, of mass 273.14me , can be expected to be similar tom2,
and experiments exist for capture ofp2 in H2 1 D2 mixtures
@22,23#. However, the experimental data include the effects
of subsequent isotope transfer, which will be quite different
for the hadronicp2 ~the charge exchange ofp2 with the
proton provides a distinctive experimental diagnostic as well
as the end of its existence!. Thus it is not yet possible to
compare the present calculations with these experiments.
There also exists a very interesting experiment onp2 cap-
ture in HD gas@24#, which is yet to be fully assimilated with
theory. The HD target opens a new possibility in the breakup
of the immediate complex — as thep2 evolves from a mo-
lecular to an atomic orbital it may go with either thep or d

FIG. 8. Kinetic energy distributions of~a! muonic hydrogen
(pm2) and ~b! muonic deuterium (dm2) atoms formed by muons
stopped in dense atomic~dashed curves! and molecular~solid
curves! targets.
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Figure 3.2: Distribution of the initial kinetic energy of (a) muonic hydrogen
(µp) and (b) muonic deuterium (µD) formed in dense atomic and molecular
targets, dashed and solid curves, respectively [35].

The kinetic energy of the exotic system formed in an atomic target, following the

conservation of linear momentum, is given by:

T =
mx−

mp +mx−
T labx− (3.2)

mx− being the mass of the charged particle, mp the proton mass and Elab
x− the energy

in the laboratory frame of the charged particle at the moment of capture.
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Chapter 3. Cascade Processes in Light Exotic Hydrogen Atoms

The distribution of the initial kinetic energy for the muon capture in atomic and

molecular hydrogen and deuterium is shown in figure 3.2, according to calculations [35]

in atomic units (1 a.u. = 27.21 eV). As depicted in figure 3.2 the initial kinetic energy

of the muonic atom formed is just a few eV.

For atomic targets the distribution is slightly broadened by the energy of the ejected

electron and looks like a step function. In molecular targets, the exotic atom, after the

collisional capture, has a broad angle distribution (for a given Elab
x− ) as a result of the

additional rotational and vibrational degrees of freedom of the molecules. Together

with the dissociation dynamics of the intermediate complex and the capture cross

sections which reaches to higher energies in molecular targets [35], it renders a kinetic

energy of the exotic atoms (figure 3.2) with significantly higher energies possible (up

to 5 times, compared to atomic targets).

3.2 Cascade mechanisms

After the exotic particle has been captured, several mechanisms compete during

the deexcitation cascade. The cascade ends when the exotic particle reaches either

the ground level or a weak decay (µ−, π−, K−), or a nuclear absorption (π−, K−) or a

annihilation (p) process takes place.

The deexcitation mechanisms are either collisional or radiative. The Auger emis-

sion, Coulomb deexcitation, Stark mixing and elastic scattering are collisional

mechanisms. Hence, opposite to the radiative decay, they have a strong dependence

on the target density and on the kinetic energy of the exotic atom [30, 49, 32, 33].

The collisions of the exotic system x−p with the hydrogen molecules can be formally

written as:

(x−p)nili + H2 −→ (x−p)nf lf +X (3.3)

where X =H2, H∗2, H+H, H+p+e−, etc. They play a very important role in the cascade

history of the light hydrogen atoms.

3.2.1 Stark mixing

Since the exotic hydrogen atom is rather small on the atomic scale and electrically

neutral, it can pass “freely” into the electron cloud of the neighboring hydrogen atoms

and experience the Coulomb field of the proton. The strong electric field mixes the l

states at a given n of the exotic hydrogen. The mixing occurs according to the selection

rules ∆n = ∆m = 0 and ∆l = ±1 [37].
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The Stark mixing can be considered as an elastic collision which does not conserve

the l quantum number. Hence, it contributes to the deceleration of the exotic atom

and thus influences the energy distribution along the cascade. In hadronic atoms it

enhances the nuclear absorption by feeding the s- and p-states where the corresponding

wave functions have a bigger overlap with the proton.

The mechanism is described by the following equations:

(x−p)nli + H2 −→ (x−p)nlf + H∗2 (3.4)

(x−p)nli + H −→ (x−p)nlf + H (3.5)

The Stark mixing can completely reshuffle the l states at the beginning of the

cascade (high n). At that point, and at high densities, the Stark mixing rate ΓSt is

large enough to allow a great number of transitions between l states during the typical

collision time τSt (10−14...10−13 s). This leads to a nearly statistical population of

the l levels for a given n, with the initial state being “forgotten” by the exotic atom

[27, 49, 77].

Its rate is given by the general expression for collisional processes:

ΓSt = ρvσSt (3.6)

where ρ is the target density in number of atoms per unit volume, v the exotic atom

velocity and σSt the cross section of the Stark mixing.

This cross section can be calculated in a semiclassical framework [27], where the

exotic system is assumed to have a classical movement in a straight line trajectory with

a constant velocity through the electric field of the target atom. All the other variables

are kept quantized. Yet, a more realistic and fully quantum mechanical treatment is

desirable.

In the ESCM of Jensen and Markushin [38] a quantum mechanical framework is

used for the lower excited states (n = 2...5) and a semiclassical approach for higher n,

where the levels are so close they can be approximated by a continuum. This treatment

turned out to be quite successful.

Beside Stark mixing, the exotic atoms suffer also other elastic collisions which

conserve the quantum state. They contribute additionally to the deceleration of the

exotic system.

3.2.2 Auger emission

In the Auger emission process the x−p deexcitation occurs via an ionization of a

neighboring H2 molecule. The ejected electron carries away most of the transition
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Chapter 3. Cascade Processes in Light Exotic Hydrogen Atoms

energy. The following equation describes the mechanism:

(x−p)nili + H2 −→ (x−p)nf lf + H+
2 + e (3.7)

Two approximations are used to calculate the cross sections of the process, namely

the Born approximation [27], which approaches the total wave function by the incident

wave function, and the eikonal approximation [40]. According to both, the transitions

with the minimum change of the principal and angular quantum number which can

ionize the molecule are favored, i.e. ∆n = 1 and ∆l = −1 (ΓAu ∝ 1/
√

∆ninf
[27]).

They show that the cross sections of the Auger mechanism increase with n till a certain

level (nc). This critical level corresponds to the maximum n for which a ∆n = 1

transition provides enough energy to ionize the H2 molecule. At higher n (n > nc)

the ionization is only energetically possible via transitions with ∆n > 1 and the Auger

cross sections decrease, in average, with n. Considering the ionization potential of the

H2 molecule (15.4 eV), for the µ−p and π−p systems, nc has the value of 7 and 8,

respectively.

The rate of the Auger emission is calculated by equation (3.6) using the Auger cross

sections. In the Born approximation the rates are independent of the kinetic energy

[27]. In the eikonal approximation they show a weak dependence but with results very

close to the ones in the Born approximation for n ≤ 6 and kinetic energies in the order

of 1 eV [40].

12 V.E. Markushin / Cascade in muonic and pionic atoms with Z = 1

Table 1
Cascade processes in exotic atoms with Z = 1 and their energy dependence.

Mechanism Example E-dependence Refs.

Radiative (µp)i → (µp)f + γ none see [1]
External Auger effect (µp)i + H2 → (µp)f + e− + H+

2 weak [1,5]
Stark mixing (µp)nl + H→ (µp)nl′ + H moderate [1,6–11]
Elastic scattering (µp)n + H→ (µp)n + H strong [11–15]
Coulomb transitions (µp)ni + p→ (µp)nf + p, nf < ni strong [16–22]
Transfer (isotope exchange) (µp)n + d→ (µd)n + p strong [23–26]
Absorption (π−p)nS → π0 + n, γ + n none see [1]

Figure 1. The rates of (a) radiative and (b) Auger de-excitation (LHD) in muonic hydrogen.

mixing. In this paper, the cascade models, which include these three mechanisms only,
will be called the minimal cascade model1 (MCM).

Figure 1 demonstrates the nl-dependence of the total radiative and Auger de-
excitation rates for muonic hydrogen. The main features of these de-excitation mech-
anisms were discussed in [1,2].

The Auger rates calculated in the Born approximation (figure 1(b)) are energy
independent. The eikonal approximation [5] predicts a rather weak energy dependence,
with the results being very close to the ones in the Born approximation for n 6 6 and
for a kinetic energy of the order of 1 eV. The initial and final state interactions in the
Auger transitions were discussed in [17], however, no detailed calculations have been
done.

The Stark mixing corresponds to transitions among the nl-sublevels with the
same n. It is a very fast collisional process because the exotic atoms with Z = 1 are
small and electroneutral and have no electrons, so that they can easily pass through the
regions of the strong electric field inside ordinary atoms. When the Stark mixing rate is

1 In the literature, it has also been called the standard cascade model (SCM).

Figure 3.3: Auger emission rate for muonic hydrogen with the initial state nili at LHD
(Liquid Hydrogen Density, 1 LHD = 4.25 ×1022 atoms·cm−3) [49].

In figure 3.3 the Auger emission rate is shown as a function of the nl initial states in

muonic hydrogen with a relatively high density (4.25 ×1022 atoms·cm−3). The Auger

rates were calculated using the Born approximation [27, 49].
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3.2.3 Coulomb deexcitation

During a collision between an exotic system and hydrogen (atomic or molecular),

the binding energy released from a change in the n state of the exotic atom can be

converted into kinetic energy. This is the principle of the Coulomb deexcitation which

is described by:

(x−p)nili + H2 −→
{

(x−p)nf lf + H + H

(x−p)nf lf + H∗2
(3.8)

(x−p)nili + H −→ (x−p)nf lf + H (3.9)

The two or three atoms involved (x−p + H or x−p + H2) share the total kinetic

energy, which can lead to a significant acceleration of the exotic system. Using the

conservation of the momentum on the center of mass system (CMS):

∑

i

mivi = const (3.10)

the kinetic energy gained by the exotic system (x−p) in a two-body Coulomb deexci-

tation is fixed in CMS to be:

Tx−p =
mH

mx−p +mH

Eni→nf
(3.11)

where mH and mx−p are the hydrogen and exotic hydrogen masses, respectively, and

Eni→nf
the difference in the binding energy between the levels (ni > nf ).

In the case of a molecular target, the gain in kinetic energy ranges from 0 (the two

atomic hydrogens carry away all the energy available) to a maximum which is obtained

by replacing mH , in equation (3.11), by the mass of the hydrogen molecule (2mH).

However, at the final part of the cascade, the binding energies involved are much

larger than the H2 dissociation energy. Hence, at that level, the kinematics is reduced

to that of the two–body mechanism x−p + H and the other hydrogen atom acts as a

spectator.

The energies involved are rather small at the beginning of the cascade (for ∆n = 1,

see table 3.1). Nevertheless, the effect is cumulative and the kinetic energy of the exotic

system can achieve much higher values if the deceleration mechanisms do not reduce

the total energy gain. Moreover, for lower n transitions, the gains in kinetic energy can

go up to several hundreds of eV and even to a keV for the muonic and pionic hydrogen

systems, respectively.

Highly energetic π−p atoms were first experimentally seen by Czirr [41]. The first

calculations of the scattering cross sections of acceleration processes were done by
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T [eV] T [eV] T [eV]
Transition

µ−p π−p
Transition

µ−p π−p
Transition

µ−p π−p

11 −→ 10 2.1 2.6 6 −→ 5 14.6 18.4
15 −→ 14 1.0 10 −→ 9 2.8 3.5 5 −→ 4 26.9 33.9
14 −→ 13 1.0 1.2 9 −→ 8 3.9 4.9 4 −→ 3 58.2 73.2
13 −→ 12 1.2 1.5 8 −→ 7 5.7 7.2 3 −→ 2 166.3 209.2
12 −→ 11 1.6 2.0 7 −→ 6 8.8 11.1 2 −→ 1 897.9 1129.5

Table 3.1: Gain in kinetic energy of the µ−p and π−p systems by Coulomb
deexcitation with ∆n = 1 in collisions with atomic targets. The values are ob-
tained considering the Coulomb binding energies of the exotic systems. They do
not include the small corrections due to vacuum polarization, strong interaction,
finite size effects and others.

Bracci and Fiorentini on their milestone work [28] where they named this kind of

deexcitation mechanism as Coulomb deexcitation. The calculations were done in a

semiclassical framework for µ−p in atomic hydrogen and the first rate predictions could

be given.

A multicomponent structure of the kinetic energy distribution was directly observed

in the the time-of-flight (TOF) spectrum of neutrons [42, 43]: the TOF spectra of the

monoenergetic neutrons from the charge exchange reaction π−p→ π0n at rest turned

out to be broadened by several Doppler contributions which correspond to different

Coulomb deexcitation steps ni → nf . A high kinetic energy component of 200 eV was

identified and attributed to the n = 3 → 2 transition in π−p [44]. The kinetic energy

distribution obtained through the TOF spectra of neutrons, measured in a wide density

range [44, 45], are consistent with Coulomb deexcitation. Moreover, they confirmed

the preference of ∆n = 1 transitions, predicted by the calculations [28], but evidence

for some ∆n = 2 transitions has also been found.

Despite the experimental evidence of the Coulomb deexcitation, the TOF experi-

ments could not provide useful information to be used in the πH studies [108]. They

are performed in liquid hydrogen and other high densities and deal with the nuclear

absorption which takes place predominantly from ns states with 3 ≤ n ≤ 5. Therefore,

the information possible to be extracted from the data is basically about the inner part

of the cascade. On the other hand, in the πH and µH, the p state, from where the ra-

diative transition nip→ nfs occurs, is fed by the outer states (higher l). This need for

information about the outer part of the cascade prompted the Coulomb deexcitation
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studies in µH.

3.2.4 Radiative deexcitation

The radiative deexcitation is a non-collisional process, which follows the well known

properties of the electrodipole transitions (E1). The exotic particle changes its n state

(obeying to the selection rule ∆l = ±1) with the binding energy carried away by a

photon. The process is written by:

(x−p)nili −→ (x−p)nf lf + γ (3.12)

The radiative rate in exotic hydrogen can be determined from the expression for

the E1 spontaneous emission rate in hydrogen [27]:

Γγ =
µxp
me

ΓH
γ (3.13)

where ΓHγ is the spontaneous emission rate in hydrogen in the dipole approximation.

This approximation considers the atom as being a dipole, which radiates by creating

an oscillating electrical field:
~E(~r, t) = ~εei(

~k.~r−ωt) (3.14)

~r being the position of the electron, ~ε the direction of the photon polarization and ω

the angular frequency. The electric field is assumed to vary little in the phase over the

spatial extension of the atom, considering the classical atomic size (2a0 ≈ 1 Å), thus

the exponential part of electric field vector is approximated by one.

Under the dipole approximation the spontaneous emission rate in hydrogen is given

by [50]:

ΓH
γ =

4

3

e2E3
ni→nf

h̄4c3

∣∣Rni→nf

∣∣2 (3.15)

where e is the electron charge, Eni→nf
the energy difference between the initial and

final n states and Rni→nf
the dipole matrix element which can be written as:

Rni→nf
=
〈
Ψ∗f |~r|Ψi

〉
(3.16)

Ψi and Ψf being the wave functions of the initial and final n-states, respectively.

According to expression (3.15) the radiative deexcitation favors the maximum

change in n, which maximizes Eni→nf
. Yet, the dipole matrix element is lower for

higher n resulting in a fast drop of the deexcitation rate with increasing n. For higher

n, the rate can be rewritten in terms of n by averaging over all possible l sublevels [49]:

Γγ,n =
1

n2

∑

nf ,lf ,l

(2l + 1) Γγ (3.17)
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where n and l are the initial states. The term 2l + 1 is the number of m sublevels.

In the sum, the term Γγ varies with nf according to equation (3.15). For instance,

in terms of l, nine transitions are possible from the n = 4 level with four l substates

statistically populated. The 4p (l = 1) has four deexciation channels: to 3s, 2s, 1s and

3d. Using an index in Γγ to indicate the ∆n, the term of the sum corresponding to

l = 1 will be: ∑

nf ,lf ,1

3 Γ
n−nf
γ = 2× 3Γ1

γ + 3Γ2
γ + 3Γ3

γ (3.18)

and by doing the same for the other possible l states, the sum for n = 4 will be:

∑

nf ,lf ,l

(2l + 1) Γ
n−nf
γ = 19Γ1

γ + 9Γ2
γ + 3Γ3

γ (3.19)

Figure 3.4 shows the decrease of the radiative rate with increasing n in muonic

hydrogen. The rate also increases for lower l, where the main contribution is the

increase of possible transitions. As l decreases (till l = 1) new transitions with higher

∆n are possible, according to the selection rule ∆l = ±1.
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Table 1
Cascade processes in exotic atoms with Z = 1 and their energy dependence.

Mechanism Example E-dependence Refs.

Radiative (µp)i → (µp)f + γ none see [1]
External Auger effect (µp)i + H2 → (µp)f + e− + H+

2 weak [1,5]
Stark mixing (µp)nl + H→ (µp)nl′ + H moderate [1,6–11]
Elastic scattering (µp)n + H→ (µp)n + H strong [11–15]
Coulomb transitions (µp)ni + p→ (µp)nf + p, nf < ni strong [16–22]
Transfer (isotope exchange) (µp)n + d→ (µd)n + p strong [23–26]
Absorption (π−p)nS → π0 + n, γ + n none see [1]

Figure 1. The rates of (a) radiative and (b) Auger de-excitation (LHD) in muonic hydrogen.

mixing. In this paper, the cascade models, which include these three mechanisms only,
will be called the minimal cascade model1 (MCM).

Figure 1 demonstrates the nl-dependence of the total radiative and Auger de-
excitation rates for muonic hydrogen. The main features of these de-excitation mech-
anisms were discussed in [1,2].

The Auger rates calculated in the Born approximation (figure 1(b)) are energy
independent. The eikonal approximation [5] predicts a rather weak energy dependence,
with the results being very close to the ones in the Born approximation for n 6 6 and
for a kinetic energy of the order of 1 eV. The initial and final state interactions in the
Auger transitions were discussed in [17], however, no detailed calculations have been
done.

The Stark mixing corresponds to transitions among the nl-sublevels with the
same n. It is a very fast collisional process because the exotic atoms with Z = 1 are
small and electroneutral and have no electrons, so that they can easily pass through the
regions of the strong electric field inside ordinary atoms. When the Stark mixing rate is

1 In the literature, it has also been called the standard cascade model (SCM).

Figure 3.4: Radiative deexcitation rate for muonic hydrogen with the initial state nili [49].

3.2.5 Competition between the mechanisms

The relative importance of the deexcitation mechanisms is correlated with the prin-

cipal quantum number n. Yet, the cascade is dominated by different processes at dif-

ferent levels. Figure 3.5 shows a schematic representation of the atomic cascade in an

exotic hydrogen system.

Since long it is known that, in hadronic systems, the increase in target density leads

to a drastic reduction in the X-ray yields (Day–Snow–Sucher effect) [47, 48]. It was
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Figure 3.5: Schematic of the atomic cascade in exotic hydrogen. The nuclear
absorption only takes place if the exotic particle is sensitive to the strong inter-
action (π, K, p). Moreover, the strong interaction also induces a shift and width
in the inner atomic levels.

understood as being due to the increase of collisions which enhances the Stark mixing

rates and hence the feeding of the s and p states.

Leon and Bethe, in their pioneering work [27], by comparing the ratio between the

Auger effect rate and the radiative deexciation rate have concluded that the radiative

process can only dominate the cascade at low n or at very low target density when the

collisional processes are reduced. That can be also illuminated by comparing the rates

for Auger and radiative transitions in µH shown in figures 3.3 and 3.4, respectively.

The Stark mixing is the dominant process after the formation of the exotic system

till relatively low n. However, it does not involve energy transfer. Considering only

mechanisms with energy transfer, the Coulomb deexcitation is the dominant decay

mechanism at higher n. With the decrease in n, the Auger effect becomes more impor-

tant and the Coulomb rates decrease. At an intermediate stage, around nc, the Auger

emission dominates. In the lower n region the competition between those mechanisms
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is strong with the radiative deexcitation becoming more relevant and dominating at

the latest steps of the cascade (n = 3, 2).

Moreover, for the hadronic systems, the nuclear absorption plays an important role,

particularly at the lower cascade stage [51]. This is shown in figure 3.6. The figure

presents the rates for the different cascade mechanisms in µH and πH at 80 mbar

(10−4 LHD) and 3 bar, respectively, using the present knowledge [33, 46].T.S. Jensen and V.E. Markushin: Collisional deexcitation of exotic hydrogen atoms. II 273
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Fig. 1. The l-average rates at T = 1 eV for muonic hy-
drogen in gaseous target at 10−4 LHD. The Coulomb de-
excitation (filled diamonds) and Stark mixing (filled trian-
gles) rates calculated in the classical-trajectory model [13] are
shown in comparison with the results of the semiclassical fixed
field model for Stark mixing (solid line), Auger deexcitation
(light dashed line), and nuclear absorption during collisions
(dashed line) [13,16]. The Coulomb deexcitation rate from [23]
is shown with a dash-dotted line. The radiative np → 1s and
n(n− 1)→ (n− 1)(n− 2) rates are shown with dotted lines.

our classical Monte Carlo calculations confirm that it is
a fair approximation. We assume, furthermore, that only
∆n = 1 transitions are important at low n, the distribu-
tion over final l is statistical, and the angular distribu-
tion is isotropic. As long as the mechanism responsible for
Coulomb deexcitation at low n is not fully understood2,
this process enters as a major uncertainty in calculations
of the kinetic energy evolution at low n. In this paper we
restrict the cascade calculations to observables that are
not very sensitive to the Coulomb deexcitation at low n. In
the case of kinetic energy distributions this usually means
low densities. Other observables, like the X-ray yields in
µ−p and cascade times, are less sensitive to the Coulomb
deexcitation at low n.

Figures 1 and 2 show an overview of the cascade rates
at 10−4 LHD in muonic and antiprotonic hydrogen calcu-
lated in the classical-trajectory model with molecular tar-
get and in semiclassical approximations with atomic tar-
get. The absorption rate in antiprotonic hydrogen shows
only the absorption from the ns states during collisions.
Cascade calculations show, in agreement with the exper-
imental results [29], that absorption at densities below
10−3 LHD takes place mainly from the p states.

2.2 Classical-trajectory Monte Carlo model
in the cascade calculations

The classical-trajectory Monte Carlo calculations have
been included in the cascade calculations by using two
different methods. The earlier versions of the cascade

2 The investigation of the role of molecular resonances [27,28]
is beyond the scope of this study.
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Fig. 2. The l-average rates at T = 1 eV for antiprotonic
hydrogen in gaseous target at 10−4 LHD. The Coulomb de-
excitation (filled diamonds) and Stark mixing (filled triangles)
rates calculated in the classical-trajectory model [13] are shown
in comparison with the results of the semiclassical fixed field
model for Stark mixing (solid line), Auger deexcitation (light
dashed line), and nuclear absorption during collisions (dashed
line) [13,16]. The Coulomb deexcitation rate from equation (5)
is shown with a dash-dotted line. The radiative np → 1s and
n(n− 1)→ (n− 1)(n− 2) rates are shown with dotted lines.

model [14] was based on the explicit use of the cross-
sections [13] with the following initial conditions. A dis-
crete set of 9 initial kinetic energies in the interval
0.05 eV ≤ T ≤ 20 eV was used, and the initial principal
quantum numbers were taken in the range 8 ≤ ni ≤ 20 for
µ−p and 13 ≤ ni ≤ 35 for p̄p. For each combination of lab-
oratory kinetic energies T and principal quantum numbers
ni, the classical trajectories were calculated using the sta-
tistical distribution in quantum number li as the initial
condition. The differential cross-sections dσ/d cos θ were
calculated separately for the three groups of reactions:

nili →





nili elastic

nilf (lf 6= li) Stark

nf lf (nf < ni) Coulomb

· (8)

The effect of excitation and dissociation of the hydrogen
molecule in Coulomb deexcitations were taken into ac-
count by distributing the final kinetic energies of the three
atoms (x−p and two H) in the CMS according to the clas-
sical phase space. This approximation agrees fairly well
with the calculations [13].

More detailed initial and final states are used in the
present cascade model where several trajectories (21 for
µ−p and 6 for p̄p) were calculated for each combination
of the quantum numbers ni (in the range given above)
and li = 0, ..., ni − 1, and 31 kinetic energy points in the
range 0.3−32 eV. In muonic hydrogen this gives a total
of 118482 trajectories. The range of impact parameters
was divided into three intervals, (0; 2a0), (2a0; 4a0), and
(4a0; 7a0), with a third of the collisions in each and the
trajectories uniformly distributed in ρ2. For each trajec-
tory, the final quantum numbers nf and lf , and the final
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Fig. 2. The l-average rates for pionic hydrogen with the lab kinetic energy T = 1 eV in
gaseous target at 3 bar. The Coulomb deexcitation (filled diamonds) and Stark mixing
(filled triangles) rates calculated in the CTMC model [27] are shown in comparison
with the results of the semiclassical fixed field model for Stark mixing (solid line ) and
Auger deexcitation (light dashed line) [26,27]. The dash-dotted line shows the Coulomb
deexcitation rate obtained by scaling the result from [29] for muonic hydrogen, see [27].
The radiative rates nP → 1S and n(n − 1) → (n − 1)(n − 2) are shown with dotted
lines

the regions of strong electric field inside ordinary atoms. The external Auger
effect [16,27] is the deexcitation process in which the transition energy is mainly
carried away by the electron. The Auger mechanism favors the transitions with
the minimal change of the principal quantum number, that is sufficient for the
ionization of the hydrogen molecule. The rates of the Auger transitions reach
their maximum when the transitions with nf = ni − 1 becomes energetically
possible, then the Auger deexcitation rates rapidly decrease with decreasing the
initial principal quantum number ni, The Coulomb deexcitation [27,29,30] is the
dominant deexcitation mechanism at the initial stage of the atomic cascade. An
important feature of the Coulomb mechanism is that the transition energy is
shared by the recoiling particles (the x−p and the two hydrogen atoms) having
comparable masses, therefore the Coulomb deexcitation can lead to significant
acceleration of exotic atoms during the cascade. The deceleration of the exotic
atoms takes place in the elastic and Stark collisions. In most cases the exotic
atoms are epithermal during the cascade, with the characteristic kinetic energy
being much higher than the target temperature. A typical example of the n-
dependence of the cascade rates in shown in Fig. 2 for pionic hydrogen in gaseous
target at 3 bar.

Figure 3.6: The l-averaged rates of the cascade mechanisms at a kinetic energy
of 1 eV for muonic hydrogen at 80 mbar (left [33]) and pionic hydrogen at 3 bar
(right [46]). The rates of the Coulomb deexcitation (filled diamonds) and Stark
mixing (filled triangles) were calculated in the classical-trajectory model [33].
They are compared with the Stark mixing rate under the fixed field model (solid
line) and the Auger emission rate (light dashed line) [38, 33, 27]. The Coulomb
deexcitation rate for µH from Bracci and Fiorentini is depicted in dash-dotted
line [28] and it was scaled for the πH case. The radiative np→ 1s and n(n−1)→
(n − 1)(n − 2) rates are shown in each plot with the bottom and upper dotted
lines, respectively.

The figure demonstrates also the importance of the target density. A decrease in

about two orders of magnitude is seen in the overall rates of the collisional mechanisms

when the density is reduced from 3 bar to ∼0.1 bar. That enhances the relative

importance of the radiative deexcitation, particularly at high n, where the Coulomb

deexcitation rate reaches the same order of magnitude as the radiative deexcitation

rate. Moreover, the Auger emission rates become smaller than the radiative ones. At

24



even lower densities the collisional processes will be suppressed and the cascade will be

purely radiative.

As the exotic system undergoes acceleration and deceleration mechanisms its kinetic

energy is continuously changing. On the other hand, the cross sections of the different

collisional mechanisms are kinetic energy dependent [32, 38]. Thus, the kinetic energy

history of the exotic system is a key aspect in the cascade calculations, which was

absent in the early models [27, 29] and introduced in the latest work only [32, 33].

At the lower stage of the cascade the Coulomb deexcitation is not fully understood

[33, 51], where it is assumed to be enhanced by the hypothetic formation of resonant

molecular states [52, 53]. Furthermore, the Stark mixing is still important at this stage

[32, 33, 38, 51] shuffling the nl population at a certain n and promoting the nuclear

absorption, which leads to a radiative yield decrease. Additionally, the exotic particle

can still decay via weak interaction:

µ− −→ e− + ν̄e + νµ (3.20)

However, due to its long life time compared to the cascade deexcitation times (∼2µs

vs ∼ns), almost all the muons reach first the ground state.

Hence, the very strong interplay between the different mechanisms makes a reliable

prediction of the cascade behavior very difficult, particularly at its final part.

Moreover, this interplay of mechanisms has also another important consequence.

The measurement of absolute radiative yields at different target pressures could help

to extract the physics behind the cascade mechanism. However, that is not an easy

task due in part to the behavior of the different mechanisms with density.

The yield of a radiative decay is related with the rates for all the possible decay

channels from the initial state. For a specific transition nili → nf lf can be given by:

Y
nili→nf lf
γ = Popnili

Γ
nili→nf lf
γ∑

j,nf ,lf
Γ
nili→nf lf
j

(3.21)

where Popnili is the population of the initial state, Γ
nili→nf lf
γ the radiative rate of the

transition nili → nf lf and
∑

j,nf ,lf
Γ
nili→nf lf
j the sum of the rates of all the possible

decay channels, with the subscript j standing for the different decay mechanisms. The

quantity defined by the quotient is called branching ratio.

The density dependence of the radiative yields renders their direct measurement

at high densities quite difficult due to the enhancement of the Stark mixing effect.

That is a consequence of the collision rate dependence on the density as, contrary to

these, the radiative rates are independent from density which makes the branching
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ratio to change with density. A hypothetical picture with all the rates changing with

the density would result in approximately constant branching ratios.

3.3 Evolution of the Cascade model

It was always a very challenging task to provide a good cascade model which could

correctly predict the different measurable quantities in exotic systems. As described

in the previous section, the several decay channels involved and their interdependence

renders the problem quite complex. Approximations were needed to reduce the degrees

of freedom of the problem.

Standard Cascade Model

Leon and Bethe developed the first model which could fairly reproduce the experi-

mental data [27]. They built in a description of the Auger emission, radiative deexci-

tation and Stark mixing. They also considered the strong interaction effects, shift and

broadening of the energy levels, the Stark mixing and the role of nuclear absorption on

the cascade history. However, the Stark mixing was restricted to transitions to the ns

state from a statistically populated nl (l > 0) state, resulting in calculation of effective

absorption rates.

The collisional processes were treated under a semiclassical approximation in order

to simplify the differential equations resulting from a fully quantum mechanical for-

malism. Thus, some quantities were taken as classical and others were quantized. On

their formalism, the motion of the vector between the proton of the hydrogen target

and the center of mass of the exotic system was treated classically with a quantized

direction and the exotic system was treated quantum mechanically. They calculated

the Auger emission using the Born approximation and the Stark mixing using a fixed

field model. The fixed field model assumed that as soon as the exotic system feels the

electric field from the hydrogen target, its angular momentum m remains fixed in the

field direction.

Based on previous results from Day et al. [47, 48] and Wightmann [54] it was

assumed that the exotic system had a kinetic energy of about 1 eV when formed. As

the decay times of the cascade were very short and elastic scattering would possibly

be inefficient, due to being moderated by hydrogen molecules and not atoms, they

assumed the system velocity to be constant and equal to the one at the initial n level

through all the cascade. Moreover, no drastic changes were expected in the rates with

kinetic energy. Anyhow, the initial kinetic energy could be used as a tuning parameter.
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The data on cascade times, available at the time, could not be explained by Auger

emission, which was found to be too slow at the initial n levels. To overcome this con-

tradiction Leon and Bethe described the upper part of the cascade by the phenomeno-

logical mechanism named chemical deexcitation [27]. This would be a fast deexcitation

mechanism, where the transition energy of the exotic system is transformed to dissoci-

ations and ro–vibrational excitations of the neighboring molecules, leaving the initial

kinetic energy of the exotic system (of the order of 1 eV) essentially unchanged.

The work of Leon and Bethe [27] was later on refined by Borie and Leon [29] to con-

sider the evolution of the orbital quantum number l due to Stark mixing. Additionally,

a phenomenological parameter was introduced in the calculation of the Stark mixing

rates, as rescaling factor. With this tuning parameter, the so called standard cascade

model (SCM) could provide a fair description of many cascade properties of the exotic

systems like the X-ray yields and the nuclear absorption fraction in the hadronic cases.

An important contribution to the development of the SCM was given by Reifenröther

and Klempt in the late 80ies [31]. They used for the first time a classical Monte-Carlo

method to follow the trajectories of the exotic system (p̄p) in a collision with atomic

hydrogen. The position and orientation of the exotic system during the collision were

taken into account when calculating the electric field. Hence, the electric field was

determined as function of time and the Stark mixing transition rates calculated based

on that information. This constitutes a milestone, as in previous calculations the tra-

jectories were taken as straight and an average of the electric field was used (fixed field

model) [37].

Extended Standard Cascade Model

The view of the cascade was changed by the evidence from the TOF measurements

[42, 43] that the exotic systems could have a structured distribution of the kinetic energy

up to hundreds of eV. An extended standard cascade model (ESCM) was developed

by Markushin [55] to include the evolution of the kinetic energy of the exotic system

along the decay cascade. The initial ESCM included all the deexcitation mechanisms

accepted in the SCM but considered the kinetic energy as time-dependent distribution

rather than a tuning parameter.

The Coulomb deexcitation was assumed to be the mechanism responsible for the

system acceleration and the respective rates were calculated based on the cross sections

from Bracci and Fiorentini [28]. The phenomenological and not theoretically described

assumptions on chemical dissociations were substituted by the Coulomb deexcitation

picture. The multiple elastic scattering was additionally considered to cause the exotic
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atom deceleration. However, due to the lack of relevant cross sections the first ESCM

was restricted to the lower part of the cascade (n < 6).

More recent developments by Jensen and Markushing [32, 33, 38, 56] resulted in a

more consistent ESCM with an applicability extended to the higher part of the cascade.

Under this approach the calculations are divided in two domains: a classical one at

high n and a quantum mechanical one at lower n. For convenience the maximum rate

of the Auger emission, which occurs at n = nc (see section 3.2.2), is used to separate

the domains. Accordingly, the classical domain is defined at n > nc, being nc = 7, 8

and 12 for µ−p, π−p and p̄p, respectively.

On the classical approach, the hydrogen atoms and the exotic particles are as-

sumed to be classical particles, with the electrons moving around the protons with

a fixed charge distribution corresponding to its orbitals. Therefore, the scattering is

calculated through a classical trajectory Monte-Carlo method. Within this method a

list of possible transitions niliTi −→ nf lfTf (T is the kinetic energy) for the relevant

processes on this domain (Coulomb deexcitation, Stark mixing and elastic collisions)

is created. The cascade takes this information directly into account by assuming the

final state to be the initial state of the next collision [33]. Moreover, elastic collisions

and Stark mixing are treated together with the same formalism and the chemical deex-

citation is taken as another channel of the Coulomb deexcitation [32]. The scattering

on molecular hydrogen targets is also considered.

In the lower part of cascade (n ≤ nc) the cross sections of the collisional mechanisms,

besides the Auger emission, are calculated with a quantum mechanical framework which

takes into account the energy shifts of the ns states due to vacuum polarization and

strong interaction. A detailed description of this approach can be found in reference

[57].

As the number of coupled second order differential equations used in the quantum

framework grows with n2, the quantum mechanical approach is rather complex for

higher n. However, if the kinetic energy of the movement of the three-body system

is large enough, it can be assumed classical. For muonic hydrogen, that energy is

estimated to be less than 1 eV. Exotic atoms are known to have kinetic energies in the

order of a few eV even at an early stage of the cascade.

Thus on the ESCM developments by Jensen and Markushin the full quantum me-

chanical calculation is restricted to the lowest levels n ≤ 5, while the higher n of the

lower cascade domain, 5 < n < nc, is treated semiclassically [32, 33].

To resume, the main features of the ESCM are:

• the evolution of the kinetic energy of the exotic system is taken into account right
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from the beginning of the cascade

• molecular effects are considered at higher n

• the chemical deexcitation is treated as a channel of the Coulomb deexcitation

and is included in the calculations of the Coulomb cross sections

• the Stark mixing and the elastic scattering are treated under the same formalism

• the strong interaction and vacuum polarization effects are considered on the ns

energy shift

A drawback of the ESCM is the non-inclusion of the molecular effects in the lower

domain of the cascade. The formation of molecular resonant hybrid states from the

scattering in molecular hydrogen targets is expected for excited (x−p)n (n > 1) states

[58, 53]:

(x−p)nl + H2 →
[
(x−pp)spee

]∗ →
[
(x−pp)s′pee

]∗
+ γ (3.22)

The resulting complex molecules [(x−pp)pee]∗ could in principle decay by Auger

emission, radiative or Coulomb deexcitation and even by back decay, i.e. returning to

the initial exotic system plus hydrogen molecule. Moreover, hybrid Auger-Coulomb

transitions are also admitted to occur [59]. Accordingly, at the present knowledge it

is assumed that a major source of uncertainties at low n is the poor understanding

of the Coulomb deexcitation on that domain. Therefore, better results are achieved

for observables less sensitive to Coulomb deexcitation at low n, like kinetic energy

distributions at low density [33, 56].

Despite the fact that the latest ESCM constitutes a huge leap forward in the cascade

history predictions (compared to the SCM), the picture is far from being complete.

Additional efforts should be made to extend the fully quantum mechanical framework

to higher n and on the understanding of the molecular effects at lower n, particularly

concerning the Coulomb deexcitation.

The present measurement of the 3p → 1s transition in µH will give an indirect

evidence of the kinetic energy distribution at the 3p state. Together with the measure-

ments of the radiative yields, it can help to guide future development of the ESCM.

More recently, Jensen et al. [60] have incorporated some new results on the collisional

process [61, 62, 63] and have performed the full quantum mechanical calculations of

the cross sections of the elastic, Stark and Coulomb mechanisms for n ≤ 8. A better

agreement with the experimental results on the K yields both on µH and πH was

obtained.

For more details about the ESCM see references [32, 33, 38, 46, 56].
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3.4 Some results from the ESCM in µH

3.4.1 Coulomb and Stark mixing cross sections

The calculations of the Coulomb cross sections using a classical approach and

Monte-Carlo methods showed an increase of the cross sections with the inverse of the

initial kinetic energy which is not as steep as predicted by Bracci and Fiorentini [28].

An approximate dependence of 1/
√
T was obtained in contrast to the 1/T dependence

for low energies calculated by Bracci and Fiorentini. However, a fair agreement for

initial kinetic energies above 1 eV was found. Moreover, the calculations showed that

the Coulomb cross sections are approximately twice as large if a molecular target is

considered. In figure 3.7 the results are presented for an initial state ni = 13.
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Figure 3.7: Energy dependence of the Coulomb (left) and Stark mixing (right)
cross sections in µH according to the Monte-Carlo classical approach of the
ESCM, in atomic units [32, 56]. The Coulomb cross sections were calculated
for molecular (filled diamonds) and atomic (squares) hydrogen considering the
initial state ni = 13 and a statistical l distribution. The solid line is the semiclas-
sical result from [28]. The Stark mixing cross sections were also calculated for
molecular (filled triangles) and atomic (squares) hydrogen considering the initial
state ni = 9. The result of the fixed field model for molecular (solid line) and
atomic target (dashed line) is also showed. The error bars are statistical and
originated from the Monte-Carlo method.

In the case of the Stark mixing, the cross sections calculated with a molecular
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target are slightly higher than for an atomic target, being even lower at kinetic energies

below 1 eV (see figure 3.7). Two effects may explain this observation: as the electric

fields of the two hydrogens atoms in the molecule partly cancel each other it creates a

considerable molecular screening; moreover, the fraction of the Coulomb cross section

in the total cross section is higher for the molecular target.

In collisions with atomic hydrogen the fixed field model overestimates the Stark

mixing at lower energies (T<1 eV) but it shows a good agreement with the Monte-Carlo

classical approach at higher energies. Considering molecular targets the agreement is

only present at kinetic energies above 10 eV. Figure 3.7 shows the results for the Stark

mixing cross sections using n = 9.

Considering the n dependence, the semiclassical model of Bracci and Fiorentini,

which considers an atomic target, predicts a Coulomb deexcitation with a complete

dominance of transitions with ∆n = 1 [28]. The results from the Monte-Carlo classical

approach, depicted in figure 3.8, show a more complex behavior.

Coulomb cross-sections
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Fig. 4. The n dependence of the muonic hydrogen Coulomb
cross-sections at the laboratory energy T = 1 eV for molecular
(filled diamonds) and atomic (squares) hydrogen target. The
curve is the semiclassical result from [12].

We compare the results of the classical Monte Carlo
(CMC) calculations with those of the semiclassical ap-
proximation. Bracci and Fiorentini [12] calculated the
Coulomb cross-sections for muonic hydrogen scattering
from atomic hydrogen in a semiclassical model. Though
the approach [12] may be unsuitable for treating the
low n states, where more elaborate calculations give much
smaller values for the cross-sections [13], it can be ex-
pected to give a fair description of the high n region. In the
case of Stark mixing we use the fixed field model [14] for
comparison. In the case of molecular target, we obtained a
semiclassical estimate of the Stark cross-sections by using
the spherical symmetric electric field corresponding to the
charge distribution of a H2 molecule in the ground state.

3.1 Muonic hydrogen

3.1.1 Coulomb deexcitation

The n dependences of the total cross-sections of the
Coulomb deexcitation for collisions with molecular and
atomic hydrogen

(x−p)nili + H2 →
{

(x−p)nf lf + H∗2
(x−p)nf lf + H + H , (18)

(x−p)nili + H → (x−p)nf lf + H (19)

with nf < ni are shown in Figure 4. The cross-sections
increase steadily with increasing n as the µ−p becomes
larger and the energy spacing between the n levels smaller.
The cross-sections for the atomic target at the laboratory
kinetic energy T = 1 eV are very close to the semiclassical
results of Bracci and Fiorentini [12]. The cross-section for
the molecular target is larger by a factor of about 2–3.

An example of the energy dependence of the total
Coulomb cross-sections (nf < ni) for ni = 13 is shown
in Figure 5. The cross-sections calculated with molecular
target are approximately twice as large as the atomic ones
in the whole energy range considered. The CMC result

Fig. 5. The energy dependence of the Coulomb cross-sections
for muonic hydrogen with ni = 13 and molecular (filled dia-
monds) and atomic (squares) hydrogen target. The error bars
are statistical. The curve is the semiclassical result from [12].

Fig. 6. The nf dependence of the Coulomb cross-sections for
muonic hydrogen with ni = 13 and laboratory kinetic en-
ergy T = 1 eV for collisions with molecular (filled diamonds)
and atomic (squares) hydrogen target. The semiclassical result
from [12] is shown with filled circles.

for the atomic target is in fair agreement with the semi-
classical result [12] for energies above 1 eV. The energy
dependence of the CMC cross-sections is approximately
given by 1/

√
T corresponding to constant rates. This is in

contrast to the 1/T behavior found for low energies in [12].
The distribution over final states nf is com-

pletely different for the molecular and the atomic tar-
gets as illustrated in Figure 6 showing the l-average
cross-sections σ13→nf for µ−p at 1 eV. The calculations for
atomic target predict that ∆n = 1 transitions dominate
the Coulomb deexcitation in agreement with the semiclas-
sical result [12]. For the molecular target, the transitions
with ∆n > 1 are strongly enhanced as compared to the
atomic case. The shape of the nf distribution depends on
the initial state ni: with decreasing ni it becomes nar-
rower and its maximum shifts towards smaller values of
∆n. For ni = 13, the transitions ∆n = 2–3 dominate. Fig-
ure 7 shows the nf dependence for initial state ni = 9: the

Coulomb cross-sections
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Fig. 7. The nf dependence of the Coulomb cross-sections
for muonic hydrogen with ni = 9 and laboratory kinetic en-
ergy T = 1 eV for collisions with molecular (filled diamonds)
and atomic (squares) hydrogen target. The semiclassical result
from [12] is shown with filled circles.

Fig. 8. Stark cross-sections for muonic hydrogen for molecu-
lar (filled triangles) and atomic (circles) hydrogen target. The
curves show the results of the fixed field model for molecular
target (solid line) and atomic target (dashed line). The labo-
ratory kinetic energy is T = 1 eV.

transitions with ∆n = 1 are most likely, but the ∆n > 1
transitions still make up a substantial fraction of 38% of
the Coulomb cross-section as compared to 19% for atomic
target.

3.1.2 Stark mixing and elastic scattering

The Stark collisions change the orbital angular momentum
while preserving the principal quantum number:

(x−p)nili + H2 → (x−p)nilf + H∗2 (H + H), (20)
(x−p)nili + H → (x−p)nilf + H. (21)

The CMC results for the n dependence of the l-average
Stark mixing cross-section are shown in Figure 8. The
Stark cross-sections calculated with molecular target are
less than twice the atomic ones. This is due to two rea-
sons. First, there is a considerable molecular screening

Fig. 9. The energy dependence of the Stark cross-sections for
muonic hydrogen in the state n = 9 for molecular (filled tri-
angles) and atomic (circles) hydrogen target. The curves show
the results of the fixed field model for molecular target (solid
line) and atomic target (dashed line).

effect because the electric fields from the two hydrogen
atoms partly cancel each other. Second, the Coulomb
cross-section makes up a larger fraction of the total cross-
section in the molecular case. The classical Monte Carlo
results for the atomic target are in a good agreement
with the semiclassical fixed field model. At low n, where
the inelasticity due to the Coulomb deexcitation is small
and can be neglected in the calculation of the Stark
cross-sections, there is a good agreement between the clas-
sical Monte Carlo results for the molecular target and the
corresponding semiclassical model.

Figure 9 shows the energy dependence of the Stark
cross-sections for n = 9. The classical-trajectory model
and fixed field model are in agreement with each other
for kinetic energies above 10 eV (molecular target) and
2 eV (atomic target). At lower energies where the Coulomb
transitions make up a substantial part of the cross-
sections, the fixed field model overestimates the Stark
cross-sections.

The Stark mixing and elastic scattering processes,
(20) and (21), lead to a deceleration of the exotic atom.
Their importance in the kinetics of atomic cascade can be
estimated with the corresponding transport cross-section

σtr
n =

∫
(1− cos θ)

dσn→n

dΩ
dΩ (22)

where dσn→n/dΩ is the differential cross-section for the
processes (20) or (21) averaged over l. This estimate based
on the transport cross-section neglects the Coulomb deex-
citation process which can lead to both deceleration and
acceleration, and, in the case of molecular target, the ad-
ditional deceleration due to excitation of the H2 molecule.
The n dependence of the transport cross-sections at 1 eV
for muonic hydrogen scattering from hydrogen atoms and
molecules is shown in Figure 10. There is a fair agreement
between the CMC and the fixed field model for atomic tar-
get below n ∼ 8. For higher n, the inelastic effects due to
the Coulomb deexcitation process become important, and
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ergy T = 1 eV for collisions with molecular (filled diamonds)
and atomic (squares) hydrogen target. The semiclassical result
from [12] is shown with filled circles.

Fig. 8. Stark cross-sections for muonic hydrogen for molecu-
lar (filled triangles) and atomic (circles) hydrogen target. The
curves show the results of the fixed field model for molecular
target (solid line) and atomic target (dashed line). The labo-
ratory kinetic energy is T = 1 eV.

transitions with ∆n = 1 are most likely, but the ∆n > 1
transitions still make up a substantial fraction of 38% of
the Coulomb cross-section as compared to 19% for atomic
target.

3.1.2 Stark mixing and elastic scattering

The Stark collisions change the orbital angular momentum
while preserving the principal quantum number:

(x−p)nili + H2 → (x−p)nilf + H∗2 (H + H), (20)
(x−p)nili + H → (x−p)nilf + H. (21)

The CMC results for the n dependence of the l-average
Stark mixing cross-section are shown in Figure 8. The
Stark cross-sections calculated with molecular target are
less than twice the atomic ones. This is due to two rea-
sons. First, there is a considerable molecular screening

Fig. 9. The energy dependence of the Stark cross-sections for
muonic hydrogen in the state n = 9 for molecular (filled tri-
angles) and atomic (circles) hydrogen target. The curves show
the results of the fixed field model for molecular target (solid
line) and atomic target (dashed line).

effect because the electric fields from the two hydrogen
atoms partly cancel each other. Second, the Coulomb
cross-section makes up a larger fraction of the total cross-
section in the molecular case. The classical Monte Carlo
results for the atomic target are in a good agreement
with the semiclassical fixed field model. At low n, where
the inelasticity due to the Coulomb deexcitation is small
and can be neglected in the calculation of the Stark
cross-sections, there is a good agreement between the clas-
sical Monte Carlo results for the molecular target and the
corresponding semiclassical model.

Figure 9 shows the energy dependence of the Stark
cross-sections for n = 9. The classical-trajectory model
and fixed field model are in agreement with each other
for kinetic energies above 10 eV (molecular target) and
2 eV (atomic target). At lower energies where the Coulomb
transitions make up a substantial part of the cross-
sections, the fixed field model overestimates the Stark
cross-sections.

The Stark mixing and elastic scattering processes,
(20) and (21), lead to a deceleration of the exotic atom.
Their importance in the kinetics of atomic cascade can be
estimated with the corresponding transport cross-section

σtr
n =

∫
(1− cos θ)

dσn→n

dΩ
dΩ (22)

where dσn→n/dΩ is the differential cross-section for the
processes (20) or (21) averaged over l. This estimate based
on the transport cross-section neglects the Coulomb deex-
citation process which can lead to both deceleration and
acceleration, and, in the case of molecular target, the ad-
ditional deceleration due to excitation of the H2 molecule.
The n dependence of the transport cross-sections at 1 eV
for muonic hydrogen scattering from hydrogen atoms and
molecules is shown in Figure 10. There is a fair agreement
between the CMC and the fixed field model for atomic tar-
get below n ∼ 8. For higher n, the inelastic effects due to
the Coulomb deexcitation process become important, and

Figure 3.8: n dependence of the Coulomb (left and center) and Stark mixing
(right) cross sections in µH according to the Monte-Carlo classical approach of
the ESCM, in atomic units and averaged over l states [32, 56]. The nf dependence
of the cross sections for the Coulomb deexcitation were calculated for the initial
states ni = 13 (left) and ni = 9 (center) considering a molecular (filled diamonds)
and atomic (squares) hydrogen target. The filled circles show the classical result
from [28]. The Stark mixing cross sections resulting for the molecular and atomic
hydrogen target are depicted with filled triangles and circles, respectively. The
fixed field model results are presented also for the molecular (solid line) and
atomic target (dashed line). The three calculations were done for an initial
kinetic energy of 1 eV in the laboratory system.
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The shape of the distribution of nf depends on the initial n state. By decreasing

ni the distribution becomes narrower with less probability of big jumps in n. That is

valid both for the molecular and atomic target cases, with ∆n > 1 transitions being

strongly enhanced by the molecular target.

In a molecular target, at higher n the transitions with ∆n > 1 dominate the

Coulomb deexcitation. For instance, for ni = 13 the transitions with ∆n = 2, 3 have

the biggest chance to occur (see figure 3.8). This behavior changes with the decreasing

of ni, and the transitions with ∆n = 1 become most probable, which is already the

case for ni = 9 (see figure 3.8). Anyhow, the transitions with ∆n > 1 remain rather

important being approximately 38% for ni = 9.

With an atomic target, the Monte-Carlo classical approach showed that at higher ni

the dominance of transitions with ∆n = 1 is not as overwhelming as predicted by Bracci

and Fiorentini (∼ 90% of the Coulomb cross sections). Furthermore, transitions with

∆n > 1 have a significant weight which decreases rapidly with n. At ni = 13 transitions

with ∆n > 1 constitute ∼ 40% of the total Coulomb cross section, decreasing to 19 %

for ni = 9 (see figure 3.8).

Concerning the Stark mixing dependence on the n state, a decrease with n is evi-

dent. At higher n, where the Coulomb deexcitation is more important, the fixed field

model overestimates the Stark mixing, but in the lower part of the cascade the agree-

ment with the Monte-Carlo classical model is quite good, particularly in the case of

the atomic target (see figure 3.8).

3.4.2 X-ray K yields

The K radiative deexcitation rates are well known quantities. To relate the X-ray

yields in exotic hydrogen with the respective rates, the influence of the other collisional

mechanism, namely the Auger and Coulomb, needs to be considered [64, 39] as equation

(3.21) indicates. In this way, the K-yields have a strong dependence on the density,

which was already fairly explained by the SCM [29, 30]. Hence, by comparing the

ESCM predictions with the experimental data available, the model is subject of test.

For that, the µH system is the most suitable as the X-ray yields are not suppressed by

strong absorption.

Experimentally, the radiative yield of a transition could be directly extracted from

the relation:

Y
nili→nf lf
γ =

NX

Nc εΩ Tr
(3.23)

with NX being the number of detected X-rays from the radiative transition nili → nf lf ,
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Nc the number of exotic atoms formed, ε the detector’s efficiency, Ω the solid angle

and Tr the X-ray transmission between the target where the exotic atoms are formed

and the detector.

An experiment to directly measure the absolute yields has one main difficulty: to

exactly know the number of exotic atoms formed, Nc! This is overcome in πH by using

the charge exchange reaction:

π−p→ π0n, π0 → γγ (3.24)

where the γ-rays are emitted back-to-back. The method is described in Rusi et al. [74]

and consists in measuring the temporal coincident events of γ-rays with the X-rays

from the transition of interest. The number of γγX coincidences is given by:

N(γγX) = Nc Y
nili→nf lf
γ εΩ Tr

P

1 + P
εγγ (3.25)

εγγ being the efficiency of the γγ detection and P the Panofsky ratio which relates the

cross sections between the two possible π− nuclear decay channels: the charge exchange

reaction (3.24) and the radiative capture (π−p → γn). The Panofsky ratio is defined

as follows:

P =
σπ−p→π0n

σπ−p→γn
(3.26)

It was measured to be 1.46± 0.1 by Koller and Sachs [75] in the fifties and remea-

sured in the seventies by Spuller et al. [76] who arrived at the value of 1.546± 0.009.

Within a probability close to 100% the π− can only decay via weak interaction

in a muon or via strong interaction by the two channels mentioned. However, by

comparing with the cascade times involved and the rates of the strong interaction

processes (1012·s−1), the pion lives “forever” (≈ 26 ns). Consequently, the weak decay

can be neglected during the cascade and one can assume that all the pions which are

capture will suffer nuclear absorption. Therefore, the total number of γγ coincidences

detected will be:

N(γγ) = Nc
P

1 + P
εγγ (3.27)

The uncertainty from the number of pions captured is removed and the yields pinned

down by determining the ratio:

N(γγX)

N(γγ)
= Y

nili→nf lf
γ εΩ Tr (3.28)

together with a proper background analysis.
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In principle a similar method could be used in muonic hydrogen using the weak

decay reaction of the muon:

µ→ e− + ν̄e + νµ (3.29)

However, the life time of the muon is very long (≈ 2.2 µs) compared with the cascade

times involved (ns) and beside that, to isolate the electrons from the muon decay would

be extremely difficult as there would be many background electron emissions. Only

relative measurements to the total radiative yields are therefore done.

By using the most recent developments on the cascade kinematics, the Ki yields

(i = α, β, γ and δ) for µH were calculated from 1 LHD (∼ 800 bar at 273 K) to

10−7 LHD (∼ 0.1 mbar at 273 K) [60]. The results are depicted in fig 3.9 together with

the experimental values.

yield at the densities from 10−7 LHD to ∼ 10−3 LHD and increase at more higher densities
can be explained by the competition of the different processes during the atomic cascade
in which the evolution of the kinetic energy is taken into account through the whole cascade.

The discussed above regularities in the absolute yields can be justified or vice versa in
comparison of the calculated relative X-ray yields for the µ−p with the experimental data
[16, 17, 18] introduced in Figure 2.
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Figure 2: The density dependence of the relative X-ray yields in muonic hydrogen: Kα

on the left; Kβ, Kγ and Kδ yields (black, red and green, respectively) on the right. The
experimental data are from [16, 17, 18].

The agreement between theoretical results and experimental data is very good practi-
cally for all densities under consideration. The observable disagreements can be a subject
for further both theoretical and experimental studies. In our opinion, there are also a num-
ber of problems which demand more elaborate experimental studies: a proper separation
of the different k lines, inclusion a Doppler broadening effect in the analysis of the experi-
mental data and so on. It would be very important to check the present results directly by
measuring the absolute X-ray yields at some values of the target density.

The kinetic energy distribution of the exotic atom changes during the cascade and is a
more refined probe of the theoretical approaches to the description of the cascade processes.
Using the cascade model described above we calculated the µ−p kinetic energy distribution
at the moment of the Kα, Kβ, etc. radiative transitions and the corresponding Doppler
broadening of the 1s line due to the kinetic energy distribution of the exotic atom at the
instant of the np → 1s radiative transitions (n = 2 ÷ 4) at the target pressure 10 bar
(∼ 10−2 LHD). The results are shown in Figure 3.

As it is seen from Figure 3, the kinetic energy distribution has distinctive high energy
structures arising from different Coulomb transitions with ∆n ≥ 1 preceding the radiative
de-excitation. The complicated shapes of these structures can be simply explained by the
interplay of three factors: the kinetic energy distribution of exotic atom before Coulomb
transition, the anisotropy of the angular distribution in the Coulomb de-excitation pro-
cess and, finally, the deceleration due to the elastic scattering and Stark transitions after
Coulomb de-excitation but before the radiative de-excitation.
The energy distribution at low n can be determined by measuring the Doppler broadening
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at the moment of the Kα, Kβ, etc. radiative transitions and the corresponding Doppler
broadening of the 1s line due to the kinetic energy distribution of the exotic atom at the
instant of the np → 1s radiative transitions (n = 2 ÷ 4) at the target pressure 10 bar
(∼ 10−2 LHD). The results are shown in Figure 3.

As it is seen from Figure 3, the kinetic energy distribution has distinctive high energy
structures arising from different Coulomb transitions with ∆n ≥ 1 preceding the radiative
de-excitation. The complicated shapes of these structures can be simply explained by the
interplay of three factors: the kinetic energy distribution of exotic atom before Coulomb
transition, the anisotropy of the angular distribution in the Coulomb de-excitation pro-
cess and, finally, the deceleration due to the elastic scattering and Stark transitions after
Coulomb de-excitation but before the radiative de-excitation.
The energy distribution at low n can be determined by measuring the Doppler broadening

4

Figure 3.9: Comparison between the experimental X-ray K yields and the
ESCM calculations as function of the target density in µH [60]. At the left
the Kα is depicted. On the right the Kβ, Kγ and Kδ are plotted. The yields
shown are relative to the absolute total K yield. The experimental data are from
[65, 66, 67].

Figure 3.9 shows a quite good agreement between the calculated and measured

relative K yields, particularly for the Kα which presents a good agreement along all the

density range considered. Unfortunately, no data is available for Kγ below 10−3 LHD

and for Kδ due to the very weak detection rates. In between 10−5 and 10−3 LHD the

Kβ yields have some disagreement, possibly due to either theoretical and experimental

reasons.

The values of the Ki yields shown are relative to the absolute Ktot (not depicted).

The absolute Ktot yield is obtained by summing up all the absolute Ki yields which
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have never been measured so far. According to the cascade calculations, Ktot has a

practically linear dependence on the density and varies steadily from very low density

till 10−2 LHD, with values always higher than 95% [60]. At higher densities it suffers

a fast decrease down till 40% at 1 LHD. This Ktot supression can be explained by the

quenching mechanism of the 2s metastable state.

A particle which arrives at the 2s state is “trapped”, as the 2s state has a long

life time (in leading order the 2s → 1s is a forbidden transition). It could only es-

cape if the kinetic energy of the system allows a transition to the 2p by Stark mixing

and consequently deexcitation to the ground state. However, the 2s state can decay

(2s → 1s) either radiatively or by Coulomb deexcitation. Therefore, the quenching

mechanism can result in a suppression of the Kα yield and consequently the Ktot in

case the rate of the non-radiative channel is significant. In fact, at low densities only

a small fraction goes to this non-radiative 2s decay channel (∼ 1% around 10−4 LHD

[70]) but at pressures close to LHD this part becomes very significant [56].

Figure 3.9 exposes the opposite behavior of the relative Kα yield relatively to the

others. It is maximum at very low and high densities and minimum at intermediate

ones. It starts around 90% at 10−7 LHD, decreases with increasing density to approx-

imately 50% at 10−3 LHD and increases again up to 94% at 1 LHD. On the other

hand, the relative Kδ, Kγ and Kβ X-ray yields have their maximum at 10−4, 10−3 and

10−2 LHD, respectively. In this density region, the relative intensity of Kα remains

below 60%.

The density dependence of the yields can qualitatively be explained as follows. At

very low densities the cascade is almost purely radiative, as seen in previous sections,

and deexcites at low n through the circular states (l = n − 1). Therefore, almost all

µ−p systems undergo the radiative 2p → 1s transition with the remaining np → 1s

transitions being much weaker. With the density increasing the collisional processes

become more efficient and the np states for n > 2 get more populated due to Stark

mixing. Hence, the relative Ki yields (i=β, γ, δ) increase with the consequent decrease

of the Kα.

At higher densities, above approximately 10−3 to 10−2 LHD, the collisional mech-

anisms n→ n′ (n′ < n) dominate the cascade over the radiative deexcitations. Hence,

the Ki yields (i=β, γ, δ) decrease. Clearly, at these high densities, the radiative de-

exciations occur mainly via the 2p → 1s transition. This results from two facts: first

the collisional deexcitations to the 1s are strongly suppressed; second the 2p state is

highly populated directly via the Coulomb mechanism or through the 2s → 2p Stark

transition.
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Despite some aspects need still to be refined, at the present status, the ESCM

can generally reproduce the measurements on the K X-ray relative yields. Moreover,

the general behavior of the relative yields with the density can be understood by the

competition amongst the different mechanisms during the atomic cascade.

3.4.3 Kinetic energy distribution

One of the main drawbacks on the first standard cascade models was the non

inclusion of the kinetic energy variation during the deexcitation cascade. The ESCM

includes this feature and indeed, it turned out to be very important: the collisional cross

sections are velocity dependent and the exotic system does not remain thermalized after

the capture by the proton. However, as mentioned previously, the strong competition

between the various mechanisms renders the predictions very difficult. Despite some

fair description by the existing ESCM the full picture still needs further investigations.278 The European Physical Journal D
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on arrival in the 1s state

W (T ) =
∫ T

0

w(T ′)dT ′ (15)

was determined recently at PSI [12,39]. The results ob-
tained in the pressure range 0.06−16 mbar offer a unique
possibility to study the formation of the µ−p and the
initial stages of the cascade. Figure 10 shows the inte-
grated kinetic energy distribution calculated in the cas-
cade model and the experimental data from [12]. The data
at 0.06 mbar are sensitive mainly to the initial energy dis-
tribution. With the density increasing, the role of the colli-
sional processes grows, and the final distribution becomes
more energetic due to acceleration at the beginning of the
cascade. The results of the cascade calculations are in a
fair agreement with the data for the initial conditions spec-
ified in Section 2.3. The Coulomb transitions with ∆n > 1
were found to be essential for explaining the observed in-
crease in kinetic energy with increasing pressure in agree-
ment with the earlier analysis [11]. Similar cascade calcu-
lations using the trajectories of µ−p collisions with atomic
hydrogen, where the collisions with ∆n = 1 dominate the
collisional deexcitation, predict a much weaker increase in
kinetic energy as shown in Figure 11.

The cascade calculations predict, independent of the
initial n, significantly smaller fractions of (µ−p)1s atoms
with high kinetic energies (T ≥ 8 eV) at pressures above
4 mbar than the experimental data.

Figure 12 shows the density dependence of W (1 eV)
and W (8 eV). The calculated sub-1 eV fraction, W (1 eV),
decreases from 80% at 0.06 mbar to 30% at 16 mbar in
good agreement with the experimental data [12]. The µ−p
atoms with energies above 8 eV are produced during the
cascade in Coulomb transitions. The present calculations
predict an increase in W (T ≥ 8 eV) with the pressure
from 1% at 0.06 mbar to 17% at 16 mbar. The predicted
curves agree with the experimental results in the range
0.06−1 mbar whereas the measured high energy fraction
is substantially larger than the calculated one for pressures

10
0

10
1

T (eV)

0

0.2

0.4

0.6

0.8

1

W
(T

)

0.06 mbar
0.25 mbar
1 mbar
4 mbar
16 mbar

n=14
0.5 eV
Atomic

Fig. 11. The integrated energy distribution W (T ) of the µ−p
atom at the end of the cascade for initial conditions: ni = 14
and T0 = 0.5 eV. The classical-trajectory calculations at n > 7
were done for atomic target. The data are from [12].

10
−7

10
−6

10
−5

10
−4

N/LHD

0

0.2

0.4

0.6

0.8

1

W
(T

)

T=8 eV
T=1 eV

Fig. 12. The density dependence of the integrated energy
distributions W (1 eV) and W (8 eV) of the µ−p atom for initial
conditions: ni = 14 and T0 = 0.5 eV. The data are from [12].

above 4 mbar: for example W (T ≥ 8 eV) = (22.5± 0.9)%
at 16 mbar [12]. The measured increase in the high energy
fraction of (µ−p)1s atoms cannot be reproduced in the
current cascade model for any initial distribution.

Figures 13, 14, and 15 show the density dependence of
the median kinetic energy on arrival in the ground state
for different initial conditions. With the density increas-
ing the calculated median energies grow and reach 2.5 eV
around 10−5 LHD. Above 10−5 LHD, the median energies
remain nearly constant up to 2 × 10−4 LHD where they
start to grow again. The shape of the curves can be ex-
plained as follows. The increase in the median energies at
low densities is produced in the classical domain (n > 7)
where the acceleration due to Coulomb transitions with
∆n = 1−5 is more efficient than the slowing down. The
plateau is due to the dominance of Auger deexcitation
at medium n which become important around the den-
sity 10−5 LHD. The increase in the median energy in the
uppermost part of the shown density range is produced
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above 4 mbar: for example W (T ≥ 8 eV) = (22.5± 0.9)%
at 16 mbar [12]. The measured increase in the high energy
fraction of (µ−p)1s atoms cannot be reproduced in the
current cascade model for any initial distribution.

Figures 13, 14, and 15 show the density dependence of
the median kinetic energy on arrival in the ground state
for different initial conditions. With the density increas-
ing the calculated median energies grow and reach 2.5 eV
around 10−5 LHD. Above 10−5 LHD, the median energies
remain nearly constant up to 2 × 10−4 LHD where they
start to grow again. The shape of the curves can be ex-
plained as follows. The increase in the median energies at
low densities is produced in the classical domain (n > 7)
where the acceleration due to Coulomb transitions with
∆n = 1−5 is more efficient than the slowing down. The
plateau is due to the dominance of Auger deexcitation
at medium n which become important around the den-
sity 10−5 LHD. The increase in the median energy in the
uppermost part of the shown density range is produced

Figure 3.10: The results for the integrated energy distribution W(T) at the
end of the cascade in µH from ESCM calculations and experiment are shown for
comparison [33]. The experimental data are from [70]. On the ESCM calcula-
tions, ni = 14 and T0 = 0.5 eV was assumed. At the left, the ESCM curves were
obtained using an atomic target for the classical-trajectory calculations at n > 7.
At the right a molecular target was considered instead.

By analyzing the µ−p diffusion times in hydrogen gas [68] and by means of TOF

techniques [70, 71] the integrated kinetic energy distribution at the 1s state has been

obtained. Experimental difficulties prompted the use of the integrated distribution
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instead of the differential one [70, 71]. Figure 3.10 shows the comparison between the

calculated values within the ESCM and the experimental data from Pohl [70].

At these low densities, by using a molecular target to do the classical trajectory

calculations on the upper levels, a fair agreement between the predictions of the ESCM

and the experimental values is seen. When using an atomic target on the classical

calculations, the foreseen increase of the kinetic energy with the density is much weaker

and the agreement with the experimental results is poor.

From figure 3.10 one sees how the importance of the collisional processes increases

with the density. At very low densities the probability to have energies higher than

20 eV is nearly 0. In contrast, for 4 and 16 mbar, 10 eV represents only 0.8 of the cu-

mulative energy distribution and a fraction of about 0.05 is above 20 eV. The Coulomb

deexcitation becomes more important at higher densities and more energy is gained by

the system, leading to a more energetic final distribution.
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by the Coulomb transitions at n < 8. For densities larger
than 10−4 LHD, the initial kinetic energy is almost forgot-
ten because of the many collisions during the cascade, and
the kinetic energy distribution at the end of the cascade is
determined by the competition between acceleration and
deceleration during the cascade.

The measured density dependence of the median ki-
netic energy is well reproduced with the initial conditions:
T0 = 0.5 eV and ni = 14 or T0 = 0.25 eV and ni = 16.
For ni = 12 (Fig. 13) the initial acceleration appears to be
weaker and the agreement with the experimental result is
worse. The molecular structure of the target is essential
for explaining the data. Calculations with the CMC tra-
jectories for atomic hydrogen lead to a too weak increase
in the median energy compared to the experiment.

We estimate the statistical errors due to the finite num-
ber of CMC trajectories by dividing the 21 complete sets
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Fig. 15. The density dependence of the median kinetic energy
of the µ−p at the end of the cascade for different initial average
kinetic energies and ni = 16. The data are from [12,44].

Table 2. Median kinetic energy and integrated kinetic energy
in muonic hydrogen calculated in the ESCM with statistical
errors. The experimental results are from [12,44].

Observable ESCM Exp.
Tmedian(1 mbar) 1.57 ± 0.03 eV 1.55 ± 0.12 eV
Tmedian(16 mbar) 2.50 ± 0.14 eV 2.63 ± 0.17 eV
W (16 eV) at 16 mbar 0.958 ± 0.004 0.894 ± 0.006

of trajectories into 7 subsets and calculate the observables
using each subset. The results for the median kinetic en-
ergy and the integrated kinetic energy shown in Table 2
does not change the conclusions reached above: the ESCM
gives a good description of the experimental data for mod-
erate energies but is unable to explain the observed high
energy fraction.

3.2 Antiprotonic hydrogen

The present study of the atomic cascade in antiprotonic
hydrogen was focused on the experimental data obtained
at low density [45–50].

3.2.1 X-ray yields

The calculated X-ray yields are in a good agreement with
the data [46–49] as shown in Figures 16 and 17. In addi-
tion to the data on absolute X-ray yields, there are more
precise measurements of relative yields, see Table 3. The
theoretical results are in fair agreement with the data as
all the calculated ratios deviate less than 50% from the
experimental results. This is a significant improvement in
comparison with the calculations in the Borie-Leon model
reported in [48]: the two standard tuning parameters kStk

and T were fixed by fitting the absolute Lα yields but the
predictions of the model for ratios involving Lδ were a fac-
tor of 3−5 larger than the experimental data. We stress
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by the Coulomb transitions at n < 8. For densities larger
than 10−4 LHD, the initial kinetic energy is almost forgot-
ten because of the many collisions during the cascade, and
the kinetic energy distribution at the end of the cascade is
determined by the competition between acceleration and
deceleration during the cascade.

The measured density dependence of the median ki-
netic energy is well reproduced with the initial conditions:
T0 = 0.5 eV and ni = 14 or T0 = 0.25 eV and ni = 16.
For ni = 12 (Fig. 13) the initial acceleration appears to be
weaker and the agreement with the experimental result is
worse. The molecular structure of the target is essential
for explaining the data. Calculations with the CMC tra-
jectories for atomic hydrogen lead to a too weak increase
in the median energy compared to the experiment.

We estimate the statistical errors due to the finite num-
ber of CMC trajectories by dividing the 21 complete sets
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Table 2. Median kinetic energy and integrated kinetic energy
in muonic hydrogen calculated in the ESCM with statistical
errors. The experimental results are from [12,44].

Observable ESCM Exp.
Tmedian(1 mbar) 1.57 ± 0.03 eV 1.55 ± 0.12 eV
Tmedian(16 mbar) 2.50 ± 0.14 eV 2.63 ± 0.17 eV
W (16 eV) at 16 mbar 0.958 ± 0.004 0.894 ± 0.006

of trajectories into 7 subsets and calculate the observables
using each subset. The results for the median kinetic en-
ergy and the integrated kinetic energy shown in Table 2
does not change the conclusions reached above: the ESCM
gives a good description of the experimental data for mod-
erate energies but is unable to explain the observed high
energy fraction.

3.2 Antiprotonic hydrogen

The present study of the atomic cascade in antiprotonic
hydrogen was focused on the experimental data obtained
at low density [45–50].

3.2.1 X-ray yields

The calculated X-ray yields are in a good agreement with
the data [46–49] as shown in Figures 16 and 17. In addi-
tion to the data on absolute X-ray yields, there are more
precise measurements of relative yields, see Table 3. The
theoretical results are in fair agreement with the data as
all the calculated ratios deviate less than 50% from the
experimental results. This is a significant improvement in
comparison with the calculations in the Borie-Leon model
reported in [48]: the two standard tuning parameters kStk

and T were fixed by fitting the absolute Lα yields but the
predictions of the model for ratios involving Lδ were a fac-
tor of 3−5 larger than the experimental data. We stress

Figure 3.11: The density dependence of the median kinetic energy at the end of
the cascade in µH [33]. The experimental results are from [70, 72] for 0.06, 0.25,
1, 4 and 16 mbar (1 mbar∼ 10−6 LHD). The ESCM calculations were performed
with T0 = 0.25, 0.5 and 1 eV and assuming the cascade starting at n = 14 (left)
and n = 16 (right). A molecular target was assumed in the classical calculations
at higher n. The calculation with an atomic target is shown with dashed line
(left plot) for which a T0 = 0.5 eV was assumed.

Another indication about the dynamics between the different collisional mechanisms

comes from how the median kinetic energy at the ground state varies with the density.
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Chapter 3. Cascade Processes in Light Exotic Hydrogen Atoms

Figure 3.11 shows this dependence for the µ−p system within the range 10−8...10−3 LHD

(1 mbar ∼ 10−6 LHD).

The data are better described by using n = 14 together with T0 = 0.5 eV or n = 16

with T0 = 0.25 eV as initial conditions. The use of the atomic target in the classical

calculations leads to an underestimation of the increase of the median energy. Indeed,

to considerer the molecular structure on the CMC calculations is crucial to reproduce

the data.

The median energy, when the cascade ends at the 1s state, grows from about 0.5 eV

at very low density (10−7 LHD), up to a plateau of about 2.5 eV. Hence, it remains

nearly constant between 10−5 LHD to 2 × 10−4 LHD. Above this density the median

energy increases again.
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Figure 3: On the left: the kinetic-energy distribution of µ−p at the instant of the radiative
np → 1s transitions in gaseous hydrogen at pressure 10 bar. On the right: the K-line
shapes after Doppler broadening due to the kinetic-energy distribution.

of K X-ray lines. As demonstrated in Figure 3, the high-energy components lead to the
significant Doppler broadening, which especially pronounced for Kα line. The resulting
shapes and widths for Kα, Kβ and Kγ lines at target pressure 10 bar are shown in Fig. 3
(on the right panel). A significant spreading up to ±1.25 eV for Kα line was found.

The essential acceleration during cascade is illustrated in Figure 4. Here the calculated
density dependence of the mean kinetic energy at the instant of the radiative np → 1s
de-excitation is shown. At the densities from 10−7 LHD to ∼ 2 ·10−4 LHD the mean energy
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Figure 4: The density dependence of the mean kinetic energy of the µ−p at the instant of
the different radiative np → 1s transitions.

5

Figure 3.12: The expected broadening of the K lines by Doppler effect due to
the kinetic energy gain during the µ−p cascade at 10 bar. Coulomb transitions
with ∆n = 1, 2 were considered [60].

This behavior can be explained with the competition between the several decay

mechanisms. At low densities, the energy gain due to the Coulomb transitions with

∆n = 1...5 in the classical domain (n > 7) dominates over the elastic collisions. More-

over, due to the strong absence of collisional mechanisms at densities < 10−7 LHD the

exotic system roughly keeps its energy during the cascade. Therefore, the mean energy

increases until the Auger transitions have some dominance in the intermediate region,

which happens around 10−5 LHD. With increasing density, the Coulomb deexcitations

at n < 8 are enhanced. Thus, the median energy increases and is basically determined

from the competition between the accelerating and decelerating mechanisms at n < 8.
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The initial kinetic energy is almost forgotten.

The kinetic energy gain of the exotic systems have a direct impact on the measured

spectral lines. The movement of the exotic system at the instant of the radiative

emission causes a line broadening by Doppler effect. Figure 3.12 shows an example of

the expected broadening by Doppler effect in the muonic hydrogen Kα,β,γ lines.

The spectral lines have quite pronounced tales which are particularly extended

for Kα. For radiative transitions to the ground state with lower ∆n more energetic

Coulomb deexcitations are available. Table 3.2 clarifies the situation. Assuming the

energy gain by Coulomb deexcitation with ∆n = 1, the corresponding energy shifts by

Doppler effect of the subsequent radiative transitions are presented. The n = 3 → 2

Coulomb transition which leads to an energy gain of about 166 eV can induced a

Doppler shift up to ±1.1 eV on the measured Kα.

Coulomb deexcitation ∆n = 1
spectral line max Energy shift [eV]

transition kinetic Energy gain [eV]
Kα ±1.1 3→ 2 166.3
Kβ ±0.75 4→ 3 58.2
Kγ ±0.54 5→ 4 29.6
Kδ ±0.41 6→ 5 14.6
Kε ±0.32 7→ 6 8.8

Table 3.2: Energy shift (as defined in the text) of the Kα,β,γ,δ,ε lines by Doppler
effect due to Coulomb deexcitation with ∆n = 1 in µH.

By taking into account the existent information about the cross sections for the

different cascade mechanisms the ESCM is able to provide a theoretical prediction for

the kinetic energy distribution at the instance of the radiative transitions. In figure

3.13 the kinetic energy distributions are shown for the Kα,β,γ transitions in µH at 10 bar

(∼ 1.3× 10−2 LHD).

The complex structure of the kinetic energy distribution is revealed. Peaks corre-

sponding to Coulomb deexcitations with ∆n > 1 can occur directly or by steps with

the kinetic energy being accumulated. The extended tails have their origin in the

deceleration by multiple elastic collisions.

The ESCM predicts a probability of about 0.22, 0.36 and 0.60 to have a kinetic

energy less than 2 eV at the time of the Kα, Kβ and Kγ transitions, respectively (not

depicted as figure 3.13 is cut at a maximum probability of 0.05). This low energy

component may result when Coulomb deexcitations occur only at high n (n>10) with
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Chapter 3. Cascade Processes in Light Exotic Hydrogen Atoms

the exotic system proceeding via radiative deexcitation where the kinetic energy gain

remains frozen. Another possible channel is elastic collisions which decelerate the high

energy states produced by Coulomb deexcitation. The combined treatment of the cross

sections of elastic scattering and Coulomb deexcitation is still under debate and can

lead to much different results. However, the mentioned high probabilities indicate the

importance of this region and the need to understand better the mechanisms which

result in such low kinetic energies.
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Figure 3.13: The probability density of the kinetic energy at the instant of the
Kα, Kβ and Kγ transitions in µH at 10 bar (∼ 1.3× 10−2 LHD). The data were
obtained with the latest ESCM version by Markushin and Jensen [32, 33, 38, 46].
It is plotted in energy steps of 1 eV. A kinetic energy of 0.5 eV was assumed in the
laboratory frame ab initio and 107 exotic systems were tracked. The Coulomb
deexcitation transitions n→ n′ corresponding to the peaks are indicated.

In figure 3.14 the kinetic energy distribution at the moment of the Kβ transition is

compared for πH and µH at 10 bar. The structures for both kinetic energy distributions

look about similar. However, for πH the peaks are more pronounced relative to the

tails. This should result from the faster πH cascade, where the strong interaction plays

an important role. In this faster cascade the elastic collisions are less frequent and

their importance declines.
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Figure 3.14: Comparison between the probability distributions of the kinetic
energy at the Kβ decay instant for πH and µH at 10 bar. A kinetic energy
of 0.5 eV in the laboratory frame was assumed ab initio and 107 systems were
tracked. The Coulomb deexcitation transitions corresponding to the peaks are
indicated.

3.5 Approximate model for the kinetic energy dis-

tribution

The complex structure of the kinetic energy distribution can be approximated by

rectangular boxes. These have the advantage to be straightforward to handle in a

fit routine, where their number, limits and relative weights can be treated as free

parameters. Moreover, it is a “model free” approximation as it is not biased by the

predictions of the cascade kinematics routine. Hence, it can be used as an alternative

to the ESCM predictions and in a test of the cascade model.

Assuming δ-like peaks in the kinetic energy distribution, i.e., δ(T − T0), T0 being

the energy where the δ-peak is located, the relation between this energy and the exotic

system velocity is given by:

v0 =

√
2T0

mx−p
(3.30)

A δ-like peak will correspond to a rectangular box on the 1-dimensional velocity

distribution extending from −v0 to v0 (see schematics of figure 3.15). On the other
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hand, a rectangular box within the limits [T0 : T1] (T1 > T0) can be regarded as a

sum of δ-like functions, each one corresponding to a rectangular box on the velocity

distribution. Adding up all the boxes, a trapezoid is obtained. Hence, a rectangular

box on the energy distribution is transformed to a trapezoid structure on the velocity

distribution (see figure 3.16). For more details check [73].
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Figure 3.15: Correspondence between a δ-like kinetic energy distribution and
the correspondent box like velocity distribution. The maximum of the velocity
distribution is given by 1

2v0
.

f(   )T

T0T1 T

f(   )T

T0T1 T

f(  )v

v0 v1 v1 v0

v0v1
1
+

− − v

Figure 3.16: Correspondence between a box-like kinetic energy distribution
and the correspondent trapezoidal velocity distribution. The rectangular shape
of the energy distribution can be approximated by δ-like functions corresponding
to velocity boxes which are piled up and generate a trapezoid. The top of the
trapezoid is at 1

v1+v0
.

The complex structure of the energy distribution is approximated by rectangular

boxes which correspond to trapezoid velocity distributions.
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Figure 3.17 gives an example of a box approximation of the kinetic energy distri-

bution for Kβ in µH at 10 bar. Four boxes with different sizes are used to approximate

the complex structure.
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Figure 3.17: Example of a box approximation of the kinetic energy distribution
at the instant of the Kβ decay in µH at 10 bar. A kinetic energy of 0.5 eV in
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Chapter 4

High Resolution X-ray
Spectroscopy

Precision measurements of X-rays from light exotic atoms demand high resolution

spectroscopy techniques, which can be realized by X-ray diffraction (XRD). As the

energies involved are low (few keV) Bragg spectrometers equipped with spherical bent

crystals together with position sensitive detectors are used [77].

The setup of these experiments entails several important constraints related to the

spectrometer which can reduce the accuracy. Therefore, the understanding of some

key aspects of X-ray diffraction theory and the geometrical behavior of bent crystal

spectrometers is essential.

This chapter presents a brief introduction into some aspects of the theory of X-ray

diffraction. The geometry of the Bragg spectrometers with spherical bent crystals will

be addressed as well. The spectrometer used by the πH collaboration will be described

together with the data acquisition system. Simulations of the spectrometer behavior

will be presented and discussed.

4.1 Elements of X-ray diffraction

4.1.1 Bragg diffraction

In November 1912, following the discovery of X-ray diffraction on crystals by Max

von Laue [78], William Lawrence Bragg in collaboration with his father William Henry

Bragg presented to the Cambridge Philosophical Society his interpretation of Laue’s

work [79].

For X-rays with sharply defined wavelengths and certain incident directions on

crystalline materials, intense peaks from scattered radiation were observed. Bragg
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explained these peaks by regarding a crystal made out of atomic parallel planes. He

assumed that the X-rays were specularly reflected, i.e with the angle of reflection equal

to the angle of incidence in each plane, and he required constructive interference. In

this way, Laue’s conditions for diffraction could be reformulated into what became

known as Bragg’s law :

mλ = 2d sin θB (4.1)

where m is the order of diffraction (an integer), λ the incident radiation wavelength, d

the distance between the crystal planes and θB the incident angle (Bragg angle).

Figure 4.1: Classical construction of the Bragg diffraction of two incoming
linearly polarized electromagnetic waves on adjacent crystal planes. The electric
field vector is depicted, which is assumed to be π-polarized.

In a classical view, an electromagnetic wave is composed of electric and magnetic

vectors perpendicular to each other and to the direction of propagation. By approach-

ing an atom the electric field exerts a force on the electronic cloud. The electrons

accelerate and radiate another wave with the same frequency and phase shifted by π.

This is known as Elastic or Rayleigh Scattering.
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Bragg’s law assumes constructive interference: X-rays scattered from two adjacent

crystal planes will have the same phase when the difference between their paths is a

multiple of their wavelength.

The idea is shown in Figure 4.1. An X-ray is scattered on the atom marked with

D, in the top crystal plane. Another one is transmitted to the consecutive plane and

scattered on C. The difference between the paths traveled by the two waves is 2BC.

The distance BC is given by the difference between AC and AB.

Rewriting DC by d gives:

AC =
d

sin θB
(4.2)

AD =
d

tan θB
(4.3)

AB = AD cos θB =
d

tan θB
cos θB

=
d cos2 θB

sin θB
=

d

sin θB

(
1− sin2 θB

)

AB =
d

sin θb
− d sin θB (4.4)

thus:

BC = AC − AB =
d

sin θB
− d

sin θb
+ d sin θB

BC = d sin θB (4.5)

The path difference is twice this value. Clearly, to have maximal constructive

interference, within this length an integer number of wavelengths of the incoming X-

rays is possible as well. This number m defines the order of the Bragg diffraction and

can only change by varying the Bragg angle accordingly:

m

sin θB
=

2d

λ
= constant (4.6)

Hence, Bragg scattering for higher orders is only possible when θB < 30◦ for the first

order. As sin 30◦= 0.5, that would imply a second order at θB = 90◦ which is the

angular limit for Bragg scattering.

4.1.2 Similarities between Bragg and optical diffraction

Despite the maximum constructive interference, which leads to a very intense and

narrow peak, other constructive interferences are also possible corresponding to phase
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differences ranging from 0 to π. Those should result in a large number of less intense

peaks seen at different scattered angles, for the same angle of incidence. However, they

are not visible.

In fact, the scattering of X-rays on atoms in successive lattice planes leads to a

similar interference pattern as for light striking a diffraction grating. Considering

Fraunhofer diffraction where the position of the observation is far compared to the

slit/aperture size so that spherical waves at that location can be considered to have a

planar nature, the intensity of each point of the interference pattern induced by the

diffraction grating is proportional to the following function:

f(x) =
sin2Nx

sin2 x
(4.7)

where N is the number of slits.

The function f(x) reaches the maximum at integer multiples of π and is zero at

integer multiples of π/2. The maximum value of f(x) is N2. Figure 4.2 shows f(x)

around π for N=10 and 500 . For low N smaller peaks are visible but with increasing

N they tend to become narrower and quasi coincident with the maximum interference

peak. For high N , f(x) has narrow peaks for integer multiples of π and is basically zero

elsewhere. In the example, the width of the maximum peak changes, approximately,

from 0.28 rad (16◦) for N = 10 to 5.5 mrad (0.3◦) for N = 500.
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Figure 4.2: The function sin2Nx
sin2 x

for N = 10 (bold) and N = 500 (gray) which
constrains the intensity of the diffraction pattern on a diffraction grating. The
functions were normalized to a maximum of 1.

Each crystal plane can be regarded as a slit in a diffraction grid distant 2d from
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the following slit. An X-ray beam can penetrate deeply into the crystal and can be

reflected along tens of thousands of crystal layers which can be considered to be a three

dimensional diffraction grating with a very high number of slits. This leads to very

sharp and intense peaks, the Bragg reflection. In chapters 3 and 4 of Warren [80] an

analytical treatment of the intensity of the Bragg reflection is presented and its relation

with f(x) is explained in detail.

4.1.3 The kinematical and dynamical approach

For very high N various effects constrain the width and the shape of the Bragg

reflection. The refraction of the X-rays entering the crystal’s medium, their photoelec-

tric absorption by the material and the thermal motion of the atoms in the lattice, for

instance, have an important influence on the shape of the Bragg reflection. A proper

mathematical treatment on the reflection and transmission of the incoming waves by

the crystal layers can predict the intrinsic shape of the Bragg reflection [80, 81]. Two

major approaches are used for deduction: the kinematical theory and the dynamical

theory which were first developed by C.G. Darwin in 1914 [82, 83].

Under the kinematical view, a real crystal is composed of small (in the order of

some d) and ideal perfect crystal grains, also called mosaic blocks, which have a narrow

distribution of the relative angular orientations, ranging typically from 0.01◦ to 0.1◦

(Nielsen, section 4.5.1 [81]) as depicted in figure 4.3.

Figure 4.3: Schematic of the kinematical view of a crystal formed by ideal
crystals of small dimensions and a narrow distribution of orientations.

An X-ray beam is very weakly reflected in each crystal layer and the total reflected

beam is a sum over the total number of planes crossed by the incoming beam. In that

way, for a perfectly collimated incoming beam, the accumulated intensity of the Bragg

reflection corresponding to a plane with Miller indices (h,k,l) is achieved by rotating

the macroscopic crystal and fulfilling the Bragg condition for all single crystal blocks.
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Due to the crystal’s mosaicity the kinematical approach does not consider the possi-

ble Bragg back-scattered X-rays from the Bragg reflected beam. The small differences

in the blocks orientation renders the back-scattering unlikely outside the block where

the Bragg scattering occurred. If the back-scattered X-rays cannot be ignored one

enters the dynamical domain.

The dynamical treatment takes into account a second reflected beam which will

have the direction of the primary one (figure 4.4). As the intensity of a second reflected

beam on a single layer is small, the effect only becomes relevant for a large number of

planes. This happens in highly perfect crystals where the kinematical approach fails

completely as multiple scattering needs to be considered.

 
 
 
 
 
 
 
 
 
 

 
 

 

θB 

Crystal planes 

Figure 4.4: Illustration of the Bragg scattering in dynamical view. The Bragg
reflected beam can be back-scattered creating a secondary and weaker beam.

The reflectivity curve

A detailed mathematical treatment for both kinematical and dynamical approaches

to the scattering of X-rays in crystals can be found in references [80, 81].

The scattering is considered in terms of interactions between the electric fields

describing the incoming and outgoing X-rays. According to the Bragg scattering theory,

a crystal can scatter a small “bandwidth” of wavenumbers ∆k. Hence, by considering

a fixed Bragg angle, the reflection does not take place only for X-rays where k fulfills

the Bragg condition ( mπ
d sin θB

) but also for other X-rays with a small offset ∆k. However,

the intensity of the reflected X-rays decreases with the offset.

The reflectivity at each crystal layer is very tiny [81]. The kinematical approach

calculates the total intensity of the reflection by summing up all the small contributions
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at different depths. A reflectivity curve is obtained as function of the relative offset of

the wavenumber(ζ = ∆k/k) [80, 81]. The maximum is not achieved for ζ = 0 but is

slightly shifted (ζ0) because of refraction inside the crystal. An example for Si(111) is

depicted in figure 4.5.
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Figure 4.5: Example of a reflectivity curve under the kinematical approach. It
was calculated for Si(111) by considering 1.5×104 layers and first order reflection
according to [81]. The thicker curve is an approximation to the thinner one, with
the kinematical region plotted in black and the dynamical one plotted in gray.
No absorption or polarization effects were taken into account. The curves are
top clipped due to the maximum reflectivity physically possible, i.e. 100%.

As shown in figure 4.5 the reflectivity curve is formed by several peaks. By increas-

ing N the peaks get closer and closer and the curve can be approximated by its mean

value (bold line in figure 4.5). However, for higher N the central peak becomes higher

and narrower and it needs to be clipped due to the physical limit of the intensity re-

flectivity (100%). The approximation breaks down. The kinematical approach is only

valid for relatively low number of layers. Nevertheless, even at high N it can remain

valid at regions far from the central position.

In the case of highly perfect crystals the dynamical theory works better as it consid-

ers the multiple scattering inside the crystal (Fig. 4.4). Moreover, it has intrinsically

embedded the constraint to not allow a value for the reflected intensity higher than

100%. In fact, the approach predicts a broad region of wavevectors where the intensity

of the reflectivity is maximum (100%) — total reflection region. A comparison between
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the reflectivity curve predicted acording to the kinematical and dynamical theories is

shown in figure 4.6 for Si(111). The curve obtained from the dynamical theory is

known as Darwin curve. The depicted curves differ significantly in the central region

where the admitted relative shift in the wavevector is small. Yet, by allowing higher

relative shifts the kinematical theory becomes a better approximation of the Darwin

curve. In the formalism of the dymamical theory, ζ is changed to another variable η

so that the Darwin curve is centered at η = 0 and the total reflection region is limited

by −1 < η < 1 [80]. This variable is denoted by x in [81].
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Figure 4.6: The Darwin curve in Si(111) for a first order reflection is plotted in
bold. The thinner curve is its correspondent kinematical reflectivity curve. The
top flat region of the Darwin curve is known as region of total reflection. The
curves were calculated according to [81]. No absorption or polarization effects
were taken into account.

Additionally to Bragg scattering, the X-rays also suffer photoelectric absorption in-

side the crystal, being therefore attenuated. Consequently, a reduction in the intensity

of the reflectivity which scales with the energy of the scattered X-rays is expected. In

fact, the expansion of the dynamical theory so that it incorporates the photoelectric

absorption [81] reveals an asymmetric attenuation of the Darwin curve relative to its

center (see figure 4.7a). The attenuation is more pronounced for positive and larger ζ

(∆k), i.e. in the direction of smaller k (lower energies). The impact of the photoelectric

absorption is enhanced for X-rays with lower energies (see the difference between 8 and

3 keV in Fig. 4.7).
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The Darwin curve can be regarded as an intrinsic property of the crystal as long as

photoelectric absorption is neglected. It only depends on the parameters of the crystal’s

unit cell and is a function of the relative offset of the wavenumber (ζ) admitted in the

incoming wave. Therefore, it is independent of the wavelength of the X-rays [80, 81].

In fact, this holds by assuming that the structure factor of the unit cell F used in its

calculus is a crystal parameter. This is an approximation as F varies slightly with the

wavelength of the X-rays. However, this small dependence can be neglected as it comes

from small dispersion corrections to the atomic form factors used in the determination

of F .

Nevertheless, the Darwin curve can be depicted in an angular mode by relating ζ

with ∆θB. The relation is found by differentiating Bragg’s equation (4.1) with respect

to θB (dλ/dθB):

∆λ

λ
=

∆θB
tan θB

=
∆k

k
= ζ (4.8)

where the energy dependence is intrinsically accounted by the tan θB term. Three

examples of the angular form of the Darwin curve are depicted in figure 4.7b. It shows

that, the lower the energy the more deviates the angular position of the maximum

intensity reflectivity from θB. Moreover, for lower energies the angular form of the

Darwin curve shows a stretched profile with long tails. The angular form of the Darwin

curve is know as rocking curve due to the experimental technique used to determine

it: by rocking/rotating the crystal [134].

A very important parameter of the Darwin curve is its width (FWHM) as it is a

key constraint for the resolution of a XRD system. Following the dynamical theory, it

is given by [81]:

ζFWHM
D =

3
√

2

π

(
d

m

)2
r0 |F |
vc

(4.9)

where d is the crystal lattice spacing, vc the volume of the unit cell, r0 the classical

electron radius (≈ 2.82 × 10−5Å) and F the structure factor of the unit cell. The

angular FWHM of the Darwin curve (wFWHM
D ) is:

wFWHM
D = ζFWHM

D tan θB (4.10)

Once more, by assuming the approximation that |F | is a crystal parameter, ζFWHM
D

is also a crystal parameter. On the other hand, the angular width of the curve in-

creases with increasing wavelength (smaller energies) as θB becomes larger, limiting

the resolution of a X-ray diffraction (XRD) spectrometer.
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Figure 4.7: a) Effect of the absorption in the Darwin curve of Si(111) at 8 keV
and 3 keV for the first order reflection. b) Angular form of the Darwin curve at
2.2 keV, 3 keV and 8 keV considering the absorption in Si(111) for the first order
reflection. The curves were calculated according to [81]. No polarization effects
were taken into account.

The penetration depth: extinction and absorption

Along its path inside the crystal, the X-ray beam becomes weaker and weaker till

total annihilation. Beside being partially reflected at each crystallographic plane the

X-rays can also suffer photoelectric absorption.

The depth that the X-ray penetrates into the crystal, considering only attenuation

by reflection, is named extinction depth (Λ). According to [81] the dynamical theory

predicts it to be:

Λ =
1

4
√

1− η2

m

d

vc
ro|F |

(4.11)

where the polarization was omitted.

The value of Λ varies along the Darwin curve as it depends upon η. Therefore, in

a calculation of the extinction depth the value of η has to be specified. As η → ±1,

the square root tends to 0 and the extinction depth diverges to infinity. Thus, for

|η| ≥ 1 only the photoelectric absorption contributes to the total penetration depth of

the incident photons. At the middle of the Darwin curve, where η = 0, the extinction
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depth becomes:

Λ =
1

4

m

d

vc
r0|F |

(4.12)

The electric field vector has two polarization components and the extinction depth

depends on polarization. The component parallel to the plane of incidence or scattering

plane is named p-like (stands for parallel) and the component perpendicular to this

plane is termed s-like (stands for senkrecht, german word for perpendicular). X-rays

with a p-like electric field vector are said to be p-polarized, π-polarized, tangential plane

polarized or to be a transverse-magnetic (TM) wave. Opposite, with a s-like electric

field vector the X-rays are s-polarized, σ-polarized, sagital plane polarized or to be a

transverse-electric (TE) wave. An unpolarized X-ray beam has 50% of each component.

Figure 4.8 clarifies the situation.

Ep

E s E s

Ep

Figure 4.8: The polarization of the electric field vector of a plane wave. The
p-component is parallel to the scattering plane, which is defined by the incoming
and outgoing X-rays. The s-component is perpendicular to the scattering plane.

By introducing in (4.11) a polarization factor, the effect of beam polarization is

included in the extinction depth formalism:

Λ =
1

C

1

4
√

1− η2

m

d

vc
r0|F |

(4.13)

Λ =
1

4C

m

d

vc
r0|F |

, η = 0 (4.14)

where C is the polarization factor. In the dynamical theory it is given by [88]:

C =





1 for σ polarization (perpendicular to the scattering plane)

| cos(2θB)| for π polarization (parallel to the scattering plane)
1
2
[1 + |cos(2θB)|] for an unpolarized beam

(4.15)
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On the other hand, there is a characteristic absorption depth λD associated to

the photoelectric absorption. The mean free path of a photon inside a material (λP )

is inversely proportional to the linear attenuation coefficient (µa) and is a material

property which depends upon the photon energy. In Bragg scattering the photons

need to cover twice the same distance without being absorbed to reach again the

crystal surface. The absorption depth is then related to the mean free path and hence

to the linear attenuation coefficient according to:

λD =
λP sin θB

2
=

sin θB
2µa

(4.16)

Taking both attenuation effects in consideration, the total penetration depth of an

X-ray beam hitting a crystal is obtained by adding the inverse of the extinction depth

and the inverse of the absorption depth[89]:

1

λT
=

1

Λ
+

1

λD
(4.17)

This equation will be needed later for the interpretation of the ECRIT results.

4.2 Bent crystal Bragg spectrometers

Since the pioneering work of Laue and Bragg about diffraction in crystallographic

materials [78, 79] the XRD experienced an enormous theoretical and experimental

development. Now it is one of the most powerful non-intrusive material analysis tech-

niques.

Very high resolution spectra in the X-ray region can be obtained via XRD, outper-

forming the energy dispersion X-ray techniques. Typical resolving powers (λ/δλ) of the

order of 1000 to 10000 are achieved with common XRD setups and it is even possible

to exceed 100000 for flat single- or multiple-crystal arrangements [90, 91]. Hence, the

X-ray diffraction techniques have become a very important tool in highly accurate X-

ray applications, such as crystallographic studies, monochromatization of synchrotron

light sources, or atomic and molecular physics with exotic atoms.

4.2.1 The Johann geometry

Bragg spectrometers equipped with flat crystals are not suitable for applications

with a spatially extended X-ray source with low rate, which is the case in the field of

exotic atoms. Instead, cylindrically and spherically bent crystals, which enhance the

X-rays intensity owing to the focusing properties, are used.
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A remark from Wagner [92] delayed the development of diffraction spectrome-

ters equipped with bent crystals for more than a decade. Wagner stated that for an

extended curved surface it would be impossible to fulfill simultaneously the two require-

ments of the Bragg condition: emission angle = incident angle (specular reflection) and

constant deflection angle.

Figure 4.9 illustrates the situation. In a circle with a radius equal to MO, any

triangle BPiA (above AB) defines a constant angle Φ. However, the angles of BPi and

PiA against the tangent to the circle at Pi are different, i.e. θi 6= θi+1.

This incompatibility is only valid for optical reflecting surfaces. It was first rec-

ognized by DuMond and Kirkpatrick [93] who identified the possibility to overcome

the problem for crystals. The technical solutions were provided later on by Johann

[94] and Johansson [97]. Figures 4.9 and 4.10 clarify the main ideas of the solution

provided by Johann.

In figure 4.9 an optical reflection from B at C will pass through A. The triangle

OBC has a right angle at B. By rotating the structure OBCA around O the point C

describes an arc with a radius equal to the diameter OC with reflection points C1, ...Ci.

In figure 4.9 the structure was rotated with a step of 5◦. The reflected rays, as well as

the incident rays, are tangential to a circle with radius OA = OB. This circle is called

“caustic circle”. A similar construction would be obtained by rotating the structure

OBCA to the right!

By cylindrically bending a crystal in the way the crystal planes follow the curvature

defined by C1...Ci, a partial focusing is obtained to a circle with a diameter equal the

bending radius Rc = OC. This circle is named Rowland circle and the geometry is

known as Johann setup. The defocusing introduced by the Johann setup is rather small

and can be well controlled in practical applications by chosing appropriate dimensions

for the crystal size and its radius.

The Johann setup is depicted in detail in figure 4.10. According to it, the Bragg

reflected X-rays are focused near a point (D in figure 4.10) placed on the Rowland

circle and is given by the focusing condition CD = Rc sin θB. The Rowland circle only

touches the crystal at its middle point C. The focusing condition is defined from that

position and only the X-rays Bragg reflected at C will pass through D. The X-rays

fulfilling the Bragg condition at any outer parts of the crystal will have a trace which

will intersect the Rowland circle in the neighborhood of D (following the caustic circle,

see figure 4.9). Therefore, it leads to an asymmetric aberration in the direction of

the higher energies, i.e. smaller Bragg angles, as seen in figure 4.10, leading to the

so-called Johann broadening, which will cause a shift of the measured Bragg reflection,
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Figure 4.9: An optical reflection on a curved surface with radius OC leads to
rays tangential to a caustic circle. A spatial concentration of the rays is achieved
at points of the circle with radius OM = 1

2OC.

the Johann shift. The geometrical aberration will be discussed in a section 4.2.3.

An alternative geometry, proposed by Johansson [97], overcomes the geometrical

Johann broadening. The angle Φ in figure 4.9 is identified in the language of Bragg

reflection with the Bragg angle θB: Φ = π − 2θB. By grinding the surface of the

bent crystal with a grinding radius equal to the half of the bending radius, the crystal

surface is tangent to the Rowland circle and the Bragg planes always touch it. As

consequence the Johansson geometry fulfills the focusing condition independently of

the X-rays striking point at the crystal (Fig. 4.11). However, the difficulties of the

machining are enormous.

The Johann setup was initially described using cylindrically bent crystals. Nev-

ertheless, it can be extended to spherically bent crystals which further enhances the

intensity by a partial vertical focusing [95].

Moreover, the Johann broadening and shift can be quantified and kept smaller

compared to the crystal intrinsic resolution by choosing appropriate dimensions for the

crystal width (b, see figure 4.10) compared to Rc (Rc >> b). The width of the active
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Figure 4.10: The Johann geometry. A cylindrically bent crystal with a radius
Rc = OC will focus the incoming X-rays, which fulfill the Bragg condition, from
an extended source to the neighborhood of a point distant Rc sin θB from the
crystal center C. This distance corresponds to the focusing condition and is on
a circle centered in M with a diameter equal to the bending radius. The circle is
named Rowland circle. The reflections from the outer regions of the crystal lead
to a defocusing which can be quantified relatively to the crystal opening angle
σj [94]. The detector is perpendicular to CD.

crystal area can easily be controlled by placing apertures in front of the crystal limiting

the width of the crystal’s reflection region.

4.2.2 Vertical focusing with spherically bent crystals

In a 3-dimensional view the Bragg condition defines an infinite admittance cone for

each position of its vertex on the crystal’s surface. The angle between the tangent plane

to the crystal surface at the vertex and the lateral surface of the admittance cone is

the Bragg angle. Thus the cone’s opening angle ξ is twice (90− θB). Consequently, an

arbitrary cone base at a certain distance from the vertex will be parallel to the tangent

plane. Therefore, the Bragg condition is fulfilled for an income and corresponding
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Figure 4.11: The Johansson geometry. The grinding of the crystal prevents
the geometrical distortion seen in the Johann geometry.

outgoing X-ray on the cone’s lateral surface and in antipode positions. Figure 4.12

clarifies the concept.

Point-like source vs extended crystal

Figure 4.12 shows the vertical focusing considering a point-like source. The center

of the crystal C will be the vertex of an admittance cone which passes through S. The

focusing condition Rc sin θB defines the position of the detector plane. Hence, an X-ray

coming from S and hitting the crystal at C will be detected at D.

On the other hand, an admittance cone with its vertex at C’ can be constructed by

rotating the first one like a pendulum with its fixed point vertically aligned with C and

at a distance RC from it. The second cone can be extended so that it intersects the

previous one at a position close to S. By considering that the crystal radius is much

larger compared to its dimensions the second cone is just slightly tilted. Therefore, for

sake of simplicity, the intersection can be assumed to pass very near to S. In practice,

the source would need to have some finite size in order both cones would intersect it.

Within this approximation, the distance SC ′ is slightly larger than SC. As con-

sequence, the detector plane will not cut the outgoing X-ray C’I at I (at the same

distance from C’ as S) but at I’.

So, the vertical extension of the spherically bent crystal will result in a curved
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2-dimensional spectrum line out of a point-like source. The upper and lower crystal

extension (positive and negative y) will create the upper and lower part of the line

(positive and negative yD) respectively. As depicted in the figure, facing the crystal,

the curvature of the line will be to the right, i.e. in the negative side of xD (detector

coordinate system).

yD

xD

X−ray path

x

z

y

D S

I

I’

detector plane

crystal

admittance cones

C

C’

θBθB
ξ

Figure 4.12: Perspective view of the effect of the vertical extension of a spher-
ically bent crystal using a point-like source. The admittance cones with vertexes
at C and C’ are drawn as solid and dashed lines, respectively. The admittance
cone with vertex at C’ is an approximation valid for large crystal radius com-
pared to the crystal dimensions. The detector plane is depicted in long dashed
lines and is perpendicular to the direction CD. The position D is given by the
focusing condition Rc sin θB. The 2-d spectrum line is drawn as medium-long
bold dashed line.

The positive and negative line extensions can be estimated, in leading order, for

a given θB and vertical crystal extensions with the source placed on the Rowland

circle at a distance given by the focusing condition. Figure 4.13 shows the geometrical

construction of the positive line extension.
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The line extension d= DI ′ is twice the hight e (see figure), which is related to the

distance h between O and N by:

e = h tanφ (4.18)

where φ is the angle between OC and OC’. The angle φ and the distance h are given

by:

φ ≈ a

Rc

≈ sinφ ≈ tanφ (4.19)

h = f cos θB (4.20)

a is the positive vertical extension of the crystal and f the distance from O to S:

f = Rc cos θB (4.21)
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Figure 4.13: Perspective view of the geometrical construction of the spectral
line vertical extension from a point–like source. The Rowland circle with center
at M is depicted to clarify the geometrical relations. O is the origin of the
coordinate system.

Therefore the positive line extension becomes:

d = 2e = 2h tanφ = 2f cos θB tanφ = 2Rc cos2 θB tanφ

d = 2a cos2 θB (4.22)

The same could be done for the lower part of the spectral line considering the

negative vertical extension of the crystal. For a symmetric vertical crystal extension,

equation (4.22) holds also with a and d being the total vertical extension of the crystal

and spectral line, respectively.
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By moving the point-like source inside the Rowland circle the Bragg condition is

only fulfilled at point C along the vertical direction (y). To create the same effect as

a point-like source at S, at a distance n from S the source needs to have a vertical

extension t given by the triangular relation (see figure 4.13):

t =
a·n

Rc sin θB
(4.23)

In case the source has a smaller vertical extension, the effect would be the same as

a point-like source at S using a vertical crystal extension a’ given by:

a’ =
Rc sin θB t

n
(4.24)

By placing the point–like source outside the Rowland circle the above relations

hold, but the lower part of the source (y < 0) would be responsible for the upper part

of the reflection on the detector plane (y > 0).

Point-like crystal vs extended source

To study the effect of the vertical focusing from a vertical extended source, one can

start to consider a point like crystal, i.e. consider only X-rays striking the crystal at its

center C. Figure 4.14 shows the construction of the spectral line under the mentioned

conditions.

In figure 4.14 the detector plane is placed perpendicular to the direction given by

CD. An X-ray which passes at S’ and strikes the crystal at C fulfilling the Bragg

condition will be reflected along the direction CD’ and will intersect the detector plane

at I’. The distance S’C and CD’ are equal. Point I’ will have a bigger y coordinate than

D’. On the other hand, the intersection of the direction S’C with the source plane (not

depicted) will have a symmetric y compared to I’. Thus, the lower part of the source

(y < 0) will create the upper part of the spectral line (y > 0) and vice-versa.

Therefore, an extended source will be reproduced on the detector plane with sym-

metric y coordinates, with the curvature being defined by the intersection of the ad-

mittance cone with the source and detector planes.

Placing the source inside or outside of the Rowland circle will enhance or limit the

effect. Calling l the distance to the crystal center C of an arbitrary position of the

source plane (always perpendicular to SC), and y2 the height of the source to create

the same effect as a source placed at S with height equal to y1, the following triangular

relation can be written:

l =
y2

y1

Rc sin θB (4.25)
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Figure 4.14: Perspective view of the geometrical construction of the spectral
line from a vertically extended source and a point-like crystal. In dashed line
is depicted the base of the admittance cone generated by the revolution of the
triangle CNS around the axis CO. The detector plane is in long dashed lines and
is perpendicular to the direction CD at D. The spectral line generated by the
vertically extended source using only the crystal center C is in solid bold line.

Yet, inside the Rowland circle a shorter vertical source extension can produce the

same vertical extension on a spectral line as a source placed at the Rowland circle.

Outside the Rowland circle the source needs to be higher.

Extended crystal vs extended source

The two approaches can be combined in order to obtain the vertical focusing of

a vertically extended source using a vertically extended crystal. The top view of the

geometrical construction which helps to understand the concept is shown in figure 4.15.

The tilt of the admittance cone with the vertex in C’ was neglected. The total

vertical extension of the spectral line can be regarded as partly (Y+
D) due to the vertical

extension of the source (Y−S ) using a point-like crystal at C and partly (d) due to a

point-like source placed at the negative extremity of the source and using the total
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vertical positive crystal extension (a+). Hence,
∣∣Y+

D

∣∣ =
∣∣Y−S

∣∣ and d is given by equation

(4.22).

YS
−

zx

y

YD
+

crystal

C

C’d

admittance cones

D
S 21a+

Figure 4.15: Top view of the geometrical construction of the vertical spectral
line extension from a vertically extended crystal and source. The bases of the
admittance cones with vertex in C and C’ are indicated in dashed and point-
dashed lines, respectively. The projections of the X-ray paths against the plane
(x, y) are indicated as pointed lines. The tilt of the cone with vertex at C’ was
neglected.

The limits of the source define the limits of the image (image height). Therefore,

to use only the points S and S+Y−S is sufficient to determine the positive half of the

height of the image (y =Y+
D+d). Any point between S and S+Y−S at the source will

lead to a Bragg reflection between D(y = 0) and y =Y+
D+d.

Moreover, the curvatures due to the two different approximations — point-like

source vs extended crystal and extended source vs point-like crystal — are similar and

can be considered to overlap.

By calling Yim the total reflection extension on the detector plane and using the

minus and plus signs to indicated negative and positive y coordinates, respectively, one

65



Chapter 4. High Resolution X-ray Spectroscopy

can write in leading order:

Yim =
∣∣Y+

im

∣∣+
∣∣Y−im

∣∣

Yim =
∣∣d+
∣∣+
∣∣Y+

D

∣∣+
∣∣d−
∣∣+
∣∣Y−D

∣∣

Yim =
∣∣2a+ cos2 θB

∣∣+
∣∣Y−S

∣∣+
∣∣2a− cos2 θB

∣∣+
∣∣Y+

S

∣∣ (4.26)

For a symmetric crystal and vertical source extension, expression (4.26) can be

simplified to:

Yim = 2a cos2 θB + YS (4.27)

where a is the total vertical crystal extension and YS the total vertical source extension.

This is valid for a source placed in the Rowland circle.

It is clear from figure 4.15 that a source place outside the Rowland circle (position

2, for instance) needs to have a larger vertical extension to produce the same image

height as the source with height Y−S at S. Inside the Rowland circle at a position not far

from it (position 1, for instance) the vertical extension of the source, needed to produce

the same effect as the source at S, is smaller than Y−S . Nevertheless, expression (4.27)

gives a fair approximation of the height of the image for positions near the Rowland

circle and can be used in leading order.

4.2.3 Angular corrections of bent crystals spectrometers

Effect of refraction on the Bragg law

The simple Bragg law [79] does not take into account the index of refraction of the

crystal material. Therefore, a small correction needs to be done in order to have a

more correct relation between the X-rays wavelength and the Bragg angle measured at

the exterior of the crystal.

When an X-ray penetrates a crystal it suffers a change in its wavelength due to

refraction (Fig. 4.16). Assuming the Bragg law holds inside the crystal and the new

wavelength is λ′, the Bragg angle will become θ′B and the Bragg law can be rewritten

as:

nλ′ = 2d sin θ′B (4.28)

Considering that the optical principles of refraction can be extended to X-rays, the

wavelength and Bragg angle inside the crystal can be related with the correspondent

values at the exterior of the crystal:

nr =
λ

λ′
=

cos θB
cos θ′B

= 1− δ (4.29)
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Figure 4.16: The effect of the refraction on the Bragg reflection. The X-rays
change slightly their wavelength inside the crystal.

where δ is the decrement of the index of refraction nr. Working out expressions (4.28)

and (4.29) in order to eliminate the index of refraction and the primed quantities, one

arrives at a corrected Bragg law ([98], chapter 6), considering that the refraction index

for X-rays is close to unity i.e. δ ≈ 0:

nλ ≈ 2d sin θB

(
1− δ

sin2 θB

)
(4.30)

Further details can be found in Chantler and Deslattes [90].

Geometrical corrections

The geometrical defocussing entailed by the Johann setup due to the horizontal

crystal extension is as large as the horizontal crystal opening angle 2σj (Fig. 4.10).

According to Eggs and Ulmer [95] the maximum broadening on the Rowland circle

(du = DB) is given in leading order by:

du = Rc

σ2
j

2
cot θB =

1

8

b2

Rc

cot θB (4.31)

where b = 2σjRc is the horizontal crystal extension.

In angular terms, the maximum angular broadening, considering only the horizontal

crystal extension, is [95]:

∆θb =
σ2
j

2
cot θB =

1

8

b2

R2
c

cot θB (4.32)
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Additionally, the source dimensions and the height of the crystal also introduce an

extra angular variation. The maximum angular broadenings due to these two factors

are respectively, according to Eggs and Ulmer [95]:

∆θz =
z2

R2
c sin 2θB

(4.33)

∆θa =
1

128

a4

R4
c

cot3 θB (4.34)

where z is the height of the source and a the vertical crystal extension. The geometrical

broadening due to the crystal height can be neglected in most practical applications

[95]. Therefore, the maximum Johann broadening becomes the sum of two contribu-

tions:

∆θJ = ∆θb + ∆θz (4.35)

A detailed description on how to calculate the average broadening caused by a

cylindrical crystal is given by Zschornack et al. [96]. In leading order it corresponds

to an integration of the Johann broadening over the cylindrical crystal width divided

by that width:

CJohannCyl =

1
8

cot θB

R2
c

∫ b
0
b2 db

b
(4.36)

and hence:

CJohannCyl =
1

3
∆θb (4.37)

By working in leading order, a calculus similar to the one expressed by equation

(4.36) can be carried out to find approximately the average Johann broadening for a

spherical crystal surface.

A cylindrical surface with a reflecting area limited to a circle causes the same

Johann broadening as a spherical surface, the circle radius being equal to the one

of the spherical calotte. On both situations, the horizontal crystal extension varies

along the vertical crystal axis and the integration should be done also over the vertical

crystal extension. The variables x and y will be the horizontal and vertical coordinates,

respectively. An uniform reflectivity is assumed over the whole crystal surface.

The Cartesian coordinates (x,y) can be written in polar coordinates (r,ϑ) to simplify

the subsequent integration:

x = r cosϑ (4.38)

y = r sinϑ (4.39)

dy

dϑ
= r cosϑ⇒ dy = r cosϑ dϑ (4.40)
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The average Johann broadening J(y) for an infinitesimally high strip (dy) at a

coordinate y will be 1
24

cot θB

R2
c

[2x]2, where 2x is the strip length. The weight w(y) of each

strip dy is, in its turn, the reflecting area (2xdy).

The average broadening (CJohannSph) for the circular area is then given by the

weighted average of the average broadenings of the strips at height equal to y = r sinϑ

and length 2x = 2r cosϑ. In other words it is the sum of all the infinitesimal strip

contributions divided by the total area, thus:

CJohannSph =

∫
J(y)w(y) dy∫
w(y) dy

(4.41)

where
∫
w(y)dy is obviously the circle’s area and thus, equal to πr2. Inserting the

limits for a circle with a diameter equal to b, it becomes:

CJohannSph =

∫ b/2
−b/2

1
24

cot θB

R2
c

(2x)2 2x dy

π b
2

4

(4.42)

by changing 1
24

cot θB

R2
c

for K, and using (4.38) and (4.40) the integral becomes:

∫ π/2

−π/2
K(2r)2 cos2 ϑ 2r cosϑ r cosϑ dϑ =

= 8Kr4

∫ π/2

−π/2
cos4 ϑ dϑ (4.43)

The integral is solved by making use of the double-angle identity:

cos2 ϑ =
1 + cos 2ϑ

2
(4.44)

thus:

8Kr4

∫ π/2

−π/2
cos4 ϑ dϑ = 8Kr4

∫ π/2

−π/2
[cos2 ϑ]2 dϑ =

= 8Kr4

∫ π/2

−π/2

[
1 + cos 2ϑ

2

]2

dϑ = 8Kr4

∫ π/2

−π/2

1

4
[1 + cos 2ϑ]2 dϑ =

= 8Kr4

∫ π/2

−π/2

1

4

[
1 + 2 cos 2ϑ+ cos2 2ϑ

]
dϑ = 8Kr4

∫ π/2

−π/2

1

4
+

2 cos 2ϑ

4
+

1

8
[1 + cos 4ϑ] dϑ =

= 8Kr4

∫ π/2

−π/2

3

8
+

cos 2ϑ

2
+

cos 4ϑ

8
dϑ = 8Kr4 3π

8
= 3πKr4 (4.45)

By inserting the result in (4.42) and introducing the value of r = b
2
:

CJohannSph =
3πKr4

πr2
= 3Kr2 =

3

4
Kb2 (4.46)
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and finally by substituting K:

CJohannSph =
1

24

cot θB
R2
c

3

4
b2 =

1

4

b2 cot θB
8R2

c

which according to (4.32) can be rewritten:

CJohannSph =
1

4
∆θb (4.47)

In principle, with the described approach it is possible to calculate the average

Johann broadening of any crystal surface parametrization in leading order, even asym-

metric surfaces.

The use of spherically bent crystals with partial vertical focusing properties intro-

duces an additional vertical aberration. Over a two-dimensional position detector, a

reflection line takes a curved shape along the vertical direction (discussed in the pre-

vious section) which broadens and shifts the line (see Fig. 4.17). It can be corrected

as follows.
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Figure 4.17: Simulated spectrum of 3.104 keV X-rays using a spherically bent
Si(111) crystal with Rc ≈ 2985 mm, a diameter equal to 100 mm and a width
b=60 mm. The detector is placed at the position given by the focusing condition
and centered at (x,y)=(0,0). The effect of the spherical bending on the vertical
line shape is shown at the left. The spectrum after curvature correction is shown
at the right.
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The line can be parameterized and fit with a second order polynomial x = Ay2 +

By + C. To restore the vertical form of the line, the position of the events (xi; yi) has

to be changed to (xi − Ay2
i − Byi; yi). The effect of the curvature correction is shown

in Fig. 4.17.

Other corrections

Besides the corrections presented, there are other ones which might be needed to

be considered. One of those is related to the variations of the crystal lattice parameter

d. The bending process causes a slightly variation of d along the crystal depth which

will result in a line broadening. The effect depends upon the elastic properties of the

crystal material [99]. A dependence of d on temperature can also be considered [100].

However, it is negligible for small variations in temperature as the thermal expansion

coefficient for silicon is of the order of 10−6 K−1 [105] and the impact of the relative

variation of d on the Bragg angle is given by:

dθB
dd
⇒ ∆θd = −∆d

d
tan θB (4.48)

In practice the temperature variation is about a few kelvin. More details about other

second order corrections can be found in Chantler and Deslattes and in Cembali et al.

[90, 99].

4.2.4 Response function

A very important point of the data analysis in high-resolution spectroscopy is the

determination of the response function of the spectrometer at the energy of interest.

The XOP package [84] delivers the response function of a flat crystal at a given energy

for both linear polarizations, σ and π. For an unpolarized beam the response function

is assumed to be the sum of the curves for each polarization (see e.g. Fig. 4.18).

By interpreting the XOP output as a probability density function of the reflection

angle around the Bragg one and inserting it in a tracking routine which simulates the

geometrical constraints of the experimental setup, the theoretical response function of

the spectrometer at a certain energy can be obtained.

Yet, non-linear surface distortions caused by the bending and polishing processes are

not excluded to contribute to an extra broadening of the response function. In fact,

experiments revealed a response function broader than theoretically expected [102].

Therefore, the spectrometer response function has to be experimentally determined.
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Figure 4.18: Rocking curves of a Si(111) 0.3 mm thick crystal, for 3.104 keV
(He-like Ar M1) and 2.430 keV (He-like S M1) at 300 K obtained with XOP [84].
The total rocking curve is shown in bold as the sum of the σ polarization (solid
normal black) and the π polarization (dashed). See table 5.9 in page 151 for
more details about the FWHM of the rocking curves for the energies studied.

To do that, the use of X-ray transitions lines with widths considerably smaller than

the expected response functions is compulsory. Light exotic atoms could provide such

lines but must be discarded because of the low count rate and the high statistics needed.

The M1 X-rays from Helium-like ions are a very good alternative as they have a

suitable line width and can be produced by plasma sources with very high intensity. In

addition the low kinetic energy of the ions in electron cyclotron resonance sources (less

than 1 eV [106, 107]) results in a negligible Doppler broadening. Around 3 keV the

Doppler effect contributes to an additional broadening of about 40 meV, which com-

pared to the typical response function of our spectrometer at that energy (≈ 450 meV

[102]) is about one order of magnitude smaller.

The M1 X-rays from Helium-like sulfur, chlorine and argon, with energies 2.430,

2.757 and 3.104 keV [109], respectively, can be used to extract the response functions

at the aimed πH transitions, namely the 2p− 1s (2.436 keV), the 3p− 1s (2.886 keV)

and the 4p− 1s (3.043 keV) [108].

Contrary to the mentioned πH transition lines, the µH(3p − 1s) transition, object

of the present dissertation, does not have an easily accessible M1 Helium-like ion which
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overlaps its energy (2249.46 eV [110]). Helium-like phosphor could provide a suitable

M1 line (2.12 keV [109]), but available phosphor gases, like the phosphor pentafluoride

(PF5) and the phosphine (PH3) are corrosive and very toxic. PH3 is even extremely

inflammable. Thus, to get the response function at the energy of the µH(3p − 1s)

transition an extrapolation based on the results for the other M1 lines needs to be

done.

The extra broadening attributed to surface distortions is pinned down by comparing

the measured response functions with the ones provided by the tracking routine. A

good agreement with the experimental data can be found by convoluting Gaussians

with the theoretical response functions [102]. Thus, the imperfect nature of the crystal

can be modeled through a Gaussian whose width is determined experimentally. By

including the Gaussian broadening in the tracking routine a response function very

close to reality is obtained.

The experimental determination of the response functions at the desired πH tran-

sitions as well as the extrapolation for the µH(3p − 1s) will be discussed in chapter

5.

4.2.5 Dispersion and energy resolution

The dispersion is the ability of the spectrometer to separate small wavelength dif-

ferences. Like the energy resolution it is an important quantity to characterize the

performance of a bent crystal Bragg spectrometer.

To deduce the angular and energy dispersion one first considers the Johann geom-

etry described in figure 4.10 (page 59). The distance from the detector to the crystal

is given the symbol Y . The direction along the detector (⊥ to DC) is x. Hence, one

can write:

dx = −Y dθB (4.49)

where the minus sign is purely conventional, it defines the direction of dx. dx is positive

when x increases which means that θB decreases.

The energy derivative with respect to the wavelength is given by:

dE

dλ
=
−hc
λ2

= −E
λ

(4.50)

where h is the Planck constant and c the velocity of light in vacuum. Thus, one can

write:
dE

E
= −dλ

λ
(4.51)
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According to the differential Bragg relation (4.8) (page 53) and equation (4.49) this

becomes:
dE

E
= − cot θBdθB = −cotθB

−dx
Y

(4.52)

which finally can be rearranged to the energy dispersion relation:

dx

dE
=
Y

E
tan θB (4.53)

For the particular case where the Bragg reflection is placed on the Rowland circle

(at D in Fig. 4.10, page 59) the distance to the crystal Y is given by the focus condition

Rc sin θB and equation (4.53) is rewritten:

dx

dE
=
Rc

E
sin θB tan θB (4.54)

which is a good approximation in the vicinity of D [108].

The energy resolution of the bent crystal spectrometer depends in leading order

on the intrinsic resolution of the crystal in a flat configuration. It is predicted by

the perfect crystal theory, according to what was described in section 4.1.3 (page

53), and by including second order corrections. However, as described in previous

sections, the bent nature of the crystals introduces a geometrical broadening and thus

additional contributions to the energy resolution. These are related with finite sizes

of the crystal (width) and source (height) [95]. Moreover, the imperfect nature of

the crystals introduces an extra broadening. The contribution from the crystal height

[equation (4.33)] can be neglected, as mentioned previously. The energy resolution is

then the quadratic sum of all the individual contributions and can be written in the

following form:
(

∆E

E

)2

=

(
∆E

E

)2

Cry−Int
+

(
∆E

E

)2

Cry−W
+

(
∆E

E

)2

Src−H
+

(
∆E

E

)2

Cry−Imp
(4.55)

Taking into account the differential Bragg equation (4.8), the relation (4.51) and

the angular FWHM of the Darwin curve (4.10) the intrinsic resolution, omitting the

minus sign, will be given in leading order by:
(

∆E

E

)

Cry−Int
=

(
∆θB

tan θB

)
=

(
wFWHM
D

tan θB

)
=

3
√

2

π

(
d

m

)2
r0 |F |
vc

(4.56)

The two relevant geometrical contributions follow similarly from equation (4.32)

and (4.33)

(
∆E

E

)

Cry−W
=

b2

8R2
c

cot2 θB (4.57)
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(
∆E

E

)

Src−H
=

z2

2R2
c sin2 θB

(4.58)

The fourth contribution which comes from crystal imperfections needs to be ex-

tracted from a comparison between the experimental resolution and the Monte Carlo

simulation, as discussed in the previous section and to be shown in later chapters.

An important tool to pin down the intrinsic resolution as well as the response

function (rocking curve) of a crystal are the available software packages like XOP [84]

or DIXI [101] where the crystal theory as well as some important corrections are built

in.

4.3 Quantification of geometrical constraints by

X-ray tracking

A Monte-Carlo tracking routine was developed inside the πH collaboration [114].

It is a very important tool in the data analysis and serves as well for a better un-

derstanding of the behavior of the bent crystal Bragg spectrometer. The simulation

routine, named XTRACK [114], takes the rocking curve and the experimental geomet-

rical constraints to provide reliable response functions. As already mentioned in 4.2.4,

the possibility to add an additional Gaussian broadening, which models the crystal’s

imperfectness, is also built in.

In the following studies the 3.1 keV is used as example because it corresponds to

the measured transition energy from M1 He-like ions (chapter 5) where the effects are

more visible.

4.3.1 The impact of the crystal reflecting area on the response

function

As discussed in section 4.2.3, the finite size of the crystal limits the resolution of

the spectrometer. However, by reducing the crystal reflecting area the count rate is

reduced as well. That can render a measurement in exotic spectroscopy very time

consuming because of already low count rates typical for the exotic atoms. Hence, the

reflecting area should be tuned in order to maximize the count rate without degrade

significantly the resolution.

By using the tracking routine, the impact of this geometrical constraint on the

response function of the spectrometer can be clarified. Figure 4.19 shows a comparison

between the flat crystal response function from XOP [84] at 3.104 keV (θB=39.56◦) and
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Figure 4.19: The response functions obtained with XTRACK for a Si(111) bent
crystal with different reflecting areas (solid lines) are compared to the rocking
curve given by XOP [84] for a flat Si(111) crystal (dashed lines). a) Circular
reflecting area with 40 mm diameter. b) Rectangular reflecting area 60 mm wide
and 95 mm high. c) Circular reflecting area with 95 mm diameter. The response
functions for the bent crystal were normalized to the rocking curve.

different response functions obtained with XTRACK by changing the crystal reflecting

area. A circular area with 40 mm and 95 mm diameter and a rectangular area 60 mm

wide and 95 mm high were studied.

By simple visual inspection of figure 4.19 it is clear that the rectangular reflecting

area leads to a line distortion which is only slightly larger than for 40 mm diameter

where the response function is roughly similar to the rocking curve of the crystal. On

the other hand, by using a circular reflecting area with 95 mm diameter, which is

almost the whole crystal, the response function gets considerably distorted.

In fact, the rough check of the FWHM of these response functions confirms the pre-

vious observation. The FWHM of the response function obtained with 40 mm diameter

reflecting area is nearly the same as the FWHM of the rocking curve (within ±1µrad).

It differs by only ∼4 µrad (∼15 meV) from the one which corresponds to the rectan-

gular reflecting area depicted in figure 4.19 b). The FWHM of the response function

for the 95 mm diameter reflecting area is ∼512 meV, ∼25% larger than the FWHM of

the rocking curve (∼410 meV) which represents a considerable line distortion.
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Therefore, around 3 keV, the 60×95 mm (H×V) rectangular reflecting area is a good

choice. It leads to a negligible distortion in the response function with a reflection area

about 70% of the whole crystal but 4.5 times larger than the circular 40 mm solution.

At the µH(3p − 1s) energy transition (2.248 keV, θB=61.58◦), the impact of the

reflecting area on the response function is expected to be rather small, as the equations

in section 4.2.3 allow to predict from the cot θB factor. This factor decrease fast for

increasing θB: a change in the Bragg angle from ∼39.56◦ at 3.104 keV (cot θB ≈ 1.21)

to ∼61.58◦ at 2.248 keV (cot θB ≈ 0.54) results in a major decrease of the angular

broadening [see equation (4.32)].
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Figure 4.20: The comparison between the response functions calculated with
XTRACK at 2.25 keV of the Si(111) bent crystal with a 40 mm diameter re-
flecting area (dashed line) and with 95 mm diameter reflecting area (solid line)
is shown. The lines were normalized for direct comparison.

The response functions at 2.248 keV obtained with a circular reflecting area 40 and

95 mm diameter are shown in figure 4.20. The XTRACK simulations show a very

small difference between these two response functions. A rough FWHM determination

indicates a difference of the order of 7 µrad between them, which means ∼9 meV. The

response function obtained with the 40 mm diameter reflecting area corresponds, in
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first order, to the rocking curve which has a FWHM of about 255 meV.

Therefore, the use of almost the whole crystal maximizes the reflecting area with a

negligible distortion in the response function.

4.3.2 Effect of the source dimensions on the response function

The Bragg condition and the Johann/Johansson geometry establish that an X-ray

reaching the detector was emitted from a curved and vertical source region limited by

the admittance cone which is as narrow as the reflection width. A Bragg reflection at

the detector is a mirrored image (possibly vertically extended) of the source region for

a specific Bragg angle. Figure 4.21 shows the source distribution of more than 55000

events which fulfilled the Bragg condition at 3.104 keV (a vertical collimation at the

source of 4 mm was used). One can see that the events come from a very narrow

horizontal region with width of about 300 µm.
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Figure 4.21: Monte-Carlo simulation of the source distribution of the events
which fulfilled the Bragg condition at 3.104 keV. A source collimator with an
height of 4 mm and a width of 200 mm was assumed.

Because the base of the admittance cone at the vertical source plane has a very

big radius compared to the vertical collimator opening (∼ 1500 mm vs 4 mm, for

Rc ∼3000 mm and θB ∼ 40◦), the vertical source region looks basically straight. How-

ever, it should be noted that it is just a part of a vertical curved region.
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Accordingly, the vertical source collimator width does not influence the line shape,

unless it truncates the line distribution at the source. The collimator width limits the

possible range admitted for the Bragg angles. It defines as well the source region which

is possible to scan for a given Bragg angle (target scan).

On the other hand, the vertical dimensions of the collimator can influence the Bragg

reflection shape, as predicted in section 4.2.3. For Bragg angles ranging from 40◦ to

60◦ the distortion should be similar, as the sin 2θB factor is nearly one for all possible

cases. The simulation tracking routine helps to quantify the expected distortion as

well as it clarifies the effect on the two-dimensional Bragg reflection. In figure 4.22 the

3.104 keV Bragg reflections at the detector as well as the response functions obtained

by using a vertical source collimation of 1 mm and 100 mm are compared. An extended

source wider than the 100 mm collimator was used.
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Figure 4.22: The 3.104 keV Bragg reflections at the detector from the bent
Si(111) crystal simulated with 1 mm (a) and 100 mm (b) vertical collimation are
compared. The horizontal dashed lines in a) and b) are the vertical limits of our
CCD detector (72 mm high). The respective normalized response functions are
depicted in (c), after curvature correction, in solid (1 mm) and dashed (100 mm)
lines. A 60mm×95mm reflecting area from the Si(111) bent crystal and an
extended source wider than 100 mm were used.

As the figure shows and already discussed in section 4.2.2, the source collimator’s

height limits the Bragg reflection vertical extension. Nevertheless, considering our

crystal and detector dimensions, even a narrow collimator of only 1 mm height will
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lead to a Bragg reflection that would extend to outside of the detector’s area. In fact,

for the mentioned collimator and crystal extension, 1 mm and 95 mm, respectively,

and θB ≈ 39.6◦, equation (4.27) predicts a Bragg reflection vertical extension around

114 mm, confirmed by figure 4.22a.

As only the inner part of the line overlapping with the vertical size of the CCD

detectors (indicated in figure 4.22) will be used, no significant differences are foreseen

for the response functions. Figure 4.22c shows exactly that. Basically no difference in

the response functions from a fine source collimation (1 mm) to the extreme case of a

very open source (100 mm) is observed.

At the µH(3p− 1s) transition energy the reflection height is significantly reduced.

For a point-like source expression (4.27) predicts a vertical line extension around 42 mm

using a 95 mm vertical extended crystal (θB ≈ 61.6◦) which is barely half of our

detector’s height (72 mm). Figure 4.23c confirms the predicted value. To use the

full capacity of the detector a source collimator’s height that exceeds approximately

30 mm should be used. Figures 4.23 compares the 2-dimensional spectra obtained with

different collimation’s height at ∼ 2.25 keV [µH(3p− 1s) transition energy].
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Figure 4.23: Simulated 2-dimensional spectra at ∼2.25 keV from the Si(111)
bent crystal with different source height collimation: a) 100 mm; b) 50 mm;
c) 1 mm. A rectangular 60×95 mm reflecting area from the Si(111) bent crystal
and a horizontally extended source wider than 100 mm were used. The dashed
lines are the detector’s vertical limits.

Despite the height limitation, within the detectors limits, it could be shown that,
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still at this energy (∼ 2.25 keV), the response functions obtained with a 1 mm source

collimation height and with any larger than this one, have no significant difference.

Therefore, from the point of view of the reflection broadening, no particular re-

strictions are needed to be taken in the source collimator width nor height. This is

an important feature on exotic atoms experiments which suffer from low count rates,

allowing to possibly open the source collimation.

4.3.3 The influence of a crystal’s position offset in the re-

sponse function
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Figure 4.24: Effect of a vertical crystal center displacement of 30 mm in the
2D spectrum at 3.104 keV. A source collimator 4 mm high and a 60×95 mm
reflection area were used. The horizontal dashed lines are the vertical limits of
the detector’s area. The (0:0) coordinate is the central position of the detector
plane. a) Normal reflection over the detector without any crystal displacement.
b) Reflection got with a 30 mm vertical crystal center offset. c) situation after b)
spectrum has been tilt-corrected, the vertical centering being restored. d) The
verticality of the reflection in c) is restored by applying the curvature correction
algorithm.

The grinding of a glass lens to the desired curvature radius is a delicate process. It

would be desirable that the center of a concave glass lens coincides with the deepest

point of the surface. However, small displacements of several millimeters can not be
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avoided or excluded. On the spectrometer geometry such displacements act like if the

crystal would be vertically/horizontally misaligned (in the crystal holder and behind

the mask which limits the reflecting area) relative to the detector system.

The tracking routine helps to predict and understand the effect of any crystal

vertical/horizontal displacement. In figure 4.24 the impact of a 30 mm vertical crystal

offset in the 2-dimensional spectrum at 3.104 keV is shown. The reflection is shifted

upwards by the same amount and is not anymore vertically centered at the detector.

Moreover, it is partially cut at its bottom part which can lead to statistics losses at

lower energies if the collimator is not opened enough and the vertical extension of the

reflections are smaller than the detector’s height.
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Figure 4.25: Normalized response functions of the bent Si(111) at 3.104 keV
with and without vertical offset are depicted. The response function obtained
without any crystal displacement is in solid black. The dashed line represents
the one obtain with a vertical 30 mm crystal center offset. A small difference is
seen, which corresponds to less than 3 µrad in the FWHM.

By using the vertical tilt steering system of the crystal holder the reflection can be

replaced at the detector center. After this tilt correction, the line would show up a

slightly more pronounced curvature. By performing a curvature correction on the tilted

and cut reflection, the verticality of the reflection can be restored without causing any

significant horizontal shift.
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In fact, the vertical crystal offset leads to a negligible broadening of the response

function, after tilt correction. Figure 4.25 shows a comparison between the response

function of the spectrometer at 3.104 keV without any crystal offset and with a vertical

30 mm offset. The difference between them is very small. A rough FWHM determi-

nation quantifies it to be less than 3 µrad (∼11 meV) which is negligible compared to

the total FWHM (∼110 µrad).

On the other hand, a horizontal offset of the crystal center (δx) causes a horizontal

shift of the reflection over the detector given by δx · sin θB as shown by figure 4.26. The

figure compares the response functions without any offset and with 30 mm offset. No

difference between the response functions is seen.
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Figure 4.26: Impact of a horizontal crystal center offset on the 2-dimensional
Bragg reflection — at the left; and response function of the Si(111) bent crystal
at 3.104 keV — at the right. The response functions were normalized. For the 2-
dimensional Bragg reflection comparison 5 mm offset was used. A more extreme
30 mm offset (dashed line) was used for the response functions comparison.

Additionally, an offset of 3 cm is quite extreme and would correspond to a very

rough fabrication/setup error, which is very unlikely to happen. In practice crystal

center displacements larger than 10 mm can be excluded. Around this value, the

already minor impacts will be even smaller and completely unimportant.

Considering a displacement of the crystal holder relative to the CCD detector, the
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described behavior would be the same, despite the fact that no statistics would be lost

when a vertical offset would occur. Similar results would be obtained at the µH(3p−1s)

transition energy.

Therefore, offsets smaller than 10 mm in the crystal center position, as well as on the

relative position of the crystal holder to the detector will not affect the measurements.

The spectrometer geometry showed to be quite immune to this kind of systematic

errors.

4.3.4 The response function vs the distance crystal-detector
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Figure 4.27: Comparison between the simulated response functions of the
Si(111) bent crystal at 3.104 keV obtained with different positions of the detector.
a) The response function at the nominal focus (solid line) is compared to the one
obtained with a 2 mm (dashed line) and 10 mm (bold line) shift in the direction of
the crystal. b) The response functions corresponding to shifts of 10 mm towards
the crystal (solid line) and away from it (dashed line) are depicted. A rectangular
60×95 mm reflecting area and a 4 mm high source collimator were used.

Deviations from the nominal focus position (Rc sin θB) will lead to a spectrum line

distortion due to defocalization. Actually, small deviations from the focus up to 2 mm

can not be avoided. The simulation routine clarifies the impact of small deviations from
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the nominal focus of the detector position. A positive or negative value of the detector’s

shift from the nominal focus means towards or away from the crystal, respectively.

The simulation of the response function with the detector shifted by +2 mm from

the nominal focus shows basically no line distortion. Opposite, an impact of a +10 mm

shift is already very prominent on the line’s shape. The response function gets consid-

erably broader with a much larger distortion on the high energy side (θ − θB < 0 ⇒
smaller angles). Figure 4.27a) shows the direct comparison.

Moreover, the response functions obtained with symmetric detector’s shifts, towards

and away from the crystal, are similar. Thus, the line distortion will only depend upon

the nominal shift value and not on the direction. This is stressed in figure 4.27b).

Therefore, even if small detector’s shifts from the focus, of the order of a millimeter,

do not introduce an important distortion, it grows rapidly with the nominal shift value.

The behavior of this effect is similar at other energies where the arguments hold as

well.

4.3.5 Study of the focusing condition

In the Johann geometry, due to geometrical aberration, the focusing condition given

by Rc sin θB is only approximately correct. In fact, a careful geometrical drawing (see

picture 4.10, page 59) supports the idea that the focus, defined as the position where

the spectral line is thinnest, should be slightly shifted inside the Rowland circle, toward

the crystal (detector plane at B and ⊥ to CD in figure 4.10).

By making use of the simulation routine one can test the applicability of the focusing

condition to the bent crystal Bragg spectrometer used. High statistics spectra can be

simulated by setting the detector plane (always ⊥ to CD, see figure 4.10) at several

positions around the position given by the focusing condition. Several moments of

the horizontal distribution can be evaluated to characterize the events at the detector

plane.

To estimate the x coordinate around which the distribution spreads the mean was

used and to characterize the width of the distribution over x the common variance and

its square root, the standard variation were applied. As third estimator to characterize

the width of the distribution, the average deviation was used:

ADev(x1...xN) =
1

N

N∑

j=1

|xj − x| (4.59)

where N will be the total number of events, x and xj the mean of the x coordinates

and the x coordinate of an arbitrary event, respectively, at the detector plane in the
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detector coordinate system.

The average deviation is claimed to be a more robust estimator than the variance,

as it was verified that higher power moments are generally less robust than lower

power ones in broad distributions ([113], section 13.1). The variance is a second order

estimator given by:

Var(x1...xN) =
1

N − 1

N∑

j=1

(xj − x)2 (4.60)

involving the sum of quadratic differences. Therefore, the average deviation looks to be

more suitable to characterize the width of the x distribution of the Bragg reflections. In

the detector coordinate system, the origin (0;0) is the intersection between the detector

plane and the direction CD perpendicular to it (check figure 4.10, page 59).

In figure 4.28 the results for four different moments of the x distribution are de-

picted as function of the detector shift from the position given by the focusing con-

dition Rc sin θB. The simulated distributions were performed for the M1 He-like Ar

energy transition (3.10418 keV), using a Si(111) crystal with a bending radius close to

2985 mm. A source collimator 4 mm high and a 60×95 mm reflecting area were used.

98525 events were obtained at the detector plane from 10 million initial trials.

The mean of the distribution shows a linear trend in the order of a tenth of µm per

millimeter, which corresponds to 0.0025 pixel/mm. Hence, there is a small asymmetry

for symmetric detector shifts, which is very tiny and thus negligible.

The rocking curve has a slight tail in the direction of negative x (lower energies,

θ − θB > 0), as shown in figure 4.18 (page 72) for instance. In principle that would

be sufficient to explain the distribution’s mean at x < 0. However, the geometrical

broadening when the detector is shifted away from the focus is more pronounced at the

higher energy side (x > 0), as made clear in figure 4.10 (page 59). Thus, it would be

expected that the mean would vary around a minimal value when shifting the detector

plane around the focus.

Yet, the right side of the crystal (facing the crystal) is closer to the source, and

the probability to be hit is higher than the left side, due to the bigger solid angle. By

moving the detector away from the crystal, the X-rays leaving from the right side of

the crystal are registered with larger x opposite to the X-rays leaving from the left side

which lead to events having smaller x (see figure 4.10 on page 59).

Consequently, the mean value of the distribution changes from a negative x to a

positive one, by moving the crystal away from the crystal, as the crystal’s right side

starts to be responsible for the hits with positive x.
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Figure 4.28: The trend of the mean (a), average deviation (b), standard
deviation (c) and variance (d) of the x distribution at the detector plane are
depicted against its shift from the nominal focus given by Rc sin θB. In dashed
lines are the linear fit (a) and the quadratic fit to the calculated moments.

2

Concerning the other three estimators which evaluate the width of the distribu-

tion, they all exhibit a quadratic behavior, where the minimum should in principle

correspond to the focus. By fitting a second order polynomial, the shift that minimize

the estimators were ∼0.5 mm and ∼1.6 mm for the average deviation and variance,

respectively. Obviously the result for the standard deviation is the same as for the

variance.

The result shows that the focusing condition given by Rc sin θB can be applied to

the bent crystal Bragg spectrometer. It is correct within less than 2 mm, or even with
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about 0.5 mm when considering only the most robust width estimator, which for the

purpose is good enough.

4.4 The crystal spectrometer

The bent crystal Bragg spectrometer used in all the experimental set–ups at PSI is

composed of three main parts : the cyclotron trap, the crystal chamber and the detector

cryostat, arranged in a rigid mode and connected through vacuum pipes to avoid X-ray

absorption. Figure 4.29 shows a schematic top view of the PSI spectrometer.

Figure 4.29: Top view of the crystal spectrometer. The angles ΘARM and
ΘCRY define the angular settings of the spectrometer. The Bragg angle is taken
between the crystal backplane and the incoming and outgoing X-rays.

The cyclotron trap provides a high stop rate in a target cell from a negative particle

beam. This enables the measurement of X-rays with relatively high intensity from the

deexcitation of exotic atoms. Moreover, the cyclotron trap can be modified into a

Electron Cyclotron Resonance (ECR) ion source allowing atomic X-ray spectroscopy

of high charged ions. More details about both configurations will be given in the
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dedicated chapter 5 and chapter 6.

4.4.1 Crystal details and spectrometer tuning

The crystal used in the µH(3p − 1s) experiment was a Si(111) which has better

resolution and higher reflectivity than an alternative solution with suitable energy

acceptance: Quartz(101) [102]. The Si(111) crystal is 0.3 mm thick, has 100 mm

diameter and is mounted by optical contact on a high quality cylindric glass lens.

The glass lens is 30 mm thick, has a diameter of 120 mm and one of its bases is

ground into a spherical shape with the desired radius. Figure 4.30 shows the crystal

mounting. Specially cut and polished to preserve its reflection properties, the crystal

is carefully bent against the ground face and takes its spherical form. The radius to

which the lens is ground, which determines the bending radius of the crystal, is close

to Rc = 2985 mm. The cutting, polishing and bending processes were performed by

Carl Zeiss, Inc., Oberkochen, Germany.

Figure 4.30: Lateral section view of the crystal mounting design. The thin
crystal disc is pressed against the thick glass lens, previously ground, to take a
spherical shape. Due to the mirror finished surfaces the crystal remains attached
to the lens by molecular forces. The sharp glass edges are removed to avoid edge
cracks. The curvature and the crystal thickness are to scale.

The crystal is mounted in a holder which allows its vertical tilt for vertical adjust-

ment of the Bragg reflection over the detector (Fig. 4.31). Aluminum apertures can

be placed in front of the crystal to define the active reflection area. The crystal holder

can be rotated from outside the vacuum system by a shaft. This can be done inde-

pendently or together with the detector chamber, defining the angles ΘCRY and ΘARM

(Fig. 4.29). This idea is unique for this kind of spectrometers and it was developed

at Jülich to allow the scan of the target region [115]. All the angular movements are
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remotely controlled by step motors and high precision angular encoders (resolution of

0.2 seconds of arc). The vertical axis of the crystal holder is aligned to ±0.1 mm with

the angular encoder.

Figure 4.31: Photo of the crystal holder together with a Si(110) crystal at its
side. The Si(111) crystal looks similar.

To change the energy acceptance of the apparatus by ∆θB both angles (ΘARM and

ΘCRY ) need to be changed. When changing ΘARM the crystal rotates together with

the detector’s chamber. Hence, ΘARM should be moved twice ∆θB and ΘCRY shifted

∆θB in opposite direction (see Fig. 4.29 for better understanding of the procedure).

By changing only ΘARM ( ΘCRY and the Bragg reflection over the detector are kept

fixed) different source regions are analyzed (target scan). A movement in ΘCRY implies

a change in the observable spectral region as well as in the source region. To control

some small instabilities, the value of ΘCRY is continuously monitored and readjusted

by a feedback loop with a ceramic piezo-electric element. It has already been seen

that stresses generated by the rigid connection between the detector’s cryostat and

the crystal’s chamber could lead to mechanical long-term instabilities out of the piezo

range [112]. In order to decouple the crystal’s chamber from the detector’s cryostat

and avoid the stresses a bellows compensator was installed between them (figure 4.33).
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4.4.2 Detection system

The detector system is based on an array of two columns of three CCDs with a

total sensitive area of 48×72 mm. The CCDs used in the assembly were developed for

1...10 keV large area detection in X-ray astronomy missions (CCD22) [104, 103].

CCD22 are high-resistivity devices with a depletion depth approximately 30 µm.

These chips have 600×600 square pixels with a side length of 40 µm at room temper-

ature. Each pixel has an energy resolution of 160 eV at 3 keV. The gaps between the

six CCDs and their orientation were measured with an accuracy of about 0.8 µm and

50 µrad to be less than 500µm and 7 mrad, respectively [104, 105]. CCD22 has very

good quantum-efficiency (QE) in the designed energy region increasing from ∼75% at

∼2 keV to a maximum of 90% around 4 keV [103, 104]. Figure 4.32 shows the used

CCD-detector assembly.

Figure 4.32: Picture of the detector system prior to installation inside the
vacuum cryostat. At the left a general view of the system with its cold-finger
holder and part of read-out electronics. At the right the array of the six CCDs
is zoomed.

In order to decrease the operation noise, mainly due to dark current, the CCDs are

mounted on a cold-finger cooled with liquid nitrogen. A closed loop control keeps the

CCDs temperature at −100± 0.5◦C [104]. A thermal dependence of the pixel size was

verified with high accuracy and the pixel size at the operation temperature (−100◦C)

was found to be 39.9775± 0.0006 µm [105].
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The cold-finger holder is sitting on a high-precision translation table from which

it is thermally isolated. The crystal-detector distance is then remotely adjustable to

match the crystal focusing condition in a 86 mm range with a precision of 0.2 mm [104].

Figure 4.33 presents a detailed section view of the stainless steal vacuum tight cryostat

which houses the whole detector mounting. The cryostat is placed on a polished granite

table and can be air-lifted, permitting its easy movement on the table and therefore

θARM adjustments by a step motor. Several electronic elements placed inside and

outside the cryostat carry out the operation of the CCDs through a custom designed

software running on an IBM compatible PC. A more detailed information about the

characterization and operation of the detector system can be found in Ref. [103, 104,

105].

Figure 4.33: Schematic view of the detector vacuum cryostat.
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4.4.3 Data processing

The data is collected by exposing the CCD array to the X-rays which are Bragg

reflected from the crystal. The detector system acts as a camera which takes successive

pictures, named frames, with an exposure time of about 1 min. The energy of an X-ray

is converted to a charge when it hits a pixel. After a frame, the read-out system stores

the position of the pixels which were hit and their charge with the pixels being cleared.

A column of pixels corresponds to the same x and therefore to one angular position.

Cluster analysis

The X-rays in the few keV region (< 4 keV) are mainly converted in the depletion

region (∼30 µm thick) of the pixel and cause a single event on it. Additionally, if the

absorption occurs near the pixel edge the charge can be split between two adjacent

pixels. In contrast, highly energetic photons can penetrate deeper into the CCD sub-

strate, beyond the depletion region, i.e. in the field free region. In this case, the charge

can diffuse freely along the substrate and eventually be collected in several pixels pro-

ducing a multi-pixel cluster event (see fig. 4.34). Partial or total recombination is also

possible with consequent charge losses. High energetic particles can additionally create

tracks on the CCD.

Figure 4.34: Schematic view of a typical charge distribution over the CCD
pixels. The few keV X-rays produce the single and double pixel events. Higher
energy X-rays originate larger clusters according to their energy. Tracks along
the CCD area are created by high energetic particles.

Therefore, a cluster analysis is mandatory to separate the “good events” from higher

order clusters and reduce the background. The CSDCLUSTER program, used in the

raw data processing, separates the data by cluster size allowing not only the correct

93



Chapter 4. High Resolution X-ray Spectroscopy

treatment of the few keV X-rays but also higher energy X-rays (5-12 keV) which pro-

duces clusters of 5-15 pixels.

The huge impact of the cluster analysis on reduction of the background of the µH

data can be seen in figure 4.35 which shows the energy spectrum of one of the CCDs.

The reduction is about a factor of 1000.

However, in the case of the ECRIT, the source intensity is so high that a great

number of “good” events is registered in contiguous pixels which would be wrongly

identified as clusters. Consequently, the cluster analysis would lead to a dramatic

reduction in the peak intensity and it should be turned off. In fact, a reduction to

about 25% of the total peak intensity was seen by using cluster analysis. Therefore,

the illumination was arranged in the way that only a few percent of the pixels were hit

per frame.

Energy cuts

Figure 4.35: Examples of the energy spectra for one of the CCDs obtained
during the measurement of the µH(3p − 1s) X-rays: at the left before cluster
analysis and at the right by considering only clusters with 1 and 2 pixels. The
energy spectrum presented at the left has only 10% of the statistics. The selected
energy cuts are indicated by dashed vertical lines. A binning factor of 10 was
applied. Each ADC channel corresponds roughly to 3 eV for CCD2.

Further background reduction is achieved by applying energy cuts to the raw data.

The cuts are set according to the energy region of interest by inspecting the energy

spectra. This is done individually for each CCD as the gain is slightly different. A
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previous energy calibration with a 6 keV 55Fe source determines the gain and the noise

level for each chip.

Figure 4.35 shows how the energy cuts are selected from the energy spectra of the

CCDs. All pixels which contained charge corresponding to an energy out of the region

of interest are rejected.

Bad pixel map

Another feature that must be taken into account are the damaged, faulty pixels.

In case of internal damage, pixels can contain charge without being hit by a photon.

These are called “hot pixels” and have to be rejected in the analysis. This is done by

setting a minimum number of hits which declares a pixel as faulty and registering its

position in a bad pixel map (BPM). The threshold was set in an iterative way. After

a first BPM has been created, the effects on the spectrum should be checked, and

the threshold for the BPM changed accordingly until a good compromise between the

background reduction and the losses of good events is achieved.

Relative position and orientation of the CCDs

The position and orientation of the CCDs relative to each other is also considered

in the raw data processing. This was measured by a dedicated experiment [105] and

serves as input in CSDCLUSTER which processes the respective corrections of the

spectra.

Curvature correction

To produce a correct position spectrum a curvature correction must be performed.

As described in section 4.2 the spherical profile of the crystal induces an image at the

detector plane which has a curved shape leading to a broadening of the one-dimensional

spectra.

The CSDCLUSTER parameterizes the curve by a second order polynomial and uses

the algorithm referred to on page 71 to restore the line shape. Inside the program this

needs to be done iteratively. A first parameterization of the curve is performed after

a selection of the region of interest. In a second step, a narrowed region aligned with

the curved reflection is selected and the parameterization is redone until it converges.

Figure 4.36 shows an example of a curvature correction done with CSDCLUSTER.
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Figure 4.36: An example of the curvature correction using the CSDCLUS-
TER program is shown for the He-like Chlorine M1 line. At the left the two-
dimensional spectrum of the line before the curvature correction and at the right
after the correction. The long dashed vertical lines limit the region of interest
selected for the first iteration. The short dashed curved lines limit the region of
interest for the next parametrization iterations. The solid curved line defines the
curvature of the M1 reflection. The horizontal dashed lines are the limits of the
3 CCDs where the spectral line is.

Multiple hit analysis

In the presence of a relatively intense source, the exposure time might be too

long and it is possible that during a frame a pixel is hit more than once by photons

with similar energy. In this situation the energy deposited in the pixel is double and

according to the energy cuts discrimination the pixel will not be taken into account to

build the position spectrum.

Multiple hits are negligible in the exotic atom experiments (less than 1 good event

per frame) but it was seen to contribute to a loss up to 15% of the statistics in the

ECR ion trap experiment (about 100 good events per frame). Accordingly, a double

and even triple hit analysis should be performed. The double and triple hit spectrum

is obtained by setting the energy cuts around the double and triple energy of interest,

respectively. The final position spectrum is the sum of the single hit spectrum with

twice the double hit spectrum and three times the triple hit spectrum. Figure 4.37

shows an example of a spectrum with multiple hit events obtained during the ECRIT

data acquisition.
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Figure 4.37: The spectrum of the M1 transition in He-like argon is shown
in solid bold. The spectra of the single, double and triple hits are depicted for
comparison in solid, dashed and dotted lines, respectively. The double and triple
hit spectra are depicted with respect to the right y-axis. The double and triple
hit events corresponds to approximately 11% of the total spectrum.
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Chapter 5

Characterization of the Si(111)
bent crystal labeled Z13

The characterization of the bent crystals used in the Bragg crystal spectrometer is

a key issue of the high precision spectroscopy in both pionic and muonic experiments

at PSI [77, 108, 116].

One of the fundamental aspects is to determine the response function of the crystal

at the energies of interest, which, as discussed in section 4.2.4, needs to be experimen-

tally done by using appropriated X-ray lines. The knowledge of the response function

of the crystal will allow to unfold the kinetic energy effect in the µH(3p−1s) spectrum

which constitutes an important step in the πH(Γ1s) analysis.

An electron cyclotron resonance ion trap (ECRIT) was set up to determine the

response function of the crystals which were used in the pionic and muonic hydro-

gen measurements. The Si(111) crystal named Z13 was the one used to measure the

µH(3p − 1s) X-ray transition. In the present chapter, the ECRIT device is described

as well as the experimental strategy and analysis to pin down the response function of

Z13 at the µH(3p− 1s) transition energy.

However, during the first data analysis some difficulties emerged to interpret the

results. An incorrect mechanical setting by a few millimeters from the assembling of

the vacuum tubes and other mechanical elements was considered as a possible source

of error. An accurate measurement by optical means was performed to determine the

distance between the crystal and the linear table on which the detector moves. It

resulted in the exclusion of this possibility.

As consequence, alternative explanations were sought and further investigations

of the crystal properties were taken up. A check of the value for the crystal radii

provided by Carl Zeiss R© was considered. Moreover, the possibility that the crystal

surface might not be parallel to the Bragg planes was additionally taken more seriously.
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Indeed, the orientation of the Bragg planes to the crystal surface and its radius of

curvature can constrain the focal position of the spectrometer and lead to a detector

misplacement. However, despite these items were not considered during the former µH

and πH measurements, any possible correction can be posteriorly applied. The crystals

were always placed in the holder with the same orientation. Furthermore, the accurate

knowledge of these two parameters can avoid such errors in future experiments.

Hence, the full characterization of the Si(111) crystal entails the determination of

its response function, the relative orientation of the Bragg planes to the surface and

its curvature.

In the present chapter the asymmetric cut angle is discussed in detail. The value

for the curvature radius obtained from the ECRIT data analysis is a byproduct and is

compared to an optical measurement and the value provided by the manufacturer Carl

Zeiss R©.

5.1 The ECRIT experiment

In order to determine the response function of a crystal at a certain energy, the

measurement of an X-ray line with a similar energy and considerably smaller width

than the expected response function is mandatory. This excludes the use of fluorescence

X-rays which have natural line widths of the order of eV, incompatible with the few

hundreds of meV of the expected response function of the spectrometer [102]. In

contrast, exotic atoms can provide suitable lines. For instance, the natural width of

the πNe(6h → 5g) transition (≈ 4.5 keV) is 12 meV [117]. However, the poor count

rate and the high statistics needed render the results difficult to interpret.

Alternatively, Electron Cyclotron Resonance (ECR) ion sources can provide very

intense X-ray lines, from highly charged ions, with suitable natural width. The M1

transitions in He-like ions formed with low to medium Z atoms are lines having an

energy of a few keV and negligible natural width (<< 1meV [108]). Moreover, positive

ions have a rather small kinetic energy inside the ECR ion source (< 1 eV [106]), which

for X-ray energies around 3 keV leads to a Doppler broadening less than 50 meV (one

order of magnitude smaller than the expected response function).

In He-like ions the magnetic-dipole transitions (M1) are clean lines because neigh-

boring satellite lines, which could influence the line shape, have low intensity. The

M1 from He-like ions produced in ECR ion sources are therefore perfect candidates to

determine the response function of Bragg crystals in the few keV range. In figure 5.1

an illustration of the decay scheme of the He-like ions with medium Z is given.
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Figure 5.1: Illustration of the decay scheme of the 1s2p and 1s2s states in
He-like ions.

5.1.1 Electron Cyclotron Resonance Ion Sources and Traps

The first electron cyclotron resonance ion source (ECRIS) was developed in 1971

by R. Geller and his collaborators [118] to produce high intensity ion beams of highly

charged states. An atomic plasma created by the electron cyclotron resonance of free

electrons and confined inside a magnetic field can be used as well as an intense X-ray

source.

The ECR ion sources became a relatively low-cost apparatus and are used in many

accelerator machines. Moreover, together with a high resolution spectrometer the ECR

ion sources allow a wide range of spectroscopy studies in atomic, plasma and ion-surface

interaction physics. Commercial versions of ECR ion sources are available [119, 120].

The core of the ECR ion source is a vacuum chamber, which acts as microwave

cavity, embedded in two groups of magnets: two solenoids magnets and a multipole

magnet (see figure 5.2). The free electrons present inside the chamber are accelerated by

high frequency radiation. These high energetic electrons collide with the surrounding

atoms and induce a very strong ionization by progressively stripping the atoms from

their electrons. The plasma is formed by the free electrons and the highly charged

ions in many different charge states. The ions can be extracted from the plasma by

applying a high potential to the vacuum chamber, creating a highly charged ion beam.

The axial confinement is determined by a longitudinal so-called mirror field which

can be obtained with two sets of solenoids or permanent magnets (fig. 5.2). Along the

chamber axis, the magnetic field has a minimum value at the center of the vacuum

chamber and two maxima which define the limits of the confinement.

To confine the electrons radially, a hexapole or other multipole structure is used.
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PlasmaHigh Frequency
injection

Gas inlet

Highly charged ions

X−rays

multipole magnets
(radial confinement)

(axial confinement)
Solenoids or permanent magnets

Figure 5.2: General scheme of an ECR ion source. The two sets of magnets
generate a magnetic bottle which confines the plasma (electrons plus ions). The
highly charged ions generate X-rays with different energies from the various tran-
sitions available. By applying an electric field, the ions can be extracted into a
highly charged ion beam.

The multipole, generally made of rare earth permanent magnets, induces a radial

magnetic field with a minimum at the longitudinal axis of the chamber. In figure 5.3

an illustration of the magnetic field along the vacuum chamber axis is shown together

with the radial field lines created by a hexapole element.

The basics of the particle confinement can be worked out by taking the geometry of

the magnetic field (B) which is generated only by the two coils (see figure 5.4). This is

the simpler magnetic confinement and it is named magnetic bottle or magnetic mirror

which traps the particles in a “magnetic well” (figure 5.3).

In the absence of an electric field ( ~E = 0), a particle with charge q and a velocity

v⊥, perpendicular to a uniform magnetic field ~B experiences a force given by:

FB = qv⊥B (5.1)

As the magnetic force is perpendicular both to the velocity and to the magnetic

field, the charged particle will move in a circular orbit “tied” to a magnetic field line.

The radius of this gyro-orbit is called cyclotron radius, gyroradius or Larmor radius

and is given by:
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II. CALCULATION OF THE RADIAL FIELD

As it is showed in the next section a relatively large
distance between the two SC coils is necessary in order to
reach a very high mirror ratio. Estimates showed that a usual
two-side axial pumping would not be enough to produce low
basic pressure and high pumping speed which are necessary
to get very high charge states in the plasma. Therefore an
open structure NdFeB hexapole was chosen. At the calcula-
tions the LBL AECR-U3 design was considered as a starting
point, however, all the geometrical and magnetic parameters
were optimized for the current conditions and requirements.
For the calculations theSUPERFISH/POISSON/PANDIRAgroup
of codes4 was used.

A relatively large internal diameter was chosen to in-
crease the plasma volume. The open structure and the large
diameter resulted in a magnetic field of about 1 T only at the
chamber walls, however, this still allows safe resonance fre-
quencies up to 20 GHz. Figures 2 and 3 show the resulted
structure and magnetic fields. The radial pumping windows

FIG. 2. Cross-sectional view of the open hexapole. i.d.590 mm,
o.d.5240 mm, length5300 mm,Br51.28 T, Hc j521 kOe.

FIG. 3. The radial magnetic induction at the poles and at the gaps inside the
open hexapole.

FIG. 4. The modified arrangement of the PSI SC cyclotron trap.

FIG. 5. Axial distributions at different coils currents~20%–40%–60%–
80%!. The horizontal lines represent resonance values for 6.4, 10, 14.5, and
18 GHz.

FIG. 6. The peak and minimum fields on the axes together with their~mir-
ror! ratio and with the force effects to one of the SC coils.

1117Rev. Sci. Instrum., Vol. 71, No. 2, February 2000 Ion sources

Downloaded 22 Jul 2002 to 129.129.155.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp

Figure 5.3: At the left the general shape of the magnetic field (B) along the
longitudinal axis of the ECR ion source is depicted. B is maximum at the axial
coordinate of the coils and minimum at the half distance between them. At the
right, an example of the radial B-field lines created by a hexapole is depicted
[124]. The field is minimum at the center.

ρL =
mv⊥
|q|B (5.2)

where m is the mass of the particle with charge q. By taking the energy in eV and the

magnetic field in kG, the Larmor radius can be rewritten in centimeters for electrons

and ions [119]:

ρeL = 0.0035

√
Ee
B

[cm] (5.3)

ρiL = 0.16

√
AEi
z+B

[cm] (5.4)

A and z+ being the mass number and the ion charge state, respectively. For the same

energy and field strength the Larmor radius is much smaller for the electron as it

scales with the square root of the mass ratio. For instance, in a ECR ion source, by

considering a typically mean energy of 10 eV and a minimum field of 2 kG, the electrons

have a mean Larmor radius of about 0.06 mm and a Ar+16 about 0.9 mm. It should

be pointed that at the beginning of the ionization process the Larmor radius is much

larger. For instance, an Ar+1 ion (EK =10 eV) will have a mean Larmor radius close

to 15 mm. Consequently, only the ions with low kinetic energies will remain inside the
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magnetic mirror and suffer further ionization. This helps to explain the observed small

kinetic energies of the positive ions inside the ECR ion source (< 1 eV [106]).

If the charged particle has a velocity with an arbitrary orientation to the magnetic

field the resulting trajectory is a helix and the velocity can be subdivided in two

components:

v = v⊥ + v‖ (5.5)

where v‖ is the component parallel to ~B and v⊥ is perpendicular to ~B. Considering a

magnetic field along the x direction: v⊥ =
√
v2
y + v2

z and v‖ = vx. The magnetic force

q~v⊗ ~B causes the components of the perpendicular velocity to change in time but the

parallel component remains constant. On the other hand, the perpendicular velocity

defines a magnetic moment given by:

µp =
mv2
⊥

2B
=
EK⊥
B

(5.6)

EK⊥ being the kinetic energy component corresponding to v⊥.

Despite the magnetic field in a magnetic bottle is not constant in space, it varies

slowly and several adiabatic invariants can be defined. An adiabatic invariant follows

from considering an action integral of a mechanical system. If pi and qi are the gen-

eralized canonical momenta and coordinates, for each coordinate which is periodic the

action integral Ji is defined by:

Ji =

∮
pidqi (5.7)

with the integration being calculated over a complete cycle of the coordinate qi. The

action integrals of a system are constant. Moreover, if the properties of the system

which are not related with the periods of motion are changed slowly compared to

these periods, the action integrals remain also constant [136]. Such changes are called

adiabatic changes.

In the case of a charged particle inside a magnetic bottle, the action integral for

the gyro-motion is:

J =

∮
~p⊥d~ρL (5.8)

where ~ρL is the canonical coordinate (|~ρL| = ρL) and ~p⊥ the perpendicular component

of the canonical momentum ~p = m~v+ q ~A, with ~A being the magnetic vector potential.

By performing the integration over the circular path 2πρL the action integral will be

(Jackson section 12.6 [137]):

J = π|q|Bρ2
L =

π

|q|
p2
⊥
B

=
2πm

|q| µp (5.9)
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The adiabatic invariance of J means that the flux of the magnetic field through the

surface defined by the gyro-motion is constant. Therefore, if B varies slowly in space

the Larmor radius will increase according to (5.9). Hence, the quantities Bρ2
L , p2

⊥/B

and µp are adiabatic constants.

Admitting in first approximation that the charged particles inside the magnetic

bottle move without collisions in vacuum and without external forces, the total kinetic

energy is constant during their helical trajectory around the field lines. The particles

can not gain energy from a non-time-varying field and the total energy has only a

kinetic component:

E = EK‖ + EK⊥ =
1

2
m(v2

‖ + v2
⊥) (5.10)

The adiabatic constants of the movement (5.9) require that as B varies along the

field lines v⊥ changes accordingly by transfering the kinetic energy between its parallel

and perpendicular components.

The magnetic field is minimum at the middle point between the coils and maximum

at the axial position of the coils. Moving from the center towards the coils, the charged

particles face the increase of B by increasing v⊥ and reducing v‖. When v‖ reaches zero,

the particle stops its longitudinal movement, changes its direction and is reflected in

the direction of the minimum B. Therefore, it can not access regions where B > E/µp.

The bouncing condition v‖ = 0 at the B maximum position defines the confinement:

µp > µtrap =
E

Bmax

(5.11)

All particles which satisfy this inequality will be trapped in the field line between

the coils. The trapped particles will describe a periodic motion between two points

called mirror points. By taking µp given by equation (5.6) at the central position

(B = Bmin) and put it into the inequality (5.11), the confinement condition can be

rewritten in terms of the ratio between the velocity components:
∣∣v‖
∣∣

|v⊥|
<

√
Bmax

Bmin

− 1 (5.12)

This inequality defines a “loss cone” in the velocity space such that any particle in

it
(
v⊥ <

√
Bmax

Bmin
− 1 v‖

)
will not be bounced at the mirror point and will escape from

the system.

The quantity Bmax/Bmin is named mirror ratio and is a characteristic of the ECR

ion sources. Higher values define an higher efficiency of the electron confinement.

Depending on the magnets’ characteristics, the mirror ratio ranges typically from 1

to 5. Obviously, charged particles with a velocity parallel or nearly parallel to the
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magnetic field lines can not be trapped. Moreover, as collisions always occur, some

diffusion and scattering out of the magnetic confinement region is expected which

leads to some plasma leakage. The figure 5.4 shows a schematic of the magnetic mirror

geometry.

Figure 5.4: The particles are trapped between the magnetic coils along the B
field lines creating the plasma. However, the geometry also exhibits some drifting
across the field lines [119].

In fact the plasma confinement is even more complex and implies a strong diffusion.

The plasma is a kind of fluid and does not behave like free particles. The concave

shape oriented inwards (figure 5.4) results in possible plasma instabilities. To create an

extended B minimum region destroying that bad curvature shape solves the problem.

This can be done by inserting a hexapole in between the coils. The hexapole modifies

the concavity of the field lines which become outwards oriented (see fig 5.2) and leads

to plasma stability. This type of confinement (axial+radial) is named minimum-B

configuration [119].

The magnetic field inside the chamber is a superposition of both axial and radial

magnetic fields. For a given magnetic field ~B, the electrons have a cyclotron resonance

frequency from their gyro-motion defined by:

ωc =
eB

me

(5.13)

where e and me are the charge and mass of the electron. In order to accelerate the

electrons and induce the gas ionization, an electromagnetic wave with a high frequency
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(HF) which matches ωc is injected inside the chamber. It is clear that the resonance

state is only achieved on a magnetic equipotential surface. The fast electrons, confined

inside the magnetic bottle, periodically cross the resonance surface which favors the

confinement as they are accelerated in the direction perpendicular to the magnetic field

[119]. The stronger the magnetic field, the higher is the resonance frequency of the

electrons which is matched by the HF, leading to larger plasma density and ioniza-

tion possibilities [121]. A resonance frequency of the order of 5-20 GHz (microwaves)

matches a typical magnetic field of 0.2-0.8 T.

Nested shells of resonance surfaces can be produced by injecting different HF which

increases the probability to heat up the electrons [124, 123]. Higher HF will match

resonance frequencies in the outer regions where the magnetic field is higher.

The density of free electrons in the plasma can be enhanced by inserting an electron

donator inside the vacuum chamber. That can be accomplished with a polarized elec-

trode or by coating the chamber walls with a secondary-electron emitter as alumina,

for instance [122]. The ionization of the injected gas is a collisional process and can be

described by:

Xn+ + e− → X(n+1)+ + 2e− (5.14)

Obviously, the kinetic energy of the electrons should be at least equal to the ionization

energy of the Xn+ ion to obtain the next ionization level X(n+1)+. Taking argon as

an example, to obtain Ar17+ a population of “hot” electrons with kinetic energy of at

least 4.12 keV (ionization energy of the Ar16+) should exist in the plasma.

In the plasma region coexist different populations of particles: cold ions, hot elec-

trons and the thermal electrons. The cold electrons are mainly present in the outer

regions of the plasma and the hot electrons in the plasma core. The particles can gain

kinetic energy from collisional processes and be scattered into the loss cone, leaving

the plasma region. The frequency of the collisions between electrons is similar to the

one of electron-ion collisions and different from the frequency of the ion-ion collisions

(υee ≈ υei 6= υii) [119]. Therefore, a plasma potential is created by the difference in the

collision frequencies.

In the outer regions υei > υii is valid and the thermal electrons are more easily

scattered into the loss cone which builds up a positive potential of the order of few

tens of volts [119]. This potential traps the thermal electrons and balances the electron

losses. On the other hand, at the plasma center υii > υei is valid resulting in the fast

scattering of the ions into the loss cone. Therefore, a depression in the plasma potential

is created by the hot electrons which attract the positive ions into this region. The

system is kept in equilibrium by ambipolar mechanisms. Figure 5.5 shows the typical
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shape of the plasma potential.

The number of highly charged ions produced from the main gas can be further

enhanced by adding a lighter gas into the plasma. Using again argon as example,

oxygen gives the best results as support gas [120, 138], in particular the heavier isotope
18O. Compared to oxygen 16O, 18O leads to an increase of about 25% in the Ar14+ ion

population inside the plasma [138].

radial coordinate

potencial well chamber walls

chamber radial axispotencial

potential
plasma

source

Figure 5.5: Typical shape of the plasma potential due to the electrons and
positive ions distribution. The hot electrons are trapped closer to the axis and
create a potential well which attracts the ions towards the center [119].

This gas mixing effect is explained by the cooling of the heavier ions by the low

mass ions. Therefore, it increases the confinement time of the ions from the main gas

and maximizes the probability of additional collisions with the electrons and higher

ionization levels. This explanation is most widely accepted [122].

The gas pressure ranges typically between 10−5 to 10−7 mbar depending on the

application. Lower pressures avoid electron recombination with the ions and sustain

the production of highly charged ions. On the other hand, higher pressures are used

to obtain an intense beam from low charged ions.

5.1.2 Experimental setup

By modifying the existent cyclotron trap, used in the exotic atom experiments, it

was possible to achieve an ECR ion trap configuration (ECRIT). Special iron blocks

were inserted (field forming iron in figure 5.6) and a NdFeB hexapole magnet (AECR-

U-style) with an open structure was brought inside the vacuum chamber (see figure

5.6). A 6.4 GHz power regulated emitter provided the HF waves needed [123].
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Figure 5.6: Schematic of the setup with the main parts of the ECRIT indicated.

The hexapole is 300 mm long and has an inner diameter of 90 mm and an outer

diameter of 240 mm. The permanent field at its inner faces (radius=45 mm) is about

1.2-1.4 T [124]. The hexapole was cooled by a continuous and forced flow of deminer-

alised water. A stainless steel tube with an inner diameter of 85 mm, 0.4 mm thick

and a length of 265 mm which is limited by copper insertions comprised the plasma

chamber. The tube was perforated at the hexapole gaps by a series of 2.5 mm diameter

holes to increase the conductance of the vacuum pumping.

The magnetic field parameters of this ECRIT configuration guaranteed a mirror

ratio of about 4.3 along the chamber. This very high ratio ensures a high efficiency

of the electron confinement and consequently a high ionization probability. A copper

insertion guided the HF into the plasma chamber.

Three turbomolecular pumps and a cryogenic pump (1000 l·s−1) provided a refer-

ence pressure (without plasma) inside the chamber of about 3 × 10−8 mbar. The gas

injection was done radially by UHV precision leak valves through the gaps of the open

structure of the hexapole and the surveillance of the gas mixture was performed by a

quadrupole mass spectrometer.

As main gases, Ar, CHClF2 and SO2 were used to produce highly charged argon,
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chlorine and sulfur, respectively. Molecular oxygen was employed as support gas with

a mixing ratio around 1:9 [102]. The total pressure inside the plasma chamber was

about 3...4.5×10−7 mbar.

The Bragg spectrometer equipped with a Si or Qu crystal, the detection system

(described in section 4.4) and a cleaning magnet placed at about 1 m of the crystal po-

sition complete the setup. The magnet was installed in order to reduce the background

caused by a huge amount of high energetic electrons seen in first ECRIT operations

[102]. The distance between the center of the trap and the crystal was about 2200 mm.

The length of the vacuum tubes connecting the crystal chamber with the detector

cryostat was varied to fulfill the focusing condition for each He-like M1 transition.

A beryllium window (not depicted in figure 5.6) was placed between the cleaning

magnet and the valve which couples the ECRIT to the spectrometer (near the HF

guide in figure 5.6). The window separated the vacuum in the spectrometer from the

plasma pressure inside the ECRIT chamber. A bypass system (also not depicted in

figure 5.6) ensured that the window does not explode when the spectrometer is vented

and the valve closed.

The CCD detector was protected against the plasma light by a 30 µm thick beryl-

lium window installed in front of the CCD cryostat. In order to reduce the back-

ground and avoid the CCDs overloading, a collimator made of copper in a frame of

densimet R©(machinable tungsten alloy) was placed 150 mm away from the chamber

center. Aperture windows of 28 mm(h)×4 mm(v) for argon and 28 mm(h)×1 mm(v)

for the other two gases were used. To control the exposed area of the crystal, sev-

eral aluminum apertures with circular and rectangular shapes and different opening

dimensions were available to be placed in front of the crystal.

Some important aspects of the ECRIT setup are resumed in the table 5.1.

E[109] θB ΘARM dispersion Rc sin θB Cry-LTab
Gas M1 He-like

[ eV ] [ degrees ] [ degrees ] [ pixel·eV−1 ] [ mm ] [ mm ]

Ar Ar 3104.18 39.5635 79.12 12.66 1899.5 1855
CHClF2 Cl 2756.85 45.8221 91.64 19.96 2138.8 2100

SO4 S 2430.34 54.4424 108.88 34.95 2426.1 2349

Table 5.1: Some important aspects of the ECRIT setup with the Si(111)
crystal. The value measured at Zeiss R© for Rc (2982.2 mm) together with the
lattice spacing of Si(111) (d = 6.2708322 Å) from XOP[84] were used in the
calculations.
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5.1.3 Spectrometer alignment and source tuning

Alignment

Despite the spectrometer being equipped with very accurate angle encoders, it can

not be set to a specific absolute angle. For Johan type spectrometers the absolute

energy calibration is done by comparison to a well know calibration line. Thus, a

reference spectral line, whose Bragg angle is known, should be found first.

In practice the spectrometer mechanics was first set up at an angle close to the

Bragg angle corresponding to the spectral line which would be used as reference. The

reflection condition of the crystal was established by means of a laser: a general purpose

laser was flanged to the trap so that it shone along the longitudinal axis of the trap; the

crystal holder was kept loose and manually adjusted; when hit at its center the crystal

should reflect the incoming beam along the longitudinal axis of the vacuum tubes which

connected the crystal chamber to the detector’s cryostat; once this condition was met

the holder was fixed.

After a M1 X-ray line was identified, the spectrometer was arranged in order to

place the M1 line in the middle of one of the two CCD columns of the detector.

A vertical alignment of the M1 line was additionally performed. This was done

by tilting the crystal so that the reflection is vertically centered at the detector. In

order to simplify the alignment, the height of the M1 reflection was reduced such that

the whole vertical extension of the line would be “seen” by the detector. This was

accomplished by limiting the height of the active area of the crystal to 20 mm with an

appropriate aluminum plate.

Figure 5.7: Picture of the plasma star inside the ECRIT chamber. The ions
follow the field lines of the hexapole (see figure 5.3 on page 103).
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HF power and total pressure scan

A careful tuning of the HF power and the pressure of the gases inside the chamber

was performed in order to maximize the X-ray intensity without compromising the

stability of the source. These conditions were first tuned by visual inspection to initiate

the plasma production inside the chamber (see figure 5.7).

Afterwards, the impact of the total pressure and the HF power on the M1 intensity

was studied. Only one parameter was varied at each scan. The total pressure was

changed either by varying the pressure of the main gas or the pressure of the support

gas (O2). Figure 5.8 shows some examples of the HF power and total pressure scans.

As expected, a strong dependence of the M1 intensity both on total pressure and on

HF power is seen.
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Figure 5.8: Typical pressure and power scans. The total pressure scans shown
were obtained with sulfur. A direct comparison of the intensities should not be
done as the experimental conditions were different: in one case a Qu(101̄) crystal
and HF power of 100 W were used and in the other a Qu(100) crystal and a HF
power set to 300 W. The same holds for the the power scans. The argon scan
was obtained with a Qu(101̄) crystal and a total pressure about 4.3×10−7 mbar.
The chlorine and sulfur data were both collected with the total pressure set to
3.2×10−7 mbar using a Si(111) and a Qu(100) crystal, respectively. The argon
and chlorine data were scaled by a factor 6 and 2, respectively. The dashed lines
serve to guide the eye.

An optimum total pressure of about 3...4.5×10−7 mbar was found for all three main
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gases (Ar, Cl and S), with some small variations from different HF power. The pressure

of the main gas inside the chamber was one order of magnitude higher than for oxygen.

The intensity of the M1 lines increases with power followed by saturation or fast drop

(see figure 5.8). The increase in power leads to a higher number of energetic electrons,

however it also increases the probability that some electrons escape by scattering. After

a certain value, a greater fraction of the high energetic electrons produced escape and

consequently less highly charge states are created. In the case of the argon, the plasma

was getting unstable at powers close to 500 W.

The ionization energies of 2s state electrons of the Li-like argon, chlorine and sulfur

are about 918, 809 and 707 eV [139], respectively. An increase of the HF power with

the ionization energy would be expected as higher energetic electrons are needed to

strip the Li-like ions from its 2s electron. The final He-like ions could later be excited

to higher spin-orbit coupling states and deexcitate via a M1 transition to the ground

state.

In fact, this idea did not hold. Sulfur showed a similar result as argon, both with

the double of the optimum power of chlorine. That might be related to the injection

of molecular gases inside the ECRIT to obtain the He-like chlorine and sulfur. The

presence of extra atoms could modify the plasma dynamics. However, the results can

not be easily compared as the chamber conditions might have changed every time

the main gas was changed and the ECRIT vented. Moreover, an improvement of the

intensity with time was also registered which was attributed to the cleaner environment

inside the plasma chamber.

Scan of the longitudinal B field

The dependence of the intensity of the M1 transition on the current of the su-

perconducting coils was additionally studied. For the present work the current was

initially set to 50 A. A fine tuning was performed by changing it in steps of 0.25 A up

to 52.75 A. Figure 5.9 shows a non-trivial dependence. Within the studied range, the

M1 intensity oscillates between two distinct maxima and a minimum.

As already mentioned before, the resonance condition (5.13) is only fulfilled in a

magnetic equipotential surface which has an ellipsoidal shape [119, 124]. For a certain

ωHF injected, it is always possible to find an equipotential surface where the resonance

condition is fulfilled if Bmin <
me

e
ωHF < Bmax. Therefore, by increasing the magnetic

field the plasma only ignites after a threshold is reached: B→Bmax >
me

e
ωHF . On

the other hand, the plasma production is cut off when B is too high, i.e. B→Bmim >
me

e
ωHF .
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The dependence shown in figure 5.9 can be explained by the dimensions of the

equipotential surfaces. Inside the chamber, the HF wave would behave like a steady

wave being reflected at the chamber walls. Therefore, the resonance would be favored

if the resonance surface would have dimensions of the HF wavelenght λHF . A higher

number of hot electrons would be generated when the ellipsoid axes matches better

λHF or multiples of it. At the limit, a sphere with a radius equal to NλHF would be

ideal. In fact, closer to the chamber center the ellipsoidal surfaces are less extended

and more symmetric.
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Figure 5.9: The dependence of the He-like Argon M1 intensity on the current
intensity of the superconducting coils is depicted. The data was obtained with a
Qu(101̄) crystal and a total pressure of about 4.1×10−7 mbar. The dashed line
is to guide the eye.

Hence, current intensities of about 50.25 A and 52 A in the superconducting coils

will lead to magnetic equipotential surfaces, where the resonance condition is fulfilled,

which matches better multiples of λHF . A frequency of 6.4 GHz corresponds to a

wavelength of 4.6 cm. The higher the current intensity, the higher the magnetic field

and the resonance condition will be fulfilled in a surface closer to the chamber center

and consequently more symmetric. This explains the higher M1 intensity for a current

of 52 A.

Source scan

The volume of the source which can be “seen” by the crystal depends on the focusing

condition as the distance between the target and the crystal is always fixed (2200 mm).
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Within the ECRIT setup the center of the source was never exactly at the expected

focus (Rc sin θB). The distance from the expected focus was approximately -150, 80

and 375 mm for the M1 He-like argon, chlorine and sulfur, respectively∗. The active

crystal area and the collimator placed in front of the source give additional geometrical

constraints. The sketch in figure 5.10 clarifies the ECRIT geometry with respect to

the source.

Plasma
chamber

by the crystal
volume "seen"

Detector

Crystal

150 mm

Rowland Circle

Collimator

2050 mm

Figure 5.10: Schematic of the ECRIT geometry with respect to the source
region “seen” by the crystal. The dimensions of the crystal, source and collima-
tor’s opening are oversized to make the effect visible. The geometrical defocusing
is neglected. The dash-dotted arc represents the translation of the source region
“seen” by the crystal when detector and crystal are rotated together, i.e. varying
ΘARM .

Moreover, the region of the source which is “seen” by the crystal depends on ΘARM .

Thus, a source scan is another important aspect. When ΘARM is changed, the detector

is rotated together with the crystal, keeping θB fixed, and the source region which

fulfills the Bragg condition experiences a translation (dash-dotted arc in figure 5.10).

By varying ΘARM ,the distribution of He-like ions inside the target can be studied

based on the M1 intensity. The distance to the crystal (2050 mm) and the width

(28 mm) of the collimator permits a source scan within a 47′ range around the nominal

ΘARM = 2θB (Bragg condition fulfilled at the plasma chamber’s center). Figure 5.11

shows two typical source scans obtained.

∗The minus sign indicates the direction away from the crystal, i.e. outside the Rowland circle
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The figure reveals that the distribution of He-like ions is higher at the center of the

plasma chamber and decreases to the outer region. This confirms the possible existence

of a highly charged population in the center of the plasma [125].

The source scan obtained with lower HF power shows a practically constant distri-

bution along the scan region. The fast drop at the edges can be due to the collimator

edges. The dominant behavior might be explained based on the plasma potential (see

page 108 and fig. 5.5). The number of high energetic electrons naturally decreases with

the HF power injected which results in a less pronounced depression of the plasma po-

tential at the center. Consequently the attraction force on the positive ions will be

weaker resulting in a freer diffusion and smoother distribution.
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Figure 5.11: Typical source scans with low and high HF injected power. The
data was collected with sulfur and a total pressure of 3.2×10−7 mbar by using
a Qu(100) and Qu(101̄) crystals. The data is plotted relative to the nominal
ΘARM = 2θB. The dashed lines are to guide the eye.

As already mentioned, by increasing the HF power, more electrons with high energy

are produced but a greater fraction escape by scattering from the outer regions of the

plasma. This can also explain the shapes of the target scan. By injecting higher HF

power the fraction of positive ions produced in the outer regions is less and the X-ray

intensity is higher at the center.
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5.1.4 Data acquisition to characterize the crystals

Once the spectrometer and source parameters were optimized, two sets of measure-

ments were performed by changing two different aspects of the geometry: the distance

of the detector from the crystal and the active area of the crystal. The analysis of this

data will lead to the determination of the response function of the spectrometer at the

energies of interest.

The data collected for the studies described in the previous section had just a

satisfactory statistics to allow an optimization of the different parameters through an

online analysis. Typically, spectra with 5 to 10 frames were sufficient. However, the

determination of the response function of the spectrometer requires a more careful

analysis, thus higher statistics. At least 40 frames spectra were recorded.
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Figure 5.12: Example of a He-like argon spectrum taken with Si(111) near
the focal distance of the M1 transition. A rectangular aperture 60 mm wide and
95 mm high was used to limit the reflecting area of the crystal. The experimental
conditions were optimized to maximize the M1 intensity. The major transitions
are identified according to the energies provided in Martins et al. and Costa et
al. [140, 141]. The energy scale was obtained using the energy dispersion around
the M1 transition which is 79 meV·pixel−1.

Several spectra were taken with the detector placed at different distances from the

expected focus. The position of the detector was changed in steps of 3 mm within

a range of 24 mm. Such a focal scan allowed the direct determination of the focal
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position, reducing the error of a misplacing due to its calculation based on several

geometrical parameters. Moreover, it permitted to double check the geometry.

By performing an analysis during the data acquisition of the FWHM of the M1

lines, a first estimation for the focal position could be obtained. Such an analysis was

done by fitting a Gaussian profile as the proper analysis could not be done during the

run. The final result can only be determined in a refined analysis by using the correct

line profile, i.e. response function.

Secondly, the detector was moved to the focal position found and the active area

of the crystal was modified by placing aluminum plates with different aperture shapes

and sizes in front of it. This allowed a study of the impact of the active crystal area on

the response function. Thus, the distribution of the uniformity along the frontal area

of the crystal is checked.

An example of a highly charged argon spectrum obtained during the ECRIT mea-

surement is presented in figure 5.12. The most intense transitions from Be-like, Li-like

and He-like argon are identified. The spectrum was taken near the focal distance for the

M1 transition and the ECRIT and spectrometer optimized to maximize its intensity.

5.2 Relative orientation of the lattice planes

A crystal disc is produced by cutting it with a saw from crystal material. It is

subsequently polished. The process is done in the way the final disc has the optical

surface parallel to the desired crystal planes. A deviation from paralelism of less than

1′ was assumed inside the πH collaboration for long time (until 2005). However, this

assumption became increasingly suspicious. The appearance of vertical misalignments

of the Bragg reflections after a careful laser alignment was never understood. Moreover,

discrepancies from the expected focal lengths, which in some cases reached almost ten

millimeters, were also puzzling.

In fact, the precise knowledge of the orientation of the lattice plans may be lost

during the disc manufacturing, particularly due to the difficulty of the alignment of the

sawing machine. Small errors in the determination of the orientation of the bulk mate-

rial can also not be excluded. Thus, a detailed investigation of the relative orientation

of the lattice planes became mandatory and is described in the following sections.

5.2.1 Miscut in flat crystals

Asymmetrically cut crystals are extensively used in radiation beam lines of syn-

chrotron facilities. They are employed in monochromators in order to modify the
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beam divergence [127, 126]. The asymmetric cut angle, also named miscut, is charac-

terized by an angle α between the optical surface of the crystal and the lattice planes

(see figure 5.13).
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crystal surface

lattice plane

meridional 
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crystal surface

scattering plane
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=
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Figure 5.13: The figure shows a schematic representation of the Bragg re-
flection in asymmetric cut crystals. The direction of the scattering vector is
indicated by n̂; a) the scattering plane is perpendicular to the meridional plane,
the effect of the miscut is maximum and the measured reflected angle will be
Ψr = θB +α; b) the scattering plane is parallel to the meridional plane, no effect
is visible, Ψr = θB.

The Bragg angle is an absolute parameter given by the Bragg condition. However,

experimentally it needs a reference plane to be determined. In a flat crystal, the

optical surface will be that reference. Hence, if the optical surface is parallel to the

lattice planes the angle between a Bragg reflection and the optical surface will coincide

with θB. This does not hold in the presence of a miscut and the angles are decoupled.

For an asymmetrically cut crystal, the angle between a Bragg reflection and the

crystal surface is related with the Bragg angle through:

Ψr = θB ± α (5.15)

depending on the position of the source relative to the crystal surface. In fact, this

is only valid for a particular orientation of the crystallographic planes, i.e., when the
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plane of dispersion which contains the incoming and reflected beam, is perpendicular

to the meridional plane. The meridional plane is defined at each hit point (on the

optical surface) to contain the scattering vector (normal to the lattice planes) and

the intersection between the surface and the lattice plane. Figure 5.13 clarifies the

geometry.

An arbitrary orientation of the incoming beam to the surface plane is equivalent to

a rotation around the scattering vector by an angle ϕ. The effective miscut α’ can then

be obtained as the projection α cosϕ and equation (5.15) generalized accordingly:

Ψr = θB + α cosϕ (5.16)

In case the meridional plane is parallel to the scattering plane, which corresponds

to ϕ = 90◦ or 270◦, no effect is seen as Ψr = θB (figure 5.13b).

5.2.2 Miscut implications in the Johann geometry

After cutting, the spherically bent crystals are shaped by forcing thin discs into

glass lenses previously ground. Therefore, in the presence of an asymmetric cut angle,

it is expected that it will be constant over the whole surface of the bent crystal.

In the presence of a miscut, the focal distance given by RcsinθB is not anymore

valid which implies a redefinition of the focal distance to include the orientation of the

lattice planes relative to the surface. The Guinier’s focusing condition for cylindrically

bent crystals [128] establishes that distances between the crystal (C), detector (D) and

source (S) are given by (see figure 5.14):

CD = Rc sin (θB + α) (5.17)

SC = Rc sin (θB − α) (5.18)

which corresponds to the situation sketched in figure 5.13a) and follows the Guinier’s

convention, where a positive angle corresponds to a larger crystal-detector distance.

Similar to the situation described in the previous section, equations (5.17) and (5.18)

are only valid for a particular orientation of the lattice planes. To consider all possible

situations, the effective miscut α’ as the projection α cosϕ should be introduced and

the distance crystal-detector rewritten:

CD = Rc sin (θB + α cosϕ)

CD = Rc sin θB cos (α cosϕ) +Rc cos θB sin (α cosϕ) (5.19)

120



Figure 5.14: Bragg reflection and focusing condition without and with a miscut
α for a bent crystal setup in the symmetry plane. The left drawing sketches the
symmetric Bragg case and the right drawing the asymmetric one for a miscut
orientation ϕ=0◦ [128, 129]).

Assuming a small miscut (α < 1◦), which is generally the case for the crystals used,

the focal distance will become:

CD = Rc sin θB +Rc cos θB sin (α cosϕ) (5.20)

The separation between the usual focussing condition and the term due to the

asymmetric cut angle is clear in equation (5.20). As expected, a meridional orientation

(ϕ = 90◦ and 270◦) will not lead to any change in the focal distance as it eliminates the

miscut effect. Nevertheless, due to the three-dimensional geometry of the spherically

bent crystal, such an orientation will lead to a reflection above or below the symmetry

plane as figure 5.15 shows. Despite it can be corrected by tilting the crystal, it can

additionally induce a top-bottom asymmetry of the reflection.

The figure 5.15 shows how a Bragg reflection is affected by the orientation of an

asymmetric cut crystal. The detector was placed at the focal condition in the absence

of a miscut. The simulation was obtained with XTRACK.

The centroid of the reflection describes an ellipse over the detector as the orientation

of the miscut is changed. As predicted by equation (5.20) the focal distance changes

with ϕ. Accordingly, a line broadening can be noticed as function of the horizontal

coordinate of the line centroid (see plot at the right in figure 5.15). To restore the line

shape and replace the reflection at its central position the detector should be shifted
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Figure 5.15: Simulation of a Bragg reflection of the M1 He-like Ar transi-
tion with about 550 events obtained with an asymmetric cut Si(111) crystal
(Rc=2982 mm, α=1◦). The active area of the crystal was reduced to 60 mm
width and 95 mm height. The detector was placed at Rc sin θB and the horizon-
tal coordinate is measured from the position where the reflection would be in the
absence of a miscut. Negative x correspond to larger angles, thus to the direc-
tion of the smaller energies. At the left 8 lines corresponding to a different ϕ are
plotted without tilt correction. The dashed line corresponds to the translation
of the center of the reflection on the detector. At the right the crystal was tilted
by α sinϕ. The values shown for the tilt are absolute values.

by Rc cos θB sin (α cosϕ) and the crystal rotated by an angle equal to −α cosϕ around

the vertical axis.

The figure also shows that the vertical displacement caused by the miscut orien-

tation is corrected by tilting the crystal by a value of α sinϕ. Moreover, the small

top–bottom asymmetry would disappear after the curvature correction.

The importance of a precise determination of both the miscut and its orientation

is revealed by the following example. For a Si(111) crystal and X-rays of the 3p − 1s

transition in πH (2.89 keV) the Bragg angle is θB = 43.2◦. A miscut as small as 0.1◦

results in a change in the focal length of about 4 mm, 0.2% for Rc ≈ 2980 mm. If

such a miscut is ignored and the detector is placed at the supposed focal position, the

displacement of the focus broadens the line by about 10′′ (considering 60 mm as the

horizontal extension of the crystal). This is to be compared to the intrinsic resolution

of the Si(111) crystal which is about 26′′ at the mentioned energy.
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5.2.3 First experimental evidence of an asymmetric cut angle
in our bent crystals

A finite cut angle will change the focal distance according to (5.20) which can be

rewritten as follows:

F = Rc sin θB +Rc cos θB sin [α cos (Φ− Φ0)] (5.21)

F being the focal distance, Φ the crystal rotation measured to an arbitrary reference

mark placed on the rim of the glass lens and Φ0 the miscut orientation relatively to

that mark. Hence, by measuring the focal distance function of the crystal orientation

Φ the miscut α and its orientation Φ0 can be extracted.

This was first done during the ECRIT run of summer 2005 to characterize new

quartz crystals. The crystals had been cut in order to use the plane (12̄10) as the

diffraction plane. After the spectrometer has been tuned, the focal position of the M1

transition line in He-like argon (θB ≈ 54.386◦ [84]) was determined for different crystal

orientations Φ.

The crystal was rotated manually without removing it from the crystal holder by

loosing the fixing screws. Several marks corresponding to different rotation angles were

previously made on the rim of the glass lens to support this procedure. Obviously,

to accomplish this operation the spectrometer needed to be vented every time the

orientation was changed.

For each crystal orientation several high statistics spectra were recorded with the

detector placed at different distances from the crystal. In order to determine the

FWHM as a function of the detector-crystal distance, a Gaussian profile was fit to

the spectra. Despite not being the correct line profile, it is sufficient for this purpose.

The focal distance for each orientation was then found by calculating the mininum of

a third order polynomial fit to the data. There is no theoretical reason for choosing

such a function beyond the fact that it serves the purpose of finding the minimum and

provides a good fit to the data. In figure 5.16 an example of such a fit is shown for Z23,

one of the two Qu(12̄10) crystals, and two different orientations: Φ = 0◦ and Φ = 180◦.

A quite large change in the focal distance was observed by rotating the crystal.

A maximum change of about 30 mm was registered for both Qu(12̄10) crystals (Z22

and Z23) as shown in figure 5.17. This indicated the presence of a relatively large

miscut. Indeed, by fitting (5.21) to the focal distances the following results (given in

degrees) were obtained: α = 0.49± 0.01, Φ0 = 206.8± 1.2 for Z22 and α = 0.50± 0.03,

Φ0 = 162.3 ± 5.4 for Z23. The errors are fit errors. From the manual setting of the

crystal orientation a few degrees can be considered as a systematic error on Φ0.
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The results depicted in figure 5.17 show a very good agreement between the fit

function and the focal distances for different crystal orientations. In the case of Z23,

even four experimental points are enough to get a quite good fit but with larger fit

errors. In order not to bias the results, the crystal radius Rc was let as a free parameter,

particularly because at that moment the crystal radius was not under control. The fits

have delivered a crystal radius about 3...4 mm larger than the one measured by Zeiss R©
which was puzzling. This issue will be discussed in a forthcoming section.
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Figure 5.16: Two examples of the determination of the focal distance for
different orientations of Qu(12̄10) Z23 are shown. The FWHM of the gaussian
profile fit to the spectra is plotted in function of the detector-crystal distance.
The minimum FWHM corresponds to the focal position and was found by fitting
a third order polynomial to the data points. The error bars are fit errors.

This was the first experimental evidence of the presence of an asymmetric cut angle

in the bent crystals owned by the collaboration. It led to the characterization of the

other crystals with respect to the miscut and its orientation and to the inclusion of

these parameters in the analysis routine. Despite the ECRIT measurement turned out

to be very accurate and a straightforward method to perform such a determination,

it is also very time-consuming and demands quite a lot of manpower to set up and

operate it. Moreover, dedicated measurements to determine the response function of

the Si(111) and Qu(101̄) crystals (the ones of interest for the πH and µH experiments)

have already been done. An alternative solution was desirable.
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Figure 5.17: Results of the focal distance as function of the crystal orientation
for Z22 and Z23. The dashed line is the fit to the data of the function (5.21) by
leaving Rc, α and Φ0 as free parameters.

5.2.4 Miscut angle determination

The techniques for determining the asymmetric cut angle and its orientation within

crystal blocks are well established [130], in particular for measuring the orientation of

epitaxial layers and implantation profiles [131, 132, 133]. They use X-ray diffraction

methods to measure angle differences and/or rocking curve widths, among other quan-

tities. These techniques are well adapted to flat specimens [134] and other special

shapes of crystal material [135] but can not be easily extended to a spherically bent

crystal setup.

In a spherically bent crystal, already mounted, to measure the miscut angle by

angle difference would depend on the hit point. However, there is always a point where

the bent surface is parallel to the reference plane defined by the glass lens backplane

and if its position is known the X-ray diffraction techniques can be used. For this point

the name of critical point was chosen (Fig. 5.18).

Method

A technique to extend the miscut determination by X-ray diffraction to already

mounted bent crystals was developed [129]. It is based on a laser alignment of the

crystal and subsequent use of an angle difference method.

The critical point is always the lowest point at the surface, but in practice does not
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Figure 5.18: Cross section of crystal mounting showing the critical point [129].
The curvature and crystal thickness are not to scale.

coincide with the geometrical center of the crystal mounting. Therefore, it needs to

be found. This can be done by means of a laser beam reflected from the crystal onto

a screen. When rotating the crystal lens, the position of the reflected light remains

unchanged if the critical point is on the axis of rotation, as is required by this method

(see figure 5.19). Otherwise, the reflected spot describes an ellipse. The closer the

critical point to the rotation axis, the smaller the ellipse axes. At the limit, when both

coincide, the ellipse reduces into a spot.

Figure 5.19: Sketch of the crystal alignment to position the critical point onto
the holder rotation axis [129].

During this procedure the laser as well as the rotation axes are kept fixed and the

sample holder, together with the crystal lens clamped on it, is moved along the y and

z coordinate (figure 5.19). Once the critical point is found no further tilt adjustment

is needed.

The accuracy of this alignment depends on the distance from the screen to the

crystal. In addition the laser spot diameter can limit the accuracy. Placing the laser’s

aperture at a distance Rc the crystal acts as a concave mirror and will focus the reflected
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beam also at that distance.

In the absence of any miscut (α = 0), an X-ray beam hitting the crystal surface at

the critical point is Bragg reflected under the angle Ψ0
r = θB, whatever the rotation

angle. In the case of an asymmetric cut crystal, the reflection angle Ψr varies periodi-

cally around Ψ0
r. The angles Ψ0

r and Ψr are relative to the sample holder surface which

coincides to the backplane and is parallel to the crystal surface at the critical point.

The relation is given by:

Ψr = Ψ0
r + α cos (Φ− Φ0) (5.22)

which follows from (5.16) and where ϕ=Φ−Φ0 is the miscut orientation. The angle Φ

is measured relative to an arbitrary reference mark placed on the rim of the glass lens.

The phase Φ0 is the orientation of the miscut with respect to the reference mark. The

miscut and its orientation (α,Φ0) are then obtained through a fit of the Ψr(Φ) curve.

Within this method, almost no restriction for the Bragg angle arises because any

diffraction angle accessible by the diffraction spectrometer can be used. Noteworthy,

the method can also be applied to the measurement of the miscut at any point of the

crystal surface, by using a holder capable of tilting the crystal.

Measurement

The measurement was performed with a SEIFERT R© XRD 3003 PTS high-resolution

X-ray diffraction spectrometer, which provides a collimated monochromatic beam of

Cu Kα X-rays (8.041 keV). The SEIFERT R© spectrometer allows a very versatile fine

adjustment of the sample in space with the zero of all coordinates being possible to

be reset. Figure 5.20 shows a schematic of the possibilities. The X-ray beam was

collimated to 1 mm in width and 1 cm in height at the source side. The collimator

width at the detector was set to 0.5 mm. Both, source and detector windows were

about 20 cm from the crystal.

A spectrometer-sample alignment was first performed. The alignment sequence is

illustrated in figure 5.21. In a first step the spectrometer is aligned. The crystal was

moved away from the beam path and the ΘARM was reset to zero at the position where

the intensity of the direct irradiation of the detector is maximum (step 1 in Fig. 5.21).

In a second stage the orientation of the x position of the sample is adjusted iteratively.

The beam should be cut by the glass lens edges by half of its intensity (step 2 in Fig.

5.21). The angle Ψr is reset to zero at this position. Afterwards, the crystal is moved

in front to correct the depth (step 3 in Fig. 5.21). Otherwise, the X-rays would not hit

the critical point. For instance in the case of Silicon crystals, the glass lens has a depth

of 0.6 mm at the critical point (from the curvature radius and lens diameter) and the
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Figure 5.20: Adjustment scheme of the SEIFERT R© spectrometer. The rela-
tive placement of the crystal, source (S) and detector (D) are indicated in gray.
Rotations around the y axis of the crystal and the detector are denoted by Ψr

and ΘARM , respectively. The source is not a movable part. The angles Φ and χ
defined crystal rotations around the x and z axes, respectively.

crystal is 0.3 mm thick. So, the mounting should be moved by 0.6− 0.3 = 0.3 mm in

order to align the critical point with the beam. The Quartz crystals, with the same Rc

and lens diameter (approximately) are only 0.2 mm thick and so they should be moved

by ∆x = 0.4 mm .

The optical alignment (see figure 5.19) was done with a general-purpose gas laser

(660 mm). The light spots were about 6 and 0.5 mm on the crystal surface and on the

screen catching the reflected laser beam, respectively.

The spectrometer was initially set to Ψr = θB and ΘARM = 2θ. In order to

easily find the Bragg reflection wider slits ( 2-3 mm) were used. A source scan was

performed and the slits changed. To minimize the error in not hitting the critical point,

a fine adjustment in x was performed. The holder was fixed at the x position which

maximized the intensity.

The measurement proceeded by taking Ψr(Φ) in steps of ∆Φ = 45◦. For each Φ an

alignment in χ was additionally performed: an iterative scan in χ and Ψr was done in

order to maximize the intensity; the value of Ψr, which corresponded to the intensity

maximum, was registered. A set of 13 crystals were successfully characterized with this
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method.
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Figure 5.21: Schematic top view of the alignment sequence of the crystal-
SEIFERT R© spectrometer.

Results

The miscut and its orientation (relative to a mark in the glass lens rim) were

then extracted by fitting (5.22) to the data. Figure 5.22 shows the fit for the Si(111)

crystal as well as two other examples of a relatively small and large miscut, Si(110)

and Qu(12̄10), respectively. The fit to the predicted cosine behavior is almost perfect.

There is a small offset on the Ψr(Φ0) curves, which are not vertically centered at

the corresponding Bragg angle θB. In the case of the Si(111) and Si(110) crystals this is

due to a reset of Ψr(0
◦) to Ψr(0

◦) = θB at the beginning of the measurement sequence.

Such reset was not done with the Qu(12̄10) crystal. Here, the small deviation from

θB (≈ 0.1◦) may be due to an asymmetry on the glass lens whose edge might not be

parallel to the backplane, as the alignment crystal-spectrometer requires. However,
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Figure 5.22: Variation of the reflection angle Ψr for the Bragg diffraction of
the Cu Kα line in 3rd order in Si(111) crystal and in 2nd order in Si(110) and
Qu(12̄10) crystals, corresponding to θB = 47.53◦ [84], 23.67◦ [84] and 39.41◦

[84], respectively. The dashed line corresponds to the fit according to equation
(5.22). The outliers in Ψr are about 0.001◦ (of the size od the dots). The small
discrepancies seen on the figure are not understood.

this fact has no impact in the extraction of the values for α and Φ0. It represents just

a phase in the fit function (5.22).

The results for all the 13 crystals characterized are resumed in table 5.2. They are

grouped by crystal planes with the labels being indicated. No optical alignment was

performed with Z6 and Z23. In the case of Z6, the optical alignment could not be

done as its surface did not reflect the laser beam but dispersed it. This was a result

of a former attempt to improve the crystal reflectivity by a physical treatment applied

to the surface. On the other hand, Z23 was the first crystal characterized and the

alignment was not foreseen. The miscut of Z23 and Z22 was already known at the time

from the previous ECRIT measurement and Z23 was selected to validate the present

method. As the result agreed inside 1.5 standard deviations with the result obtained

with the ECRIT, the angle difference method was validated and the alignment problem

postponed.

The quartz crystals, apart from the (12̄10) one (Z23), have relatively small miscuts

(< 0.05◦) which can be neglected in most of the applications. Relatively large miscuts

were identified among the silicon ones, particularly for Z5. The Si(111) labed Z13,

which was the crystal used in the µH(3p − 1s) experiment, has a significant and not
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Crystal Bragg plane θB [degrees] order α [degrees] Φ0 [degrees]

Z13–Si (111) 47.53 3rd 0.29± 0.01 −87.4± 1.2
Z14–Si (111) 47.53 3rd 0.30± 0.01 −45.6± 1.3
Z6–Si (111) 47.53 3rd 0.19± 0.01 4.5± 1.6
Z15–Si (110) 23.67 2nd 0.12± 0.01 −3.0± 2.0
Z30–Si (110) 23.67 2nd < 0.05
Z31–Si (110) 23.67 2nd < 0.04
Z5–Si (100) 34.60 4th 0.63± 0.01 −174.4± 0.4
Z9–Qu (100) 46.42 4th < 0.05
Z10–Qu (100) 46.42 4th < 0.05
Z11–Qu (100) 46.42 4th < 0.05
Z20–Qu (101̄) 43.73 3rd < 0.05
Z21–Qu (101̄) 43.73 3rd < 0.05
Z23–Qu (12̄10) 39.41 2nd 0.44± 0.01 169.0± 0.7

Table 5.2: Results with the fit error of the miscut measurement using an angle
difference technique together with the optical alignment described. The errors
consider only the fit errors.

negligible miscut. However, its orientation is almost parallel to the meridional plane,

thus it does not affect the focal position (see equations (5.22),(5.20) and Fig. 5.13).

The “twin” crystals Z13 and Z14, fabricated at the same time, showed the same miscut.

Accuracy of the method

In addition to the fit error, experimental uncertainties must be considered. The

hit position of the collimated X-ray beam may deviate from the critical point by the

step width of the y-z movement, which was about 0.5 mm. The angle between the

tangent to the optical surface (at the hit position) and the backplane will contribute

to a systematic error (∆α) in the measurement of the miscut angle α (see figure 5.23).

This resulted in ellipses with an axis up to 4 mm. Accordingly, the systematic error in

the miscut angle can be estimated by:

∆α =
1

2
arctan

1
2
H

L
(5.23)

H and L being the distance between two reflections after a crystal rotation of 180◦

and the distance crystal-screen, respectively. The illustration of figure 5.23 clarifies

the geometrical construction. Within the maximum ellipse axis found (4 mm) ∆α is
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approximately 0.02◦ (L ≈ 3 m). The error is dominated by the limitation in the step

width on y-z as the laser spot (at the laser window) is less than 1 mm.

Φ=180

screen

H

L

2∆α
n

beam

n

tangent to the surface
backplane

crystal

laser

∆α ∆α

Figure 5.23: Illustration of the geometrical construction to estimate the sys-
tematic error in the miscut angle α. The direction n is perpendicular to the
crystal surface at the hit position. H is the distance between two reflections
at the screen after a 180◦ rotation. In the present setup L = 3000 mm and
H < 4 mm.

As mentioned, the orientation angle Φ0 is measured against a reference mark on

the glass lens rim. The accuracy ∆Φ0 for the mounting of the glass lens on the sample

holder was better than 2◦.

The fact that the results are pinned down by fitting a simple cosine function renders

a specific adjustment of the meridional plane unnecessary, which is of great advantage.

Obviously the accuracy of the method scales linearly with the dimensions of the laser

setup. In the case of very small asymmetric cut angles (< 0.1◦) the accuracy can be

increased by adding data points to the fitting curve, as far as mechanical limitations

appear.

5.3 Analysis of the ECRIT data

As discussed in section 4.2.4, the total response function of a Bragg spectrometer

equipped with a spherically bent crystal consists of three main contributions: response
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function for a perfect and flat crystal, the geometry of spherical crystals and a Gaussian.

The first is provided by XOP [84]; XTRACK modifies it with the geometry for spherical

bent crystals; the Gaussian needs to be found by comparing the XTRACK simulation

of the experimental spectra with the ECRIT data.

For a given energy, with all the geometrical constraints under full control, any

ECRIT spectrum taken with the detector at any position could possibly be used to

pin down the Gaussian broadening. The Gaussian which models the imperfect nature

of the crystal should not depend on the position of the detector. However, during

the experiment it could not be excluded that unjustified assumptions were made. As

an example, the detector could be placed out of the assumed position. During the

analysis, that difference would be associated to the Gaussian broadening resulting in

an increase/decrease of it, depending on the direction of the detector’s shift. Therefore,

the Gaussian was extracted after a careful analysis of the focal distance. The analysis

strategy and the results for the Si(111) crystal are presented in detail.

5.3.1 Strategy of analysis

The first step of the analysis was to determine a preliminary Gaussian broadening.

For that, the spectra taken at the focal position, found during the data acquisition,

were used. For each ion-like argon M1 transition, a spectrum at the nominal focus

(considering Rc provided by Zeiss R© and the orientation of the Bragg planes) was sim-

ulated with XTRACK and compared to the data ones. A first result for the Gaussian

was obtained.

In the subsequent stage, for each energy considered, the spectra taken at different

positions of the detector were used. By using the Gaussian broadening previously de-

termined, several spectra were simulated with the detector placed at different positions

in steps of 0.5 mm. Each spectrum taken with the detector shifted from the supposed

focus was compared to the simulated ones around that position. A χ2 distribution as

function of the detector’s position (simulated) was obtained. By fitting a third order

polynomial, the minimum χ2 and its corresponding simulated detector’s position were

determined. Consequently, for each energy the final result of the focal distance was

considered to be the weighed mean of the values found for the different positions of the

detector which is given by:

F =

∑
i fi

1
(∆fi)2∑

i
1

(∆fi)2

(5.24)

where fi is the focal distance found when fitting spectrum number i recorded with the

CCDs shifted from the focus. ∆fi is the respective error which was estimated according
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to:

∆f±i =
∣∣Yi(χ2

min)− Yi(χ2
min ± 1)

∣∣ (5.25)

Yi(χ
2
min) corresponding to the focal distance fi. Usually the errors are approximately

symmetric.

The error on the weighed mean F is estimated to be:

1

(∆F)2
=
∑

i

1

(∆fi)2
(5.26)

Once again, the choice of a third order polynomial has no theoretical support but

it provides a very good fit and only serves the purpose of finding the minimum of the

χ2 distribution.

Once the focal distance was known it was compared to the one determined during

the data acquisition. The difference was taken as a detector displacement from the

focus. The spectra taken at the supposed focal distances were again analyzed with the

displacement of the detector taken into account in the simulations.

In principle, this analysis sequence should be done iteratively till no difference is

seen in the Gaussian broadening. However, one iteration turned out to be sufficient.

After the focal distance was obtained for the first time no significant change in the

Gaussian broadening was seen and the result was therefore taken as final value for the

Gaussian broadening. A flowchart of the strategy of the analysis is presented in figure

5.24 .

As indicated by (5.25) the slower the χ2 changes with the detector’s position the big-

ger is the error on the determination of the focal distance. As shown in section 4.3.5 the

geometrical broadening of the response function varies approximately quadratic with

the detector’s shift from the focus. Moreover, the effect is approximately symmetric

around the focus. Therefore, the method will be more sensitive by using spectra taken

at bigger distances from the focus. Additionally, simulations with shifts symmetric to

“shift 0” would lead to similar results as the method is ill-defined around the focus.

Hence, spectra with the detector supposedly shifted more than 5 mm were used.

5.3.2 The analysis routine

To perform the data analysis a series of software routines with different purposes

were used: XOP [84], XTRACK, CURVSORT, FOLDGT and MINUIT. The XTRACK,

CURVSORT and FOLDGT routines were developed inside the πH collaboration [114]

and MINUIT is a fitting routine from CERN based on the least squares method [143]
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which was accordingly modified to fulfill the specific purpose of the ECRIT and exotic

atoms data [142].

SCl Ar
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Figure 5.24: Flowchart of the strategy of the analysis to determine the Gaus-
sian broadening of the response function at different energies. The three different
sets of data (He-like argon, He-like chlorine and He-like sulfur) were evaluated
independently with the same strategic method.

As mentioned already in earlier sections, the XOP [84] package provides the response

function of a flat and perfect crystal for the energy of interest. This is used as input in

XTRACK which additionally takes into account the geometry of the experimental setup

to simulate the experimental conditions. Its output is the (x,y) positional spectrum at

the detector position. By using a mathematical software like GNUPLOT the curvature

parameters of the spectrum are obtained. A second order polynomial is fit to the two-

dimensional spectrum.

As input, the CURVSORT routine takes the two-dimensional spectrum and the pa-

rameters of the correction curve. Once the curvature of the two-dimensional spectrum

is corrected its projection over the horizontal direction of the detector will comprise
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the theoretical response function (ThRF) of the given geometry of the spectrometer

for a certain energy.

The ThRF is simulated with a horizontal step size of 0.1 pixel. In order to minimize

the statistical errors of the simulation, the ThRF is determined with more than 200000

events which compares to the typical ECRIT spectra with one order of magnitude less

statistics. Only the events registered in between the vertical limits of the detector

size are taken into account to construct the ThRF, i.e. -36 mm< y <36 mm (zero

corresponds to the position at the detector plane horizontally aligned with the crystal’s

center).

The FOLDGT routine folds the ThRF with Gaussians of different widths. During

the analysis, a range between 2 and 120 µrad for the Gaussian width and a step size

of 2 µrad were used. Therefore, FOLDGT produces 60 different convolutions of the

ThRF with a Gaussian. These output functions are subsequently used by MINUIT as

fit functions to the data. The figure 5.25 shows a flowchart of the analysis routine.

XOP

XTRACK

GNUPLOT

CURVSORT

FOLDGT

MINUIT

rocking curvecrystal parameters
energy

scattering spectrum geometry

ThRF

curvature parameters

Gaussian width
χ2

  Gaussian  60  ThRF  

Figure 5.25: Flowchart of the analysis routine. Several routines are needed to
simulate and prepare the function used to fit the ECRIT data.

The MINUIT is a powerful fit tool but to be properly used some limitations of the

routine should be known. MINUIT is very sensitive to small changes on the initial

conditions (start values) as the χ2 minimization can lead to local minima. Hence, an

exhaustive scanning of the initial conditions should be done until a consistent minimum

χ2 is obtained as well as reasonable errors in the fit parameters.
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To perform the fit of the ECRIT data up to four free parameters are needed: peak

position, scale factor, Gaussian width and background. The background was assumed

to be constant.

A reduction of the free parameters reduces the sensitivity to the initial conditions.

During the analysis of the focal distance, the Gaussian width was fixed and only three

parameters were kept free. However, it was also possible to reduce the number of

free parameters to three during the extraction of the Gaussian width. The peak-to-

background ratio is very high in the ECRIT data and the fit turned out not to be too

sensitive to small changes in the initial conditions of this parameter. Therefore, in a

first approach all parameters were let free and small changes in the initial conditions

for the background were induced until a consistent value for it was obtained. The

background was then fixed and a fit with only three free parameters was performed.

5.3.3 Results

The data available for each gas were analyzed by following the strategy and routine

described. In total 8, 6 and 4 spectra taken at different positions away from the

supposed focus (found during the data acquisition) were analyzed to extract the focal

position of the M1 helium-like argon, chlorine and sulfur, respectively. As well, for the

different gases, several spectra taken at the supposed focus were available to extract

the Gaussian broadening with two different shapes of the crystal active area.

In figure 5.26 some examples of the fits to the spectra are presented for the three

M1 He-like ions acquired at the supposed focus. The figure shows also an example

of a M1 He-like Ar defocused and the respective fits with ThRF simulated with the

detector placed at different positions.

The quality of the fits of the spectra taken at the supposed focus are very good

when no detector’s shift is considered in the ThRF simulation. However, for all three

gases the M1 He-like ion revealed a small perturbation above the background at its

base on the high energy side (see figure 5.26 near the energies 3104.75, 2757.25 and

2430.75 eV for Ar, Cl and S, respectively). The effect is small but might indicate

the presence of very weak satellite lines. Regarding the fits, this perturbation lead

to a general increase of the χ2 value but neither the focal position nor the Gaussian

broadening determinations were affected.
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Figure 5.26: Examples of the fits of the M1 He-like lines taken at the focus
found by the analysis done during the data acquisition. The ThRF of the Si(111)
crystal (Z13) was simulated at the focus. An example of a defocused M1 He-like
Ar fit with ThRF simulated with different detector’s shifts is also presented. The
energy scale was set to give the energy of the M1 lines at the position of lines’
peak with the detector placed at the focus.

The fourth example given in the figure 5.26 shows how the fit reacts to a change

in the detector’s shift used to simulate the ThRF. When an adequate shift is used to

simulated the ThRF the fit becomes very good, as can be seen in the example when

using a shift of -7.5 mm which led to the best fit of the presented spectrum.

Two examples of the method to determined the focal position are presented in figure

5.27 for a defocused M1 He-like argon line. The figure shows the distributions of the

χ2 when using different detector’s shifts to simulate the ThRF as well as its third order
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polynomial fit. The fits are almost perfect. For direct comparison, the same detector’s

shift and χ2 ranges in the x, y axis were used in both examples.
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Figure 5.27: Examples of the method to determine the focal position. The χ2

distributions of the fit of two different defocused spectra of the M1 He-like Ar
are shown. The dashed lines are third order polynomial fits to the distributions.
The dotted lines indicate the χ2

min (shift) and the error limits.

The lower sensitivity of the fit closer to the focus is also highlighted in figure 5.27.

For each distribution presented, the χ2 varies slower at the side of smaller detector’s

shifts. Moreover, the χ2 in general varies slower for the spectrum taken closer to the

focus which leads to a wider distribution and bigger error bars, as depicted in the

figure.

The results of the focal distance analysis are resumed in the table 5.3 on page 141

and schematically presented in figure 5.28.

Within less than 1 mm the weighed mean for the focal distance agrees with the value

calculated during the data acquisition which indicates that the method to extract the

focal distance based on the FWHM of a Gaussian fit to the spectra is indeed quite

good.

On the other hand, the final results for the focal distance differ by about 2 mm

from the nominal and initially expected value. The increase of the error on the focal

distance with the decrease of the energy can be explained by the higher dispersion

at lower energies. As the dispersion increases, the spectra becomes less sensitive to

changes in the detector position. Therefore, the χ2 distribution curves become less
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sensitive to the simulated detector’s shift and the estimated error of the determination

of the focal distance increases.
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Figure 5.28: Results of the analysis of the ECRIT data regarding the focal
distances. The detector position for each spectrum used is indicated near the
result. The weighed mean is depicted by a box whose vertical limits corresponds
to the estimated error. For direct comparison the range of the axes of the focal
distance is the same for all data sets and equal to 5.5 mm.

The results show a relatively large deviation from the mean, systematically above

1.5σ. Moreover, looking to figure 5.28, they seem to be grouped in two sets: one

using the spectra taken with the detector placed after the focus and the other one

before the focus. For each hypothetic group, the results agree within the errors, but

the agreement is rather poor between the two groups. A similar behavior was also

seen in the determination of the response function of the Quartz crystals Z20 and Z21

done separately [144]. Comparable results were obtained in a first analysis without

considering the asymmetric cut angle and prompted its investigation.

Such a behavior is rather striking and puzzling. This is especially the case after the

miscut and the crystal-detector distance have been accurately measured and taken in

account. A larger radius than the one measured by Zeiss R© could explain the results.

This led to the investigations about the crystal radius described in the next section.

The Gaussian broadening was then extracted by taking the relative displacement

of the detector to the focal positions found for each energy into account in the ThRF

simulations. The table 5.4 presents the results for two different active areas of the
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crystal which were used: a rectangular one with 60 mm width and 95 mm height and

a circular one with 40 mm diameter.

data fit results
M1 nominal F supposed F Y fi F dev from F

He-like [mm] [mm] [mm] [mm] [mm] [σ]
1903.30±0.42 2.31

1910.87
1904.16±0.45 4.06
1903.48±0.57 2.02

1907.85
1903.57±0.60 2.07

Ar 1900.1 1901.9
1901.44±0.51

1902.33± 0.16
1.75

1895.87
1900.89±0.54 2.67
1901.29±0.39 2.67

1892.86
1901.36±0.39 2.49

2150.86 2140.42±0.37 1.14
2147.87 2140.06±0.43 1.81
2144.87 2139.48±0.65 2.09

Cl 2139.2 2141.9
2138.89 2143.26±0.72

2140.84± 0.20
3.36

2135.86 2141.81±0.53 1.83
2132.89 2141.46±0.52 1.19
2434.78 2426.78±0.66 3.12
2433.22 2427.59±0.99 1.26

S 2426.5 2428.0
2421.24 2429.89±0.71

2428.84± 0.34
1.48

2418.22 2429.98±0.54 2.11

Table 5.3: Results of the analysis of the focal distances using different defocused
spectra. The nominal focus is given by equation (5.21) when using the values
of the miscut and its orientation of Z13 and the curvature radius measured by
Zeiss R© which is 2982.2 mm. The supposed focal distance is the one found by
the analysis done during the data acquisition.

The use of a smaller and more centered active area of the crystal leads to a smaller

Gaussian broadening. As the Gaussian models the imperfect nature of the crystal, it is

acceptable to explain this result by a hypothetic increase of the imperfections towards

the outer regions of the crystal’s surface. Regarding the behavior of the broadening

versus the energy no conclusions can be directly deduced from the table. A careful

interpretation of the Gaussian broadening and its energy dependence will be presented

in an upcoming section.
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Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

Gaussian broadening (FWHM)
M1 E

60× 95 mm ∅40 mm
He-like [eV]

[pixels] [µrad] [meV] [pixels] [µrad] [meV]

Ar 3104.18 1.6± 0.1 32.77± 2.21 123.1± 8.3 1.4± 0.1 27.07± 2.13 113.5± 8.6
Cl 2756.85 2.2± 0.1 40.95± 2.07 109.7± 5.5 1.9± 0.1 34.63± 2.40 92.8± 6.4
S 2430.34 3.4± 0.2 56.53± 2.99 98.2± 5.2 3.1± 0.2 51.42± 3.57 89.3± 6.2

Table 5.4: Gaussian broadening of Z13 at different energies obtained via the
analysis of the ECRIT data. The bold values are obtained directly from the
fitting routine. The conversion into pixels and millielectronvolts was done by
considering the dispersion at the position where the detector was placed.

5.3.4 Investigations on the curvature radius

The curvature radius can be estimated as a byproduct of the focal distance analysis

by modifying (5.21) accordingly:

Rc =
F

sin θB + cos θB · sin [α · cos (Φ− Φ0)]
(5.27)

where F is the weighed mean from the focal distance analysis for each gas. As all the

other quantities are known, Rc is directly calculated. On the ECRIT setup Φ=0◦.

The error is estimated by applying the error propagation theory to (5.27). As the

error on F dominates over the errors of α and Φ0, the last ones are left out which

simplifies the error formulation. The error on Rc is then given by:

∆Rc =
∆F

sin θB + cos θB · sin [α · cos (Φ− Φ0)]
(5.28)

The final result for the curvature radius and its error is the weighed mean of the

values found using each gas [see equations (5.24) and (5.26] on page 133 for the formu-

lation). The results are resumed in table 5.5 and a schematic view depicted in figure

5.29.

The weighed mean obtained for the curvature of Z13 differs by about 3 mm from

the radius measured by Zeiss R© through mechanical means. Although the discrepancy

is less than 0.1% it is rather puzzling and it was systematically observed also with the

Z20 and Z21 Qu(101̄) crystals [144] and again with the Qu(12̄10) crystal labeled Z22

[145].

According to the focal distance relation (5.21) a change in the crystal radius δRc

will consequently cause a change in the focus given by:
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M1 θB F Ri
c Rc(weighed mean) dev from mean

He-like [degrees] [mm] [mm] [mm] [σ]

Ar 39.5639386 1902.33± 0.16 2985.85± 0.25 2.7
Cl 45.8225983 2140.84± 0.20 2984.40± 0.28 2985.17± 0.17 2.8
S 54.4430162 2428.84± 0.34 2985.04± 0.42 0.3

Table 5.5: Results for the curvature radius of Z13 based on the focal distance
analysis of the ECRIT data. The Bragg angle was taken from XOP [84].

 2984

 2985

 2986

cu
rv

at
ur

e 
ra

di
us

  [
m

m
]

Z13

weighed mean 

M1 He-like Ar

M1 He-like Cl

M1 He-like S

Figure 5.29: Schematic view of the results for the curvature radius of Z13
obtained via the focal distances analysis of the ECRIT data. The weighed mean
is depicted by a box whose vertical limits correspond to the estimated error.

δF = δRc · sin θB + δRc · cos θB sin [α cos (Φ− Φ0)] (5.29)

Hence, a 3 mm mistake on the crystal’s radius would lead to a shift in the focal

distance of about 1.9 mm, 2.2 mm, 2.4 mm and 2.6 mm concerning the M1 He-like

Ar, M1 He-like Cl, M1 He-like S and µH(3p − 1s) transition energies, respectively.

Such shifts would not have, in principle, a significant impact on the line broadening

as they are comparable with the uncertainty on the definition of the focus (∼ 2 mm,

recall section 4.3.5). Moreover, during the setup the value given by (5.21) is merely

indicative and the determination of the focus is granted by the data analysis.

The situation observed prompted further investigations to check the validity of the

value given by Zeiss R©. Thus, a third measurement of the radius was performed at PSI

by using a dedicated device available at one of the support laboratories of the Swiss
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Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

Light Source (SLS) at PSI.

The device is an optical-type profilometer which was customer designed to measure

curvature radius of tens of meters. Therefore, considering the comparably small radius

of Z13, an accuracy limit of about 1 mm is expected.

The profilometer consists of a box where a laser, several optical elements and a

CCD detector are mounted. The box moves along the longitudinal direction towards

a fixed mirror mounted in front of it. Briefly, the apparatus works as follows: two

perpendicular double beams exit the moving box which will be reflected back to the

box by the fixed mirror and the sample surface, respectively; hence, by moving the

box, one of the laser beams is driven along the surface of the sample and by comparing

the translation of its reflection with the reference beam, the curvature radius of the

sample surface is determined. The calculation is automatically done by the dedicated

software of the profilometer.

A total of 41 measurements were performed, each corresponding to a different

scanned region of the surface of Z13. The results are presented in the histogram of

figure 5.30 .
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Figure 5.30: Histogram of the results of the radius of curvature of Z13 obtained
with an optical profilometer. A total of 41 measurements were done. The solid
curve is a fit to the distribution of a Gaussian.

Despite the results show a small variation, the fair quality of the Gaussian fit

suggests that this is only a statistical effect. The final result for the curvature radius

of Z13 is assumed to be the simple mean of the distribution, whose standard deviation
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is taken as the error. Therefore, the result is:

Rc(Z13) = 2982.2± 1.1 mm

A similar result is obtained by fitting a Gaussian to the distribution, i.e 2982.4±1.0 mm.

The Gaussian curve is described by the function:

f(x) =
A

σ
√

2π
exp−(x− x̄)2

2σ2
(5.30)

A being the total number of events, x̄ their mean and σ their standard deviation.

The result perfectly agrees with the value from Zeiss R© and so the puzzle remains.

It might be possible that both values ( 2982.2 mm and 2985.2 mm) are correct and

have different natures. The first one was measured by optical and mechanical means

and thus it corresponds to the curvature radius of the surface of the crystal. On the

other hand, the second one comes from an X-ray measurement and is therefore related

to the curvature of the crystal planes. Despite it is assumed that crystal planes follow

the curvature of the surface it can not be excluded that second order effects on the

mechanical bending process cause a discrepancy of 0.1%. In fact, this is a rather small

deviation, only revealed due to the very accurate nature of the ECRIT measurement.

In conclusion, in first order the crystal planes follow the curvature of the surface.

5.3.5 Study of the effect of Gaussian broadening and of the
background in the focal analysis by using Monte-Carlo
techniques

The strategy of the focal analysis relies on an initial first value for the Gaussian

broadening which is determined by assuming that the focal position found during the

measurement is close to its final value. Obviously, if the assumed focal position is wrong

by a few millimeters it would lead to a Gaussian broadening larger than in reality as the

defocussing would not be taken into account on the simulated fit function. Another

unknown limitation of the method which would cause the extracted Gaussian to be

smaller than its real value, is also not excluded.

In case a larger FWHM of the Gaussian would be considered in the focal analy-

sis, less geometrical broadening on the ThRF (smaller detector’s shifts on the ThRF

simulations) would be needed to guarantee a good fit of the defocused spectra. Hence,

by using negatively defocused spectra (direction away from the crystal) a negatively

shifted focal distance would be obtained. On the same way, by using the positively

defocused spectra (direction to crystal) a positively shifted focus would be registered.

In fact, the M1 He-like Ar analysis shows this behavior (see figure 5.28).
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Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

On the other hand, an underestimation of the Gaussian broadening would cause the

opposite behavior. A negatively shifted focus would be achieved by using the spectra

which were positively defocused and a focus positively shifted would be obtained with

the spectra negatively defocused. This behavior was seen in the focal analysis of the

M1 He-like Cl and S spectra (see figure 5.28).

Additionally, the sensitivity of the spectra to the defocusing increases with the

detector’s shift. Consequently, close to the focus the same change in the detector’s

position originates less geometrical broadening due to defocussing. Therefore, by using

the same wrong Gaussian, the focal analysis of the less defocused spectra would deliver

a result for the focal distance more far away from its real value. This is clearly seen on

the results of the analysis of the M1 He-like Cl (see figure 5.28).

Accordingly, a possible wrong assumption for the FWHM of the Gaussian on the

focal analysis would possibly explain the systematic deviation of the results from the

mean. In order to quantify this hypothesis, a focal analysis of simulated Ar spec-

tra obtained via Monte-Carlo routines was performed. The spectra were simulated

with statistics and background similar to what was experimentally observed. All the

geometrical constraints of the experimental setup with Z13 were taken into account.

Impact of the focus’ assumption on the FWHM of the Gaussian broadening

The first study quantifies the direct influence of a wrong assumption of the focal

distance on the extraction of the Gaussian broadening. Several spectra with different

detector displacements from the focus and a Gaussian FWHM of 34 µrad were simu-

lated. The spectra were analyzed in the same terms as the real data by assuming all

spectra taken at focus. The results are resumed in table 5.6 and figure 5.31.

This study demonstrates that in the case of the M1 He-like Ar transition, a wrong

assumption of about 1.5 and 4 mm on the focal position results in a value for the FWHM

of the Gaussian broadening larger by 2 and 10 µrad, respectively. However, by taking

into account the results of the focal analysis of the experimental data (section 5.3.3), a

wrong assumption on the focal position by more than 2 mm is unlikely. Nevertheless,

the use of a Gaussian broadening larger by a few µrad during the focal analysis is quite

acceptable.

Impact of the Gaussian broadening on the focal analysis

The second study aimed to clarify the impact of the FWHM of the Gaussian broad-

ening on the focal analysis [146]. Four spectra of the M1 He-like Ar transition were
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produced via Monte-Carlo techniques with the detector shifted by 9,6,-6 and -9 mm

from the focal position. The simulated data had statistics and background similar to

those with a Gaussian broadening of 34 µrad.

Monte-Carlo data Gaussian FWHM ∆FWHM
detector’s shift [mm] [µrad] [µrad]

χ2

-4.0 44.17 2.61 117.236
-3.0 40.09 3.80 114.106
-2.0 37.57 2.97 115.988
-1.0 35.29 3.04 114.369
0.0 33.95 3.08 108.852
1.0 34.21 3.18 110.450
1.5 35.36 3.07 105.712
2.0 35.85 3.02 104.178
3.0 38.97 3.06 112.261
4.0 42.81 2.69 112.858
5.0 47.87 2.49 123.906

Table 5.6: Results for Gaussian broadening by considering a wrong assumption
of the focal distance of the M1 He-like argon. The spectra were produced by
Monte-Carlo techniques with statistics and background similar to those observed
in the experimental data. A FWHM of 34 µrad was considered for the Gaussian.
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Figure 5.31: Correlation between the FWHM of the Gaussian broadening and
the defocusing of the M1 He-like Ar line. The dashed curve is a line to guide
the eye and is a fit to the results of a second order polynomial. The data was
obtained via Monte-Carlo techniques. The numerical results as well as further
details are presented in table 5.6 and in its caption.
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Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

Therefore, three sets of analysis were done by using different Gaussian broadenings

on the derivation of the fit function: 33.95, 36 and 44 µrad. The first one is the value

obtained via an analysis similar to the one performed on the experimental data. The

results are resumed in table 5.7 and a schematic view is given in figure 5.32.

fit results
Gaussian FWHM defocussing F − f ′i F − F ′ dev from F − F ′

[µrad] [mm]
[mm] [mm] [σ]

−9 −0.24± 0.37 0.29
−6 −0.71± 0.51 1.13

33.95
6 −0.13± 0.47

−0.13± 0.21
0.01

9 0.32± 0.39 1.16
−9 −0.35± 0.38 0.61
−6 −0.83± 0.52 1.37

36.00
6 0.02± 0.48

−0.12± 0.22
0.29

9 0.43± 0.43 1.41
−9 −0.88± 0.42 1.87
−6 −1.62± 0.61 2.50

44.00
6 0.79± 0.56

−0.10± 0.24
1.58

9 1.01± 0.44 2.51

Table 5.7: Results of the analysis of the focal distance for the M1 He-like Ar
transition by using data produced with Monte-Carlo techniques. The data were
generated with statistics and background similar to what was experimentally
observed. All the geometrical constraints of the setup with the Z13 crystal were
considered. F indicates the focal distance given by expression (5.21) and F ′ and
f ′i the values found through the analysis.

As in the analysis of the experimental data, the results are grouped in two sets whose

agreement gets poorer when the Gaussian broadening becomes wronger. Anyhow, it

is clear that despite the deviations of the results from the weighed mean increase,

neither the weighed mean nor its statistical error are significantly affected. Moreover,

the deviations from the mean only start to be significant and comparable to what was

seen in the analysis of the experimental data (section 5.3.3, table 5.3, page 141) for

a Gaussian broadening with an additional FWHM of about 10 µrad. However, it is

hardly acceptable and rather doubtful that the extraction of the Gaussian FWHM

from the experimental data is wrong by more than 2 µrad, particularly by an amount

of the order of 10 µrad. This would mean that the detector would be wrongly placed

by about 4 mm (figure 5.31).
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Figure 5.32: Schematic view of results of the analysis of the focal distance for
the M1 He-like Ar transition by using data generated with Monte-Carlo tech-
niques. The weighed mean is depicted by a box whose vertical limits correspond
to the estimated error. Further details are given in table 5.7 and in its caption.

Impact of the background on the analysis of the focal distance

The influence of the background on the analysis of the focal distance of the M1

He-like Ar transition was also quantified by using the Monte-Carlo data. The analysis

was done by using only two defocused spectra (-6 and -9 mm) and the background

was assumed to be 5% larger/smaller than in reality. The FWHM of the Gaussian

broadening was fixed on 33.95 µrad. The results are resumed in table 5.8.

This demonstrates that a wrong estimation of the background level by ±5% can not

explain the deviations from the mean which have been seen in the analysis of the focal

distance, although it leads to a significant change on the deviations. The deviations are

still about half of the values registered on the experimental data analysis. Additionally,

a wrong estimation of the background by ±5% is already rather unlikely. Therefore, a

wrong background assumption can also be excluded as the explanation of the behavior

of the results of the analysis of the focal distance.

Conclusions

Although the behavior of the results for the focal distance was confirmed by the

analysis of the Monte-Carlo data, a background effect turned out to be much less

pronounced and within errors. Additionally, no reasonable explanation was obtained

149



Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

table 5.7
defocusing F − f ′i dev from F − F ′ assumed background F − f ′i dev from F − F ′

[mm]
[mm] [σ]

[%] [mm] [σ]

+5 −0.45± 0.54 0.59
-9 −0.24± 0.37 0.29 −5 −0.01± 0.36 0.33

+5 −0.91± 0.51 1.44
-6 −0.71± 0.51 1.13 −5 −0.39± 0.49 0.36

Table 5.8: Results of the a partial analysis of the focal distance of the M1 He-
like Ar transition by using Monte-Carlo techniques and considering a background
level ±5% different from its real value. The analysis was done by using a FWHM
of 33.95 µrad for the Gaussian broadening. F ′ corresponds to the weighed mean
on table 5.7.

to justify the large deviations from the mean which were seen in the analysis of the

experimental data. Therefore, the puzzle remains but apparently does not disturb

the extraction of the focal distance. Facing the lack of other possibilities, the only

explanation remaining is the underestimation of the errors by the χ2 method.

5.4 Interpretation of the Gaussian broadening and

extrapolation to 2.25 keV

The ineffective layer model

The results for the Gaussian broadening resumed in table 5.4 (page 142) might

point to a direct correlation with the X-ray energy. By looking to the values in µrad

they suggest an inverse proportionality with energy, which indeed could be used. How-

ever, a careful analysis reveals that, in µrad, despite the Gaussian broadening increases

with the decrease of the energy, the relative increase in the response function is approx-

imately the same (around 5%). The various contributions for the response function

(RF) should be added quadratically:

FWHMRF =

√
FWHM2

ThRF + FWHM2
G (5.31)

The numerical values are presented in table 5.9.

As the FWHM of the ThRF is typically three times higher than the one of the

Gaussian, the relative weight of the Gaussian contribution on the FWHM of the RF is

about 1/20:
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FWHMRF − FWHMThRF

FWHMRF

=

√
FWHM2

ThRF + FWHM2
G − FWHMThRF√

FWHM2
ThRF + FWHM2

G

=

√
FWHM2

ThRF (1 + 1/9)− FWHMThRF√
FWHM2

ThRF (1 + 1/9)

FWHMRF − FWHMThRF

FWHMRF

=

√
10/9− 1√

10/9
≈ 0.051 ≈ 1

20
(5.32)

Energy [eV] 3104.18 2756.85 2430.34
rocking curve (XOP) [µrad/meV] 109.4/411.0 134.4/360.0 170.6/296.4
ThRF (XTRACK) [µrad/meV] 112.0/420.8 136.4/365.4 167.6/291.2

Gaussian (data analysis) [µrad/meV] 32.8/113.5 41.0/109.7 56.5/98.2

F
W

H
M

RF (ThRF⊗Gaussian) [µrad/eV] 116.7/438.5 142.4/381.5 176.9/307.3
Relative increase (RF−ThRFThRF ) [%] 4.2 4.4 5.5

Table 5.9: Impact of the Gaussian broadening in the response function (RF)
of crystal Z13 by using an active area of 60×95 mm. The FWHM of the rocking
curve, ThRF and RF were calculated (in µrad) by a Gaussian fit, which at the
focus is a fair description of the lines. The values in meV were deduced by
considering the dispersion at the position where the detector was placed during
the data acquisition.

Therefore a relatively large error on the extrapolation of the FWHM of the Gaussian

broadening is rather acceptable and will not have a significant influence on the RF at

the µH(3p− 1s) transition energy.

Following the observations presented on table 5.9 a correlation of the total response

function with the energy can be tried. In fact, the penetration depth, which is related

with the energy, offers a better physical interpretation of the Gaussian broadening.

As described in section 4.1.3, a Bragg reflection is constructed by thousands of re-

flections along the beam path by crossing the successive crystal planes. The FWHM of

the ThRF can be fairly related to the penetration depth (λT ) by considering an inverse

proportionality with an unknown constant K (not necessary the same for different θB):

FWHMThRF = K 1

λT
(5.33)

In this way, an increase on the FWHMThRF would be associated with a decrease in

the depth reached by the X-rays, i.e. less crystal planes are crossed and thus a smaller

number of individual reflections occur.
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Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

A microscopic roughness of the surface and/or small changes in the interplanar

distances (d) at the superficial planes caused by stresses during the fabrication are

plausible to create an ineffective layer at the surface of the crystal. Along the length

of this layer (L) the incoming waves would be attenuated but the resulting Bragg

reflections would follow different directions, hence, not contributing to the amplitude

of the nominal outgoing waves. The ineffective layer would be a physical property of

each crystal and independent of the X-ray energy.

Therefore, the ineffective layer would reduce the penetration depth to an effective

penetration depth (λTe) where the individual Bragg reflections contribute to total Bragg

reflection. This would result in an additional broadening of the ThRF. A relation

similar to (5.33) can be written to correlate the FWHMRF with λTe :

FWHMRF = K 1

λTe

(5.34)

Naturally, the length of the ineffective layer is given by:

L = λT − λTe (5.35)

Recalling the considerations on section 4.1.3 (page 54) and considering that in case

the extinction depths for both polarizations are known (Λσ,Λπ), the total extinction

depth(Λ) for an unpolarized beam is given by:

1

Λ
=

1

2Λσ

+
1

2Λπ

(5.36)

The length of the hypothetical ineffective layer of Z13 can be calculated from the

data available. The calculations, as well as the data of interest and their origin are

presented in table 5.10.

The error on the extraction of the Gaussian broadening is assumed to dominate

the error on the FWHMRF . Hence, the errors on the FWHM of the response function,

effective penetration depth and on the length of the ineffective layer are estimated by

the theory of error propagation and are given by:

∆FWHMRF =
FWHMG ·∆FWHMG√
FWHM2

G + FWHM2
ThRF

(5.37)

∆L = ∆λTe =
K

FWHMRF

∆FWHMRF (5.38)

The final result for the length of the ineffective layer is taken to be the weighed

mean of the values achieved with the different gases.
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physical quantity origin M1 He-like Ar M1 He-like Cl M1 He-like S

E [eV] [110] 3104.18 2756.85 2430.34
θB [degrees] XOP [84] 39.5639386 45.8225983 54.4430162

Λσ [µm] XOP [84] 0.725 0.733 0.752
Λπ [µm] XOP [84] 3.843 25.537 2.323
Λ [µm] (5.36) 1.220 1.425 1.136

µa [cm−1] XOP [84] 2081.47 2856.76 3968.44
λD [µm] (4.16) 1.530 1.255 1.025

λT [µm] (4.17) 0.679 0.667 0.539

60× 95 mm
FWHMThRF [µrad] XTRACK 112.0 136.4 167.6
K [µrad·µm] (5.33) 76.0480 90.9788 90.3364

FWHMRF [µrad] (5.31) 116.7± 0.6 142.4± 0.6 176.9± 0.9
λTe

[µm] (5.34) 0.652± 0.004 0.639± 0.003 0.511± 0.003

(5.35) 27± 4 28± 3 28± 3
L [nm]

weighed mean 28± 2

∅40 mm
FWHMThRF [µrad] XTRACK 109.5 131.0 164.4
K [µrad·µm] (5.33) 74.3500 87.3770 88.6116

FWHMRF [µrad] (5.31) 112.8± 0.5 135.5± 0.6 172.3± 1.1
λTe

[µm] (5.34) 0.659± 0.003 0.645± 0.003 0.514± 0.003

(5.35) 20± 3 22± 3 25± 3
L [nm]

weighed mean 22± 2

Table 5.10: Calculations of the penetration depth, effective penetration depth
and ineffective layer of Z13 under the model described within the text.

A small difference is seen between the results obtained with the different active

areas. Although the difference is small and not significant within the errors it can

be interpreted by admitting that the values obtained for L are an average of L over

the crystal’s surface. It is expected that the crystals have better surface properties at

the center which would lead to a less pronounced Gaussian broadening. Therefore, the

ineffective layer near the center would be thinner than on the outer part of the crystal’s

disc. As a larger area of the outer region is exposed to the incoming beam when using

the 60× 95 mm aperture, the value of L is naturally higher.

An overall consistency is observed among the results which gives a stronger validity

to the model. Moreover, a picture of a 2×2 mm2 area around the crystal center taken

with an interferometric microscope from ZIGO R© revealed a rough surface within a
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range tickness of 16 nanometers [145]. This is in fair agreement with the estimated

length of the ineffective layer.

Extrapolation of the FWHM of the Gaussian for 2.25 keV

In order to extrapolate the Gaussian broadening for the µH(3p − 1s) transition

energy a calculation similar to the one described in table 5.10 was performed by taking

L as a known constant. The results and main data are presented in table 5.11.

physical quantity origin 60× 95 mm ∅40 mm

E [eV] [110] 2249.46
θB [degrees] XOP [84] 61.5165029

Λσ [µm] XOP [84] 0.775
Λπ [µm] XOP [84] 1.421
Λ [µm] (5.36) 1.003

µa [cm−1] XOP [84] 4831.99
λD [µm] (4.16) 0.910

λT [µm] (4.17) 0.477

FWHMThRF [µrad] XTRACK 208.4 202.0
K [µrad·µm] (5.33) 99.4068 96.354
L [nm] table 5.10 28± 2 22± 2
λTe

[µm] (5.35) 0.449± 0.002 0.455± 0.002
FWHMRF [µrad] (5.34) 221.4± 1.0 211.8± 0.9

FWHMG [µrad] (5.31) 75± 3 64± 3

Table 5.11: Results of the extrapolation of the Gaussian broadening at 2.25 keV
for Z13 based on the ineffective layer model.

The error on the Gaussian broadening is obtained again by applying the error

propagation theory. According to the previous estimate for the error in L it follows:

∆λTe = ∆L (5.39)

∆FWHMRF =
K
λ2
Te

∆λTe (5.40)

∆FWHMG =

√
FWHM2

RF ·∆FWHM2
RF

FWHM2
RF − FWHM2

ThRF

(5.41)

It should be noted that the extrapolated value for the Gaussian broadening by

using this hypothetical model is about 20% higher than what would be obtained by a

linear or exponencial fit to the function FWHMG(E). Such a difference has a negligible
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impact on the FWHM of the response function, about 1%. Hence, no influence on

the analysis of the µH data would be expected. However, despite the simplicity of

the linear/exponential fit with its straightforward result, the present model offers in

addition a fair physical explanation of the Gaussian broadening.

This constituted the last step on the characterization of the Z13 Si(111) crystal.

All the gathered information will be used in the analysis of the 3p − 1s transition in

µH.

155



Chapter 5. Characterization of the Si(111) bent crystal labeled Z13

156



Chapter 6

The µH(3p− 1s) transition:
measurement and analysis

The energy shift by Doppler effect due to Coulomb deexcitation of the πH systems

broadens the spectral lines of the np−1s transitions measured in πH in addition to the

strong interaction broadening Γ1s of the ground state. It has therefore a direct impact

on the accuracy of the extraction of Γ1s.

At present, there is still some lack of knowledge in the understanding of the processes

governing the deexcitation in exotic hydrogen. Mainly the cross sections of the Coulomb

deexcitation are under debate. This might prevent a consistent prediction of the kinetic

energy of the πH systems at the instant of the radiative decay. In fact, the use of the

present predictions for πH led to contradictory results in the extraction of Γ1s [114].

The µH system can be seen as a twin system of the πH, as the reduced masses

are similar. The muon does not experience strong interaction and thus, a broadening

of any measured line will be exclusively caused by Doppler effect due to Coulomb

deexcitation. Therefore, the µH constitutes a natural testing ground in order to identify

the effects of the Doppler broadening on the line shape of an emitted characteristic X-

ray. An investigation of µH transitions will constrain the cascade parameters and lead

to better understanding of the processes during the cascade deexcitation, which can

be used afterwards for a more accurate extraction of Γ1s in πH. Moreover, it can test

the validity of the box model (section 3.5, page 41) as an alternative to describe the

kinetic energy distribution at the time of a radiative decay.

The 3p − 1s transition of the µH ensured a good compromise between count rate

and dispersion with the relative yield being maximum around 10 bar (see figure 3.9).

The 2p− 1s transition has about 50% higher rate at 10 bar, however the lower energy

(∼1.9 keV) would be a major drawback concerning photoelectric aborption in the

target window. The 4p − 1s transition has only half of the maximum relative yield,
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compared to the 3p − 1s transition. Hence, the 3p − 1s radiative transition was the

selected transition to be measured.

In addition, due to the high resolution of the bent crystal Bragg spectrometer, the

hyperfine splitting and population of the ground state levels in µH are identified. It will

be shown that this measurement constitutes the first direct experimental confirmation

of a statistical population of the ground state hyperfine levels in µH. Moreover, for

the first time, various contributions from the Coulomb deexcitation are unambiguously

observed from the line shape of a radiative transition between atomic levels of an exotic

atom.

A description of the experimental setup and some important aspects of the experi-

mental procedure will be addressed at the beginning of the chapter. Subsequently, the

analysis will be presented and discussed in detail as well as its impact on the cascade

development and πH analysis.

6.1 The µH experiment

6.1.1 Pion beam and muon production

The production of exotic atoms relies strongly on an exotic particle beam with high

intensity and low kinetic energy in order to achieve a high stop and capture rates of

the particles by the target atoms. The proton accelerator at the Paul Scherrer Institut

(PSI) provides a pionic beam line with high intensity and suitable low energy.

A Cockcroft-Walton voltage multiplier [147] accelerates the protons out from an ion

source up to 870 keV. The protons are then injected in a first cyclotron which provides

high quality and intense beam of 72 MeV to be injected into a ring cyclotron [148].

The proton beam is extracted from the ring cyclotron with an energy of 590 MeV.

The extraction efficiency is about 99.7% and very high currents are obtained [148].

During the µH experiment in 2004 the beam had a maximum current of 1800 µA but

a maximum of 2000 µA was already acchieved in 2007 with some upgrades to the ring

cyclotron.

The proton beam is guided inside a vacuum system by bending magnets and

quadrupole lenses onto a carbon target with a length in beam direction of 40 mm,

named target E. A secondary beam line, named πE5, collects π− and guides them

into the experimental zone at 10...11 meters from the production target E, with a

typical transmission factor of about 70...80% [149]. The πE5 provides a low energy

beam with a momentum ranging from 10 to 120 MeV/c which is selected by tuning the

bending magnets and the quadrupoles accordingly. The momentum has an acceptance
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of about 10% and a resolution of 2%. At the focus, the beam is 15 mm wide and 20 mm

high with a horizontal and vertical angular divergence of 450 mrad and 120 mrad, re-

spectively. A high neutron background is present in the experimental area with a flux

of about 150 neutrons·mA−1·s−1·cm−2 for a pion beam momentum of 120 MeV/c.

The beam is tuned to provide pions with a momentum of 112 MeV/c which are

injected into the cyclotron trap at a rate of few 108 s−1 [149]. The pions are slowed

down by interaction with several degraders and a scintillator along their trajectory

which is bent by the perpendicular and strong magnetic field (about 2.2 Tesla in the

central plane) generated by the 124 A current in the superconducting coils of the trap.

This reduction in kinetic energy together with the action of the magnetic field induces

a spiral trajectory and forces the pions to move towards the axis of the cyclotron trap

where the hydrogen target cell is placed.

beam

degrador
graphite

light
guide

target cell
B

π

π−

scintillator
degrader

polyethylene

Kapton window

µ

ν

−
−

Figure 6.1: Schematic view of the deceleration process of the pions. The pionic
beam is bent by the strong axial field. By crossing the degraders the pions loose
momentum and consequently describe a spiral path towards the center. By
adjusting the degraders a flux of low momentum muons can be obtained from
the weak decay of the pions.

As pions decays to muons via weak interaction (π− → µ− + ν̄) with a very short

lifetime (∼ 26 ns), a muon flux can be produced inside the cyclotron trap by adjusting

the degraders in order to extend the revolution time of the pions. Therefore, a flux of

muons with low momentum is generated by the already slow pions close to the target

cell. The muons will be driven in the same way as the pions to the center of the trap

where they will stop and be captured by the target gas. A schematic view of the process
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is given in figure 6.1.

The magnetic field configuration and the deceleration scheme were optimized with

tracking calculations [114]. About 1–3% of the incoming pions stops in hydrogen at

1 bar and room temperature. The pion stop rate scales linearly with the target density.

The muon stop rate is calculated to be one order of magnitude smaller than the pion

one.

The first degrader hit by the pions is made of graphite and its thickness can be

adjusted in steps of 1 mm by piling elements with different thickness on top of each

other. The graphite elements available ensured a maximum thickness of 10 mm. The

graphite degrader is mounted on top of a plastic scintillator placed at 90 degrees from

the top of the cyclotron trap. The scintillator is excited by the passage of the pions

and the light pulses are led by a light guide to a photomultiplier placed outside of the

cyclotron trap. The registered signals guarantee that the pion beam passed through

the first degrader as well as they give a relative measurement of the number of pions

entering the trap.

beam

polyethylene degraders

π−

graphite degrader

Kapton window

target cell scintillator

Figure 6.2: Picture of the chamber of the cyclotron trap with the diverse
elements indicated. The deceleration scheme, given by the configuration of the
degraders, is the one for the pionic hydrogen experiments.
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A second degrader mounted in a aluminum frame was placed at a position of 270

degrees from the trap’s top. The degrader was made of 105 µm thick polyethylene foils.

The foils were “piled” with successive shorter lengths to ensure a wedge shape towards

the center. Therefore, the pions with lower momentum and smaller orbit radius would

cross less material. Four degraders were manufactured with approximately 120 mm

width and 80 mm length and different maximum thicknesses: 5.6 mm, 4.2 mm, 2.8 mm

and 1.4 mm, the last three having 75%, 50% and 25% of the thickness of the first one,

respectively.

The polyethylene degrader with 5.6 mm at its thicker edge is named “nominal”.

This is the one which according to the tracking calculations maximizes the pion stop

rate when placed at 270◦, together with another polyethylene degrader at the position

-5◦ and an extra graphite degrader. According to the calculations, to optimize the

muon stop rate, the degrader with 50% of the nominal value placed at the 270◦ position

together with extra an 3 mm graphite degrader should be used.

In figure 6.2, a picture of the cyclotron trap chamber is shown and the several de-

graders, sketched also in figure 6.1, are indicated. The extra degrader on top is the part

of the deceleration scheme mentioned to be used in the pionic hydrogen experiments.

It was removed for the muonic hydrogen measurements.

6.1.2 Target cell

The target cell has a cylindrical shape with an inner length and inner diameter of

about 250 an 60 mm, respectively. Aluminum frames stabilize the lateral Kapton wall

of 50 µm thickness and the window made of 5 µm thick Mylar. The thin Mylar window

minimizes the absorption of the 2.25 keV X-rays from the µH(3p− 1s) transition.

The window frame has a horizontal grating with seven horizontal slits, 6 mm high

and separated by 1 mm. The three central ones are 48 mm long and the outer ones

are 43 mm and 27 mm long. Although it reduces the exposed area, this is an essential

feature to ensure that the thin Mylar window stands a pressure gradient up to 1.5 bar

[150]. In figure 6.3 a three-dimensional view of the target cell is depicted.

The high hydrogen densities needed are obtained by cooling the target cell. The

cooling was done through a cryostat externally mounted and the target cell was mounted

on a copper cold finger connected to the cryostat. The mounting allowed the axial

movement of the target cell without braking the vacuum. The target was cooled down

to approximately 25 K and filled with about 1000 mbar of hydrogen which corresponds

roughly to 10 bar at room temperature. More details about the cryogenic target can

be found in [151].
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Figure 6.3: Three-dimensional view of the target cell used in the data acquisi-
tion. The gas inlet is visible at the back as well as the horizontal grating of the
window frame at the front.

6.1.3 General layout

The cyclotron trap is attached to the exit of the beam line in the πE5 area together

with the Bragg spectrometer. A Kapton window separates the pion beam line from the

cyclotron trap chamber. A massive concrete shielding provides a drastic background

reduction. In figure 6.4 the layout of the setup at the πE5 experimental zone is shown

together with the concrete shielding. The gap between the crystal and the detector was

intentionally left open to allow the spectrometer movement. Once the spectrometer

was correctly set, an additional wall of 100 cm was built around the vacuum tube by

using small concrete bricks (20×10×5 cm) filling the gap and providing extra shielding.

By piling small bricks an extra 30 cm concrete shielding was added in between the trap

and the crystal. Moreover, where it was possible to fill the spaces between the massive

blocks with the small bricks it was done.

The complete layout of the µH experiment is depicted in figures 6.5 and 6.6 with

some elements indicated. More details about the concrete shielding are shown. The

crystal was set 2620 mm away from the center of the cyclotron trap and 2552 mm from

the linear table where the detector is mounted.

In order to solve the long term instability which had been seen in previous pionic

hydrogen experiments [112] a bellow compensator was installed between the crystal’s

chamber and the detector’s cryostat to release stresses possibly created when the cryo-
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Figure 6.4: Layout of the µH setup at the πE5 experimental area. The massive
concrete shielding is depicted and some elements are additionally indicated.

stat is moved. Moreover, the concrete blocks were placed on two layers of wood and

hard plastic of about 3 cm thickness each. This helped to damp any vibrations of the

concrete shielding and consequently increased the stability of the spectrometer.

The vacuum inside the system was ensured by three turbomolecular pumps placed

at different positions: at the bottom of the cyclotron trap, at the crystal’s chamber

(both not depicted in figures 6.5 and 6.6) and at the detector’s cryostat. During the

data acquisition a vacuum better than 5×10−6 was achieved.

Two gate valves could isolate the three main parts: trap, crystal chamber and

detector’s cryostat. The one separating the trap from the spectrometer is not depicted

in figure 6.5 and it was mounted in between the trap and the flange assembling the X-

ray tube. The gate valve which isolated the detector’s cryostat was a safety valve with a

pneumatic actuator. It could automatically close in case of target explosion or a general

vacuum break, minimizing the risk of damaging the CCD detectors. Nevertheless,

manipulations of the target cell, such like filling, were always performed with the

cyclotron trap isolated from the spectrometer to minimizes the damage of a possible

explosion of the target cell.
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Figure 6.5: Technical drawing of the setup of the cyclotron trap and the
crystal’s chamber. The cryostat for the target cell can be seen flanged at the
right of the cyclotron trap. A gate valve (not depicted) was placed between the
cyclotron trap and the flange supporting the X-ray tube and the fluorescence
target.

It is not feasible to use the radiative transitions in µH to align the spectrometer due

to their very low count rate. Therefore, fluorescence X-rays with an overlapping Bragg

angle and high intensity are desirable. The Kα1 and Kα2 fluorescence lines of selenium

(Se) with 11222.52 eV and 11181.53 eV [152], respectively, are adequate candidates.

Their energy is approximately 4.99 and 4.97 larger than the µH(3p − 1s) transition

energy, respectively. Thus, in fifth order they have a similar Bragg angle.

A sample of metallic selenium powder with 28×25 mm was assembled on a support

which could be moved by a step motor remotely controlled. The mounting was flanged

with an orientation of 60 degrees to the vacuum tubes (see figure 6.5). An X-ray tube

was used to excite Se and it was flanged to the tubes with an orientation of 120 degrees

to the fluorescence target (see figure 6.5).

The Se-Kα lines were additionally used to monitor the stability of the spectrometer

during the long term data acquisition. A nivelmeter was installed outside of the de-

tector’s cryostat to double check the system stability. The device was connected to a
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Figure 6.6: Technical drawing of the setup of crystal’s chmaber and detector’s
cryostat. An 55Fe source (not depicted) was installed at the flange drawn between
the compensator and the gate valve in front of the detector’s cryostat.

computer and through a dedicated software its coordinates could be registered. Once it

had been set, its coordinates were registered every 15 minutes. Therefore, any change

in the position of the cryostat could be tracked.

The 55Fe source, which provides the energy calibration of the CCDs, was mounted

on the flange between the compensator and the gate valve at the detector’s cryostat.

It could be shifted in front of the detector manually without braking the vacuum.

A 5 µm thick Mylar window was placed at the entrance of the detector’s cryostat

to provide additional protection to the CCDs. The Si(111) labeled Z13 was used. A

circular aluminum aperture of 90 mm diameter was used to limit the active area of

the crystal to almost the maximum. The detector was placed at the focal distance

according to the best knowledge available at that time. The distance from the crystal

to the CCDs was set to be 2622.61 mm. The table 6.1 resumes important geometrical
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quantities and some other important aspects of the experiment are collected in table

6.2.

E θB ΘARM dispersion Rc sin θB Cry-Det
Transition

[ eV ]
m

[ degrees ] [ degrees ] [ pixel·eV−1 ] [ mm ] [ mm ]

Se Kα2 11181.53 5 62.1431 124.27 11.09 2636.98 2622.61
Se Kα1 11222.52 5 61.7497 123.50 10.87 2627.35 2622.61

µH(3p− 1s) 2249.46 1 61.5156 123.03 53.72 2621.86 2622.61

Table 6.1: Some important geometrical parameters of the µH setup correspond-
ing to the energies of the Se-Kα calibration lines and the µH(3p− 1s) transition.
The Bragg angles and dispersions were obtained considering the miscut of Z13
and taking the radius measured at Zeiss R© (Rc = 2982.2 mm). The lattice
spacing of Si(111) was from XOP [84] (d = 6.2708322 Å). The distance detector–
crystal used during the experiment was set according to the best knowledge at
the time.

H2 target pressure: ≈ 1020 mbar
H2 target temperature: ≈ 25 K
H2 target equivalent pressure at 293 K: ≈ 12.5 bar
ultimate pressure at the cyclotron trap: ≈ 5×10−7 mbar
ultimate pressure at the crystal’s chamber: ≈ 4×10−6 mbar
ultimate pressure at the detector’s cryostat: ≈ 3×10−7 mbar
distance from the crystal to the center of the cyclotron trap: 2620 mm
active area of the crystal ∅ 90 mm
crystal’s temperature: ≈ 25◦C
temperature of the CCDs: ≈ −100◦C
current of the superconductor coils of the cyclotron trap: 124 A
beam current during the experiment: < 1800 µA

Table 6.2: Some experimental conditions during the data acquisition. The
vacuum pressures indicated correspond to the minimum values achieved during
the run with each part isolated from the others.

6.1.4 Optimization of the muon stop rate

In order to maximize the muon stop ratio at the target cell, the settings of the last

quadrupole elements at the πE5 beam line were optimized. Additionally, a study of

the deceleration scheme inside the trap was performed. Both were possible by taking
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advantage of a compact pnCCD system with fast embedded read-out which was able

to take 500 frames per second [153].

The pnCCD system is a XEDS (X-ray energy dispersive spectroscopy) detector

with outstanding energy resolution, compared to other XEDS detectors. Moreover, it

provides extremely good reduction of the beam background via cluster analysis. The

system needs to be permanently cooled, which is done via a cold finger connected to

a liquid nitrogen container. More details about the pnCCDs detector system can be

found in references [153, 154].

The setup is depicted in figure 6.7. The pnCCD was placed 777 mm from the

center of the cyclotron trap. The optimization of the beam injection was done with

helium (easier to handle compared to hydrogen) at a pressure of 1.25 bar and room

temperature.

Figure 6.7: Setup to optimize the π injection for high muon stop rate. The
detector system was flanged to the cyclotron trap with the pnCCD placed 777 mm
from the center of the trap. The system is cooled by a cold finger connected to
a liquid nitrogen reservoir placed behind the detector chamber.

In the first step of the optimization, the polyethylene degrader with 50% of the
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nomimal thickness was placed at the 270◦ position. No degrader was used at the -5◦

position, which would be the best case according to the tracking calculations. The

thickness of the graphite degrader was changed in steps of 2 mm from 1 mm to 7 mm.

The spectral line corresponding to the 2p − 1s transition in µHe was evaluated by

fitting a gaussian superimposed on a linear background. The area under the Gaussian

is correlated to the line intensity. The intensities were normalized to the amount proton-

beam charge collected in about 1 hour corresponding to approximately 2 million frames.

In figure 6.8 an example of a helium spectrum taken with the pnCCD detector during

the optimization is depicted. The fit to the Kα lines is shown as well.
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Figure 6.8: Example of a helium spectrum taken during the injection op-
timization with the main lines identified. The pressure at the target cell was
1.25 bar. A 2 mm thick graphite degrader was used. The polyethylene degrader
with 75% of the nomimal thickness was placed at the 270◦ position. No degrader
was placed at the -5◦ position. The Kα spectral lines were fitted by a Gaussian
superimposed on a linear background which is good enough for the present pur-
pose. The interval [700:1050] was used as region of interest. At the right, only
the Kα transitions in µHe and πHe with the background subtracted are shown.

The results for the first step of the optimization are plotted in figure 6.9a). It is clear

that the use of a degrader a bit thicker than 5 mm leads to a decrease of the stop rate

of the muons. However, it is not possible to unequivocally conclude which thickness is

better: 3 or 5 mm. The best muon stop rate is achieved within this thickness interval.

Hence, 4 mm was used as best compromise in the following step.

A study of the polyethylene degrader was then performed. The results are shown
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in figure 6.9b). The optimum deceleration scheme was achieved with a polyethylene

degrader of 75% of the nominal. By comparing to the result obtained with degrader

with 50% of the nomimal thickness, an increase of more than 25% in the muon stop

rate was verified.

Therefore, a new optimization by changing the thickness of the graphite degrader

and using the polyethylene degrader with 75% of the nominal was performed. The

results are shown in figure 6.9c). The thickness was varied in steps of 2 mm from 0 to

6 mm. The maximum stop rate of the muons was achieved in the interval from 2 to

4 mm. A significant reduction was verified outside this interval. The middle point was

assumed to maximize the stop rate of the muons, hence 3 mm was taken as best value.
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Figure 6.9: Results of the optimization of the deceleration scheme for high
muon stop rate. The intensity of the µHe (2p − 1s) transition was evaluated
by fitting a Gaussian superimposed on a flat background of first order. The
results were normalized to the amount of charge collected in about 1 hour (≈
2 million frames). In a) the thickness of the graphite degrader was changed by
using the polyethylene degrader of 50% of the nominal. In b) the thickness of the
polyethylene degrader was changed by using the best graphite degrader found
previously. In c) the thickness of the graphite degrader was evaluated by using
the polyethylene degrader of 75% of the nominal.

A last test was done by using the optimum deceleration scheme found previously

and introducing a polyethylene degrader at the -5◦ position. This degrader had a

thickness of 1.5 mm at its thicker edge and 0.61 mm at its thinner edge. A reduction

of about 20% in the muon stop rate was obtained. Accordingly, it was concluded that

169



Chapter 6. The µH(3p− 1s) transition: measurement and analysis

a graphite degrader 3 mm thick together with a polyethylene degrader 75% of the

nominal and placed at the 270◦ position is the deceleration scheme which optimizes

the pion injection for high muon stop rate.

6.1.5 Crystal alignment and target scan

A rough alignment by means of a laser, similar to the one described in section 5.1.3

(page 111), was initially performed.

A more refined alignment was done afterwards by using the Se-Kα lines. The tilt of

the crystal was first adjusted by limiting the crystal active area to a height of 20 mm.

The spectrometer was aligned so that the µH(3p − 1s) transition would be placed

around channel 1000. Therefore, the Se-Kα1 was set to be reflected around channel

740 as the lines should be about 255 pixels apart.

The energy range given by the 1000 pixels at the low energy side of the µH(3p−1s)

transition is about 20 eV. This was of particular interest to check the presence of

satellite lines from the deexcitation of molecular resonance states at the 3p level to the

ground state of the atomic muonic hydrogen:

ppµ∗(3p)→ pµ(1s) + p+ γ (6.1)

The binding energy of the molecular states would lead to a decrease of the energy

of the 3p level and consequently to a radiative transition to the atomic ground state

with reduced energy. Several of these possible transitions would fall in the 20 eV range

below the atomic µH(3p− 1s) transition [155].

On the other hand, the 200 channels in the higher energy side would be enough to

ensure a good coverage of the long tail of the µH(3p − 1s) spectral line as well as a

good determination of the background level.

Se-Kα target scan

By keeping the ΘCRY fixed, a target scan of the Se-Kα fluorescence transitions was

performed. The X-ray tube was set to 40 kV and 20 mA. Four frames were taken at

each ΘARM position. The intensity of the lines was evaluated by fitting a Lorentzian

to the data which is sufficient for this purpose. The results, as well as an example of

a fit, are depicted in figure 6.10. The 55◦ stated for the ΘARM is merely indicative

and corresponds to the reading at the software used to control the spectrometer. As

already stated before, only readings of the angular differences matter.
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Figure 6.10: The results of the target scan with the Se-Kα are depicted at
the right. ΘARM = 55◦25′ was found to maximize the intensity of the Se-Kα1.
At the left, an example of a fit to the Se-Kα lines by using two Lorentzians
is shown. The spectrum has a binning factor of 8 in order to eliminate some
statistical fluctuations. The fit is pretty fair and the procedure revealed to be
sufficient for this purpose.

A ΘARM around 55◦25′ maximizes the intensity of the Se-Kα1 transition. At this

angle the Se-Kα2 is almost suppressed. Hence, as Se-Kα1 is closer to the µH(3p− 1s)

transition, the spectrometer was set to ΘARM = 55◦25′.

Afterwards, the electric potential of the X-ray tube was additionally optimized

as function of the brightness of the selenium fluorescence Kα1. An interval ranging

from 30 kV up to 60 kV was studied. In order to have a constant power of 1 kW

(the maximum power which could be delivered by the apparatus), the current was

accordingly adjusted. An increase of more than 50% in the Se-Kα1 intensity was

registered when going from 30 kV to 40 kV followed by a saturation. Consequentely,

the X-ray tube was set to 40 kV and 25 mA.

µH(3p− 1s) target scan

With the spectrometer aligned, a target scan with the µH(3p − 1s) X-rays was

performed. Although it is assumed that the capture of the muons at the middle of the

target cell is favored, this should not be taken for certain. Moreover, it could not be

ensured that the optimum ΘARM for the Se-Kα1 and µH(3p− 1s) transitions coincide.
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Several regions of the target were scanned and about 20 Cb of beam charge were

collected at each position for ΘARM . The charge collected corresponds roughly to 3

hours of data acquisition at the maximum and constant beam current. The relation

between the maximum opening of the target window (48 mm) and its distance to

the crystal (≈ 2495 mm) determines that 65′ is the angular range for ΘARM which is

possible to be studied.

Opposite to the selenium fluorescence lines, the very low statistics does not permit

a line fitting. Hence, the number of events were estimated by doing the following

procedure. Three regions of 100 channels each, one around the position where the

µH(3p − 1s) transition was expected and the other two at each side of this region,

were selected. The average between the number of events in the external regions was

assumed to be the background per 100 pixels. Therefore, by subtracting this amount

from the total number of events in the central region an estimate for the number of

events in the µH(3p− 1s) spectral line was obtained. The results for the count rate of

µH(3p− 1s) transitions as well as for the background are depicted in figure 6.11.
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Figure 6.11: Results of the target scan for the count rate of the µH(3p− 1s)
spectral line. The count rate of the background is shown as well for comparison.
The trapezoid in dashed line is only to guide the eye along the angular range
possible to be scanned.

A maximum of more than 4 events in the line per collected charge unit was achieved

in a wide angular range. The background level was constant and about 1.1 event per

Coulomb per 100 channels. The slightly decrease registered at one side of the target

cannot be excluded to be merely due to statistics. Nevertheless, it was taken as a
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real drop in the count rate. Hence, based on the results the spectrometer was set

to ΘARM=55◦35′. Being far enough from the target limits, this position ensures a

maximum count rate. A drop by about 50% on the Se-Kα1 intensity is expected

(see figure 6.10) which is irrelevant regarding its purpose to monitor the spectrometer

stability.

Additionally, the crystal tilt was slightly readjusted by using the µH(3p− 1s) data.

From this moment on the spectrometer remained fixed at these angular settings.

6.1.6 Mechanical stability of the spectrometer

In order to monitor the stability of the spectrometer, several Se-Kα1 spectra were

taken over the 4 weeks of data acquisition. The data was recorded during the long

maintenance breaks when refilling the liquid helium of the reservoirs of the cyclotron

trap. At least 60 frames of data were collected in each spectrum.
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Figure 6.12: An example of the fit of the Se-Kα1 line by means of two
Lorentzians is depicted at the left. The error bars are smaller than the points
used to plot the data. The spectrum has a binning factor of 8 times in order
to not overload the figure. The variation, during the data acquisition, of the
position of the main Lorentzian peak from the arithmetic mean is shown at the
right. The dotted lines correspond to the standard deviation of the distribution.
The elapsed time is counted from the target scan performed with the µH(3p−1s)
transition.

Several satellite lines are present in the Se-Kα1 spectrum [156, 157]. However, a
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fair fit is already achieved by using two Lorentzians, as the example depicted in figure

6.12 shows. This approach is sufficient for the present purpose. The results for the

variation of the position of the main peak from the average are also resumed in figure

6.12.

During the pre-analysis done at the time of data acquisition it was observed that a

slightly different parameterization of the curvature correction could lead to a shift of

about 2 pixels in the line position. Therefore, for the final analysis the same curvature

parameterization, obtained with one of the spectra, was used to restore the line shape

of all spectra.

The analysis of the Se-Kα1 spectra demonstrated that the horizontal variation was

less than 1.5 pixels, as shown in figure 6.12.

On the other hand, the data recorded by the nivelmeter confirmed the stability of

the spectrometer. As shown in figure 6.13 [158], despite a continuous drift observed in

the horizontal position of the spectrometer, a maximum variation of about 1.3 pixels

was registered over all the µH(3p − 1s) data acquisition. The larger oscillations are

well justified by the maintenance work (indicated in the figure), particularly the ver-

tical spikes caused by the liquid nitrogen filling. No µH data was taken during these

procedures.

-2.5

-2

-1.5

-1

-0.5

 0

 0  5  10  15  20  25

x 
st

ab
ili

ty
 [

pi
xe

ls
]

elapsed time [days]

start data taken
μH (3p-1s)

piezo repair
(no data taken)

problem with the step motors
(no data taken)

CSD warm-up/cooling (no data taken)

nivelmeter off

end data taken

μH (3p-1s)

CSD cryostat filling with LN2
(no data taken)

1.3 pixels

Figure 6.13: Variation of the horizontal position of the spectrometer based
on the data of the nivelmeter which was installed outside the detector’s cryostat
[158]. The dotted lines represent the upper and lower limits of the region where
the position varied during the data acquisition (from day #4 on). The main
events which could induce abrupt oscillations are indicated.
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Hence, the analysis of the variation of the horizontal position of the spectrometer

by both methods revealed an unprecedent stability compared to previous runs. As

example, during the run of 2001 a drift of about 10 pixels was observed in the positions

of the spectral lines [112]. The small variation observed now, in the range of 1 pixel,

can be neglected relative to the measured µH(3p− 1s) line width of approximately 27

pixels. Therefore, contrary to previous analysis [112], it is not required to perform a

positional correction of the µH (3p− 1s) data.

6.1.7 Evolution of the count rate

During the first days of data acquisition a significant drop in the count rate of

the µH spectral line was noted. A decrease between 30% and 40% was registered

after six days of measurement (see figure 6.14). As the decrease seemed to be more

pronounced with the elapsed time, this could lead to a dramatic loss in the statistics of

the experiment. Additionally, with the background remaining constant it would lead

to a much poorer peak-to-background relation.
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Figure 6.14: Evolution of the count rate of the µH(3p− 1s) spectral line. The
count rate of the background is also depicted for comparison. The beginning of
the warm-up and cool-down procedures are indicated by arrows with the label
“w” and “c”, respectively. The error bars of the count rate of the background
are smaller than the size of the points chosen to plot the data.

The problem was related to the target cell which is the coldest element inside

the cyclotron trap chamber. Its surface act like a cryogenic pump by collecting the

moisture molecules which are still present in the vacuum. Consequently, the window
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can accumulate a thin ice layer which absorbs the µH(3p − 1s) X-rays. Therefore, it

was decided to warm-up the target cell slightly above 0◦ to eliminate the possible ice

layer on the window.

The figure 6.14 confirms that after the target cell has been warmed-up the count

rate could be always restored. The procedure was repeated once a weak with very

successful results. The warming-up and cooling-down of the target cell could take

nearly 24 hours. However, it was possible to synchronize it with the weekly stop of

the proton beam which always lasted more than the predicted 16 hours. Moreover, the

mandatory filling of the reservoirs of the cyclotron trap with liquid helium once every

three days and its synchronization with the weekly beam stop would force anyway a

stop of 24 hours after the beam shutdown. Yet, no beam time was wasted due to the

maintenance tasks as the synchronization was perfect.

In order to clarify the origin of the hypothetic ice layer, the development of the

vacuum pressure during the warm-up process was registered as function of the tem-

perature. A typical warm-up curve obtained during the procedure is depicted in figure

6.15.

The curve has several pressure peaks which can be explained by the sublimation of

the compounds usually present in a vacuum system: air (mainly nitrogen and oxygen),

hydrocarbons (CnHs, n ≥ 3) and water, which would be frozen on the target surface.

The sublimation points with the respective vapor pressure of the compounds of interest

are indicated in the figure.

A more consistent and robust explanation of the curve would require further inves-

tigations but a fair interpretation can be given.

The warm-up process is done by turning off the compressor and by heating-up

the target cell from its back through a resistor element of 6.2 W. The target cell was

emptied to about 100 mbar and the heat transfer from its back part to the surface is

done mainly by gas convection. The temperature is also measured at the back of the

target cell and a gradient between the window and the back is admitted.

At the beginning of the process the window might be at few kelvin warmer than the

measured 20 K and when the compressor is turned off the nitrogen starts immediately

to sublimate leading to an increase of pressure. The first peak would thus correspond to

nitrogen. At higher temperatures the oxygen can sublimate which generates a second

little peak in the curve. This peak is shifted by about 6-10 K from where it would be

expected. However, the temperature at the back of the target takes only 10 minutes

to rise the first 40 K. Consequently, a shift on the gradient direction can be generated

with the convection not being efficient enough to ensure an equilibrium between the
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Figure 6.15: Example of a warm-up curve of the target cell obtained during the
µH(3p−1s) run. The sublimation points with the corresponding vapor pressures
of the relevant compounds are indicated [159, 160]. The hydrocarbons mentioned
are the ones with the simplest chain. The elapsed time of several temperature
intervals is indicated for comparison.

surfaces and the back part of the target. Hence, the target walls would be at a slightly

lower temperature than its back.

With the temperature increase, the pressure inside the target cell also increases and

due to the limitation of the resistive element the warming-up becomes slower. There-

fore, it is expected that the convection becomes more efficient and the temperature

gradient fades. Basically, all nitrogen and oxygen is pumped away before the next

compound can sublimate, which happens around 90 K with the sublimation of the first

compound of the hydrocarbon series.

The sublimation of the hydrocarbon series would be responsible for the following

pressure plateau. The temperatures which can prompt the sublimation of the hydrocar-

bon series up to C6H14, at the corresponding vacuum pressures, are indicated in figure

6.15 as well as the sublimation points at ≈ 10−2 mbar. With the temperature rising,

the sublimation rate of hydrocarbons is enhanced: more compounds can sublimate;

the difference between the vacuum pressure and the corresponding vapor pressures for

compounds which already initiate the sublimation is larger. The peaks were observed
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at the temperature corresponding to a vapor pressure ≈ 10−2 mbar, two order of mag-

nitude higher than the vacuum pressure (≈ 10−4 mbar). They can be explained by a

large increase in the sublimation rate of the respective hydrocarbon leading to its total

depletion from the target surface. In figure 6.15 only the hydrocarbons with a simple

chain are indicated.

According to the vacuum pressure, the water would start to sublimate around 185 K

leading to the pressure peak observed around 210 K. The slow pressure drop registered

afterwards simply shows the difficulty to remove the water from a vacuum system.

The sublimation points with the corresponding vapor pressures were taken from

AVS reference guide [159] for nitrogen and oxygen and calculated for the hydrocarbons

and water based on Antoine’s equation:

log10(P) = A− B

T − C (6.2)

where P is the vapor pressure at a certain temperature T and A,B,C are experimental

coefficients determined for a certain temperature range. The respective coefficients were

taken from NIST [160] by chosing the most appropriate temperature range available.

6.1.8 The experimental routine and the data collected

The manpower was distributed according to the personal availability during the

20 days and by three daily shifts. The experiment was run 24/24 hours.

Individual files with 60 frames were recorded, which corresponds to approximately

65 minutes of acquisition time. Several experimental parameters were constantly moni-

tored in order to ensure a steadily running setup. Two daily breaks of about 20 minutes

were done to refill the detector cryostat and the trap reservoirs with liquid nitrogen.

At Wednesdays no proton beam was provided due to maintenance work and beam

development. Hence, this time window was used to refill the reservoirs of the cyclotron

trap with liquid helium and warm-up the target cell. The procedures caused a total

stop of about 1.5 days. An extra break of about 6 hours was done every Sunday for

the helium refilling. As already mentioned, the long breaks were used to obtain Sele-

nium fluorescence spectra. This weekly schedule provided a very good synchronization

between the forced breaks which minimized the beam time losses.

Unfortunately, during the acquisition time several unpredictable stops of the beam

occurred due to multiple problems related with the beam line: vacuum problems and

component failures. This resulted in the loss of about 20% of the total amount of

statistics possible to be collected. Therefore, by taking into account all the forced
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stops and beam problems, only about 11 days of beam time were effectively used to

obtain the data.
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Figure 6.16: Overall spectrum of the µH(3p − 1s) transition with all data
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In figure 6.16 the µH(3p − 1s) spectrum is shown after curvature correction and

suitable energy cuts. It corresponds to the total amount of data collected. By applying

a binning factor of 8, the statistical fluctuations become smoother which gives a better

idea of the background level (see figure 6.17).

A major achievement was the very low background level, hence a good peak-to-

background ratio (about 35). One main reason was the massive concrete shielding

very well designed [114]. The other relies on the cluster analysis, which by using a

cluster size of 1 and 2 eliminates most of the background hits. Moreover, a good

background determination was expected due to its flatness over all the length of the

detector.

6.2 Analysis

The analysis of the µH(3p−1s) transition aims to extract the hyperfine splitting of

the µH ground state and the population ratio of the triplet-to-singlet by approaching

the kinetic energy distribution at the time of the radiative decay with so called “boxes”

(see section 3.5). Therefore, the agreement between the extracted values and the

theoretical predictions will serve as test to the validity of the box model as an alternative

to the real distribution.

Based on the geometrical constraints of the setup and on the best knowledge about

Si(111) Z13 crystal (curvature radius, miscut, Gaussian broadening – discussed in

the previous chapter) the response function of the spectrometer at the energy of the

µH(3p − 1s) transition was obtained via XTRACK. The superimposition of the con-

volution of the response function with the kinetic energy boxes on a flat background

composes the fit function of each multiplet.

The convolution is performed by a dedicated routine named FOLD4MINUIT. The

routine takes the response function as well as the number of boxes and their limits as

inputs and computes the convolution of each box with the response function. Hence,

the number of boxes and their respective limits are adjustable by “hand”.

The background level, the positions of the multiplets, the population ratio, a scaling

factor and the relative weights of each kinetic energy component corresponding to the

different boxes are free parameters. The sum of the relative weights should be 1. Hence,

the total number of free parameters during a fit routine is: (5 + [j − 1]), where j is the

number of energy boxes used. The fit region was limited from channel 700 to channel

1180 which was sufficient to obtain a very good determination of the background.

The complexity of the fit led to some convergence difficulties for a number of pa-
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rameters higher than 5. Apart from the minimization problems of the χ2 (mentioned in

section 5.3.2), the fit revealed a very high dependence of the convergence on the initial

values of the positions of the multiplets. Therefore, for each new fit trial an exhaustive

scanning of the initialization of the multiplet positions was done. In order to check the

consistency of each result, several different initializations of the other free parameters

were additionally tried.

Immediately after the first fit trials, the presence of a low energy component (with a

few eV range) in the kinetic energy distribution turned out to be of most importance;

a relative weight as high as 50...60% was mandatory. Whatever box arrangement

was input, without this low energy box the fit results were disastrous. During a pre-

analysis, an indication that the fit was not sensitive to the width of the boxes was

obtained. Moreover, a relatively small number of boxes centered around the kinetic

energies corresponding to preceding Coulomb deexcitations was sufficient to achieve a

good agreement with the data.

Based on this information, the procedure was divided in two steps. In the first step,

a systematic study of the number of boxes and their limits was performed with all the

parameters (5 + [j − 1]) left free for the fit routine. In the second step, the fit function

was frozen and the positions of the multiplets and the population ratio were adjusted

by hand and kept fixed during the fit routine. This overcame the problems with the

convergence of the χ2 minimization and led to a more robust and better supported

procedure. The results will be addressed in the next two sections.

6.2.1 Study of the fit function

Upper limit of the low energy box

The low energy box straddles kinetic energies from 0 up to a few eV. It corresponds

to µH atoms which arrive at n = 3 with their kinetic energy gained only at the upper

levels of the cascade (n > 10) by Coulomb deexcitation, and/or to µH systems which

lost their larger kinetic energies through elastic collisions.

The upper limit of the low energy box was evaluated based on the χ2 distribution

and on the result for the triplet-to-singlet population ratio. Two additional energy

boxes 4 eV wide and centered at 58.2 eV and 26.9 eV were used. These energies

correspond to the kinetic energy gains from a n = 4 → 3 and n = 5 → 4 Coulomb

deexcitation, respectively. The results are depicted in figure 6.18.

The results clearly show that a very good agreement is obtained by using the

3 box arrangement mentioned. Even a very narrow low energy box (0.2 eV) leads
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to a very good fit (χ2 = 451.526, χ2
r = 0.953). Nevertheless, the quality of the fit

improves to χ2 = 448.976 by expanding the box limit till 1.8 eV. The difference between

these two χ2-values corresponds to 1.6σ. For wider boxes the χ2 does not suffer a

significant degradation, however, the fit delivers unphysical values for the population

ratio. Therefore, 1.8 eV was chosen as the higher limit of the low energy box and kept

fixed in the following studies.
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Figure 6.18: Fit quality as a function of the upper limit of the low energy box.
Two additional energy boxes centered at 58.2 eV and 26.9 eV and 4 eV wide
were used. They correspond to the kinetic energy gain from a n = 4 → 3 and
n = 5→ 4 Coulomb deexcitation, respectively. By considering the 474 degrees of
freedom of the fit, the minimum χ2 (448.976) corresponds a reduced χ2 of 0.947.
The errors of the triplet-to-singlet ratio were taken from MINUIT. The dashed
line is only to guide the eye.

Medium and higher kinetic energy boxes

Coulomb deexcitations with ∆n = 1, 2 were considered to study the position of a

second and third energy box. Hence, very narrow boxes, with only 1 eV, centered at

the corresponding kinetic energy gains were used to find the best candidates for the

second and third kinetic energy boxes. The low kinetic energy box from 0 to 1.8 eV

remained fixed.

A first series of fits by using only two kinetic energy boxes was initially done and

the best candidates to a second box identified. Subsequently, a second series with three
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kinetic energy boxes was performed with each best candidate for a second box being

frozen. The results are depicted in figure 6.19.

The figure shows that the χ2 of the fit improves significantly when using a second

kinetic energy box placed between 20 and 60 eV. The minimum χ2 (452.410) is achieved

with a kinetic energy box placed around 40 eV and indicates already a very good

agreement between the fit function and the spectral line. Thus, by using only two

kinetic energy boxes to build up the fit function, the best positions to place the second

box are 26.9, 41.6 and 58.2 eV which correspond to the kinetic energy gain via a

n = 5→ 4, n = 6→ 4 and n = 4→ 3 Coulomb deexcitation, respectively.
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Figure 6.19: Fit quality as a function of the position of the 2nd and 3rd

kinetic energy boxes. At the left only two boxes were used. At the right the best
candidates for the 2nd were frozen and the 3rd box changed. The boxes were
admitted to be only 1 eV wide. The kinetic energy gains from the respective
Coulomb deexcitation are indicated. The best χ2 (448.933) was achieved by
considering the n = 5→ 4 and n = 4→ 3 Coulomb transitions to place the 2nd

and 3rd kinetic energy boxes. Taking into account the 474 degrees of freedom
it corresponds to χ2

r = 0.947. The dashed and dotted lines are just to guide the
eye.

Figure 6.19 demonstrates also that the introduction of a third kinetic energy box

improves the fit quality. However, this is not as clear when using the 41.6 eV to center

the second box. In this case the fit does not show much sensitivity to the position of

a third box, with the minimum χ2 being ≈ 450.5 and varying less than 1.4σ.
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On the other hand, when using the other two boxes a clearer improvement was

achieved and the fit revealed to be quite sensitive to the position of the third box. The

minimum χ2 is 448.933 in both cases and corresponds to have a second and third kinetic

energy boxes centered at 26.9 and 58.2 eV. The improvement, compared to the series

based on the n = 6 → 4 Coulomb transition for the second box, is only about 1.25σ.

However, the fit is unequivocally better and the Coulomb transitions with ∆n > 1 are

less probable to occur. Therefore, 26.9 and 58.2 eV were chosen to place the two higher

kinetic energy boxes which correspond to the kinetic energy gains via a n = 5→ 4 and

n = 4→ 3 Coulomb transition, respectively.

Fourth kinetic energy box

A further investigation was performed to find out if the introduction of a fourth

kinetic energy box would improve the fit quality. The results are depicted in figure

6.20.
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values found previously. The kinetic energy gains from the respective Coulomb
deexcitation are indicated. The best χ2 (448.761) was achieved by considering
the n = 5 → 3 Coulomb transition to place the 4th kinetic energy box. The
dotted line is just to guide the eye. The best χ2 found by using 3 boxes is
indicated by the horizontal dashed line.

Indeed, the quality of the fit can be improved, as the figure shows. By assuming a
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fourth kinetic energy box centered at 85.1 eV the χ2 is reduced to its minimum value.

However, the improvement is less than 0.2 χ2 units which is negligible. Moreover,

the introduction of a fourth box enhances significantly the problems related to the

χ2 minimization and convergence. Therefore, a fourth kinetic energy box was not

considered.

Limits of the medium and high kinetic energy boxes

Afterwards, a systematic study on the influence of the range of the boxes on the

fit quality was performed. The low kinetic energy box was set from 0 to 1.8 eV and

kept fixed. The other two boxes were assumed to be centered at the kinetic energy

gain from a n = 5 → 4 and n = 4 → 3 Coulomb transition. Their limits were set to

the nominal ranges [25 : 29] eV and [56 : 60] eV, respectively. Each of these limits was

then varied with the others frozen and the resultant fit function used to fit the µH line.

The results are plotted in figure 6.21.
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Figure 6.21: The change in the χ2 is plotted as function of the limits of
the boxes of medium and high kinetic energy. A 3-box approximation of the
kinetic energy distribution at the time of the µH(3p − 1s) radiative transition
was assumed. The low energy box was fixed at [0 : 1.8] eV. The others were
centered at the kinetic energy gains from a n = 5→ 4 and n = 4→ 3 Coulomb
transition with a width of 4 eV. Each series corresponds to the change of one of
the limits of one box with all the other box parameters being frozen. The dashed
lines are just to guide the eye.

The low sensitivity of the fit to the limits of the medium and high kinetic energy
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boxes is evident. In a general way, the χ2 does not vary more than 1.4σ. The changes

are even smaller than 1σ when considering only the limits of the high energy box.

Nevertheless, the figure points to a better fit quality when using smaller widths for the

boxes.

Several fits were additionally done by expanding the ranges of the boxes in both

directions, and changes in both boxes at the same time were even tried. The results

were similar. No significant change in the fit quality was seen.

Conclusions

The systematic study of the fit function revealed that three boxes are essential

but also sufficient to model the kinetic energy distribution and yield a good fit of the

µH(3p−1s) line shape: a low energy component T < 2 eV and two higher kinetic energy

components corresponding to the Coulomb transitions n = 5 → 4 (T = 26.9 eV) and

n = 4→ 3 (T = 58.2 eV). Moreover, the χ2 analysis showed that the fit is not sensitive

to the limits of the boxes corresponding to the higher kinetic energy components.

Furthermore, during all the analysis described the background turned out to be

well determined by the fit routine. Apart from the fit sequence with only two kinetic

energy boxes, only minor changes with less than 0.5% were seen among all the fits

performed.

Within the three boxes approach, the best χ2 was found to be 448.933 which cor-

responds to a χ2
r of 0.947 (ndf = 474) when using kinetic energy boxes with intervals

[0 : 1.8], [26.4 : 27.4] and [57.7 : 58.7] eV. The resultant relative weights for these boxes

were 61 ± 2%, 25 ± 3% and 14 ± 4%, respectively. The hyperfine splitting of the

µH ground state was found to be 211 ± 6 meV with a triplet-to-singlet population of

3.66 ± 0.25. The uncertanties are statistical errors taken from the fit routine. The

numerical results are just preliminary. The final ones will be achieved with the more

robust study described in the next section.

6.2.2 Study of the correlation between the triplet-to-singlet
population and the hyperfine splitting

A second systematic study was subsequently performed by using the best kinetic

energy boxes found previously. The hyperfine splitting, the population ratio and the

position of the triplet peak were changed manually in small steps and one at each

time. Hence, the fit routine had to handle only four free parameters: background,

scale factor and two parameters for the relative weights of the energy boxes. With
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four free parameters no problems related to convergence and χ2 minimization were

observed.

The hyperfine spitting of the ground state of the µH is theoretically predicted to

be about 183 meV [161]. The estimated dispersion of the spectrometer at the energy

of the µH(3p− 1s) transition is approximately 18.6 meV/pixel. Therefore, a splitting

of about 10 channels is expected between the triplet and singlet positions.
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Figure 6.22: χ2 distributions obtained with the hyperfine splitting fixed to
11 pixels (≈ 205 meV). The different distributions were obtained by keeping the
population ratio to the values indicated and changing the triplet position in steps
of 0.1 pixels. The χ2 curves show a quadratic behavior with their minima placed
on a slightly asymmetric curve. The dotted lines are quadratic fits to the series.
The bold dashed line is a fit to the minima of a third order polynomial. All the
fits showed a very good quality. The distributions obtained with a population
ratio of 2.75, 3.75, 4, 4.25 and 5 were not depicted to not overload the figure.

The hyperfine splitting was changed around 10 pixels in steps of 0.5 pixels. On the

other hand, the population ratio was changed in steps of 0.25 around 3 (its statistical

value). Therefore, by changing the triplet position a χ2 distribution curve could be

obtained for each pair (splitting;population) tried. An example of a typical series of
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distributions of χ2 is given in figure 6.22 for a hyperfine splitting of 11 pixels.

Figure 6.22 shows that for each (splitting;population) pair the χ2 is symmetrically

distributed around a minimum which can be determined by fitting a quadratic function.

Moreover, the different χ2 curves are distributed with their minima placed over a

slightly asymmetric curve. A very good approximation of this curve is guaranteed by

a third order polynomial.
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Figure 6.23: Distribution of the best χ2 as function of the population ratio
with the hyperfine splitting fixed to 11 pixels (≈ 205 meV). The dashed line is
a fit of a third order polynomial to the points. The minimum is indicated in the
curve by an open square. The dashed-doted line represents the absolute best χ2

found and corresponds to the final result for the hyperfine splitting and triplet-
to-singlet population. The 1, 1.5 and 2σ limits, counting from this value, are
indicated in the curve together with the corresponding population ratios (dotted
vertical lines) used to generate figure 6.25.

In order to find the best fit with the different (splitting;population) pairs, for each

fixed value for the hyperfine splitting, the χ2 minima (found previously) are correlated

with the triplet-to-singlet populations. The resultant distribution for a hyperfine split-

ting of 11 pixels is depicted in the figure 6.23. Similar distributions were obtained

with other values considered for the hyperfine splitting. Once more, a third order

polynomial provides a very good fit to the points and the absolute miminum of the

series is determined (see figure). Thus, the triplet-to-singlet population is pinned down

188



which together with a hyperfine splitting of 11 pixels provides the best fit. The same

procedure was applied to the other values for the hyperfine splitting.
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Figure 6.24: The correlation curve between the hyperfine splitting and the
population ratio which delivers the best χ2 is described by the solid line with
the related χ2 minima described by the dashed line. Both lines are fits of a third
order polynomial to the values found by the procedure exemplified in figure 6.23
and plotted with open symbols. The χ2 which corresponds to the best fit and the
respective population ratio are indicated by the larger filled circle and square,
respectively. The 1σ limits are indicated in the χ2

min by small filled circles with
the correspondent population ratio indicated by small filled squares. The values
are used to estimate the errors. Additionally, the 1.5 and 2σ limits are indicated
as well.

Consequently, the correlation between the hyperfine splitting, the triplet-to-singlet

population and the best fit possible to achieve is determined. The result is presented in

figure 6.24 by plotting the best χ2 achieved with each value for the hyperfine splitting

and the correspondent population ratio. The final result is determined by finding

the hyperfine splitting which minimizes χ2
min and by calculating the correspondent

population ratio on the respective curve. In both cases, a third order polynomial

serves well the purpose. The error is found by verifying which values for the hyperfine

splitting and population ratio lead to a χ2 higher than the minimum by one unit, i.e.

one standard deviation away.

189



Chapter 6. The µH(3p− 1s) transition: measurement and analysis

Thus, the hyperfine splitting is found to be 11.37±1.03 channels, i.e 211±19 meV,

and the triplet-to-singlet population 3.59± 0.51. It corresponds to a χ2 = 448.903 and

a χ2
r = 0.941 (ndf = 477). The relative weight of the low energy box which corresponds

to this χ2 is 61 ± 1%. It was determined by taking into account the results from the

fit routine corresponding to the different χ2
min and by performing a similar procedure.

The information about the results for the hyperfine splitting and population ratio

which correspond to different σ limits can be collected in order to have a more general

view. This is done in figure 6.25. The figure shows the limits of the different σ for the

fitting of the ground state hyperfine splitting and population. Hence, it resumes the

correlation between these parameters.
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Figure 6.25: Contour of the σ limits (dashed lines) obtained by fixing the
(hyperfine,population) pairs when fitting the µH(3p − 1s) transition line. The
filled squares are the triplet-to-singlet populations which lead to the best fits.
The solid line is a fit to these points of a third order polynomial. The (hyper-
fine,population) for which the best χ2 is found is depicted by an open square.
By fixing the hyperfine splitting of the µH ground state to its theoretical value
(vertical dotted line) the best fit is achieved for a population ratio of 2.9 (hori-
zontal dotted line). This is very close to its statistical value and only about 1.5σ
away from the best fit result.

The most striking and revelant conclusion revealed in figure 6.25 is that by fixing

the hyperfine spitting to the theoretical value of 183 meV [161], the best fit is obtained
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for a triplet-to-singlet population of 2.9:1 which is very close to the statistical value.

Furthermore, this result is approximately 1.5σ away from the best fit.

6.3 Final results and remarks

The line shape of the µH(3p− 1s) transition could not be reproduced by taken the

predictions of the ESCM for the kinetic energy distribution directly as an input for the

fitting. Such a fit yielded a poor reduced χ2 of χ2 = 1.353 only and it is clear that the

lower kinetic energies are underrepresented [114] as can be seen in figure 6.26.
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Figure 6.26: Line shape of the µH(3p − 1s) transition as measured with the
Si(111) Z13 crystal. The data is depicted by filled circles with the respective
statistical error bars. The spectrum was binned by a factor of 2. The bold solid
line is the best fit to the data by using the ESCM predictions for the kinetic
energy distribution at the time of the µH(3p− 1s) radiative transition. The sum
of the response functions of the spectrometer at the energies of the each multiplet
(in dashed lines) is the light solid line. Obviously the data is not reproduced.

Consequently, further analysis showed that the kinetic energy distribution at the

time of the radiative transitions can be modeled by rectangular boxes with good results.

Three boxes were sufficient to yield a good fit of the µH(3p − 1s) transition line (see

figure 6.27). A low energy component with energies below 2 eV and relative weight

higher than 50% turned out to be crucial to describe the line shape. The final value for
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its weight was estimated to be 61±1%. This high value contradicts the published result

of the ESCM calculations [32, 33, 38]. For T ≤ 2 eV, a contribution of about 30% on

the total distribution at the time of the µH(3p− 1s) radiative transition is predicted,

with consequently enhanced high energy contributions. Thus, it indicates that the

kinematics of the lower part of the cascade is not yet fully understood. Moreover,

further evidences came from the πH analysis where the kinetic energy distributions

provided by the ESCM calculations failed to consistently describe the line shape of all

measured πH(np− 1s) transitions [114].
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Figure 6.27: Best fit of the µH(3p − 1s) transition. The data is depicted by
filled circles with the respective statistical error bars. The spectrum was binned
by a factor of 2. The bold solid line is the fit to the data. The sum of the
response functions of the spectrometer at the energies of the each multiplet (in
dashed lines) is the light solid line. The effect of the high energetic Coulomb
transitions (n = 5→ 4,n = 4→ 3) is evidenced by the long tales of the line.

Based on the large contribution of low kinetic energies it can be inferred that the

cross sections for elastic collisions are substantially different from the ones used in the

ESCM code. Additionally, the possibly stronger effects from Coulomb deexcitations

in the outer levels (n > 10, T < 2) might have been neglected so far by starting the

cascade calculations at n = 8.

In summary, the line shape of the µH(3p − 1s) transition has been measured for

the first time with a high resolution Bragg spectrometer. By comparing the line shape
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with the response function, previously determined, the measurement granted the direct

observation of the influence of the Coulomb deexcitations.

Within the box approximation for the kinetic energy distribution, the best fit of

the µH(3p − 1s) transition line yielded a hyperfine splitting of the ground state of

211±19 meV and a triplet-to-singlet population of 3.59±0.51. This reproduces within

1.5σ the theoretical hyperfine splitting of the µH ground state, as calculated from QED,

and confirms as well the statistical population distribution of the triplet-to-singlet.

Figure 6.27 shows the best fit achieved. The response function of the spectrometer is

depicted for comparison. The fit has a χ2 = 448.9 which corresponds to a χ2
r = 0.941.

Though the χ2
r is slightly lower than 1, the discrepancy can be assumed to be purely

statistical. The lower limit in the χ2 distribution for ndf = 477 which corresponds to

the ±1σ region is χ2 = 446.3 [162]. Thus, χ2 = 448.9 is inside the ±1σ region.

The quite good agreement with the theoretical prediction for the hyperfine splitting

and population of the ground state of the µH validate the box model as a reasonable

approximation to the kinetic energy distribution.

Furthermore, an investigation was done whether the line shape could be affected

by molecular formation with subsequent radiative deexcitation [53, 163]:

(µp)nl + H2 → [(µpp)spee]
∗ → [(µpp)s′pee]

∗ + γ

being s and s′ the set of rotational and vibrational quantum numbers describing the

molecular states and γ the emitted photon. A line broadening or even satellites at

the low energy side are expected in case of a significant contribution of these radiative

decays. In fact, a branching ratio for the radiative decay of the µpp system at a few

percent level was predicted [155, 164]. However, in this experiment, no evidence was

found at the 1% level for any additional broadening besides the Coulomb deexcitation.

Moreover, the low energy side of the spectrum revealed to be clean of satellites as the

flat background evidences. The result is corroborated by the absence of any density

dependence of the πH(3p-1s) transition energy [116].
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Chapter 7

Conclusion and outlook

The present investigations have unequivocally demonstrated that the kinetic energy

distribution at the time of a radiative decay in µH can be approximated by several boxes

with successful results.

By using this “model free” method the hyperfine structure of the ground state of

the µH system could be resolved for the first time by measuring X-rays of the 3p− 1s

transition with a high resolution crystal spectrometer. The Doppler broadening of the

spectral line was well established and could be correlated with different Coulomb deexci-

tation steps preceding the measured radiative transition. Furthermore, the assumption

that the hyperfine states of the ground state of the µH are statistically populated was

directly confirmed. The analysis has delivered a hyperfine splitting of 211 ± 19 meV

which is 1.5σ away from the theoretical value of 183 eV [161] and a triplet-to-singlet

population of 3.59± 0.51.

Furthermore, the study of the correlation between the population ratio and the

hyperfine splitting has shown the consistency of the method. By fixing one of these

quantities to its theoretical value, the other one was obtained very close the its theo-

retical prediction. The discrepancy was less than 3.5% in the case of the population

ratio and less than 1.5% in the case of the hyperfine splitting.

On the other hand, the line shape of the µH(3p− 1s) transition could not be fairly

reproduced by using the ESCM predictions for the kinetic energy distribution at the

moment of the 3p− 1s radiative transition. Hence, it is clear that the present status of

the advanced cascade model (ESCM) still needs some fine tunings and can not be used

in the analysis of the Γ1s of the πH ground state. In alternative, the box approximation

turned out to overcome the lack of knowledge in the ESCM and it was already extended

to the ongoing analysis of the width Γ1s of the πH ground state.

The results presented here have triggered further efforts to improve the ESCM. The
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cross sections involved in the exotic hydrogen deexcitation have been reconsidered and

calculated in a fully quantum mechanical close coupling approach [61, 62, 63]. The

cross sections for elastic scattering, Stark transitions and Coulomb deexcitation have

been now calculated in an unified manner.

In fact, by including the new cross sections in the ESCM [60] an increase of the

relative weight of the low energy component (T ≤ 2 eV) to about 55% for µH at the

time of the 3p − 1s radiative transition was obtained. This is close to the 61 ± 1%

predicted by the “model free” approach and agrees with the constraint given by it

(about 50% to 60%). A fit to the measured µH(3p − 1s) line shape by using the

new kinetic energy distribution yields perfect agreement with the data even by leaving

the hyperfine splitting and population ratio as free parameters (χ2
r=0.984) [114]. The

hyperfine splitting is found to be 201 ± 11 meV and the triplet-to-singlet population

ratio 2.98± 0.21.

Furthermore, a subsequent trial to provide new kinetic energy distributions for

the measured πH transitions has recently been made [165]. However, the results for

Γ1s of the πH ground state are still dubious [114]. Further developments are needed.

Meanwhile, the “model free” approach remains as the only reliable possibility to be

used in the πH data analysis.

The µH analysis has also shown that no additional contribution to the line broaden-

ing exists on the 1% level besides the one caused by Coulomb deexcitation. Radiative

decays from µpp molecular systems with a branching ratio of the order of a few percent

and the corresponding low energy satellites were expected [53, 164]. Clearly, no evi-

dence of such lines was seen, which agrees with the absence of any density dependence

of the measured πH transition energy [116].

As a second aspect, the characterization of the Si(111) crystal was successfully ac-

complished. Contributions to about 5% of the FWHM of the response function were

identified to be related to the imperfect nature of the crystal. Moreover, the determi-

nation of the response function at different energies revealed an astonishing sensibility

to experimental conditions. This fact stimulated new investigations on geometrical

properties of the crystal which have been neglected so far, namely the asymmetric cut

angle and the curvature radius. Consequently, a practical method to characterize the

asymetric cut angles in already mounted spherical bent crystals has been developed.

Nevertheless, some features seen in the analysis still lack a more consistent explanation

and future investigations are planned.
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Appendix A

List of symbols

α miscut angle

αf fine structure constant

β(E1) probability of the electron conversion in electrodipole transitions (E1)

ΓSt,Col,Au,γ Stark mixing, Coulomb deexcitation, Auger emission and radiative rate

Γ1s Strong interaction broadening of the ground state in πH

∆θa maximum Johann broadening due to the crystal height

∆θb maximum Johann broadening due to the crystal width

∆θd maximum Johann broadening due to variations in the lattice parameter d

∆θJ maximum Johann broadening

∆θz maximum Johann broadening due to the source height

∆hs hyperfine splitting

ζ relative deviation of the scattering vector

ε efficiency

ε1s strong interaction shift of the ground state of the pionic hydrogen

ζ0 displacement of the Bragg reflection

ζFWHM
D FWHM of the Darwin curve

η related with ζ so that the total reflection region is limited by −1 < η < 1

θB Bragg angle

λ wavelength

λD absorption depth in a Bragg scattering due to photoelectric effect

λP mean free path of a photon in a material considering photoelectric effect

λT total penetration depth including extinction and absorption

Λ extinction depth

µa linear attenuation coefficient

µN nuclear magneton
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µp magnetic moment

µxp reduced mass of the x−p bound system

ρ density

ρe electron density

ρL Larmor radius

σ standard deviation

σj half of the crystal opening angle

σSt cross section of the Stark mixing

τSt collision time of the Stark mixing

υee,ie,ii frequency of the collisions electron-electron, electron-ion or ion-ion

Υ small deviation from mπ on the wave phase in Bragg scattering

φ wave phase

Φ rotation of the crystal in the setup of the miscut determination

Φ0 miscut orientation with respect to a reference mark on the glass lens rim

ϕ orientation of the miscut

Ψr measured angle of the Bragg reflection in the presence of a miscut

ω angular frequency

Ω solid angle

a vertical crystal extension

a0 Bohr radius ≈ 5.291772108(18)× 10−11 m

A mass number
~A magnetic vector potential

b horizontal crystal extension
~B magnetic field

c light velocity in vacuum

CJohannCyl Johann average shift caused by a cylindrical crystal

CJohannSph Johann average shift caused by a spherical crystal

d spacing between the planes in the crystal lattice

e unitary charge

E energy

E1s binding energy of the atomic ground state as predicted by QED
~E electric field

FB magnetic force

F unit cell structure factor

F total momentum operator of the proton-lepton magnetic interaction

F focal distance
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g0 phase shift in a scattered process in forward direction

gp g-factor of the proton

g magnitude of the reflectivity of a thin layer of electrons

G vector in the reciprocal space

h Planck constant

h̄ Dirac constant (h/2π)

J action integral

J spin-orbit coupling operator

k wavenumber

K constant of the ineffective layer model

l angular momentum quantum number

L angular momentum operator

L length of the ineffective layer

m diffraction order (integer)

me electron mass

mH hydrogen mass

mp proton mass

mxp exotic hydrogen mass

n principal quantum number

ndf number of degrees of freedom

N number of slits/layers in a diffraction grating

p momentum

P Panofsky ratio

P pressure

q charge

Q scattering vector

Q0 π0 momentum in the CMS

Rni→nf
dipole matrix element

Rc crystal bending radius

r0 Classical electron radius (≈ 2.82× 10−5Å)

|rN (ζ)|2 total intensity of the reflectivity using the kinematical approach

r(a) amplitude reflectivity in dynamical approach

rb Bohr radius

R(a) total intensity of the reflectivity in dynamical approach

S spin operator

t time
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T kinetic energy

T temperature

Tr transmission

v velocity

vc volume of the unit cell

wFWHM
D angular FWHM of the Darwin curve

wtotal
D angular width of the total reflection region of the Darwin curve

Y real distance between the detector and the crystal in the spectrometer

Y nifi→nf lf radiative yield

z height of the source in a Bent crystal Bragg spectrometer

Z atomic number

200



Appendix B

Acronyms and Abbreviations

BPM Bad Pixel Map

CCD Charge Coupled Device

ChPT Chiral Perturbation Theory

CMC Classical Monte-Carlo

CMS Center of Mass System

CSDCLUSTER Program to treat the CDD raw data

ECR Electron Cyclotron Resonance

ECRIS Electron Cyclotron Resonance Ion Source

ECRIT Electron Cyclotron Resonance Ion Trap

ESCM Extended Standard Cascade Model

FWHM Full Width at Half Maximum

HBChPT Heavy Baryon Chiral Perturbation Theory

HF High Frequency

LHD Liquid Hydrogen Density (4.25×1022 atoms·cm−3)

PSI Paul Scherrer Institut - Villigen, Switzerland

QCD Quantum ChromoDynamics

QE Quantum Efficiency

QED Quantum ElectroDynamics

RF Response Function

SCM Standard Cascade Model

ThRF Theoretical Response Function

TOF Time Of Flight

UHV Ultra High Vacuum

XOP Software which provides the response function for a flat perfect crystal [84]

XEDS X–Ray Energy Dispersive Spectroscopy
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XRD X–Ray Diffraction

XTRACK Simulation tracking routine of the PSI spectrometer
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Spherically bent crystals are used as analyzers in high-resolution spectroscopy, in particular, in low
count-rate applications such as exotic-atom research. The focal conditions are determined not only
by the bending radius and the Bragg angle but also by the crystal cut angle between its surface and
the reflecting crystal planes, along with their orientation with respect to the direction of dispersion.
We describe a simple but precise method for measuring the cut angle and its orientation for mounted
spherically bent crystals, by combining x-ray diffraction and laser optical alignment, which can be
easily performed with standard x-ray laboratory equipment. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2884149�

I. INTRODUCTION

Large area spherically bent Bragg crystals are used in the
x-ray spectroscopy of exotic atoms in the few keV range.1–3

Owing to their focusing properties, they reduce measuring
times by an order of magnitude compared to plane crystal
arrangements. In this �Johann-type� setup,4 defocusing due to
the imaging properties can be well controlled by choosing
appropriate dimensions for x-ray source, crystal, and its ra-
dius of curvature, in combination with a large area position-
sensitive detector.5

A general problem is that the precise knowledge of the
orientation of the lattice planes of the slabs, cut from a crys-
tal bulk and subsequently polished, may be lost. Deviations
are due not only to an imperfect determination of the orien-
tation of the bulk material but especially from alignment
problems of the sawing machine. Spherically bent crystals
are made by forcing thin slabs into a spherical shape; there-
fore the crystal cut angle �miscut� can be assumed to be
constant over the whole crystal surface. In our case, the
plates follow the curvature of a high-quality polished spheri-
cal glass lens kept in place by molecular forces �Fig. 1�. The
meridional orientation may also change during the contacting
process. In fact, x-ray diffraction diagnostics are usually not
available during the industrial fabrication procedure which is
necessary for achieving highest polishing quality. Hence, af-
ter mounting the crystal, determining the miscut and its ori-
entation is essential.

A miscut is characterized by an angle � between the
crystal surface and the reflecting planes. As is seen from
Guinier’s focusing condition for cylindrically bent crystals,6

the crystal cut angle contributes to the focal positions, i.e., in
the distances between crystal �C�, detector �D�, and source
�S� �Fig. 2�,

CD = Rc sin��B + �� , �1�

SC = Rc sin��B − �� . �2�

For �=0, the Guinier condition reduces to the usual �meridi-
onal� focusing condition for the symmetric Bragg case,
CD=Rc sin �B, where �B is the Bragg angle according to
Bragg’s law and Rc the crystal’s bending radius. Similarly,
the knowledge of � is equally important when using asym-
metric Bragg reflections. For the sign of �, we follow Guini-
er’s convention, where a positive angle corresponds to a
larger crystal-detector distance.

Equations �1� and �2� are only valid for a particular ori-
entation of the crystallographic planes, i.e., when the direc-
tions of dispersion and the meridional plane are perpendicu-
lar; it also neglects bending itself.7 An arbitrary orientation
of the miscut plane is equivalent to a rotation of the meridi-
onal plane by an angle � around the diameter Rc of Fig. 2.
The effective miscut �� can then be obtained as the projec-
tion � cos �. Rewriting Eq. �1� as CD=Rc sin �B cos ��
+Rc cos �B sin �� and assuming a small miscut ���0�, one
obtains for any orientation � the focusing condition

CD = Rc sin �B + Rc cos �B sin�� cos �� . �3�

As expected, an orientation according to �=90° or 270° does
not change the focal length: rays in the plane of Fig. 2 are
simply reflected above or below the symmetry plane, which
can be corrected by tilting the crystal but leads to a top-
bottom asymmetry of the reflection.

The following example reveals the importance of a pre-
cise determination of both the miscut and its orientation: for
a Si�111� crystal and x-rays of the 3p-1s transition in pionic
hydrogen �2.89 keV� the Bragg angle is �B=43.2°.3 A mis-
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cut as small as 0.1° results in a change of the focal length of
about 4 mm or 0.2% for Rc=2.98 m. If such a miscut is
ignored and the detector is positioned at the supposed focal
position, the displacement of the focus broadens the line by
about 10 s of arc �for a horizontal crystal aperture of
60 mm�; this is to be compared to the intrinsic resolution of
the silicon crystal of about 26 s of arc.8

II. X-RAY DIFFRACTION BASED TECHNIQUES

Techniques for determining the orientation of lattice
planes within crystal blocks by diffraction methods are well
established,9 in particular, for measuring the orientation of
epitaxial layers and implantation profiles.10–14 The methods
are based on angle differences and/or rocking curve width
measurements, among others, with strongly asymmetric re-
flection setups. When adapted to flat specimen14 or a special
form of the crystal material,13 they are not easily applicable
to the spherically bent crystal setup.

The only alignment required for the method described in
this paper is an adjustment of the x-ray spectrometer to the
critical point �Fig. 1� where the bent surface is parallel to the
reference plane defined by the spectrometer sample holder
being perpendicular to the rotation axis �Fig. 3�. The critical
point is always the lowest point and, so, no further tilt ad-
justment is needed.

III. CRYSTAL ALIGNMENT

In practice, the lowest point does not coincide with the
geometrical center of the crystal mounting. Therefore, at first
the center offset of the critical point is found by means of a
laser beam reflected from the crystal surface onto a screen.
When rotating the crystal-lens mounting, the position of the

reflected light remains unchanged if the critical point is on
the axis of rotation, as is required by this method �Fig. 3�.
Otherwise, the reflected spot describes an ellipse. The closer
the crystal sphere center to the rotation axis, the smaller the
ellipse axes; the ellipse eventually collapses into a spot. Dur-
ing this procedure, the laser and the rotation axes are kept
fixed and the sample holder, together with the crystal mount-
ing clamped on it, is moved along the y and z coordinate in
order to position the critical point onto the rotation axis �Fig.
3�. The accuracy of this procedure depends on the surface to
screen distance. In addition, the laser spot diameter can limit
the accuracy. Placing the laser’s aperture at a distance Rc the
crystal acts as a concave mirror, and the crystal will focus the
reflected beam also at that distance.

In the absence of any miscut ��=0�, an x-ray beam hit-
ting the crystal surface at the critical point is always Bragg
reflected under the angle �0=�B, whatever the holder rota-
tion angle. For nonzero values of �, the reflection angle �
with respect to the reference plane varies periodically around
�0 according to

� = �0 + � cos�� − �0� , �4�

where �=�−�0 is the actual orientation. The angle � is
measured relative to an arbitrary reference mark placed on
the rim of the glass lens; the phase �0 represents the direc-
tion of the miscut with respect to the reference mark. Miscut
angle and orientation �� ,�0� are then obtained through a fit
of the ���� curve �Fig. 4�. During the x-ray sample spec-
trometer alignment, it was necessary to redefine the zero of
the angle encoder. This explains the small offset on the ����
curves, which are not vertically centered at the correspond-
ing Bragg angle �B. However, this has no impact on the
extracted values of � and �0, as can be seen in Eq. �4�.

IV. MEASUREMENT

The measurements were performed with a SEIFERT®
XRD 3003 PTS high-resolution x-ray diffraction spectrom-
eter, which provides a collimated and monochromatic beam
of Cu K� x-rays �8.041 keV�. A sample spectrometer x-ray
alignment was first performed. The optical alignment de-
scribed above was done with a general-purpose gas laser
�660 nm�. The light spots were, respectively, about 6 and
0.5 mm on the crystal surface and on the screen catching the
reflected laser beam. The x-ray beam was collimated to 1 cm
in height and 1 mm in width, about 20 cm away from the
sample. The collimator width at the detector side was
0.5 mm and its distance was also 20 cm.

FIG. 1. Cross section of the crystal mounting on a concave glass lens of 3 m
curvature, 12 cm diameter, and 3 cm thickness. The thickness of the crystal
slabs is about 0.2–0.3 mm �curvature and crystal thickness not to scale�.

FIG. 2. Bragg reflection and focusing condition without and with miscut �
for a bent crystal setup in the symmetry plane. The left drawing corresponds
to the symmetric Bragg case, the right one to the asymmetric one for a
miscut orientation �=0° �adapted from Ref. 6�.

FIG. 3. Schematic of the method used for positioning the critical point
�Fig. 1� onto the holder rotation axis.
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Appendix C. Accurate miscut angle determination

A set of 13 spherically bent crystals was characterized.
As an example of a relatively large and of a relatively small

miscut, the results for a quartz �12̄10� and a silicon �110�
crystal are shown �Fig. 4�. The fit to the predicted cosine
behavior �Eq. �4�� is almost perfect. The angles � and �0

obtained for the quartz crystal are 0.442° �0.005° and
169.0° �0.7° and for silicon 0.119° �0.004° and
−3.0° �2.0°, respectively.

V. DISCUSSION

In addition to the fit error, experimental uncertainties
must be considered. The hitting position of the collimated
x-ray beam may deviate from the critical point by the step
width of the y-z movement, which was about 0.5 mm. This
results in ellipses with an axis up to 4 mm corresponding to
an uncertainty of 0.019° on the cut angle for crystals with
3 m bending radius. As the laser spot is less than 1 mm, the
step width dominates the error of � in this setup. As men-
tioned, the orientation angle �0 of the miscut is measured
relative to a reference mark on the glass lens. The accuracy
��0 for the mounting of the glass lens on our sample holder
is better than 2°.

Of great advantage is the fact that the results are ob-
tained by fitting a simple cosine function, which makes a

specific adjustment of the meridional plane unnecessary. Ob-
viously, the accuracy of the method scales linearly with the
dimensions of the laser setup. The accuracy can easily be
increased by adding data points to such curves—being ad-
vantageous for very small cut angles—as far as mechanical
limitations appear. Furthermore, almost no restrictions for
the Bragg angle arise because any diffraction angle acces-
sible by the diffraction spectrometer can be used. Notewor-
thy is that the method can also be applied to the measure-
ment of the miscut at any point of the crystal surface, by
using a holder capable of tilting the crystal mounting.

VI. SUMMARY

We describe a simple and precise method for determin-
ing or checking the miscut and its orientation of spherically
bent crystal mountings, which have been used in ultimate
resolution x-ray spectroscopy of exotic atoms. The method
uses a commercially available x-ray diffraction spectrometer
and a general-purpose laser. For bending radii of 3 m, in the
worst case an accuracy of 0.02° was achieved for the cut
angle, which is easily enhanced to a few millidegrees when
using a better y-z table.
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The ð3p� 1sÞ x-ray transition to the muonic hydrogen ground state was measured with a high-

resolution crystal spectrometer. A Doppler effect broadening of the x-ray line was established which could

be attributed to different Coulomb deexcitation steps preceding the measured transition. The assumption

of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly

confirmed by the experiment, and measured values for the hyperfine splitting can be reported. The results

allow a decisive test of advanced cascade model calculations and establish a method to extract

fundamental strong-interaction parameters from pionic hydrogen experiments.

DOI: 10.1103/PhysRevLett.102.023401 PACS numbers: 36.10.Ee

A series of experiments has been conducted at the Paul
Scherrer Institut (PSI), Switzerland, to extract the isospin
separated pion-nucleon scattering lengths from the obser-
vation of x-ray transitions feeding the ground state of
pionic hydrogen [1–3]. With x-ray energies of about
2–3 keV and values for the strong-interaction shift and
broadening being of about 7 and 1 eV, respectively, the
use of a high-resolution Bragg spectrometer was manda-
tory to reach the envisaged precision on the percent level.

The experimental difficulties are considerable, espe-
cially for the isovector scattering length, which is equiva-
lent to the determination of the strong interaction
broadening. It imposes the requirement to extract from
the measured line shape a Lorentzian profile representing
the natural width, which is convoluted with the spectrome-
ter response and several contributions owing to the Doppler
broadenings from different high velocity states of the
exotic atom.

High velocity states develop in exotic hydrogen atoms
during the atomic deexcitation cascade. As the system is
electrically neutral, it may dive deeply into the electron
cloud of a neighboring hydrogen molecule. Such close
collisions strongly influence the atomic cascade. The
most important of these processes are the so-called
Coulomb transitions [4–6], collision-induced radiationless
deexcitations, where the released energy is shared between
the exotic atom and a normal hydrogen atom as recoil
partner. During the cascade, acceleration due to Coulomb
transitions and deceleration by elastic and inelastic colli-
sions compete, which results in a complex and level de-
pendent kinetic energy distribution.

Historically, the first evidence for high velocity states
was found in the charge exchange reaction ��p ! �on
with stopped pions as Doppler broadening of the time-of-
flight (TOF) of the monoenergetic neutrons [7]. Later on,
detailed studies confirmed that Coulomb deexcitation sub-
stantially affects the kinetic energy of �H [8] and �H
atoms [9] even at lowest densities. From the TOF spectra,
several components were identified and attributed to spe-
cific Coulomb transitions. Hints for the influence of the
Doppler broadening in x-ray transitions were identified in
experiments measuring the strong-interaction width of the
�H ground state [2,3]. A correction for the cascade-
induced broadening is therefore indispensible for a proper
extraction of the hadronic contribution to the x-ray line-
width. However, the high precision information from the
reaction ��p ! �on cannot be directly transferred to
x-ray studies. Charge exchange occurs from ns states,
mainly with principal quantum numbers n ¼ 3–5 of the
��p system, whereas the initial states forK x-ray emission
are np levels. Consequently, the preceding cascade steps
for the two processes are different, and the Doppler con-
tributions to the x-ray line shape deviate from the ones
derived from neutron TOF experiments.
As the intensities of the x-ray transitions strongly de-

pend on the hydrogen density, there was a first approach to
extract information about the cross sections of Coulomb
deexcitation from intensity studies. Different processes
such as Stark transitions and external Auger effect, how-
ever, are overwhelming in their importance for the x-ray
intensity compared to Coulomb deexcitation. In conse-
quence, the kinetic energy Tkin of the exotic hydrogen
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atom was used in earlier cascade codes (the so-called
Standard Cascade Model: SCM) as a fitting parameter
with values around Tkin ¼ 1 eV, which explained the mea-
sured intensities with sufficient accuracy [10].

Based on the SCM, an extended standard cascade model
(ESCM) was developed. It is a new approach to calculate
the Doppler contributions to neutron TOF and exotic hy-
drogen x-ray spectra by taking into account the competing
processes in each deexcitation step and, hence, is able to
provide the kinetic energy distribution at the time of x-ray
emission [11]. An example of such a kinetic energy distri-
bution for muonic hydrogen in the 3p state is shown in
Fig. 1. Monoenergetic lines corresponding to specific
Coulomb transitions n ! n0 are smeared out because of
the numerous elastic collisions after the Coulomb transi-
tion and before x-ray emission. The validity of ESCM
calculations cannot be tested directly in pionic hydrogen
as the strong-interaction broadening completely masks the
fine details of the various Doppler contributions.

Muonic hydrogen as a purely electromagnetic twin sys-
tem to pionic hydrogen offers itself as an ideal candidate
for the direct observation of the Coulomb deexcitation.
Ideally, it could be used as a test of the validity of the
ESCM by reproducing the line shape of muonic hydrogen
x-ray transitions in a fitting routine with the predictions of
the ESCM as input. The theoretical values for the ground-
state hyperfine splitting, and more important, for the rela-
tive intensity of the transitions feeding the triplet and
singlet components, should be obtained. The ground-state
hyperfine splitting is calculated to be 182:725�
0:062 meV [12]. A relative statistical population of 3:1 is
expected for the triplet and singlet components.

An understanding of the atomic cascade in exotic hydro-
gen is needed in other experimental studies as well, e.g.,
(i) for the precision determination of the proton charge

radius from the muonic hydrogen 2s� 2p Lamb shift
[9,13] or (ii) in the measurement of the induced pseudo-
scalar coupling in muon capture by the proton [14–16].
The experiment was performed at the �E5 channel of

the proton accelerator at PSI, which provides a low-energy
pion beam with intensities of up to a few 108=s. Pions of
112 MeV=c were injected into the cyclotron trap II [1] and
decelerated using a set of degraders optimized to the
number of muon stops by measuring x-rays from muonic
helium. Muonic atoms are formed by slow muons origi-
nating from the decay of almost stopped pions close to or in
a cylindrical cryogenic target cell of 22 cm length and 5 cm
in diameter in the center of the trap. The cell was filled with
hydrogen gas cooled down to 25 K at 1 bar absolute
pressure, which corresponds to a density equivalent to
12.5 bar at room temperature. X radiation could exit the
target cell axially through a 5 �m thick Mylar� window.
X rays from the �Hð3p� 1sÞ transition were measured

with a Johann-type Bragg spectrometer equipped with a
spherically bent Si(111) crystal having a radius of curva-
ture of 2982:2� 0:3 mm and a free diameter of 90 mm
[17]. Such a spectrometer is able to measure simulta-
neously an energy interval according to the width of the
x-ray source when using a correspondingly extended x-ray
detector, in this case a 3� 2 array of charge-coupled
devices (CCDs) covering in total 72 mm in height and
48 mm in width [18]. A pixel size of 40 �m provides the
two dimensional position resolution necessary in order to
measure the diffraction image. The background rejection
capability of CCDs together with a massive concrete
shielding suppresses efficiently events from beam induced
reactions. In total, almost 10 000 events were collected for
the �Hð3p� 1sÞ line (Fig. 2).
The spin-averaged �Hð3p� 1sÞ transition energy is

calculated to be 2249:461� 0:001 eV with a radiative
linewidth of 0:3 �eV [19]. The 3p-level splittings amount
to a few meV only [20]. Hence, two components with
identical response functions are sufficient to describe the
ð3p� 1sÞ line. The spectrometer response was determined
using narrow x-rays from helium-like argon as outlined in
[21,22]. Applying this method to chlorine and sulfur, an
extrapolation yields a resolution of 272� 3 meV
(FWHM) at the �Hð3p� 1sÞ transition energy, which is
significantly narrower than the observed linewidth (Fig. 2).
Details may be found elsewhere [23].
As a first trial to include the Doppler broadening caused

by Coulomb deexcitation, the kinetic energy distribution
given by the ESCM result of [11] (Fig. 1) was taken
directly as an input for the fitting of the line shape, which
was done by means of the MINUIT package [24]. A com-
parison to the measured line shape yields a poor reduced�2

of �2
r ¼ 1:353 only (Fig. 2, dashed-dotted line).

It is evident that this ESCM prediction with a weight of
36% only for the low-energy component Tkin � 2 eV
underestimates substantially the fraction of x-rays with

FIG. 1 (color online). Kinetic energy distribution of �H atoms
in the 3p state for a hydrogen density equivalent to 12.5 bar as
predicted from the ECSM [11] using cross sections calculated by
[11] (dashed curve) and recalculated cross sections [26] stimu-
lated by the present experiment (solid curve). Numbers indicate
the corresponding Coulomb transitions n ! n0. Note the change
of the vertical scale at 10 eV.
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small Doppler shifts. This reveals that cross sections re-
sponsible for the development of such low energies com-
ing from an interplay of Coulomb deexcitation and elastic
collisions could still be deficient. In addition, the cascade
calculation starting at n ¼ 8 possibly neglects stronger
effects from Coulomb deexcitation in the outer shells
(n > 11), where the ESCM uses a classical trajectory
Monte Carlo approach.

Consequently, as a further approach, a ‘‘model free’’
method was applied, which has already been used in the
case of the neutron TOF spectra [8]. The Doppler contri-
butions from Coulomb deexcitation to the �Hð3p� 1sÞ
line shape were determined by modelling the kinetic en-
ergy distribution with several rectangular boxes, the num-
ber of which is assessed by the transitions in the preceding
cascade.

Several sets of kinetic energy boxes were investigated
including besides �n ¼ 1 also �n ¼ 2 Coulomb transi-
tions. Hyperfine splitting, i.e., both line positions, relative
population, (flat) background, and the relative weight of
the boxes were free parameters in the fit. The sum of the
relative weights of the boxes was always normalized to
one.

It is a major result of this study that three narrow boxes
are essential but also sufficient to model a kinetic energy
distribution yielding a good fit to the �Hð3p� 1sÞ line
shape: (i) one low-energy component below Tkin ¼ 2 eV
collecting �H atoms which gained their energy from n �

10 Coulomb transitions and/or high velocity systems de-
graded by collisions, and (ii) two at higher energies cor-
responding to the deexcitation steps n ¼ 5 ! 4 (Tkin ¼
26:9 eV) and n ¼ 4 ! 3 (Tkin ¼ 58:2 eV).
A �2 analysis shows that a weight of �60% is manda-

tory for the low-energy component. In case of the high-
energy components, the fit is only sensitive to the relative
weight and the central value. Extending the boundaries up
to�30% of the central values affects the result by less than
1.4 standard deviations. Therefore, the kinetic energy dis-
tribution could be condensed to three narrow intervals.
The best reduced �2 is found to be �2

r ¼ 0:947 for the
kinetic energy intervals set to [0–1.8], [26.4–27.4], and
½57:7–58:7� eV resulting in relative weights of ð61�
2Þ%, ð25� 3Þ%, and ð14� 4Þ% (Fig. 2: ‘‘best fit’’ in the
‘‘model free’’ approach). Uncertainties represent statistical
errors only.
A correlation study of hyperfine splitting and relative

population was performed by using the three kinetic energy
intervals found in the above mentioned analysis, but with
their weights, total intensity, and background kept as free
parameters. The best �2

r ¼ 0:941 is obtained for a hyper-
fine splitting of 211� 19 meV, a triplet-to-singlet popula-
tion of ð3:59� 0:51Þ : 1 (Fig. 3, A), and relative weight of
61� 1% for the low-energy component, where errors cor-
respond to 1�. The 1, 1.5, and 2� contours are also shown.
When fixing the hyperfine splitting to the theoretical value,
the best fit is obtained for a triplet-to-singlet population of
ð2:90� 0:21Þ : 1 (Fig. 3, B), very close to the statistical
value. The �2 differs only by 1:5� from the best value.
The results from the present experiment led to a recon-

sideration of cross sections involved in exotic-hydrogen
deexcitation. In a fully quantum-mechanical close-
coupling approach, elastic scattering, Stark transitions,
and Coulomb deexcitation now have been calculated in a
unified manner [5,6,25].

FIG. 3 (color online). �2 contour for the correlation of hyper-
fine splitting and relative population in the ‘‘model free’’ ap-
proach. The dashed-dotted line displays the location of the
minimum �2 for the corresponding hyperfine splitting. (A–D:
see text).

FIG. 2 (color online). Line shape of the �Hð3p� 1sÞ transi-
tion as measured with a Si (111) crystal in first order. One energy
bin corresponds to 2 CCD pixels or 37.2 meV. The spectrometer
response (thin solid line) represents the expected line shape
formed by the two hyperfine components (dashed lines) without
any Doppler broadening (normalized to the peak height after
background subtraction). Including Coulomb deexcitation by
using longstanding cross sections [11] yields a poor description
(dashed-dotted) of the line shape. The ‘‘best fit’’ in a ‘‘model
free’’ approach (see text) is shown by thick solid line following
the data. A very good fit—being indistinguishable by eye from
the ‘‘model free’’ approach—was found when using for the
ESCM calculation the recently recalculated cross sections [26].
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Including these cross-section results in the ESCMmodel
[26], the relative weight of the low energies (Tkin � 2 eV)
increases to 55%, which is closer to the constraint found in
the ‘‘model free’’ approach. A fit to the measured
�Hð3p� 1sÞ line shape by using directly the new kinetic
energy distribution (Fig. 1) yields a much better descrip-
tion of the data (Fig. 2). Leaving hyperfine splitting and
triplet-to-singlet intensity ratio as free parameters, values
were obtained of 194� 12 meV for the hyperfine splitting
and ð2:94� 0:24Þ : 1 for the triplet-to-singlet intensity
ratio (Fig. 3, C). The striking agreement is indicated by
�2
r ¼ 0:997. When fixing the splitting to the theoretical

value, the relative triplet-to-singlet population becomes
ð3:17� 0:27Þ : 1 (Fig. 3, D).

Another process, which may affect the line shape, is
due to molecule formation with subsequent radiative decay
ð�pÞnlþH2!½ð�ppÞ�pee��!½ð�ppÞpee��þ� [27,28].
If radiative decay contributes significantly, a line broad-
ening or even satellites at the low-energy side are expected.
In the case of �pp, a branching ratio for radiative decay
was predicted at the few per cent level [29,30]. However, in
this experiment, no evidence was found at the 1% level for
any broadening except from Coulomb deexcitation. The
result is corroborated from the absence of any density
dependence of the �Hð3p� 1sÞ transition energy [3].

To summarize, the line shape of the �Hð3p� 1sÞ tran-
sition was measured with a high-resolution Bragg spec-
trometer. The influence of Coulomb deexcitation was
directly seen from a line broadening compared to the
spectrometer resolution. By using a ‘‘model free’’ ap-
proach, various Doppler contributions are identified, which
are attributed to preceding Coulomb transitions. A large
fraction of the �H systems are found to have kinetic
energies below 2 eV. The measurement yields the �H
ground-state hyperfine splitting as calculated from QED
and confirms experimentally the statistical population of
the triplet and singlet 1s states. The measurement triggered
a new calculation of cross sections resulting in a signifi-
cantly improved description of the �Hð3p� 1sÞ line
shape and serves as a basis for a further evaluation of the
determination of the isovector scattering amplitude from
pionic hydrogen data with increased precision.
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[2] H.-Ch. Schröder et al., Eur. Phys. J. C 21, 473 (2001).
[3] D. Gotta et al., Lect. Notes Phys. 745, 165 (2008).
[4] L. Bracci and G. Fiorentini, Nuovo Cimento Soc. Ital. Fis.

43A, 9 (1978).
[5] G. Ya. Korenman, V. N. Pomerantsev, and V. P. Popov,

JETP Lett. 81, 543 (2005).
[6] V. N. Pomerantsev and V. P. Popov, JETP Lett. 83, 273

(2006); Phys. Rev. A 73, 040501(R) (2006).
[7] J. B. Czirr et al., Phys. Rev. 130, 341 (1963).
[8] A. Badertscher et al., Europhys. Lett. 54, 313 (2001), and

references therein.
[9] R. Pohl et al., Phys. Rev. Lett. 97, 193402 (2006).
[10] E. Borie and M. Leon, Phys. Rev. A 21, 1460 (1980).
[11] T. S. Jensen and V. E. Markushin, Eur. Phys. J. D 19, 165

(2002); 21, 261 (2002); 21, 271 (2002).
[12] A. P. Martynenko and R.N. Faustov, JETP 98, 39 (2004).
[13] R. Pohl et al., Can. J. Phys. 83, 339 (2005).
[14] D. F. Measday, Phys. Rep. 354, 243 (2001).
[15] T. Gorringe and H.W. Fearing, Rev. Mod. Phys. 76, 31

(2003).
[16] V. A. Andreev et al., Phys. Rev. Lett. 99, 032002 (2007).
[17] D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004).
[18] N. Nelms et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 484, 419 (2002).
[19] P. Indelicato (unpublished).
[20] K. Pachucki, Phys. Rev. A 53, 2092 (1996).
[21] D. F. Anagnostopulos et al., Nucl. Instrum. Methods Phys.

Res., Sect. A 545, 217 (2005).
[22] M. Trassinelli et al., J. Phys. Conf. Ser. 58, 129 (2007).
[23] D. S. Covita, Ph.D. thesis, Univ. of Coimbra, 2008 (un-

published).
[24] F. James and M. Roos, Comput. Phys. Commun. 10, 343

(1975).
[25] V. P. Popov and V.N. Pomerantsev, arXiv:0712.3111v1.
[26] T. S. Jensen, V. N. Pomerantsev, and V. P. Popov,

arXiv:0712.3010v1.
[27] D. Taqqu, AIP Conf. Proc. 181, 217 (1988).
[28] S. Jonsell, J. Wallenius, and P. Froelich, Phys. Rev. A 59,

3440 (1999).
[29] E. Lindroth, J. Wallenius, and S. Jonsell, Phys. Rev. A 68,

032502 (2003); 69, 059903(E) (2004).
[30] S. Kilic, J.-P. Karr, and L. Hilico, Phys. Rev. A 70, 042506

(2004).

PRL 102, 023401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

023401-4

211



Appendix D. Line shape of the µH(3p− 1s) transition

212



Bibliography

[1] David Griffiths,
“Introduction to Elementary Particles”
Wiley-VCH, Mörlenbach, Germany (2004);

[2] W.N. Cottingham and D.A. Greenwood,
“An Introduction to the Standard Model of Particle Physics”
Cambridge University Press, Cambridge, UK (2003);

[3] W. Greiner, S. Schramm and E. Stein,
“Quantum Chromodynamics”
Springer, 3rd edition, Berlin, Germany (2007);

[4] A.W. Thomas and W. Weise,
“The structure of the Nucleon”
Wiley-VCH, 1st edition, Berlin, Germany (2001);

[5] S. Scherer and M.R. Schindler,
“A Chiral Perturbation Theory Primer ”
arXiv:hep-ph/0505265 (2005);

[6] A. Zee,
“Quantum field theory in a nutshell”
Princeton University Press, 1st edition, Princeton, USA (2003);

[7] M. Srednicki,
“Quantum Field Theory”
Cambridge University Press, Cambridge, UK (2007);

[8] J. Gasser, V. E. Lyubovitskij, A. Rusetsky, and A. Gall,
“Decays of the π+π− atom”
Phys. Rev. D 64, 016008 (2001);

[9] G. Colangelo, J. Gasser and H. Leutwyler,
“ππ scattering”
Nucl. Phys. B 603, 125-179 (2001);

[10] G. Ecker,
“Chiral perturbation theory”
Prog. Part. Nucl. Phys. 35, 1-80 (1995);

[11] B. Adeva et al.,
“CERN experiment PS212(DIRAC), Proposal CERN/SPSLC 95-1”, CERN (1995);

213



Bibliography

[12] G. Beer, A. M. Bragadireanu, M. Cargnelli, C. Curceanu-Petrascu, J.-P. Egger,
H. Fuhrmann, C. Guaraldo, M. Iliescu, T. Ishiwatari, K. Itahashi, M. Iwasaki, P.
Kienle, T. Koike, B. Lauss, V. Lucherini, L. Ludhova, J. Marton, F. Mulhauser, T.
Ponta, L. A. Schaller, R. Seki, D. L. Sirghi, F. Sirghi, and J. Zmeskal,
“ Measurement of the Kaonic Hydrogen X-Ray Spectrum”
Phys. Rev. Lett 94, 212302 (2005);

[13] http://www.Inf.infn.it/esperimenti/siddharta/ ;

[14] “Proceedings of HADATOM02, CERN, Geneva, October 14-15 (2002)”
arXiv:hep-ph/0301266 (2003);

[15] T. Ericson and Wolfram Weise,
“Pions and Nuclei”
Clarendon Press, (1988);

[16] J.R. Taylor,
“Introduction to the Quantum Theory of Scattering”
Dover Publications, (2006);

[17] B.H. Brandsen and R.G. Moorhouse,
“The Pion–Nucleon System”
Princeton University Press, (1967);

[18] G. Rasche and W. S. Woolcock,
“Connection between low-energy scattering parameters and energy shifts for pionic hydrogen”
Nucl. Phys. A 381, 405-418 (1982);

[19] D. Sigg, A. Badertscher, P.F.A. Goudsmit, H.J. Leisi and G.C. Oades,
“Electromagnetic corrections to the s wave scattering lengths ion pion hydrogen”
Nucl. Phys. A 609, 310-325 (1982);

[20] J. Gasser, M.A. Ivanov, E. Lipartia, M. Mojžǐs adn A. Rusetsky,
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