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Abstract 
 

Nitric oxide (•NO) is a multi-faceted radicalar messenger involved in the 

modulation of numerous biological processes. It is implicated in the regulation 

of physiological events such as neuronal plasticity, host defense and blood 

flow, but may also trigger cell toxic pathways, notably cell death associated 

with neurodegenerative processes. 

The bioactivity of •NO is afforded by its unusual chemical properties. 
•NO is a highly diffusible molecule that permeates membranes after being 

produced, thus conveying information by its local concentration, rather than by 

its chemical structural features, as happens with other classical modulators. A 

critical insight towards its role in vivo depends on the assessment of its 

concentration dynamics, both in time and space. The same properties that 

determine its unique biological effects also make its measurement a 

challenging task, particularly because of its gaseous nature and reactivity, 

which limit its half-life. Given this scenario, it has been a challenging task 

determining the rate and pattern of •NO changes in hippocampus following 

stimulation of ionotropic glutamate receptors, because of the involvement of 

glutamate receptor-dependent •NO production in both the mechanisms of 

synaptic plasticity and those of neurodegeneration via excitotoxic phenomena. 

 In this work, the use of microsensors endowed with appropriate 

analytical properties allowed the real-time measurement of endogenous •NO 

production in rat hippocampal slices with minimal tissue damage, via 

activation of glutamate ionotropic receptors. Stimulation of slices with 

glutamate, NMDA and AMPA clearly uncovered the transitory nature of •NO 

signals, pointing to operating regulatory mechanisms not only for the 

production but also for the decay. When using the physiological agonist 

glutamate, a much higher concentration was required (up to 100 fold) to 

induce the production of •NO,  as compared with NMDA, in what was 
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considered to be the result of active glutamate regulatory mechanisms in 

synapses. In this regard, the use of NMDA overcame these mechanisms and 

the concentration-dependent relationship between the agonist and •NO signals 

highlighted a close physiological interaction between NMDAR and nNOS. Still, 

when using NMDA, signals were shown to decrease upon consecutive 

stimulations, regardless of agonist concentration and signal amplitude, 

suggesting the activation of pathways that critically shape •NO signals. This 

was further supported by continuously stimulating slices with NMDA (as a 

model for excitotoxic conditions where glutamate receptors and NOS are 

overactivated), where a higher and transitory •NO production was observed. 

These distinct features were also apparent when using KCl and the NOS 

substrate L-arginine as stimuli.  

When addressing the role of AMPAR receptors in •NO production it 

was found that, as compared with NMDAR, AMPA stimulation resulted in a 

marked and distinct •NO transitory production, which was dependent on 

extracellular Ca2+ and independent of NMDAR activation. A slower rate of 

production and lower •NO levels, despite similar recovery periods to baseline, 

point to a less effective coupling with nNOS, and agree with the notion of a 

fine tuning of •NO production via AMPAR activation.  

Excitotoxic conditions like the one mimicked by stimulating slices 

continuously with NMDA presumably lead to the activation of protective 

mechanisms. Amongst these is glutathione (GSH), a major endogenous 

antioxidant released by astrocytes to support and protect neurons in harmful 

conditions. When investigating the response of astrocytes in the presence of 

high glutamate it was observed an increase in extracellular GSH. Results 

suggest intracellular GSH release to be the mechanism responsible for the 

observed increase, and this is proposed to be a possible protective 

mechanism against glutamate toxicity. 
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Resumo 
 

O óxido nítrico (•NO) é um mensageiro celular multifacetado e tem sido 

objecto de intensa investigação científica em sistemas biológicos. Está 

implicado na regulação de eventos fisiológicos, onde se destacam a 

plasticidade neuronal, a resposta imunitária e a circulação sanguínea, mas 

também em vias de toxicidade celular, em particular a morte celular associada 

a processos neurodegenerativos. 

A bioactividade do •NO resulta das suas invulgares propriedades 

químicas. O •NO é uma molécula radicalar altamente difusível composta por 

apenas dois átomos que, uma vez produzido, permeia membranas, actuando 

como mensageiro intercelular. A informação associada ao •NO, estará, pois, 

contida no gradiente da sua concentração, independentemente de 

características estruturais que suportam interacções selectivas e 

complementares com alvos moleculares, como acontece com outros 

moduladores celulares. Dado este cenário, a determinação da dinâmica de 

concentração de •NO em tecidos, tanto no tempo como no espaço, é 

determinante para a clarificação da sua função in vivo. Contudo, as mesmas 

características químicas que conferem ao •NO efeitos biológicos singulares 

tornam também particularmente difícil a sua detecção em tempo real, em 

especial devido à sua natureza gasosa e ao seu reduzido tempo de meia-

vida. A medição da velocidade de formação e o perfil de variação do •NO no 

hipocampo, em resultado da activação de receptores ionotrópicos do 

glutamato, assumem particular relevância, uma vez que estes se encontram 

envolvidos em mecanismos de plasticidade sináptica e em 

neurodegenerescência desencadeada por eventos excitotóxicos. 

Neste trabalho, o fabrico de microsensores com propriedades 

analíticas adequadas para a detecção de •NO permitiu a medição em tempo 

real deste mensageiro, quando produzido endogenamente em fatias de 
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hipocampo de rato, na sequência de activação de receptores ionotrópicos de 

glutamato. Quando comparada com outras estratégias experimentais, a 

utilização desta ferramenta de análise permitiu estudar a dinâmica de 

produção e decaimento do •NO produzido endogenamente, suprindo assim 

um aspecto frequentemente negligenciado na área. Neste âmbito, a utilização 

de glutamato, NMDA e AMPA revelou claramente a natureza transitória dos 

sinais de •NO, apontando para a ocorrência de mecanismos regulatórios 

importantes não apenas na sua produção mas também no seu decaimento. A 

estimulação de fatias com o agonista fisiológico glutamato implicou um 

aumento significativo da sua concentração (até 100 vezes) para induzir a 

produção de •NO, quando comparada com estimulações usando NMDA ou 

AMPA, observação explicada pela existência de mecanismos regulatórios da 

concentração de glutamato em sinapses. Nesta perspectiva, a utilização do 

agonista não fisiológico NMDA permitiu ultrapassar estes mecanismos e 

destacar a interacção física e funcional entre receptores NMDA e nNOS, 

patente na clara dependência dos sinais de •NO obtidos face à concentração 

de agonista utilizada. Contudo, e apesar desta relação, os sinais de •NO 

obtidos após estimulações consecutivas com NMDA decaíram em intensidade 

de forma independente da concentração do agonista ou da intensidade de 
•NO inicialmente obtida. Este último aspecto é de destacar, pois implica que a 

perda de intensidade observada não depende da concentração de •NO per se 

(e consequentemente de um efeito tóxico tantas vezes atribuído ao •NO), mas 

antes sugere a activação de mecanismos de regulação que determinam a sua 

produção endógena. Esta observação foi confirmada por estimulação 

contínua de fatias com NMDA (considerada um modelo de excitotoxicidade, 

em virtude da sobreactivação de receptores de glutamato e nNOS), onde uma 

maior mas ainda assim transitória produção de •NO foi observada e, 

particularmente, em condições onde os receptores NMDA demonstraram 

estar activados (pelo menos parcialmente). Nesta linha, padrões distintos 
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foram também obtidos aquando da utilização de KCl e o substrato de nNOS 

L-arginina.  

A investigação respeitante ao papel dos receptores AMPA na 

produção de •NO, quando comparada com a actividade dos receptores 

NMDA, revelou que a estimulação com AMPA induziu uma pronunciada mas 

distinta produção transitória de •NO. Esta revelou ser dependente de Ca2+ 

extracelular e independente da activação de receptores  NMDA, tendo sido 

registados sinais onde a concentração de pico do •NO foi observada mais 

tardiamente. A observação de uma menor velocidade de produção e 

concentrações mais baixos de •NO, apesar de ocorrer para periodos de 

recuperação semelhantes quando comparados com os obtidos com NMDA, 

sugerem um acoplamento menos eficiente entre receptores AMPA com a 

nNOS, o que está de acordo com a noção de um controlo fino da produção de 
•NO via activação de receptores AMPA. A participação de receptores AMPA 

na produção endógena de •NO foi ainda verificada por inibição selectiva dos 

receptores ionotrópicos de glutamato na presença de glutamato, 

demonstrando o mesmo efeito mediado pelo agonista fisiológico. Na tentativa 

de determinar a origem de Ca2+ essencial à actividade da nNOS ficou patente 

uma contribuição, ainda que parcial, de receptores AMPA permeáveis a Ca2+, 

o que constituiu uma observação surpreendente face à baixa expressão 

destes receptores no hipocampo descrita na literatura. 

Condições de excitotoxicidade onde se reproduz uma activação 

continuada de receptores NMDA levam, presumivelmente, à activação de 

mecanismos celulares protectores. Entre estes encontra-se o glutatião (GSH), 

um antioxidante endógeno libertado por astrócitos para protecção e suporte 

de neurónios em condições fisiológicas e de elevada toxicidade celular. Ao 

investigar-se a resposta dos astrócitos na presença de uma elevada 

concentração de glutamato observou-se o aumento de GSH extracelular ao 

longo do tempo. As experiências realizadas excluiram, como mecanismos 
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responsável por este aumento, a ruptura da membrana plasmática e 

consequente libertação de conteúdos membranares, síntese de novo de 

GSH, inibição dos mecanismos extracelulares de degradação de GSH por 

glutamato e activação de receptores membranares de glutamato. Os 

resultados sugerem, portanto, que a libertação de GSH intracelular é o 

mecanismo responsável pelo aumento observado, sendo proposto como um 

mecanismo de protecção contra a toxicidade do glutamato. 
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1.1 - Historical Perspective 
 

Since its early description in 1987 as the endothelial-derived relaxing 

factor (EDRF) nitric oxide (•NO) has emerged as both a fundamental signaling 

molecule in the regulation of a great number of cellular functions (Bredt et al. 

1994), and as a potent mediator of cellular damage in a wide range of 

pathological conditions (Dawson et al. 1998). •NO-related molecules were long 

used clinically without knowledge of their mechanism of action. A prominent 

example is William Murrell’s first use of nitroglycerin to treat angina pectoris in 

1876 (Marsh et al. 2000), a nitrovasodilator still in use nowadays for the same 

purpose. Ferid Murad’s group found in the late 70’s that several compounds, 

including nitroglycerin and a variety of oxidants, were able to activate 

guanylate cyclase (Arnold et al. 1977; Braughler et al. 1979), an enzyme at 

time known to increase the production of cyclic guanosine monophosphate 

(cGMP) and mediate relaxation of blood vessels, by an unknown mediator. 

Amongst the candidate molecules was •NO, but the notion that it could be 

produced by mammals was considered unlikely for a long time. Robert 

Furchgott and John Zawadski published in 1980 a milestone paper where they 

recognized the importance of the endothelium in acetylcholine-induced 

vasorelaxation (Furchgott et al. 1980). Acetylcholine was a well-known 

vasodilating agent when injected in vivo, but generally caused isolated blood 

vessels to constrict in vitro. These scientists concluded that, when preserving 

endothelium during preparation of transverse vascular rings, acetylcholine was 

able to induce the release of a diffusible factor that would relax endothelium-

denuded blood vessels by activating guanylate cyclase. Although the nature of 

this diffusible factor (termed EDRF) remained elusive for long time, it was 

shown to be quickly inactivated by oxyhemoglobin and agents known to 

generate superoxide anion (O2
•-), but rescued by superoxide dismutase (SOD) 

(Gryglewski et al. 1986; Moncada et al. 1986). It was finally in 1987 that Louis 
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Ignarro and Salvador Moncada independently identified EDRF to be •NO by 

chemiluminescence (Ignarro et al. 1987; Palmer et al. 1987). A novel research 

area was definitely opened, and Robert Furchgott, Louis Ignarro and Ferid 

Murad were awarded with the Nobel Prize in Physiology or Medicine in 1998 

for their discoveries concerning "the nitric oxide as a signaling molecule in the 

cardiovascular system". Two decades after the identification of •NO as the 

EDRF an enormous research effort is still driven towards unveiling its role in 

physiological ad pathological pathways.  

  

1.2 - Nitric Oxide 
 

1.2.1 - Nitric Oxide Synthases  
 

1.2.1.1 - Biosynthesis 
 
•NO is produced in vivo by nitric oxide synthase (NOS, EC 1.14.13.39), 

a highly regulated enzyme that uses L-arginine (L-arg) and molecular oxygen 

(O2) as substrates (Palmer et al. 1988; Palmer et al. 1988). The three main 

isoforms identified to date are products of different genes and have different 

cellular localization, regulation and catalytic properties. This has afforded 

several distinct nomenclatures, the first being based on their localization. 

Garthwaite and collaborators demonstrated that activation of glutamatergic 

receptors, particularly the N-methyl-D-aspartate (NMDA) subtype, induces •NO 

synthesis from L-arg in rat brain slices (Garthwaite et al. 1988; Garthwaite et 

al. 1989). This observation led to NOS cloning and isolation in the brain, 

where it was shown to occur in a number of different cells and regions (Bredt 

et al. 1990; Bredt et al. 1990; Schmidt et al. 1991). As this was the first •NO 

synthase to be identified it was named NOS1 or neuronal NOS (nNOS), but 
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soon after a second isoform was isolated from macrophages and termed 

NOS2 or inducible NOS (iNOS) (Hevel et al. 1991; Stuehr et al. 1991) 

because it could be readily induced by proinflammatory cytokines (Busse et al. 

1990; Radomski et al. 1990). The first source of •NO identified, the endothelial 
•NO synthase, was the last to be cloned and is known as eNOS or NOS3 

(Pollock et al. 1991). These isoforms can also be divided according to their 

expression, being termed constitutive (nNOS and eNOS) because they are 

present in large cellular populations at all times, or inducible (iNOS), as its 

expression depends largely on immunologic or inflammatory stimulus. Another 

major difference is that the latter is largely Ca2+-independent (Busse et al. 

1990), whereas the former are not (Stuehr et al. 1991). Although still a matter 

on controversy a fourth isoform, related to nNOS but (as opposed to it) shown 

to be myristoylated (Elfering et al. 2002), was demonstrated to occur in rat 

liver mitochondrial preparations and therefore named mtNOS (Bates et al. 

1995; Ghafourifar et al. 1997; Giulivi et al. 1998). Although no gene was found 

for the mtNOS and its occurrence has been disputed, the mitochondria is a 

critical target for •NO actions and the role of •NO on mitochondria and its 

impact on cell physiology has recently been reviewed (Brown 2007). 

 

In NOS, electrons from nicotinamide adenine dinucleotide phosphate 

(NADPH) flow between subunits to activate O2 at the heme group, where L-

arg is used to generate •NO, L-citrulline and H2O (Figure 1.1, B). The enzyme 

converts the guanidino nitrogen of L-arg to •NO and L-citrulline in a process 

that consumes five electrons (Bredt et al. 1994) and requires it to cycle twice 

(Figure 1.1, A). In the first step, NOS consumes one mol of NADPH to 

hydroxylate L-arginine to Nω-hydroxyl-L-arginine, which is an enzyme-bound 

intermediate (Stuehr et al. 1991). In an unusual second step one electron from 

NADPH and another from Nω-hydroxyl-L-arginine lead to oxygen incorporation 

and scission of the C-N bond, yielding citrulline and •NO (Figure 1.1, B) 
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(Stuehr et al. 1991). The fact that NOS binds and activates O2 twice to 

generate •NO from L-arg explains its role in some pathological pathways, 

particularly in the generation of O2
•-. 

 

1.2.1.2 - Reductase and Oxygenase Domains 

 

NOS isoforms are dimeric and each subunit is composed by two 

domains, one oxygenase and one reductase, connected to each other by a 

central Ca2+/calmodulin-binding region (Figure 1.2, A) (Marletta 1993). 

Dimerization increases NOS activity by creating high-affinity binding sites for 

L-arg and BH4, removing heme from the solvent phase, and facilitating 

electron flow between domains (Crane et al. 1999; Li et al. 1999). The electron 
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1/2 (NADPH + H

+) L-citrulline + NO + H2O + 
1/2 NADP
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Figure 1.1: Synthesis of •NO by NOS. A) The guanidino nitrogen of L-arg is converted to •NO in a 
two-step reaction at the heme group of NOS dimer. B) Partial reactions result in a stoichiometry 
of 1 L-.arg, 1.5 NADPH and 2 O2 to form 1 L-citrulline, 1.5 NADP+, 1 H2O and 1 

•NO molecules. 
Adapted from (Stuehr et al. 2001) and (Alderton et al. 2001). 
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transport pathway mentioned above involves both domains in the heterodimer, 

as illustrated in Figure 1.2 B (Siddhanta et al. 1998). 

The C-terminal reductase domain of NOS (Figure 1.2 B, rectangular 

shape) catalyzes three electron transfer reactions, starting with 1) NADPH 

reduction of bound flavin adenine dinucleotide (FAD), 2) distribution of single 

electrons between FAD and flavin mononucleotide (FMN) and 3) electron 

transfer from reduced FMN to NOS heme. These reactions are initiated by 

A 

 
B 

 
Figure 1.2: Subunit structure and proposed model for NOS. A) All NOS isoforms are 
composed of two subunits, each comprising a reductase and oxygenase domains with 
binding sites for several cofactors, connected by a central calmodulin-binding motif (CaM). 
B) Domain swapping occurs between subunits (grey and white) to properly align reductase 
(rectangular) and oxygenase (oval) domains for •NO synthesis. Binding sites: ARG, L-arg; 
haem or Fe, heme group;  BH4 or H4B, tetrahydrobiopterin;  CaM or CAM, calmodulin; 
FMN, flavin mononucleotide; FAD, flavin adenine dinucleotide; NADPH, nicotinamide 
adenine dinucleotide phosphate. Adapted from (Bruckdorfer 2005) and (Siddhanta et al. 
1998). 
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Ca2+-activated CaM binding to NOS reductase domain. Electrons transferred 

into the reductase domain then pass to the catalytic N-terminal oxygenase 

domain (Figure 1.2 B, oval shape) (Siddhanta et al. 1998). This contains 

binding sites for the substrate L-arg, tetrahydrobiopterin (BH4) and particularly 

iron protoporphyrin IX (heme), where O2 is activated for •NO synthesis 

(Masters et al. 1996; Stuehr 1997). A close structural similarity is observed 

between isoforms, suggested to arise from a common ancestral NOS gene, as 

the distinct NOS genes have a similar genomic structure  (Xu et al. 1994). 

 

Several differences in these domains account for distinct features of 

NOS isoforms, as summarized briefly in Table 1.1. Myristoylation (Myr) and 

palmitoylation (Palm) sites are present in eNOS oxygenase domain, allowing it 

to be targeted to the cellular membrane (Garcia-Cardena et al. 1996). nNOS is 

to eNOS, but its N-terminal 220 amino-acids exhibit a special region called 

PDZ domain, which allows it to be directed to synapses and interact with 

membrane receptors and other proteins (PDZ stands for PSD-95 discs 

large/ZO-1 homology domain, and PSD-95 for post synaptic density protein 

95) (Brenman et al. 1996; Christopherson et al. 1999). Both enzymes 

constitutively produce •NO after a conformational change (Matsuda et al. 

1999; Abu-Soud et al. 2000) induced by Ca2+/CaM binding, in turn controlled 

by amino acid inserts that serve as autoinhibitory loops (Salerno et al. 1997; 

Roman et al. 2000). The same is not true for iNOS. This isoform was also 

shown to be dependent on Ca2+ (Iida et al. 1992), but because these inserts 

are absent and CaM binding is strong (Cho et al. 1992), low physiological Ca2+ 

levels are sufficient to activate it (Roman et al. 2000). This isoform is therefore 

regulated by transcription (Cho et al. 1992; Vodovotz et al. 1993). iNOS is 

often called a high-output source of •NO but this is a consequence of high 

levels of transcription, as it does not produce •NO at a substantially greater 

rate than nNOS or eNOS (Nathan et al. 1994). 
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1.2.2 - Chemical Biology  
 

1.2.2.1 - Physical and Chemical Properties of Nitric Oxide 
 

 •NO mediates a number of physiological pathways quite differently from 

other neurotransmitters. Contrary to what is conventionally found in the 

literature, •NO per se is not very reactive when compared with other O or N-

centered radicals. Being an intermediate between O2 and nitrogen (N2) its 

Table 1.1: Structural and physiological characteristics of NOS isoforms. 
 

 nNOS (NOS1) eNOS (NOS3) iNOS (NOS2) 

Main localization brain endothelial cells macrophages 

Main physiological 
function neurotransmission  regulation of blood 

flow non-specific immunity 

Cellular Localization cytosol membrane cytosol 

Expression constitutive constitutive inducible 

Ca2+ changes dependent dependent independent 

Size  (Human) 160 kDa 131 kDa 130 kDa 

Number of amino 
acids (Human) 1434 1153 1153 

Genes (Human) 
160 kb, 

chromosome 12 
37 kb, 

chromosome 17 
21 kb, chromosome 7 

Protein-protein 
interactions 

CaM/Ca2+, PSD-95, 
PSD-93, PDZ 
domains, PIN, 

caveolin-1, Hsp90, 
CAPON, COOH-
terminal-binding 

protein 

CaM/Ca2+, caveolin-1 
and -3, Hsp90 CaM/Ca2+, kalirin 

Covalent 
modifications Phosphorylation 

Myristoylation, 
palmitoylation, 

phosphorylation 
- 

 
Adapted from (Marletta et al. 1998; Alderton et al. 2001; Kone et al. 2003; Bruckdorfer 2005). 
PIN, Protein inhibitor of NOS; Hsp90, heat-shock protein 90; PSD-93 and -95, Post synaptic 
density protein-93 and -95; PDZ, PSD discs large/ZO-1 homology; CAPON, COOH-terminal PDZ 
ligand of nNOS 
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reactivity relates with that of O2. In the •NO molecule, the nitrogen atom has 

five valence electrons and oxygen has six. This results in one unpaired 

electron that makes 1) an effective bond of 2.5 between N and O and 2) gives 

the molecule its free radical properties. Like molecular oxygen, •NO undergoes 

fast reactions with heme groups and free radicals. This supports its binding to 

heme proteins like soluble guanylate cyclase (detailed latter) (Beckman et al. 

1996; Pacher et al. 2007) and its antioxidant properties (Kanner et al. 1991). 

In fact, by acting as a chain terminating agent and originating stable 

intermediate products, •NO breaks propagating oxidation chains (e.g. lipid 

peroxidation) and may facilitate subsequent repair by antioxidants such as 

ascorbic acid, tocopherol, or (Pacher et al. 2007).  
•NO is a small free radical but is also hydrophobic, reaching only 1.93 

mM (25°C) or 1.63 mM (37°C) concentrations in aqueous solutions (at a 

pressure of 1 atm) (Wilhelm et al. 1977). At physiological ionic strength and 

temperature its solubility is 1.55 mM. Malinski et al. reported it to be six- to 

sevenfold higher in membranes when compared to the aqueous phase, and 

suggested that membranes could act as “reservoirs” for •NO (Malinski et al. 

1993). Due to its physical and chemical properties •NO is therefore capable of 

permeating cellular membranes with a diffusion coefficient similar to that of O2 

(Wise et al. 1969), calculated at 37°C to be 3.3 X 10-5 cm2s-1 in endothelial 

cells (Malinski et al. 1993) and 3.8 ± 0.3 X 10-5 cm2s-1 in brain tissue 

(Koppenol 1998). Jack Lancaster suggested in 1994 that •NO could diffuse to 

considerable high distances (hundreds of μm), relying his arguments in kinetic 

modeling of •NO diffusibility based on published data (Lancaster 1994). As 

eukaryotic cells are 10-100 μm in size, and the half-life of •NO was reported to 

be around 4 s (Lancaster 1994; Koppenol 1998), this free radical has the 

potential to diffuse to organelles and cells adjacent to its production site and 

mediate their function, as reported initially in studies concerning EDRF 

(Furchgott et al. 1980; Garthwaite et al. 1988). In this regard, Ledo et al. 
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reported recently that •NO can diffuse at least 400 μm in the CA1 region of 

hippocampal slices (Ledo et al. 2005). Signaling molecules generally rely on 

structural characteristics to convey information, but this does not apply to •NO. 

With only two atoms it cannot be readily distinguished by its shape, and must 

therefore convey information by changes in its local concentration. 

Consequently, decay mechanisms are of the outmost importance when it 

comes to •NO-mediated pathways in a particular system, as its physiological 

actions only terminate once its elimination is complete (Pacher et al. 2007). 

From what was previously mentioned •NO can mediate a number of 

reaction by itself or following interaction with other molecules. As depicted at 

the end of this section in Figure 1.3, this affords a distinction between direct 

and indirect reactions. 

 

1.2.2.2 - Direct Reactions 
 

Direct effects are those in which •NO interacts directly with biological 

molecules, generally at low concentrations. These include reactions with 1) 

metal complexes and 2) radical species (Wink et al. 1998).  

 

1) Metal Complexes 

 

There are three major types of •NO reactions with metals: (I) the 

binding to the metal center, (II) a redox reaction with O2-bound metal 

complexes, and (III) high valent oxo-complexes. In the first set, •NO reacts 

with some transition metals to form stable metal nitrosyl complexes, and key 

examples are the formation of Fe-NO complexes that occur in guanylate 

cyclase and NOS itself (Wink et al. 1998). These reactions do not involve 

changes in the metal center charge and are therefore termed nitrosylation. 

From the chemical point of view it corresponds to the addition of a nitrosyl 
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group, NO, stressing the concept of the addition of a chemical group that, if it 

were free, it would be a radical (Martinez-Ruiz et al. 2004) (reaction 1): 

 

 

 

Although •NO can bind to similar heme structures its effects are 

dependent on the physiological role and activity of the target molecule. 

Guanylate cyclase is the major efector enzyme of •NO signaling (Ignarro 1990) 

and its activation occurs upon binding of •NO, leading to the formation of a Fe-

nitrosyl complex that induces the production of the secondary messenger 

cGMP (Ignarro 1990; Murad 1994). On the other hand, •NO binding to the 

NOS oxygenase domain causes the enzyme to inactivate, in what is 

considered to be feedback regulatory mechanism of NOS activity (Assreuy et 

al. 1993; Marletta 1993).  

The second and third type of reactions involving metal centers and •NO 

concerns those with metal-oxygen complexes and metallo-oxo complexes 

(reaction 2 and 4, respectively). Reaction 2 is a major example of the first, also 

serving to highlight one long-known major biological effect of •NO: its reaction 

with oxyhemoglobin to form methemoglobin and nitrate (Doyle et al. 1981).  

 

 

 

Due to the high concentration of oxyhemoglobin and its relatively fast 

(k= 107 M-1s-1) reaction with •NO, reaction 2 is a primary metabolic fate and 

control mechanism for •NO levels in vivo (Lancaster 1994). 

The third type of reactions concerns high valent metal complexes that 

are formed from oxidation by agents such as hydrogen peroxide. The 

hypervalent metal complexes (reaction 3) are powerful oxidants that can lead 

to cellular damage by lipid peroxidation (Puppo et al. 1988), but reaction with 

Fe(II) + •NO ↔ Fe(II)-NO     (1) 

Hb (Fe-O2) + •NO → met Hb Fe(III) + NO3
-   (2) 
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•NO prevents these deleterious oxidative effects (Kanner et al. 1991; Wink et 

al. 1994).  

 

 

 

 

2) Radical species 

 

Amongst the direct reactions of •NO are those with alkoxyl or peroxyl 

radicals formed during lipid peroxidation (reaction 5). Padmaja and Huie found 

that their rate of reaction with •NO in aqueous solution to be elevated, with k = 

1-3 x 109 Lmol-1s-1 (Padmaja et al. 1993).  

 

 

 

This reaction has led researchers to propose a role for •NO in 

terminating lipid peroxidation chain reactions (Wink et al. 1994), particularly 

after reports indicating that •NO partitions more in membranes (Malinski et al. 

1993). •NO can also react with tyrosyl radicals, an essential intermediate 

species found, for instance, in the catalytic turnover of ribonucleotide 

reductase expressed in tumor cells (Lepoivre et al. 1992), or stabilize carbon-

centered radicals formed in DNA by ionizing radiation (Mitchell et al. 1996). 

 

1.2.2.3 - Indirect Reactions 
 

Unlike direct effects, indirect effects are mediated by reactive 

nitrogen/oxygen species (RNOS) derived from •NO reactions with 1) O2 and 2) 

O2
•-. In this regard, direct reactions with thiols or other molecules too slow to 

Fe(2,3)+ + H2O2 → Fe(4,5)+=O + H2O    (3) 

Fe4+=O + •NO → Fe3+ + NO2
-     (4) 

LOO• + •NO → LOONO     (5) 
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be significant in biological systems proceed only through an activation step of 
•NO by oxygen or superoxide anion and metal ions (Wink et al. 1994). 

 

1) Reaction with O2 and autoxidation 

 
•NO is unstable and reactive in the presence of oxygen, leading to the 

formation of several RNOS. One example is nitrogen dioxide (•NO2), a brown 

coloured pollutant produced in the atmosphere of major cities (reaction 6, 

-d[NO]/dt = 2kg[NO]2[O2]) (Bruckdorfer 2005). Another is dinitrogen trioxide 

(N2O3) (reaction 7), that further hydrolyses to nitrite and nitrous acid (HNO2). 

Both are known to be injurious to biological tissues when present in the 

atmosphere (Schwartz et al. 1983): 

 

 

 

 

In aqueous solutions •NO also undergoes autoxidation by a third order 

rate reaction similar to gas phase, but in this case only N2O3 can be detected 

as an intermediate, as no free •NO2 is formed because of its instability in the 

aqueous medium (Ford et al. 1993; Wink et al. 1995). The reaction proceeds 

at a different overall stoichiometry when compared to the gaseous phase 

(reaction 8), but with a similar rate law of -d[NO]/dt = 4kaq[NO]2[O2], where 

kaq = 2 x 106 M-1s-1 at 25°C (Ford et al. 1993).  

 

 

 

This rate constant for the autoxidation reaction of •NO is pH-

independent and similar between 25 ºC and 37 ºC (Ford et al. 1993; Wink et 

al. 1995) either in aqueous or hydrophobic solvents (Nottingham et al. 1989). 

2 •NO + O2 → 2 •NO2     (6) 
 

•NO2 + •NO →  N2O3 + 2 H2O → 2 HNO2   (7) 

4 •NO + O2 + 2 H2O → 4 NO2
- + 4 H+   (8) 
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These kinetic parameters enhance the understanding of how •NO can serve 

as a double-edged sword in physiological processes. As these reactions are 

second order for •NO, low concentrations afford a longer life-time in tissues, 

where it mediates regulatory processes by reacting with heme proteins (as 

mentioned before). In contrast, high levels of •NO (e.g. produced by activated 

macrophages) would facilitate the reaction with O2 and the onset of oxidative 

and nitrosative stress, with known cytotoxic consequences (Wink et al. 1998). 

The same rationale can be used to determine where •NO autoxidation is 

higher in cells. The reaction between •NO and O2 progresses at similar rates in 

membranes or cytoplasm (Nottingham et al. 1989), but because both are 20 

times more abundant in membranes reactive intermediates are expected to 

occur in the lipid bilayer, causing membrane-associated protein damage (Wink 

et al. 1998). N2O3 is expected to be the predominant product, and because 

membranes have low amounts of H2O its hydrolysis to nitrite is reduced 

(reaction 7). In these circumstances nitrosation of amines and thiols becomes 

favored, and result in the formation of bioactive S-nitrosothiols (Stamler 1994). 

 

2) Reaction with O2
•- 

  

The reaction between O2
•- and •NO occurs at diffusion controlled rates 

with a rate constant of 1 x 1010 M-1s-1 (Huie et al. 1993), yielding peroxynitrite 

(ONOO-, reaction 9).  

 

 

 

ONOO- is a powerful oxidant in vivo, endowed with a reduction 

potential of Eº(ONOO-, 2H+/ NO2
•, H2O) of 1.6 V at pH 7 (Koppenol et al. 

1992). It can directly oxidize protein and nonprotein thiols and sulfhydryls 

(Radi et al. 1991) and induce lipid peroxidation (Hogg et al. 1993), being the 

•NO + O2
•- → ONOO-      (9) 
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major player in •NO-attributed cytotoxicity (Pacher et al. 2007). The major 

determinant of ONOO- formation is the abundance of both radicals, as the rate 

of formation of peroxynitrite is first order for both (reaction 9, -d[ONOO-]/dt = 

k[•NO][O2
•-]) (Huie et al. 1993). Hence, production rates and/or reactions of O2

•- 

and •NO with biological components determine ONOO- formation. •NO 

production greatly follows NOS activity, as mentioned before, and levels of O2
•- 

are generally low in vivo due to superoxide dismutase (SOD) activity, which 

dismutates O2
•- to hydrogen peroxide (H2O2) at a rate of 

2.4 x 109 M-1s-1 (Fielden et al. 1974). On basis of the higher rate constant of 

reaction 9, •NO competes with SOD for O2
•-. However, under normal 

conditions, and depending on compartmentalization issues, micromolar 

amounts of SOD (Nakano et al. 1990) overcomes •NO, preventing the 

formation of ONOO- (Koppenol 1998). Also worth noting are •NO diffusion 

across membranes and its reaction with hemoglobin, because both afford a 

further decrease in its concentration (Lancaster 1994). Hence, ONOO- 

formation is limited to regions close to the location of the •NO source and, 

more importantly, of O2
•- source, as this free radical is unable to permeate 

membranes (Fridovich 1995). Candidate places are mitochondria and the 

vicinity of NADPH oxidase or xanthine oxidase, as all are places where O2
•- 

can build up simultaneously with •NO (Rubbo et al. 1994; Brown 2007).  

 

Indirect effects of •NO can be subdivided into nitrosation, oxidation and 

nitration as follows, depending on the final outcome: 

I) Nitrosation: a reaction that involves the addition of a nitroso group 

(NO) (Martinez-Ruiz et al. 2004), that occurs when an equivalent of NO+ is 

added to an amine, thiol, or hydroxy aromatic group (e.g. conversion of thiol 

peptides to S-nitrosothiol peptides). A major nitrosative species is N2O3 

(Jourd'heuil et al. 1999). Conversely to N2O3, •NO2 radical may promote S-

nitrosation via a radical pathway. 
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II) Oxidation: Oxidation chemistry includes one or two electron removal 

from substrate, as well as hydroxylation reactions. Conversely to peroxynitrite, 

N2O3 is a relatively mild oxidant (Wink et al. 1998). 

III) Nitration: a reaction corresponding to the incorporation of a nitro 

triatomic group (- NO2) (Martinez-Ruiz et al. 2004). The formation of 

nitrotyrosine from different RNOS such as ONOO- is a good example, 

encompassing •NO2 radical (upon interaction with metals) and CO3
- radical 

anion (upon reaction with CO2) as radical intermediates. 
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Figure 1.3: •NO-mediated reactions in biological systems. From a simply standpoint •NO 
participates in direct and indirect reaction, targeting different biologic components per se or 
yielding distinct end metabolites depending on which intermediate is formed (respectively). 
Adapted from (Davis et al. 2001) and (Wink et al. 1998). 
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1.2.3 - Regulation of nNOS 
 

 Given its impact in brain physiology, •NO production by nNOS is 

regulated at a number of different levels, as detailed briefly. 

 

1.2.3.1 - Substrate and Cofactor Availability 
 

•NO production is unlikely to be limited by its substrate as the 

concentration of L-arg in cells is considered to be far in excess of the 

saturation point of the enzyme, but the occurrence of inhibitory L-arg 

analogues like L-monomethlyl arginine (L-NMMA) could lead to NOS inhibition 

(Bruckdorfer 2005). Changes in nNOS cofactor pools (particularly NADPH) 

largely impact on •NO production (Vallance et al. 2001; Bruckdorfer 2005). In 

this regard, BH4 plays a major role in electron transfer and dimer stabilization 

in nNOS (Panda et al. 2002) and in reducing its inhibition, by decreasing its 

susceptibility to protein kinase C-dependent phosphorylation (Okada 1998). 

Finally, nNOS is expressed as inactive monomers and is only activated by 

CaM binding, which promotes interaction between oxigenase and reductase 

domains and NOS dimer formation (Panda et al. 2001). Apparently, CaM not 

only enhances dimer stabilization but also increases nNO reductase activity 

and electron transfer, controlling •NO synthesis by governing heme iron 

reduction (Gachhui et al. 1998).  

 

1.2.3.2 - Feedback Inhibition by Nitric Oxide 
 

Due to the stability of Fe2+-NO complexes, any enzyme that relies on a 

reduced ferrous heme group in its activity has the potential to be inhibited by 
•NO. nNOS is no exception, and this has been suggested as a self-regulatory 

mechanism that would allow the enzyme to be controlled by its product (Adak 
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et al. 1999). During steady-state •NO synthesis 70 to 90 % of nNOS was 

shown to be present as its ferrous-nitrosyl complex, formed only in the 

presence of NADPH, L-arg, and O2 (Abu-Soud et al. 1995). As Fe3+-NO 

complex is an intermediate during catalysis, a competition between •NO 

dissociation (normal catalysis) versus reduction to a Fe2+-NO species (auto-

inhibition) as been proposed to occur and raise the Km for oxygen, thus 

determining nNOS activity (Santolini et al. 2001). The rate of complex 

breakdown was shown to be directly proportional to O2 concentration and is 

therefore one of the steps that limits nNOS turnover in the steady state, 

making nNOS-dependent •NO synthesis oxygen-dependent throughout the 

physiological range (Abu-Soud et al. 1996). Interestingly, •NO synthesis by 

eNOS was shown to depend more on slow electron transfer from its reductase 

domain to the heme rather than Fe2+-NO complex formation, suggesting 

isoform-dependent regulatory pathways that can explain their different 

biological activities (Abu-Soud et al. 2000). 

 

1.2.3.3 - Phosphorylation 
 

Protein kinase C (PKC) and A (PKA) have been found to regulate 

nNOS activity through phosphorylation, together with Ca2+/ CaM-dependent 

protein kinases I and II (CaMKI and CaMKII) (Okada 1998; Hayashi et al. 

1999). The latter phosphorylate nNOS at Ser-741 and Ser-847 residues, 

respectively, to inhibit or suppress the enzyme activity (Hayashi et al. 1999; 

Komeima et al. 2000). In this regard, CaMKII is associated with NR2A and 

NR2B subunits of NMDA receptors in hippocampus and cortex (Gardoni et al. 

1998) and can contribute to the constitutive nNOS phosphorylation seen by 

others (Rameau et al. 2003). However, activation of NMDA receptors 

(NMDAR) decreases the level of nNOS phosphorylation and consequently 

increases nNOS enzymatic activity, in a mechanism involving Ca2+-regulated 
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phosphatases (Rameau et al. 2003). This was suggested to be a novel 

bidirectional regulatory pathway for nNOS activity, mediated by NMDAR and 

dependent on glutamate stimulation: physiological concentrations would result 

in nNOS phosphorylation and limited •NO production, whereas cytotoxic 

stimulations would promote dephosphorylation and toxic levels of •NO 

(Rameau et al. 2004). 

 

1.2.3.4 - Protein Regulators 
 

 Protein-protein interactions are a major theme in the regulation of 

nNOS. This isoform exhibits a special motif at the N-terminal region called 

PDZ domain, which targets nNOS to synaptic sites where it interacts with 

membrane receptors (particularly the NMDAR) (Brenman et al. 1996). This 

interaction can be modulated because the adaptor protein CAPON (carboxy-

terminal PDZ ligand of nNOS) competes for the same PDZ domain and 

separates nNOS from the NMDA receptor (Jaffrey et al. 1998). CAPON does 

not directly inhibit nNOS activity but rather reduces its ability to be stimulated 

by Ca2+ influx through NMDAR. CAPON also binds to synapsins I, II, and III 

and promotes a ternary complex with nNOS, inducing changes in the 

subcellular localization of nNOS (Jaffrey et al. 2002). nNOS also contains a 

binding site for the 10 kDa highly-conserved protein PIN (Jaffrey et al. 1996), 

which inhibits nNOS oxidase activity in a time-dependent manner (Hemmens 

et al. 1998). The molecular chaperone heat shock protein-90 (Hsp90) is a 

known regulator of eNOS activity (Garcia-Cardena et al. 1998) but has also 

been implicated in nNOS regulation (Bender et al. 1999) by enhancing 

calmodulin binding. 
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1.3 - Modulation of Cellular Pathways by Nitric 
Oxide 

 

 The mechanisms that support •NO wide range of effects in the central 

nervous system are still elusive, particularly in which concerns to the impact of 

rate and pattern of •NO changes in biological events. All NOS isoforms have 

been identified in the brain and this in suggested to impact on physiological 

and pathological pathways (Duncan et al. 2005). The next section frames a 

global picture of •NO activity in terms of target proteins and cellular pathways, 

with impact on brain physiology and pathology. 

 

1.3.1 - Soluble Guanylate Cyclase 
 

The activation of guanylate cyclase (or guanyly cyclase, EC 4.6.1.2), 

an enzyme that produces cGMP from GTP, is considered the major signal 

transduction pathway of •NO, supporting some of its best described activities 

such as vasorelaxation and neuromodulation (Figure 1.4). This activation 

occurs for low •NO concentration, with an EC50 value calculated in vitro of 100 

nM (Forstermann et al. 1996). cGMP is synthesized by a family of enzymes 

expressed in nearly all cell types and composed of two classes, particulate 

and soluble (Krumenacker et al. 2004). The particulate guanylate cyclases 

(pGC) are membrane-bound receptor molecules that are activated following 

ligand binding to their extracellular domain (Lucas et al. 2000). The soluble 

guanylate cyclase (sGC) is a cytosolic heme-containing •NO-binding protein, 

composed of α and β subunits that make up the active enzyme. Activation of 

sGC occurs when •NO binds to the Fe2+-containing heme prosthetic group 

located at the N-terminal region, increasing the Vmax of sGC by 100-200-fold 

(Stone et al. 1994). Produced cGMP modulates numerous signaling cascades 

mediated by cGMP-dependent protein kinases, cGMP-regulated 
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phosphodiesterases and cyclic nucleotide-gated ion channels in 

cardiovasculature, platelet function, neurotransmission, and other cellular 

pathways (Lucas et al. 2000). 

 

1.3.2 - Energy Metabolism 
 

 Mitochondria play a central role in the modulation of cell life and death 

pathways, and several targets have been identified for •NO, encompassing 

direct and indirect reactions. The protein complexes I to IV that make up for 

the electron transport chain are susceptible to modifications by •NO, with mild 

or severe consequences depending on a number of factors. •NO inhibits 

mitochondrial respiration by two different means: 1) rapid, selective, potent 

and reversible inhibition of cytochrome oxidase by •NO (Brown 2001) and 2) 

slow, nonselective, weak and irreversible inhibition of complexes and 

mitochondrial components by reactive nitrogen species (RNS) (Radi et al. 

2002). 

Cytochrome c oxidase (CcO) is a complex of 13 subunits, containing 2 

 
Figure 1.4: Guanylate cyclase activation by •NO. Left) In the basal and unactivated state, 
catalytical activity of GC is minimal due to steric hindrance, limiting the access of substrate to the 
catalytic site (CS). Right) •NO binding to heme iron to form the nitrosyl-heme adduct results in 
catalytic site exposure to GTP. Adapted from (Ignarro 1998). 
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heme groups (cyt a and cyt a3) and 2 copper centers (CuA and CuB). •NO can 

interact with the reduced cytochrome a3
2+ to yield the complex a3

2+-NO in a 

competitive reaction with O2 or bind to oxidized CuB2+, reducing it to form the 

CuB+-NO+ complex that rapidly gives NO2
- (Torres et al. 1995; Giuffre et al. 

1996; Torres et al. 2000). This latter inhibitory reaction is not competitive with 

O2 and is a catalytic degradation pathway for •NO (Torres et al. 2000). Low 

concentrations of •NO cause immediate inhibition of O2 consumption with a 

half-inhibitory concentration of 60 to 270 nM, depending on O2 concentration 

(Brown et al. 1994). •NO binding to cytochrome a3
2+ is fast and comparable to 

that of O2, with a rate of 0.4-1.0 x 108 M-1s-1 (Blackmore et al. 1991). 

Researchers hypothesize this to be a modulatory pathway of CcO activity and 

mitochondria respiratory rate to regulate O2 distribution in tissues (Forfia et al. 

1999; Giulivi 2003). When •NO exposure is prolonged an irreversible inhibition 

of respiration develops (Clementi et al. 1998). This was attributed to the 

conversion of •NO to ONOO- and other RNS, which inhibit respiration at 

multiple sites, including complexes I and II (Cassina et al. 1996; Clementi et 

al. 1998). Finally, •NO can induce mitochondrial permeability transition and 

oxidative/nitrosative stress, with marked influence on cellular death and 

survival pathways (Brown 2007). 

 

 Aconitases are iron-sulfur cluster-containing proteins found in 

mitochondria and cytosol of cells that catalyze the reversible isomerization of 

citrate and isocitrate via cis-aconitate (Gruer et al. 1997). These enzymes 

contain unique [4Fe-4S] clusters in which one of the irons is not bound to an 

aminoacid residue, but rather to a hydroxide from solvent (Davis et al. 2001). 

Low levels of ONOO- cause the conversion of the Fe-S cluster from the [4Fe-

4S]2+ form to the inactive [3Fe-4S]1+ with the loss of labile iron (Han et al. 

2005). The activity of aconitase can be altered by •NO, ONNO- and particularly 
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nitrosoglutathione (GSNO), in what can be regarded as a modulatory 

mechanism of aconitase activity under stress (Tortora et al. 2007). 

 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) is 

a glycolytic enzyme that catalyses the conversion of D-glyceraldehyde-3-

phospate (G-3-P) to 1,3-diphosphoglycerate (1,3-DPG). Alterations on 

glycolysis might alter cellular function, and •NO was shown to inhibit GAPDH 

by S- nitrosylation, an effect reversed by low-molecular-weight thiols like 

glutathione (GSH) (Padgett et al. 1997). S- nitrosylation of GAPDH facilitates 

further covalent modification of the enzyme by NADH, an irreversible event 

likely to be involved in pathological events (Mohr et al. 1996). GAPDH has 

also been proposed to play a role in less obvious cellular pathways, including 

modulation of protein kinases (Sirover 1999), apoptosis signaling (Carlile et al. 

2000), and maintenance of blood–brain barrier integrity (Hurst et al. 2001). 

Modifications elicited by •NO on GAPDH can thus impact on a number of 

pathways. 

 

1.3.3 - Glutamate Ionotropic Receptors 
 

 A regulatory role of •NO on ionotropic glutamate receptors is clearly 

established. The NMDAR is one subtype of glutamate ionotropic receptors 

critical for development, learning, and memory (McBain et al. 1994). Activation 

of NMDAR increases intracellular Ca2+ concentration, causing nNOS 

activation and subsequent •NO production (Garthwaite et al. 1988; Bredt et al. 

1990). However,  •NO can inhibit the NMDAR, decreasing the rise in 

intracellular Ca2+ elicited by NMDA (Manzoni et al. 1993). After site directed 

mutagenesis this downregulation was shown to arise after specific 

nitrosylation of cysteine 399 in the NR2A subunit of the NMDAR (Choi et al. 

2000), in what was considered to be a negative feedback mechanism to 
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prevent excessive activation of the NMDA receptor and associated 

neurotoxicity (Lipton et al. 1994). Nevertheless, the efficacy of such inhibition 

on •NO production has been recently disputed (Ledo et al. 2005). 

 The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptor (AMPAR) is a K+- and Na+-permeable glutamate-activated receptor 

that, contrary to NMDAR, is not directly associated to nNOS activation. 

Nevertheless, it might be modulated by •NO, since this free radical was able to 

increase the affinity of AMPA binding sites by 15 to 30 % in different brain 

areas (Dev et al. 1994). More recently it was shown that nNOS inhibition 

decreased the amplitude of AMPA- and glutamate-induced intracellular Ca2+ 

rises in rat hypothalamic paraventricular nucleus, suggesting a role of 

endogenous •NO in the modulation of glutamate signaling (Roychowdhury et 

al. 2006). In this regard, postsynaptic AMPAR trafficking mediates some forms 

of synaptic plasticity, and the N-ethylmaleimide sensitive factor (NSF) is 

required for the surface expression of GluR2-containing AMPAR (Noel et al. 

1999). The NSF is physiologically S- nitrosylated by endogenous nNOS-

derived •NO, and this modification augments its binding to the AMPAR GluR2 

subunit, resulting in increased surface insertion of AMPAR (Huang et al. 

2005). The observation that AMPAR express PDZ-binding domains with 

impact on plasticity events (Kim et al. 2001) affords speculation on a close 

interaction with NOS, as observed for NMDAR, but evidences on this lack in 

the literature. 

 

1.3.4 - Regulation of Neurotransmitter Release 
 

•NO can mediate synaptic plasticity by potentiating or inhibiting 

neurotransmitter release. The release of norepinephrine, acetylcholine, 

glutamate and GABA has been shown to be stimulated by a •NO generator in 

rat hippocampal slices and inhibited by hemoglobin and Ca2+-free buffer 



26    Chapter 1 

 

(Lonart et al. 1992). NOS inhibitors were shown to increase extracellular levels 

of serotonine and dopamine in the rat ventral hippocampus, with L-arg 

exhibiting the opposite effect, suggesting that •NO could limit their release in 

hippocampus (Wegener et al. 2000). Meffert an co-workers demonstrated that 
•NO was able to promote vesicle exocytosis from hippocampal synaptosomes 

without raising Ca2+ (Meffert et al. 1994) and latter implicated post-

translational modification of sulfhydryl groups by •NO in the alteration of 

synaptic protein interactions that govern neurotransmitter release (Meffert et 

al. 1996). 

Of relevance to relate •NO and neurotransmitter regulation is the 

interaction between nNOS and CAPON, detailed in section 1.2.3.4. CAPON 

can bind to synapsin (Jaffrey et al. 2002), a synaptic vesicle-interacting protein 

located in presynaptic densities (Sudhof et al. 1989; Kristensen et al. 2001). 

Immunocytochemical studies have demonstrated nNOS expression in 

cytoplasmic and synaptic vesicles located in presynaptic densities (Loesch et 

al. 1994). Coupling of nNOS to synapsin may thus promote selective exposure 

of various synapsin-associated proteins to •NO and regulate neurotransmitter 

release (Meffert et al. 1996; Czapski et al. 2007). In this regard, the activation 

of NMDAR and production of •NO were implicated in reduced vesicular release 

at Schaffer collateral-CA1 excitatory synapses in hippocampal slices (Stanton 

et al. 2003), in an event requiring the activation of cGMP-dependent protein 

kinases. •NO can impact on other aspects of vesicle physiology in 

hippocampal neurons, namely vesicle endocytosis, in cGMP-dependent 

pathways (Micheva et al. 2003).  

 

1.3.5 - Protein S-nitrosylation / S-nitrosation 
 

 The S-nitrosation of proteins with regulatory functions is receiving great 

attention as a major signal transduction pathway because of its occurrence in 
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physiological conditions and its influence on many protein functions (Stamler 

et al. 2001; Martinez-Ruiz et al. 2004). S-nitrosation affects a great number of 

cellular components and pathways such as Na+/K+ ATPase, ryanodine 

receptors, DNA expression and apoptosis (Davis et al. 2001; Jaffrey et al. 

2001; Stamler et al. 2001). This •NO-mediated event can thus significantly 

alter cellular physiology and has been described as a novel enzyme-regulated 

(Liu et al. 2001) transduction mechanism similar to phosphorylation (Stamler 

et al. 2001; Mannick et al. 2002; Martinez-Ruiz et al. 2004). 

 

1.4 - Hippocampus 
 

 The hippocampus is part of the limbic system, being located in both 

hemispheres in the medial portion of the temporal lobe. The hippocampus has 

been extensively used in the research of memory formation, learning and 

behavior, but also in the study of neurotransmission and cell death. This is one 

of the most vulnerable regions in the brain, and notably both loss and severe 

cellular degeneration have been observed in conjugation with memory 

impairment, particularly in Alzheimer’s disease (Van Hoesen et al. 1990). 

 

1.4.1 - Structure 
 

 The hippocampal formation is made up of the hippocampus and the 

neighboring temporal regions, namely the dentate gyrus and the subiculum. 

The hippocampus (Figure 1.5) consists of different regions termed CA1, CA2 

and CA3 (CA is derived from the Latin cornu ammonus), where the main 

neuronal cell type is the pyramidal neuron. These cells are organized in a 

layer, termed the pyramidal layer, and communicate with cells located above 

and bellow by means of extensive axonal and dendritic processes. The 
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dentate gyrus is composed mainly of smaller neurons called granule cells, 

organized in a C-shape structure, that synapse with dendrites of the pyramidal 

cells (Amaral et al. 1989). The main inputs (afferents) to the hippocampus 

come from the entorhinal cortex to granule cells in the dentate gyrus via the 

perforant path. The axons of the granule cells are termed mossy fibers and 

terminate mainly on the apical dendrites of the pyramidal cells located in the 

CA3 region. The efferents from CA3 cells project as Schaffer collaterals to 

apical dendrites of CA1 pyramidal cells. The synapses of this so called 

“trysinaptic loop” (DG, CA3 and CA1 subregions) are excitatory and use 

glutamate as a neurotransmitter (Giap et al. 2000). From CA1 region there is a 

major efferent input to the subiculum, and from here to neighboring brain 

areas. The axons of all major neuronal types in hippocampus are arranged in 

bands parallel to each other, so that a transverse slice contains a complete 

 

 

 

 

Figure 1.5: Hippocampal transverse slices. Transverse slices (left) are a suitable model to 
study neuronal activity because they retain the directional connectivity between cells of 
different subregions (right). Left image was obtained during hippocampal slice preparation, 
using a magnification lens. Right drawing depicts cellular pathways and hippocampal 
subregions. 
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 loop, from perforant path to subiculum (Freund et al. 1996; Greenstein et al. 

2000) (Figure 1.5). This lamellar organization, as it was initially described 

(Andersen et al. 1969), remains adequate to study hippocampal connectivity 

(Andersen et al. 2000). 

 Pyramidal and granule cells represent 90% of hippocampal neurons, 

and the remaining 10% of hippocampal cells are GABAergic interneurons. 

Other neurotransmitters are contained in varicosities and released in the 

hippocampus, where they largely participate in non-synaptic interactions. In 

this regard, fibers from the medial septum and the diagonal band of Broca to 

the hippocampus are cholinergic (Umbriaco et al. 1995), while serotonergic 

innervation of the hippocampus originates from the dorsal and median raphe 

nuclei (Conrad et al. 1974). Noradrenergic afferents originate exclusively from 

the locus coeruleus (Loy et al. 1980).  

 

1.4.2 - Function 
 

 The hippocampus is involved in learning and memory formation 

(Squire et al. 1991). Experimentally, memory has been studied on basis of a 

model termed long term potentiation (LTP). LTP encompasses an increase in 

synaptic strength that lasts for hours or days as a result of a brief high-

frequency period of electrical activity (called a tetanus), and is considered to 

be a key event in memory formation and learning (Squire et al. 1999). 

Although LTP can be induced in several synapses in the hippocampus 

mechanisms diverge (Nicoll et al. 1995), and two distinctions can be made. In 

mossy fibers, LTP is nonassociative. This means that it does not depend on 

postsynaptic activity, but only on a burst of brief, high frequency neural activity 

in the presynaptic neurons. This causes NMDAR-independent Ca2+ influx, 

activation of adenylyl cyclase and subsequent activation of cAMP-dependent 

protein kinase (PKA) (Huang et al. 1994; Weisskopf et al. 1994). Mossy fiber 
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pathway LTP is not essential for spatial memory formation (Huang et al. 

1995), but might be crucial for other kinds of declarative memory. A second 

form of LTP is observed in the Schaffer collateral pathway, where LTP is 

dependent on postsynaptic NMDAR activation. This form of LTP is associative 

(Milner et al. 1998), i.e. it depends on concomitant activity of both pre-and 

postsynaptic cells, which consists in glutamate release and activation of 

NMDA and AMPA receptors (Bliss et al. 1993; Nicoll et al. 1995). LTP requires 

not only the firing of presynaptic neurons but also that they fire repetitively, so 

as to substantially depolarize the postsynaptic neuron and remove Mg2+ 

blockage, thus allowing sufficient Ca2+ entry to initiate the sequence of steps 

that lead to persistent enhancement of synaptic transmission. The opposite of 

LTP is long term depression (LTD), which corresponds to a prolonged 

decrease in synaptic strength after reduced electrical activity in neurons, was 

also reported in hippocampus (Manabe 1997). This can occur at the same 

neuronal connections involved in LTP, namely Schaffer collateral-CA1 

synapses (Santschi et al. 1999) and mossy fibers-CA3 synapses 

(Tzounopoulos et al. 1998). 

 

1.4.3 - Glutamate  
 

 Glutamate is the most abundant amino acid in the brain, where it is 

considered to be the major mediator of excitatory signals (Collingridge et al. 

1989), and only a tiny fraction is normally present extracellularly (outside or 

between the cells). The highest concentrations are found inside nerve 

terminals (Storm-Mathisen et al. 1992) with neurons displaying a cytosolic 

concentration of 5 mM glutamate (Osen et al. 1995). Glutamate-mediated 

events terminate with its removal from synaptic clefts, predominantly via glial 

uptake (Anderson et al. 2000; Danbolt 2001). Astrocytes accumulate 

glutamate at concentrations lower than neurons, about 2 or 3 mM, because of 
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glutamate transformation to glutamine by the enzyme glutamine synthetase 

(Hertz et al. 1999). 

An absolute requirement for glutamate to act as a neurotransmitter is 

that its extracellular concentration be kept low. The concentrations in 

extracellular fluid (about 13 to 22 % of brain tissue volume) (McBain et al. 

1990; Nicholson et al. 1998) and in the cerebrospinal fluid (CSF) were 

reported to be around 3 to 4 µM and 10 µM, respectively (Lehmann et al. 

1983; Hamberger et al. 1984), but numbers are probably lower, as 

microdialysis analysis revealed extracellular concentrations between 1 to 2 µM 

(Benveniste et al. 1984; Anderson et al. 2000). This is controlled mainly by 

astrocytic glutamate transporters that have the capacity to reduce extracellular 

glutamate concentrations (Auger et al. 2000). Cytosolic glutamate will leak out 

from neurons and astrocytes if they run out of energy and mediate excitotoxic 

oxidative stress and damage (Coyle et al. 1993), as observed after stroke or 

trauma (Anderson et al. 2000). Glutamate can activate a number of receptors 

in the hippocampus, as detailed below. 

 

1.4.3.1 - Ionotropic Glutamate Receptors - NMDA Receptors 
 

 Ionotropic glutamate receptors are ligand-gated ion channels which 

pass electric current in response to glutamate binding. Their distinction is 

based on the differential actions of glutamate analogs on receptor activation.  

The NMDAR is activated by the glutamate analogue NMDA and is 

permeable to Ca2+ (and, to a lower extent, Na+). Under resting conditions the 

channel is blocked by Mg2+, relieved whenever membrane depolarization 

occurs. These receptors are highly implicated in synaptic plasticity, especially 

LTP, but are also key players in neurotoxic insults, where disruption of energy 

metabolism causes neuronal depolarization, loss of Mg2+ blockage and 

excessive Ca2+ entry with the onset of oxidative and/or nitrosative stress 
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(Coyle et al. 1993; Pacher et al. 2007). NMDA receptors typically comprise 

four subunits. Heteromers always contain both NR1 (Moriyoshi et al. 1991) 

and NR2 (NR2A-NR2D) (Kutsuwada et al. 1992; Meguro et al. 1992; Ishii et 

al. 1993) subunits, and in some cases NR3 subunits (NR3A and NR3B) 

(Ciabarra et al. 1995; Sucher et al. 1995; Nishi et al. 2001). Glutamate binds 

to the NR2 subunits, whereas co-agonists glycine  or D-serine bind to the NR1 

subunits (Ivanovic et al. 1998; Mothet et al. 2000). Subunit composition 

determines several features of NMDAR. The NR2B predominates in 

extrasynaptic areas, whereas NR2A tends to be confined to synapses. 

Excitotoxicity is thought to involve extrasynaptic receptors (Hardingham et al. 

2002) and NR2B-containing NMDA receptors have been implicated in the 

pathophysiology of neurodegenerative disorders such as Alzheimer's and 

Huntington's diseases (Gogas 2006), prompting . This prompted research on 

the therapeutic potential of selective NR2B antagonists such as ifenprodil in a 

number of disorders (Kemp et al. 2002).  

 

1.4.3.2 - Ionotropic Glutamate Receptors - AMPA Receptors 
 

A second class of ionotropic glutamate receptors was 

pharmacologically identified that respond selectively to the glutamate 

derivatives AMPA and Kainate. Molecular cloning revealed distinct AMPA and 

Kainate receptors: AMPA receptors (AMPAR) are homo- or hetero-tetramers 

composed of four subunits, GluR1-4 (or GluRA-GluRD), (Hollmann et al. 1989; 

Keinanen et al. 1990), and Kainate receptors (KR) are homo- or hetero-

oligomers of the subunits GluR5-GluR7, KA1 and KA2 (Egebjerg et al. 1991; 

Werner et al. 1991; Bettler et al. 1992). The latter are involved in modulation of 

neurotransmitter release and are potential therapeutic targets in pathological 

processes (Lerma et al. 2001), but both are implicated in synaptic plasticity 
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and are responsible for most fast excitatory synaptic signaling (Collingridge et 

al. 2004). 

Contrary to NMDAR, AMPAR are mainly permeable to Na+ and K+. 

Ca2+-impermeability is regulated by post-transcriptional editing of the GluR2 

subunit mRNA, leading to an amino acid change (from uncharged glutamine to 

positively-charged arginine) at a critical residue in the pore-lining region 

(Hume et al. 1991). Thus, AMPAR that lack GluR2 subunit or are composed of 

a defective GluR2 are Ca2+-permeable (Hollmann et al. 1991; Sommer et al. 

1991) and can both mediate excitotoxicity (Kim et al. 2001; Noh et al. 2005) 

and participate in excitatory synaptic transmission (Isa et al. 1996).  

 

1.4.3.3 - Metabotropic Glutamate Receptors 
 

Metabotropic glutamate receptors are G-protein-coupled receptors 

whose activation involves three steps: 1) glutamate binding to extracellular 

receptor proteins in the postsynaptic membrane, 2) activation of small 

intracellular proteins called G-proteins, and 3) activation of “effector” proteins 

located intracellularly by G-proteins. (Mark F. Bear et al. 1996). This causes 

slower, longer-lasting and diverse postsynaptic actions that depend on which 

G-protein is activated, which along with based on their sequence homologies 

serves to categorize them (Swanson et al. 2005). These receptors have been 

described in hippocampus, where they mediate LTP (Grover et al. 1999), 

modify synaptic transmission (Giocomo et al. 2006), modulate the activity of 

other membrane receptors (Sohn et al. 2007) and regulate transcription 

factors (O'Riordan et al. 2006). 
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1.4.4 - Nitric Oxide in Hippocampus 
 

1.4.4.1 - Nitric Oxide Synthase Isoforms 
 

The first report of •NO as an intercellular messenger in the brain was 

by Garthwaite and coworkers (Garthwaite et al. 1988), and led to nNOS 

isolation in a number of different brain regions (Bredt et al. 1990; Bredt et al. 

1990; Schmidt et al. 1991). In hippocampus, nNOS was first identified in 

interneurons (Bredt et al. 1991; Valtschanoff et al. 1993). Wendland and 

collaborators demonstrated that this isoform was expressed in both dendrites 

and cell bodies of CA1 pyramidal cells (Wendland et al. 1994), an observation 

confirmed latter by results showing that that nNOS concentrates inside the 

postsynaptic plasma membrane of CA1 synapses (Burette et al. 2002). 

Moreover, nNOS is developmentally regulated (Northington et al. 1996; Liu et 

al. 2003) and is expressed constitutively throughout the hippocampus, with 

higher levels found in CA1 region as revealed by Western blot analysis (Liu et 

al. 2003). The nNOS-related mitochondrial isoform of nitric oxide synthase has 

also been found in hippocampus (Lores-Arnaiz et al. 2005). 

The location of eNOS in the hippocampus has been controversial. It 

was originally reported to be in CA1 pyramidal cells (Dinerman et al. 1994; 

O'Dell et al. 1994), but was latter found exclusively associated with blood 

vessels and endothelial cells (Demas et al. 1999; Blackshaw et al. 2003). Its 

role in hippocampus seems to go further than vascular regulation. •NO-

dependent LTP was found to be preserved in nNOS-deficient mice (O'Dell et 

al. 1994) but lost when eNOS was knocked out (Wilson et al. 1999). A 

combined deficit in eNOS and nNOS is required to eliminate •NO-dependent 

LTP, suggesting that both isoforms could compensate for each other in mice 

with a single mutation (Son et al. 1996). This was clarified recently by 

Garthwaite and collaborators, who concluded that both tonic and phasic •NO 
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signals are required for hippocampal LTP and that the two are generated by 

eNOS and nNOS, respectively (Hopper et al. 2006) , as previously suggested 

(Son et al. 1996).  

iNOS is expressed in response to a wide range of stimuli, including 

endotoxins like lipopolysaccharide (LPS) and endogenous proinflammatory 

mediators such as tumor necrosis factor-α (TNF-α), interleukin 1-b (IL1b) and  

interferon-γ (IFNγ) (Rothwell et al. 2000; Lucas et al. 2006). In cultured 

hippocampal slices iNOS expression was only present in activated microglia 

(Duport et al. 2005), the immune-competent cells in central nervous system 

(Streit et al. 1988). The hippocampus is particularly vulnerable to inflammatory 

events when compared to other brain regions, as observed during severe 

sepsis (Semmler et al. 2005).  

 

1.4.4.2 - Coupling to NMDA Receptors 
 

The well established •NO production following NMDAR activation is a 

major route in •NO-mediated signaling pathways in brain (Garthwaite et al. 

1995) (Figure 1.6). Many of the actions of nNOS are mediated by specific 

protein-protein interactions involving its N-terminus PDZ domain, that has 

been shown to influence the activity and/or the distribution of the enzyme in 

brain and muscle (Kone 2000). NMDAR are present at post-synaptic densities 

in macromolecular complexes comprising several proteins physically and 

functionally associated. Amongst them is PSD-95, a scaffold protein with 

several PDZ domains that allows a simultaneous interaction between NMDAR 

NR2 subunits (Kornau et al. 1995) and cytoplasmatic proteins. The PDZ 

domain in nNOS mediates its binding to PSD-95 (Brenman et al. 1996) and 

both interact with NMDAR to form a large ternary synaptic complex 

(Niethammer et al. 1996; Christopherson et al. 1999). By placing  
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Figure 1.6: Coupling of nNOS to NMDAR. Intracellular Ca2+ rise following NMDAR activation 
leads to nNOS activation and •NO production, which in turn activates a number of cellular events 
in pre- and postsynaptic cells, as well in adjacent ones. nNOS is physically coupled to NMDAR 
by means of protein-protein interactions involving PDZ domains. AMPAR are virtually Ca2+-
impermeable when expressing the GluR2 subunit, as depicted (adapted from (Liu et al, 2007)). 
 

 nNOS near the NMDA receptor PSD-95 exposes the enzyme to the Ca2+ 

influx that occurs following receptor activation (Christopherson et al. 1999; 

Sattler et al. 2001; Tomita et al. 2001). Very recently •NO production was 

shown to increase by the recruitment of nNOS to the post-synaptic density via 

PSD-95, revealing the importance of this interaction in regulating •NO 

production (Ishii et al. 2006). Co-localization of nNOS, PSD-95 and the NMDA 

receptor has been shown immunohistochemically in the CA1 pyramidal cells 

of the rat hippocampal slice (Burette et al. 2002).  
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Although glutamate is responsible for the greater part of excitatory 

transmission in the brain, excessive exposure to this amino acid may trigger 

toxic pathways associated to neurological disorders (Coyle et al. 1993; 

Obrenovitch et al. 1997). Research on the role played by •NO might impact on 

both sides of such glutamate paradox, neurotransmission and excitotoxic 

insult (Dawson et al. 1991; Bliss et al. 1993; Dawson et al. 1998; Sattler et al. 

2001; Calabrese et al. 2007; Pacher et al. 2007). 

 

1.4.4.3 - Nitric Oxide and Hippocampal Synaptic Plasticity 
 

Maintenance of LTP in hippocampus requires not only changes in 

postsynaptic neurons but also modifications on presynaptic cells (Lynch et al. 

1985; Malinow et al. 1990), and this is thought to be mediated by a retrograde 

messenger generated by the postsynaptic neuron. Several molecules have 

been proposed to play this role in CA1 pyramidal neurons (Bazan et al. 1997; 

Schuman 1997) and •NO is the major candidate to promote synaptic plasticity 

(Holscher 1997; Haley 1998; Prast et al. 2001). This conclusion was 

supported by results showing •NO diffusion to the presynaptic terminal (O'Dell 

et al. 1991; Schuman et al. 1991) where it acts directly in the presynaptic 

neuron to induce hippocampal LTP (Arancio et al. 1996). This effect is 

mediated by enhanced neurotransmitter release (Meffert et al. 1994; Prast et 

al. 2001) and regulation of synaptic vesicles endocytosis (Micheva et al. 2003) 

(detailed in section 1.3.4). A principal mediator of signal transduction by •NO is 

sGC (Zabel et al. 1998; Denninger et al. 1999), also implicated in some forms 

of LTP (Son et al. 1998; Arancio et al. 2001). The role of •NO as a retrograde 

messenger to mediate synaptic plasticity was further supported by Burette et 

al., which provided a link between nNOS and sGC by demonstrating  their 

close association in synaptic spines in the CA1 region of hippocampal slices 

(Burette et al. 2002). 
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LTD can also be a consequence of •NO modulation. It requires the 

activation of a number glutamate receptors, including NMDAR (Bear et al. 

1994), that may determine the direction of CA1 synaptic plasticity towards LTP 

or LTD (Liu et al. 2004). In this regard, decreased neurotransmitter release 

observed in LTD is dependent on •NO production and diffusion at Schaffer 

collateral-CA1 synapses (Stanton et al. 2003), in agreement with reports 

where NOS inhibitors blocked NMDAR-dependent LTD in hippocampus (Izumi 

et al. 1993). The activation of common pathways in LTP and LTD suggest that 

plasticity in hippocampus is regulated at the level of signal transduction by 

phosphoproteins (Bliss et al. 1993; Bear et al. 1994; MacDonald et al. 2006). 

 

1.4.4.4 - NMDA Receptor-Independent Plasticity 

 

Glutamate release into the synaptic cleft activates membrane receptors 

other than NMDAR, that have also been implicated in •NO production in brain. 

AMPA and KA injection induces an elevation in nitrite levels in hippocampus 

(Radenovic et al. 2005), and AMPAR were shown to increased cGMP content 

in cerebellar slices prepared from adult rats in a pathway involving nNOS 

activation (Okada 1992). In rat cerebellar slices AMPAR activation led to a 

lower production of •NO when compared to NMDAR, as observed by means of 

the fluorescent indicator diaminofluorescein-2 (Okada et al. 2004). 

The link between •NO and non-NMDAR is also apparent when 

considering synaptic plasticity. AMPAR have been implicated in NMDA-

mediated neuronal plasticity, as several reports indicate a rapid postsynaptic 

delivery of these receptors into dendritic spines that contributes to the 

enhanced AMPAR-mediated transmission observed during LTP (Shi et al. 

1999). However, they also mediate NMDA-independent events, where Ca2+-

dependent synaptic plasticity is critically dependent on the entrance 

mechanism of Ca2+ in the postsynaptic cell (e.g. VGCC) and/or on AMPAR 
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subunit composition (Chen et al. 1998; Chittajallu et al. 1998; Zamanillo et al. 

1999). AMPAR-mediated plasticity involves both native and modified receptors 

(Liu et al. 2007). GluR2-lacking Ca2+-permeable AMPAR (CP-AMPAR) have 

long been described in hippocampus, where they participate in excitatory 

synaptic transmission (Isa et al. 1996) with impact on plasticity (Gardner et al. 

2005). As observed on rat hippocampal slices, neuron-glia synapses in the 

CA1 region undergo activity-related modifications analogous to LTP that 

depend on CP-AMPAR (Ge et al. 2006). A rapid incorporation of CP-AMPAR 

and their subsequent replacement by GluR2-containing Ca2+-impermeable 

AMPARs occurs in principal neurons during hippocampal NMDAR-dependent 

LTP (Plant et al. 2006), presumably following the recruitment of receptors 

existing in intracellular reserve pools (Ju et al. 2004; Terashima et al. 2004). 

Non-pyramidal neurons expressing CP-AMPAR have long been demonstrated 

to occur in different cell layers of both CA1 and CA3 regions (Isa et al. 1996).  

The expression of CP-AMPAR can also change dramatically in 

pathological circumstances (Kwak et al. 2006; Liu et al. 2007). Damage can 

arise via excessive Ca2+ loading through CP-AMPAR. This can lead to •NO 

production, generation of ROS by mitochondria and release of apoptotic 

mediators such as cytochrome C, amongst others (Hong et al. 2004). 

Blockade of CP-AMPAR was shown to be protective against ischemia-induced 

neuronal cell death at Schaffer collateral-CA1 synapses (Noh et al. 2005). 

Pronounced and cell-specific reduction in GluR2 in CA1 vulnerable neurons 

was shown to occur only after global ischemia, strikingly with no significant 

changes in AMPA receptor subunit GluR1 at CA1, CA3 or dentate gyrus 

(Opitz et al. 2000). GluR2 mRNA levels are also decreased in motor neurons 

(Kawahara et al. 2003; Sun et al. 2005), the neuronal cells lost in amyotrophic 

lateral sclerosis (ALS).  



40    Chapter 1 

 

From the previous, and taking into account the possible role for •NO in 

events mediated by AMPAR and CP-AMPAR, knowledge of NOS activity 

following AMPA simulation is of considerable relevance.  

 

1.5 - Astrocytes 
 

Without astrocytic involvement, normal function of glutamatergic 

neurons would not be possible. The most obvious neuronal function of 

glutamate - its release as a transmitter - is regulated by astrocytes. In normal 

synaptic transmission, glutamate released into the synaptic cleft by neurones 

is accumulated in astrocytes (Hertz et al. 1978) by means of glutamate 

transporters such as GLT1 and GLAST (Gadea et al. 2001). Afterwards, 

glutamate is returned to neurones in the form of glutamine. However, many 

other neuronal activities are influenced by these cells. Astrocytes have been 

implicated in physiological and pathological mechanisms, including 

sequestration and/or redistribution of K+ during neural activity, providing 

energy substrates to neurons (e.g. lactate), maintenance of blood-brain barrier 

integrity, modulation of stroke outcome by free-radical scavenging and 

glutamate homeostasis, glioma formation and cytotoxic brain edema. New 

roles are also emerging and these include modulation of excitatory and 

inhibitory synapses, regulation of neurogenesis in adult brain (e.g. 

hippocampus) and mediators of neuroinflammation (Hertz et al. 1999; Dringen 

2000; Araque et al. 2001; Ransom et al. 2003; Pellerin 2005). Astrocytes also 

protect neurones in other ways, providing metabolic and antioxidant support. 

One of the most important molecules in this respect is the antioxidant GSH 

(Schulz et al. 2000). 
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1.5.1 - Glutathione 
 

1.5.1.1 - Function and Localization 
 

 GSH is a tripeptide composed of glutamate, cysteine and glycine (γ-

glutamylcysteinylglycine), and is the most abundant intracellular thiol on plants 

and animals (Meister et al. 1983). The unusual peptidic γ-linkage between the 

glutamate and cysteine residues, via the carboxyl group attached to the γ-

carbon of glutamate and not the orthodox α-carbon carboxyl group, is 

suggested to prevent degradation by aminopeptidases (Sies 1999). 

Glutathione disulphide (GSSG) is formed upon oxidation of GSH, and 

although dependent on several factors (including oxidative stress), the ration 

of GSH to GSSG is approximately 10:1 in the cytoplasm (Meister et al. 1983; 

Kirlin et al. 1999). A major function of GSH relates with the protection of cells 

from oxidizing species and maintenance of an appropriate cellular redox 

environment (Bolanos et al. 1996; Dringen et al. 1997; Ehrhart et al. 2001). 

Although it can also act as a cysteine carrier (Meister et al. 1983), GSH plays 

a major role in detoxification mechanisms involving xenobiotics (Borst et al. 

1999), and participates in the post-translational modification of proteins (Klatt 

et al. 2000; Pineda-Molina et al. 2001). GSH is predominantly located in the 

cytoplasm (Wullner et al. 1999) and varies between brain regions, with lower 

levels in hippocampus when compared to cortex (Kang et al. 1999). In 

connection with observed differences in GSH content between cell types 

(Sagara et al. 1993), this later observation might determine a sub-regional 

vulnerability to oxidative stress in hippocampus (Van Hoesen et al. 1990).  
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1.5.5.2 - Metabolism 
 

GSH is synthesized from glutamate, cysteine and glycine in two 

consecutive steps, catalyzed by ATP-dependent enzymes γ-glutamylcysteine 

synthetase (GCS, EC 6.3.2.2, reaction 10) and GSH synthethase (GS, EC 

6.3.2.3, reaction 11) (Meister et al. 1983; Griffith 1999). Degradation into the 

constituent amino acids occurs via γ-glutamyltranspeptidase (γGT, EC 

2.3.2.2), which is predominantly located in the outer leaflet of plasma 

membranes (Meister et al. 1983; Dringen et al. 1997) of endothelial 

(Hemmings et al. 1999) and glial (Dringen et al. 1997; Hemmings et al. 1999) 

cells, and bv cysteinyl-glycine dipeptidase (EC 3.4.13.6) (Meister et al. 1983; 

Josch et al. 1998), as depicted in Figure 1.7 at the end of this section.  

 

 

 

 

 

Mammalian GCS is the rate-limiting enzyme in GSH synthesis. The Km 

of GCS is similar to the intracellular concentration of cysteine (Griffith 1999), 

which limits the rate of GCS activity (Meister et al. 1983; Kranich et al. 1998). 

GSH binding was found to be competitive with glutamate (Ki GSH~2.3 mM) 

and dependent on the cysteinyl thiol group (Huang et al. 1993). The level of 

GCS present in the cell determines de novo synthesis of GSH and several 

agents have been shown to induce the expression of GCS light or heavy 

subunits. Amongst them are H2O2, O2
•-, •NO, lipid peroxidation products and 

insulin. Phosphorylation of GCS heavy subunits also modulates enzyme 

activity, leading to decreased Vmax without affecting Km for both glutamate 

and cysteine or causing subunit dissociation (Sun et al. 1996). Inhibiting GCS, 

and allowing the ongoing reactions involving the use GSH to proceed, 

depletes GSH cellular stores at different rates, as observed with the commonly 

glutamate + cysteine + Mg-ATP  

  → γ-glutamyl-cysteine + Mg-ADP + Pi  (11) 

 

γ-glutamyl-cysteine + glycine + Mg-ATP  

   → glutathione + Mg-ADP + Pi  (12) 
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used inhibitor buthionine sulfoximine (BSO) (Griffith et al. 1979). Mammalian 

GSH synthetase is a homodimer and, unlike GCS, is not inhibited by GSH 

(Oppenheimer et al. 1979). Of note is the reaction catalyzed by γGT, which 

degrades GSH into a γ-glutamyl moiety and cysteinylglycine (CysGly) (Meister 

et al. 1983; Dringen et al. 1997). This dipeptide serves as a GSH precursor in 

neurons and causes a concentration-dependent increase in neuronal GSH 

content (Figure 1.7) (Dringen et al. 1999). The γ-glutamyl moiety is transferred 

to an acceptor that can be either an amino acid, a dipeptide, H2O, GSSG or 

GSH (Meister et al. 1983; Stole et al. 1994). This enzyme is inhibited by 

acivicin, in a mechanism involving acivicin transformation to an inhibitory 

species that releases from γGT very slowly (Stole et al. 1994). 

 

1.5.2 - Antioxidant Properties of Glutathione  
 

The thiol group of GSH makes it an important scavenger of oxidizing 

species. GSH reacts rapidly and non-enzymatically with hydroxyl radical, the 

cytotoxic Fenton reaction product, and with N2O3 and ONOO-, two cytotoxic 

products formed by the •NO with O2 and O2
•-, respectively (Kalyanaraman et 

al. 1996; Luperchio et al. 1996; Briviba et al. 1999). GSH is the substrate for 

the GSH peroxidase which reduces H2O2 and lipid peroxides to H2O and 

alcohols, respectively. Of note this is a relevant defense mechanism in brain, 

where catalase activity is reduced (Meister et al. 1983; Dringen et al. 1997; 

Brigelius-Flohe 1999; Brigelius-Flohe et al. 1999). 

GSH plays an important role against •NO-derived reactive species. 

Although •NO reacts too slowly with GSH to be considered biologically 

relevant, the oxidation to NO+ increases its reactivity to form S-

nitrosoglutathione (GSNO) (Gaston 1999; Hughes 1999). The subsequent 

chemistry of GSNO is complex, as GSNO may react further with GSH to form 

GSSG, NO2
- and ammonia (NH3) (Singh et al. 1996). 
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The formation of GSNO is of relevance in brain, where it has been 

shown to react with NR2A subunits to downregulate the activity of NMDAR 

(Kim et al. 1999; Choi et al. 2000; Hermann et al. 2000; Chen et al. 2006). •NO 

reduction yields NO-, which forms GSSG and hydroxylamine (NH2OH) after 

reacting with GSH (Hughes 1999). At physiological conditions more than 90 % 

of ONOO- reacts with GSH to form the unstable sulphenic acid (GSOH), which 

rapidly generates GSSG by reacting with another GSH molecule (Quijano et 

al. 1997) and can irreversibly oxidize proteins (Klatt et al. 2000). In this regard, 

the reversible covalent binding of GSH to cysteine residues also plays a 

protective role in preventing irreversible oxidation or nitration of proteins (Klatt 

et al. 2000). The fact that neurons exhibit lower amounts of GSH when 

compared to astrocytes was suggested as the reason why they are more 

susceptible to oxidative stress (Bolanos et al. 1995; Bolanos et al. 1996), and 

why the same oxidative insult results in a greater amount of cell death in 

neurons (Bolanos et al. 1995). 

 

1.5.3 - Astrocytes, Neurons and Nitric Oxide 
 

 The trafficking of GSH between astrocytes and neurons is particularly 

important in conditions of oxidative stress (Dringen 2000). As illustrated in 

Figure 1.7, astrocytes are able to increase neuronal GSH levels by secreting 

GSH into the extracellular environment (Sagara et al. 1996; Dringen et al. 

1999; Stewart et al. 2002), where it has been reported in the micromolar range 

(Han et al. 1999). Neurons are unable to take up GSH directly but can make 

use of CysGly and cysteine, which are produced from GSH by the consecutive 

action of γGT and aminopeptidase N (ApN), the latter expressed on the 

surface of neurones (Dringen et al. 1997; Dringen et al. 2001). Since cysteine 

is the rate limiting substrate for GSH synthesis the supply of this substrate by 
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astrocytes is essential for the maintenance of GSH levels in neurones 

(Dringen et al. 1999). 

Previous studies have shown that, when exposed to H2O2, •NO and 

other reactive nitrogen species, astrocytes react by increasing GSH release 

(Sagara et al. 1996; Gegg et al. 2003). Astrocytes are more resistant than 

neurons to the effects of RNS acting upon the electron transport chain in 

mitochondria (Bolanos et al. 1995). Inhibition of respiration following •NO 

exposure leads to the rapid upregulation of phosphofructo-1-kinase (PFK1), a 

key regulatory enzyme for glycolysis, only in astrocytes (Almeida et al. 2004).  
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Figure 1.7: Astrocytes protect other neural cell types against the toxicity of various compounds 
by releasing GSH, thus supplying glutathione precursors to neighboring cells (Dringen 2000). 
GCS, γ-glutamylcysteine synthetase; GS, GSH synthethase; γGT, γ-glutamyltranspeptidase; 
ApN, Aminopeptidase. 
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 Astrocytic GSH levels are approximately two times higher that those of 

neurons (Bolanos et al. 1995), and its levels increase in response to exposure 

to •NO (Gegg et al. 2003; Heales et al. 2004). The same study revealed that, 

following exposure of astrocytes to •NO, GCS levels were elevated, GSH 

efflux was doubled and γGT activity was increased by 42 % (Gegg et al. 

2003). This increase in GSH release is hypothesized to be a neuroprotective 

mechanism which maintains and/or increases neuronal GSH levels to 

counteract the damaging effects of RNOS.  

Extracellular levels of glutamate have been measured in various in vivo 

disease models by microdialysis and have been shown to reach 

concentrations of >500 µM (McAdoo et al. 1999). High levels of glutamate can 

also be maintained at concentrations of >50 µM for 1-2 hours during and 

following ischaemic insult (Orwar et al. 1994; Ritz et al. 2004). Since 

extracellular glutamate derives from intracellular vesicles (whose glutamate 

concentrations are between 0.24-11 mM (Harris et al. 1995), the local 

concentration of glutamate in these conditions is likely to be even higher. 

Prolonged exposure to such concentrations of glutamate is likely to result in 

significant neurotoxicity (Liu et al. 1999). Given this scenario, it is of 

considerable interest to investigate the mechanisms by which astrocytes 

protect neurones from glutamate toxicity (Hertz and Zielke, 2004). 
 

1.6 - Detection of Nitric Oxide 
 

 The physiological actions of •NO are determined by its concentration 

dynamics in tissues, but some of its properties make •NO detection in 

biological samples a challenging task. Stable isotopes of L-citrulline or L-arg 

can be used to investigate NOS activity (van Eijk et al. 2007), and •NO effects 

are also inferred by monitoring cGMP production (Hopper et al. 2006). The 

steady-state concentration of this gaseous free radical is difficult to determine 
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because of its labile nature, a consequence of its short half-life and diffusion 

rate in tissues. Its free radical nature favors the reaction with free radicals, 

oxidant and antioxidant molecules, metal centers and a large number of 

proteins. Moreover, a number of molecules are reported to determine its 

production in vivo, by modulating NOS activity or activating regulatory 

pathways. These and other issues have to be address when selecting one the 

following methodologies. 

 

1.6.1 - Chemiluminescence 
 

The use of chemiluminescence to follow •NO production involves 

mainly gas phase measurements, as very few reports address its use in liquid 

phase experiments. This technique is based on the reaction of •NO with ozone 

(O3) to produce nitrogen dioxide in the excited state (NO2*) (reaction 12): 

 

Photons are detected by a red-sensitive photomultiplier with a cutoff 

filter below 600 nm (reaction 13). This reaction is very specific to •NO and is 

insensitive to NO2, a major interferent in the measurements of •NO in the gas 

phase (Lancaster Jr. 1996). This technique has been used to measure •NO in 

exhaled breath (Hadjikoumi et al. 2002) but detection of dissolved •NO is more 

complicated. The sample solution has to be purged with helium or nitrogen to 

transfer dissolved •NO to the reaction chamber (Maurer et al. 2000), which 

limits the usefulness of chemiluminescence in real-time measurements of •NO. 

Other strategy is based on the reaction of •NO with alkaline luminol in the 

presence of hydrogen peroxide (H2O2) (Kojima et al. 1997). Detection can be 

performed either by mixing the sample with luminol/H2O2 peroxide mixture 

•NO+ O3 → NO2* + O2      (12) 

NO2* → NO2 + light (600 nm)     (13) 
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(Wiklund et al. 1999) or by placing a dialysis or gas permeable membrane 

between the sample and luminol/ H2O2 mixture (Kojima et al. 1997). This 

procedure offered better selectivity (since luminol could not react with species 

other than •NO) but had poor sensitivity and slow response time. In general 

chemiluminescence detection offers very good sensitivity and selectivity but it 

has few drawbacks, such as bulky instrumentation, time consuming 

procedures, and expensive reagents and equipment. 

 

1.6.2 - Colorimetry 
 

These techniques are based on the reaction of •NO with a target 

molecule that changes its spectral characteristics. Binding of •NO to the iron 

center of oxyhemoglobin (HbO2) results in shifting the Soret band, which can 

be used as a qualitative and quantitative indicator of •NO. This reaction yields 

HbNO that latter decomposes to methemoglobin and nitrate (reaction 2) (Nims 

et al. 1996).  

The nitrosation of Hb (or myoglobin, Mb) is useful in direct 

measurements of •NO (Kelm et al. 1997) and dosing experiments in the 

laboratory. Major drawbacks of this method are the difficulty to obtain pure 

HbO2 or Mb, the time required to complete the analysis, and the reaction with 

interfering agents like nitrite (Nims et al. 1996). Other reagents that form 

colored compounds in the presence of •NO include ferrocyanide and 2,2’-

azinobis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) (Nims et al. 1996).  

The biological metabolites of •NO can be used to measure it indirectly, 

particularly nitrite and nitrate. The most common procedure is based on the 

Griess reagent, which consists of sulfanilamide and N-(1-

naphthyl)ethylenediamine dihydrochloride (SULF/NEDD). The acidic mixture 

forms an azo dye with maximum absorption wavelength at 543 nm. To 

measure nitrate with this reagent it should be first reduced to nitrite (Sen et al. 
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1978), which can then be measured at the micromolar level. The main 

advantage of spectrophotometric measurement of •NO is that it requires 

common instrumentation with well-established procedures, but a poor 

detection limit (from 0.1 to 1 mM •NO) decreases its usefulness in experiments 

where •NO production ranges nanomolar concentrations. Care should also be 

taken to avoid reaction with sample components such as nitrosating 

compounds and reducing molecules like ascorbic acid, glutathione and 

dithiothreitol, as they can yield misleading results by interfering with 

sulfanilamide (Yao et al. 2004). 

 

1.6.3 - Fluorimetric Assays 
 

The ability of •NO to produce N-nitrosating agents has led to the 

development of several fluorimetric probes that have proven useful in 

bioimaging of •NO (Kojima et al. 2001). The aromatic diamino compound 2,3-

diaminonaphthalene (DAN) acts as an indicator of •NO formation. DAN offers 

very week fluorescence signal but when it reacts with •NO to produce 2,3-

naphthotriazole (NAT) the fluorescence intensity increases by more than a 

100-fold (Miles et al. 1996). •NO metabolites in brain microdialysates can be 

monitored using liquid chromatography coupled with fluorescence detection, 

with DAN as sensitive reagent (Woitzik et al. 2001; Wada et al. 2002). This 

allows a sensitivity of less than 1 nM, but the extensive sample processing 

required to exclude numerous sources of contamination is a major 

disadvantage (Woitzik et al. 2001). 4,5-diaminofluoresceine (DAF-2) can also 

be used in real-time detection of •NO (Qiu et al. 2001). The reaction yields the 

highly fluorescent DAF-2 triazole (DAF-2T), but was shown to suffer serious 

interferences from endogenous molecules (e.g. ascorbic acid) and to be pH 

dependent (Zhang et al. 2002). Other probes based on the rhodamine 

chromophore were found to be pH insensitive above pH 4 (Kojima et al. 2001). 
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Sensitivity for measuring •NO is a considerable advantage when using 

fluorescence-based methods, but major problems are reagent preparation, 

time consumption experiments and lack of selectivity to •NO resulting from 

contamination from sample components (Wardman 2007). 

 

1.6.4 - Electron Spin Resonance Spectroscopy 
 

Electron Spin Resonance (ESR) spectroscopy allows the detection of 

free radical species because an unpaired electron can be oriented in a 

magnetic field and absorb incident microwave radiation to change its spin. 

Absorbed energy depends on the local electronic environment and determines 

the final spectrum, which can be used as a fingerprint for a particular radical. 

However, the labile nature of •NO prevents its direct detection, and a number 

of strategies are used to increase its half-life and stability to allow ESR 

detection (Berliner et al. 2001). Spin-traps are molecules that can react with 

free radicals, yielding ESR-stable adducts. Some •NO spin-traps take 

advantage of his strong binding to iron to form iron-nitrosyl complexes, and 

these include iron complex spin-traps such as N,N-diethyl dithiocarbamate-

Fe(II) ([Fe(II)(DETC)2]) (Tsuchiya et al. 1996) and N-methyl D-glucamine 

dithiocarbamate-Fe(II) ([Fe(II)(MGD)2]) (Lai et al. 1994). Some proteins are 

also used to detect •NO for the same reason, particularly Hb (Blumberg 1981) 

and Mb (Duprat et al. 1995). Other spin-traps include stable organic radicals 

like 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) (Akaike et 

al. 1996) and 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) (Ichimori et al. 

1996). ESR methods are cumulative (adducts are stable and long-lasting) and 

can provide adequate specificity in •NO detection, but they are limited by 

expensive and complex instrumentation, time-consuming sample preparation, 

and complicated operation and interpretation of data. The usage of transition 
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metals to form spin-trap complexes can also alter the cellular redox 

environment, causing unwanted physiological changes. 

 

1.6.5 - Electrochemistry 
 

 The previous methodologies are suitable to detect •NO in a number of 

model systems, but are inadequate to monitor its real-time endogenous 

production in hippocampus. A reliable real-time investigation of •NO dynamics 

in slices is only achievable by means of a sensitive and fast-responding 

method. This can be obtained by means of electrochemical methods 

combined with microelectrodes. Due to their small size, sensitivity, minimal or 

no reagents requirements, and nondestructive properties, microelectrodes are 

versatile tools to investigate •NO production, as clearly demonstrated by the 

measurement of •NO release of a single cell in situ (Malinski et al. 1992).  

 The first electrochemical sensor for •NO in biological samples was 

published by Shibuki in 1989, and consisted of a Clark-type oxygen sensor 

with reversed polarity to detect not oxygen but •NO at +0.9 V (Shibuki 1990). 

The second widely publicized electrochemical sensor was published by 

Malinski and Taha and was termed the porphyrinic sensor because it was 

composed of a carbon fiber modified by electropolymerized nickel(II) 

tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin (NiTMHPP) (Malinski et al. 

1992). This modification of the carbon surface was intended to lower the 

oxidation potential and enhance the oxidation current of •NO by 

electrocatalyzing his oxidation. The surface was also coated with another film 

made of Nafion®, a sulfonated tetrafluorethylene polymer with sulfonic acid 

side chains that forms a negatively-charged membrane and improves 

selectivity against nitrite, nitrate and other biological anions (Brazell et al. 

1987). When hydrated the sulfonic acid side chains are neutralized by solvent 
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cations, which further diminishes the film permeability to anionic species 

(Sakai et al. 1986). 

A number of electrochemical techniques can be used with 

microsensors to detect •NO in biological samples. Electrochemical assays are 

based on the electrochemical oxidation of •NO on solid electrodes. If the 

current generated during •NO oxidation is linearly proportional to the 

concentration, the oxidation current can be used as the analytical signal 

(Malinski et al. 1996). Amongst the most widely used techniques amperometry 

occupies the central stage and consists in polarizing microsensors at a certain 

potential while recording the analyte oxidation current. When measuring •NO, 

an oxidizing potential of +0.9 V is typically used, but care must be taken as 

other species might contribute to the analytical signal (including ascorbic acid 

and nitrite). The use of selective films provides protection up to a certain 

concentration level of the interfering substance, and appropriate controls are 

required to ensure •NO detection. The major advantages of amperometry are 

its short response time and the ability to detect •NO before its reaction with 

other species. Other techniques such as differential pulse voltammetry (DPV) 

have been employed by some researchers (Meulemans 2002), but the low 

concentrations and short life of •NO result in considerable difficulties in 

evaluating these voltammograms. 

Others sensors are commercially available that display very good 

analytical characteristics. These are integrated sensors made of gas 

permeable membranes, which confers them a very high level of selectivity and 

isolate all sensing elements from the sample solution, making them immune to 

changes in ionic strength or conductivity. The fact that all components 

(reference, auxiliary and working electrodes) are placed in the same structure 

enables its use with no special handling care. However, the fragility of the 

protective membranes and the high cost of each sensor and components are 

major disadvantages, along with tedious calibration procedures and severe 
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temperature dependence. Most importantly, their macroscopic dimensions 

prevent their usage in reduced biological samples.  

 

Given the above mentioned scenario and in order to investigate the 

rate and pattern of •NO dynamics in hippocampus via stimulation of glutamate 

ionotropic receptors, we have used a porphyrin/Nafion carbon fiber selective 

microsensor and amperometry as the analytical tool.  

 

1.7 - Objectives 
 

 •NO production in hippocampus is mediated by glutamatergic 

receptors. These are implicated in physiological events but also in 

oxidative/nitrosative stress, particularly after excessive activation of the NMDA 

subtype. However, and despite reports demonstrating its increase following 

non-NMDA receptors activation, little is known about the role of other 

receptors on •NO production and, most importantly, the concentration 

dynamics of •NO in the extracellular space. Furthermore, cells are expected to 

counteract any pathway leading to excessive •NO production, setting in motion 

protective mechanism to prevent cellular degeneration. These are expected to 

be linked to glutamate homeostasis, as excitotoxicity is closely related to its 

extracellular concentrations and release from synaptic elements. 

Considering the previous notion, we have implemented an 

experimental strategy consisting of electrochemical •NO microsensors inserted 

into acute hippocampal brain slices and primary cultures of astrocytes to meet 

the following objectives: 

 

1) To investigate •NO concentration dynamics in hippocampus 

following glutamate receptors activation, determining the extent and pattern of 
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endogenous •NO production following brief and toxic stimulations of NMDA 

receptors (Chapter 3); 

 

2) To determine the role of non-NMDA receptors, namely the AMPA 

subtype, in NOS activation in hippocampus, and its relation with NMDA-

elicited •NO production (Chapter 4); 

 

3) To investigate the contribution of astrocytes to GSH extracellular 

pool under conditions of high glutamate concentrations, as an experimental 

model for excitotoxic (Chapter 5).  
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 2.1 - Nitric Oxide Microsensors 
 

2.1.1 - Reagents and Solutions 
 

 N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-

4-propionate (AMPA), NG-Nitro-L-arginine methyl ester (L-NAME), D(–)-2-

amino-5-phosphonopentanoic acid (AP5), and 2,3-Dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) were purchased from 

Tocris Cookson (Avonmouth, U.K.); Nafion® from Aldrich; L-glutamate from 

Biochemical; ascorbic acid and dopamine from Fluka Chimica; NaNO2 from 

Merck; diethylenetriaminepentacetic acid (DTPA), diethylenetriamine/NO 

(DETA/NO), serotonin (5-HT), glutathione (GSH) and L-arginine (L-arg) from 

Sigma. All other reagents were purchased from Merck. 

Buffer solutions used for microsensor testing and calibrations were 

prepared in ultra pure water with resistivity higher than 18 MΩ.cm (milli-Q, 

Milipore). Buffer was phosphate buffer saline (PBS), with the following 

composition: 140 mM NaCl, 2.7 mM KCl, 8.1 mM NaHPO4, 1.8 mM KH2PO4, 

pH 7.4. To remove traces of metal ions the ion chelator DTPA was added at a 

concentration of 0.1 mM.  

10 mM DETA/NO stock solutions were prepared in 10 mM NaOH and 

kept at -18 ºC. Additional solutions used for microsensors calibration referred 

in text were prepared in PBS degassed with argon (AirLiquid) for at least 15 

minutes. 

 The active surface of microsensors was modified with the following 

solutions: 
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a) 0.5 mM metal porphyrin (NiTMHPP) solution - nickel(II) tetrakis (3-

methoxy-4-hydroxyphenyl)-porphyrin, prepared in 0.1 M NaOH (Interchim, 

France). 

b) Nafion® - 5% aliphatic alcohols solution (Aldrich, Germany). 

 

2.1.2 - Fabrication 
 

 Microsensors were prepared as previously described (Millar 1992; 

Barbosa et al. 1998; Ledo et al. 2002; Ferreira et al. 2005). Briefly, a single 

carbon fiber (8 μm i.d.; Courtaulds, London, UK) was inserted into one 

borosilicate glass capillary (1.16 mm i.d. X 2.0 mm o.d.; Harvard Apparatus, 

UK) previously filled with acetone. This solvent was used to facilitate fiber 

insertion and remove any surface impurities resulting from the manufacturing 

process. After solvent evaporation at room temperature the capillary was 

placed on a vertical puller (single barrel model, Harvard Apparatus, UK) and 

both extremities were subjected to a traction force while heating the middle 

section, in order to obtain a glass seal on the surface of the carbon fiber while 

leaving a small exposed active surface. The micropipette containing the 

protruding carbon fiber obtained was cut 1 cm away from the glass sealing 

and the remaining micropipette discarded. A portion of conductive silver paint 

(RS, Northants, U.K.) was inserted into the micropipette with the help of a 

teflon tube and a syringe. To ensure the electrical contact between the carbon 

fiber and the recording device a cooper wire was introduced into the 

micropipette and immersed into the conductive paint, after which the topmost 

part of the wire was glued to the capillary with standard cianoacrylate glue. 

The protruding carbon fiber was finally cut to desired tip length, typically 100-

150 μm, under a microscope (Nikon, Japan) using small forceps. Figure 2.1 

and Figure 2.2 show a complete microsensor and an Electron Scan 

Microscopy details of the active surface, respectively. 
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Once completed, the microsensor was tested for general recording 

characteristics in PBS by fast cyclic voltammetry (FCV), using a triangular 

wave between -0.4 and +1.6 V at a scan rate of 200 V/s. FCV was carried out 

on an EI-400 potentiostat (Ensman Instruments, Bloomington, USA), and 

signals were monitored on a digital storage oscilloscope (Tektronix TDS 220, 

USA). This testing was performed to evaluate microsensor’s response and to 

ensure that sensors selected for surface modification had the appropriate 

characteristics for subsequent usage in experiments. In electric terms, an 

electrode exhibits both capacitive and resistive characteristics. However, a 

suitable microsensor exhibits a more capacitive behavior (Stamford et al. 

1992), as a result of an adequate sealing between the glass and the carbon 

fiber and a good electric contact between components. A stable background 

current and sharp transients at reversal potentials indicated suitable recording 

properties of the microsensor, as displayed in Figure 2.3, A. Several 

 
Figure 2.1: Fully assembled •NO microsensor. A borosilicate glass capillary (1) containing a 
carbon fiber was placed in a puller to obtain a micropipette with a glass-encased protruding 
carbon surface (2), later modified with NiTMHPP and Nafion®. To ensure connectivity 
between the sensor and the recording device a copper wire (3) was immersed into 
previously inserted conductive paint (4) and glued in place to prevent unwanted 
displacement of parts under usage. A small tag was used to label each sensor (5). Bottom 
scale in centimeters. 
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manufactured microsensors exhibited different profiles (Figure 2.3, B) and 

were therefore considered inappropriate for experiments and discarded. 

Microsensors considered adequate for future experiments were labeled and 

keep at room temperature in storage racks until experiments on slices. 

 

 
Figure 2.2: Electron Scan Microscopy images of a 75 µm microsensor. A) The active surface, 
modified previously with NiTMHPP and six layers of Nafion® (films not visible). B) Detail of the 
glass seal area, separating the active surface from the glass body. Magnification and scale as 
indicated in images. 
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Figure 2.3: FCV voltammograms of microsensors in PBS. A) A good microsensor exhibits stable 
background current and sharp transients at reversal potentials. B) A bad electrode with resistive 
characteristics, discarded for further experiments. 
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2.1.3 - Chemical Modification of Surface 
 

The detection of a molecule using sensors requires the use of a device 

that exhibits good sensitivity and linearity towards it with minimal interference 

from possible environmental contaminants. It was therefore necessary to 

modify the active surface of microsensors to ensure with good analytical 

characteristics towards •NO (Malinski et al. 1996). Based on previous reports 

(Malinski et al. 1992), the active carbon surface was therefore modified in a 

two-step protocol designed to increase the microsensor’s sensitivity and 

selectivity to •NO produced in slices.  

The first modification step intended to cover the microsensor’s active 

surface with a polymer shown to catalyze the oxidation of •NO, and thus 

increase the microsensor’s sensitivity towards •NO (Figure 2.4) (Malinski et al. 
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Figure 2.4: Chemical structure of molecules used to modify the active surface of •NO 
microsensors. A) NiTMHPP, used as a catalytic film to facilitate •NO oxidation and 
improve sensitivity. B) Nafion®, used to increase sensitivity towards •NO after NiTMHPP 
polymerization. C) Schematic representation of modifications with NiTMHPP and 
Nafion® on the active surface of a microsensor. 
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1996). It consisted in the electrochemical polymerization of a metal porphyrin 

(Ni-TMHPP), prepared in 0.1 M NaOH at a concentration of 0.5 mM, by 

continuous-scan cyclic voltammetry. This was performed in 40 voltage sweeps 

at 0.1 V/s from 0.0 to +1.2 V vs Ag/AgCl with platinum wire as an auxiliary 

electrode, and using the Autolab PGSTAT12 Potentiostat in conjunction with 

the General Purpose Electrochemical Software (GPES) from Eco Chemie 

(Utrecht, The Netherlands). Coverage was monitored by observing the growth 

of Ni(II)/Ni(III) redox couple, as depicted in Figure 2.5. 

The second modification step was designed to increase the 

microsensor’s selectivity towards •NO, in order to ensure that the oxidation 

current observed was due to the oxidation of the analyte under investigation 

and not a contaminant (Malinski et al. 1996). This consisted in coating the 

NiTMHPP-modified active surface with Nafion® (Figure 2.4), which forms an 

anionic barrier capable of preventing the oxidation of endogenous anionic 

compounds like DA or nitrite (Brazell et al. 1987). Each layer was obtained by 

dipping the sensor in a Nafion® solution at room temperature for 30 seconds, 

followed by drying at 80-85ºC for 10 minutes. Total time required for 

microsensors modification with Nafion® was 1 hour, as six layers were 

Figure 2.5: Cyclic voltammetric polymerization of NiTMHPP on the surface of a microsensor 
using GPES software. Electropolymerization of NiTMHPP was monitored by following the 
growth of the Ni(II)/Ni(III) redox couple peaks between 0 and +1.4 V, as depicted above after 24 
scans. 
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consider ideal for experiments in hippocampal slices after comparative 

analysis between microsensors modified with one or six layers of Nafion®. 

Once completed •NO microsensors (Figure 2.1) were stored dry at room 

temperature prior to experiments and in PBS at 4.0 ºC after insertion on 

hippocampal brain slices. 

 

2.1.4 - Analytical Parameters 
 

 Microsensors were tested for a number of key features to ensure good 

analytical properties before experiments. Protocols and instrumental 

apparatus used in sensitivity, detection limit, response time and selectivity 

studies are detailed in the following sections.  

 

2.1.4.1 - Nitric Oxide Oxidation Potential  
 

The oxidation potential for detecting •NO was determined by square 

wave voltammetry (SWV), an electrochemical technique that retains a good 

resolution and sensitivity while allowing a high scan rate. A typical 

 
Figure 2.6: Background-subtracted voltammogram obtained by square wave voltammetry of 10 
μM •NO in deaerated PBS. Peak potential is 740 mV vs Ag/AgCl. Experimental conditions: 
pulse amplitude 25 mV, frequency 25 Hz, step potential 2 mV and scan rate 50 mV/s.  
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voltammogram of 10 μM •NO prepared in PBS is presented in Figure 2.6. •NO 

exhibited an oxidation potential of +0.75 V vs Ag/AgCl, in agreement with the 

value reported by Friedemann et al. for NiTMHPP coated electrodes (+0.74 V 

vs Ag/AgCl) (Friedemann et al. 1996) and higher than the obtained by 

Malinsky and Taha (+0.64 V vs saturated calomel reference electrode) 

(Malinski et al. 1992). Following this result we used an oxidizing potential of 

+0.9 V to detect •NO by amperometry, a value 150 mV above the peak 

oxidizing potential. No current changes were observed when the oxidizing 

potential was set at +0.55 V. Since interferents like ascorbic acid, dopamine 

and 5-HT exhibit lower peak oxidation potentials than •NO (below +0.5 V) 

(Stamford et al. 1992), +0.55 V was selected for future electrochemical control 

experiments to determine their contribution in recorded currents. 

 

2.1.4.2 - Sensitivity 
 

Microsensors were calibrated with •NO standard solutions prepared 

from DETA/NO. DETA/NO is a •NO donor stable at alkaline pH that releases 
•NO at room temperature and low pH with a half-life of 52 hours (Keefer et al. 

1996). It was used as a •NO source to calibrate microsensors at pH 7.4. The 

release profile of DETA/NO solutions was studied with the commercial sensor 

ISO-NOP 2 mm Pt connected to an ISO-NO Mark II amperometer (World 

Precision Instruments, USA). This sensor contains a gas-permeable Teflon 

membrane that allows its calibration with chemically generated •NO at an 

oxidizing potential of +865 mV (vs Ag/AgCl), according to reaction 14. The 1:1 

stoichiometry between added NO2
- and •NO at low pH allows for a robust 

calibration protocol, that could not be used with microsensors due to the 

potentially harmful effect of low pH on NiTMHPP and Nafion® films. This 

sensor demonstrated a good linearity and sensitivity between 0 and 2 μM •NO 

after calibration.  
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•NO release profiles from DETA/NO in deaerated PBS were obtained 

by following the decomposition of 10 μM, 50 μM and 100 μM solutions 

DETA/NO over time, as depicted in Figure 2.7. A plateau phase was reached 

after 60 minutes and remained stable throughout the rest of experiment, 

indicating that •NO release was maximal after 1 hour at room temperature and 

pH 7.4. The relationship between added DETA/NO and released •NO was 

calculated to be 100:1 from the calibration plot (R=0.999, n=3 for all 

concentrations). Hence, DETA/NO solutions used to calibrate microsensors 

were prepared in deaerated PBS at least one hour before experiments, at a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7: DETA/NO decomposition profiles. Typical amperometric recordings of DETA/NO 
solutions in deaerated PBS using ISO-NOP reveal a steady-state release of •NO after 60 
minutes at pH 7.4 and room temperature. Arrow indicates beginning of experiments. Insert: 
From linear regression analysis the relationship between DETA/NO and •NO concentrations 
was calculated to be 100:1. Data obtained from n=3 for 10, 50 and 100 μM DETA/NO, with 
Y = 0,0101 (X) + 0,06 and R=0.999. Adapted from (Ledo 2007). 

2KNO2 + 2KI + 2H2SO4    →    2•NO + I2 + H2O + 2K2SO4 (14) 
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concentration 100 times higher than required. When using DETA/NO 

solutions, data is presented as •NO concentration. 

 

 Calibrations were performed in a single-stream Flow Injection Analysis 

(FIA) system. This apparatus consisted of a peristaltic pump connected to a 

homemade flow cell, where PBS was used to deliver a plug of 500 μl of 

different •NO standards to the microsensor. Quadruplicates of 0.125, 0.25, 

0.50 and 1.00 μM •NO solutions were injected one minute apart with a four-

valve port at a flow rate of 2.0 ml/min and room temperature. Transient 

oxidation currents at +0.9 V vs Ag/AgCl were recorded using the PGSTAT12 

Potentiostat in conjunction with GPES (Eco Chemie, Utrecht, The 

Netherlands). Figure 2.8 illustrates a typical calibration of one microsensor 
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Figure 2.8: Typical amperometric recording for the calibration of one microsensor with 
DETA/NO-derived •NO. Each •NO concentration (top label) was minute-by-minute injected 
and changes in baseline current (in pA) related to the corresponding concentration to 
determine sensitivity. Insert: representative linear regression analysis of mean of 4 
injections for 4 different concentrations, with Y = 659.28 X + 127.75 (R=0.994).  
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modified with NiTMHPP and six layers of Nafion®, with a linear response 

between 0 and 1 μM •NO. Current mean values were plotted against the 

corresponding concentration to determine sensitivity by means of linear 

regression, calculated to be 679 ± 55 pA/μM •NO (n=55).  

 

2.1.4.3 - Detection Limit 
 

Linear regression analysis of calibration plots can be used along with 

equation 1, where m stands for slope and S.D. represents standard deviation 

of regression line, to determine the limit of detection (L.O.D.) of microsensors.  

 

Microsensors were calibrated with •NO solutions 10 times less 

concentrated than previously used, ranging from 12.5 nM to 100 nM •NO. As 

observed for higher concentrations, currents peaks changed linearly with 

concentration at +0,9 V vs Ag/AgCl, with a good signal to noise ratio. Values 

obtained indicate that, after modifying the active surface with NiTMHPP and 

six layers of Nafion®, the detection limit was 6 ± 3 nM •NO (n=10 

microsensors). 

 

2.1.4.4 - Selectivity 
 

Microsensors were used to determine the selectivity against 

endogenous interferents when compared to 1 μM •NO (prepared from 

DETA/NO). Figure 2.9 displays a typical amperometric recording of a 

selectivity assay against endogenous molecules: nitrite (100 μM), ascorbic  

 

L.O.D. = 3 x (S.D./m) (1) 
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Figure 2.9: Representative amperometric recording of a selectivity assay. Microsensor was calibrated and used to determine the 
interference caused by indicated molecules. Middle interferents (from Glu to L-NNA) caused negligible modifications in baseline 
current. 
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acid (100 μM), dopamine (10 μM), 5-HT (10 μM) and glutamate (1 mM); 

Glutamate receptor modulators: NMDA (100 μM), AMPA (100 μM), AP5  

(50 μM), NBQX (50 μM); and NOS substrate and inhibitors: L-arg (1 mM), 

L-NAME (500 μM) and L-NNA (500 μM). 

 

2.1.4.5 - Response time 
 

The response time of microsensors to •NO at +0.9 V vs Ag/AgCl was 

calculated as the time required to obtain 50 % of maximal current change 

(T50%) after flow injection of 250 μM •NO (prepared from DETA/NO). Results 

from 8 different microsensors indicate that, after the abovementioned 

modifications, T50% was 0.38 ± 0.04 s (n=8). 

 

 2.2 - Hippocampal Slices 
 

2.2.1 - Reagents and Solutions 
 

 NMDA, AMPA, AP5 and NBQX were purchased from Tocris Cookson 

(Avonmouth, U.K.); Philantotoxin-4,3,3 (PhTx-4,3,3) and glutathione (GSH) 

from Sigma. All other reagents, including Methylene Blue (MB), were from 

Merck. All solutions were prepared in ultra pure water (milli-Q, Milipore). 

Media for hippocampal slice experiments was normal artificial 

cerebrospinal fluid (aCSF) composed of 120 mM NaCl, 3 mM KCl, 26 mM 

NaHCO3, 1.5 mM NaH2PO4, 1.4 mM MgCl2, 1.5 mM CaCl2, and 10 mM D-

glucose. Experiments with NMDA were conducted in the absence of MgCl2, 

whereas stimulations with AMPA were performed with normal aCSF 

supplemented with 25 μM AP5. Modified aCSF was used to increase cellular 

viability during dissection and recovery, with the following composition: 120 
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mM NaCl, 3 mM KCl, 26 mM NaHCO3, 1.5 mM NaH2PO4, 10 mM MgCl2, 0.5 

mM CaCl2, 10 mM D-glucose, 0.2 mM ascorbic acid and 3 mM GSH. 

Increased MgCl2 and decrease CaCl2 concentrations were used to reduce 

NMDA receptors activation during recovery, while ascorbic acid and GSH 

were used as antioxidants. In both cases aCSF was continuously bubbled with 

humidified Carbox (95%O2/5%CO2, Air Liquide, Portugal) for oxygenation and 

pH buffering (pH 7.4). 

 

2.2.2 - Acute Hippocampal Brain Slice Preparation 
 

Adult male Wistar rats (100-150 g) were purchased from Charles River 

Laboratories (Barcelona, Spain) and maintained in quarantine for at least 3 

days before experiments, with standard light/dark cycles and food ad libitum. 

Animals were killed by cervical displacement according to approved guidelines 

and the brain was rapidly removed and placed in a large Petri dish containing 

ice-cold modified aCSF, previously bubbled with Carbox for at least 20 

minutes. The hippocampi were dissected with the help of small forceps and 

subsequently placed on the stage of a McIlwain Tissue Chopper (Campden 

Instruments, London, UK), on top of a small circle of transparency film. 400 

µm thick slices were obtained, and gently transferred with the help of the film 

to a small Petri dish containing ice-cold modified aCSF previously bubbled 

with Carbox. Slices were then separated using bottom-sealed Pasteur pipettes 

and transferred to a pre-incubation chamber (BSC-PC, Harvard Apparatus, 

USA) containing modified aCSF at room temperature, also continuously 

bubbled with Carbox. Slices were allowed to recover for at least one hour 

under these conditions before any recordings. 
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2.2.3 - Signal Recordings  
 

Experiments with hippocampal slices were conducted in the recording 

chamber BSC-BU with BSC-ZT top (Harvard Apparatus, USA). Amperometric 

currents were recorded with the inNO model T Electrochemical Detection 

System coupled to a computer equipped with inNO v3.1 software (Innovative 

Instruments, Tampa, FL, USA). The PSSAT 12 potentiostat (Eco Chimie, The 

Netherlands) was used to perform experiments at low oxidation potentials. A 

two-electrode circuit was used, with an Ag/AgCl pellet as a reference 

electrode and one microsensor held at a constant potential of +0.9 V (unless 

otherwise stated) as a working electrode. Recordings were conducted inside a 

grounded Faraday cage, on top of a metallic plaque that allowed the fixation of 

hardware e.g. micromanipulators’ bars and magnifying lens (Olympus, Japan). 

Once recovered, individual slices were placed in the chamber and perfused 

with normal aCSF, continuously bubbled with humidified Carbox, at a flow rate 

of 2 ml/min. All experiments were conducted at controlled temperature 

maintained by a water bath (GFL, EUA) located outside the cage that pre-

heated all solutions to 36 ºC and a temperature controller (model TC-202A, 

Harvard Apparatus, USA), used to ensure an optimal recording temperature 

on the perfusing chamber of 32 °C. Figure 2.10 depicts this setup. 

After recovery, one hippocampal slice was placed in the recording 

chamber and attached to a nylon mesh to avoid flow-induced displacement 

(Figure 2.11). The microsensor was inserted under visual guidance in the CA1 

subregion, 200-300 μm into the tissue at the level of the pyramidal cell layer. 

This site is known to be concentrated in nNOS (Wendland et al. 1994; Burette 

et al. 2002) and was easy to identify, allowing precise reproduction of 

microsensor’s insertion. Moreover, we have previously shown that at this 

depth the cell layers enjoy a physiological O2 tension. This is an important  
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Figure 2.10: Hippocampal slices setup and apparatus used to record endogenous 

•
NO 

production.  
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Figure 2.11: Recording chamber used to monitor endogenous 
•
NO production in hippocampal slices. 

Bottom figure depicts a microsensor inserted in the CA1 region of an hippocampal slice (tip not 
visible). 

Magnifying lens 

Micromanipulator 

inNO Electrochemical 
Detection System 

•
NO microsensor 

Recording chamber 

two-valve port 
with tubings 

•
NO microsensor 

Reference electrode 

Reference electrode 

•
NO microsensor 

Hippocampal slice 

Hippocampal slice 

nylon mesh 

Temperature sensor 

aCSF flow 



74    Chapter 2 

 

 feature when considering that the reaction of •NO with O2 occurs slowly over  

time but may interfere with •NO dynamics for high tensions of both gases 

(Ledo et al. 2005). This observation demonstrates that reported results were 

not biased by using  Carbox to maintain pH and media oxygenation. Media 

was removed from the perfusion chamber by means of a vacuum pump for 

latter disposal. Figure 2.11 details the perfusion chamber with a hippocampal 

slice setup, together with main required parts and components. 

 

2.2.4 - Stimulation Protocol  
 

Stimulation and/or administration of inhibitors in slices was conducted 

by a two-valve port located upstream of the perfusion chamber, that allowed 

modifications of perfusing media by switching between two tubing sets. 

Whenever necessary, the appropriate tubing was filled with the solution 

containing the drug using the disposal exit of the valve. Time was set to two 

minutes (or as otherwise stated) and the selector quickly changed from aCSF 

to drug-containing solution. This setup design allowed an effective and 

reproducible stimulation of slices with minimal interference on flow rate. To 

ensure that flow rate was the same between the 2 sets both tubing had equal 

length and inner diameter, and were periodically cleaned with 1 M HCl and 1 

% acetic acid solutions to remove bacteria and Ca2+ precipitates 

(respectively). All solutions were prepared by supplementing normal aCSF 

with the desired compound, and maintained in the water bath at 36 ºC under 

Carbox before perfusion. A vertical marker was used in inNO v3.1 software to 

indicate stimulation, as presented in figures.  
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 2.3 - Astrocytes Cultures 
 

2.3.1 - Reagents and Solutions 
 

 Experiments with astrocytes were performed in collaboration with 

groups from London (UK) and Bremen (Germany). For experiments performed 

in London, the following reagents were used. Tripsin/EDTA, L-glutamine, 

antibiotic/antimycotic solution (10 units/ml penicillin, 1 μg/ml streptomycin, 2.5 

ng/ml amphotericin), poly-D-lysine, DNAse, BSA, Earle’s Balanced Salt 

Solution (EBSS) and Hank’s Balanced Salt Solution (HBSS) were purchased 

from Sigma (Poole, UK). Minimum essential medium (MEM, L-valine based) 

and fetal bovine serum (FBS) were purchased from Gibco-Invitrogen (Paisley, 

UK). Cell culture flasks were purchased from Nalgene Nunc International 

(Naperville, IL, USA). Six-well plates were purchased from Corning Costar 

(High Wycombe, UK).  

 Solution A was composed of EBSS containing 2 mg DNAse, 300 mg 

BSA and 1% (v/v) antibiotic/antimycotic solution. Solution B was composed of 

20 ml of Solution A supplemented 3 mg DNAse and 5 mg trypsin. Astrocyte 

Medium was composed of MEM supplemented with 2mM L-glutamine, 10 % 

FBS and 1% (v/v) antibiotic/antimycotic solution. 

For the experiments performed in Bremen, the following reagents were 

used. Dulbecco´s modified Eagle´s medium (DMEM) was from Gibco-

Invitrogen (Karlsruhe, Germany). Fetal calf serum and penicillin/streptomycin 

stock solution were from Biochrom (Berlin, Germany). Sulfosalycilic acid (SSA) 

and NADPH were from AppliChem (Darmstadt, Germany). Glutathione 

reductase and GSSG were obtained from Roche Diagnostics (Mannheim, 

Germany). All other chemicals were obtained from Sigma (Steinheim, 

Germany), Fluka (Neu-Ulm, Germany) or Merck (Darmstadt, Germany). Sterile 

24-well dishes were from Sarstedt (Nümbrecht, Germany). 
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2.3.2 - Primary Astrocyte Culture 
 

2.3.2.1 - Isolation of Astrocytes  
  

Astrocytes were isolated from neonatal (0-2 days) Wistar rats as 

previously described (Griffin et al. 2005). These were decapitated, and small 

scissors were used to cut skin and scull along midline and sides. Once brain 

was exposed, cerebellum was discarded and both hemispheres were removed 

to an ice-cold HBSS-containing Petri dish with the help of a small spatula. 

Under dissecting microscope meninges and midbrain were removed and both 

cortex and hippocampus were dissected and placed in a small Petri dish 

containing Solution A. The following steps were performed separately for 

cortex and hippocampus, to obtain separate cultures of cortical and 

hippocampal astrocytes. Curved edge scissors and a Gilson pipette were used 

to break down tissue to small pieces in Solution A. This triturated brain 

solution was centrifuged at 500 g and 4 ºC for 5 minutes and the supernatant 

discarded. The pellet was then trypsin-digested with Solution B for 10-15 

minutes at 37 ºC. Digestion was terminated by adding 1 ml FBS and 

astrocytes were pelleted by centrifugation at 500 g and 4 ºC for 5 minutes. 

Pellet was resuspended in Solution A and passed through nylon gauze (40 μm 

pore size) to remove cell debris. Astrocytes were plated in 80-cm2 flasks (1 

head per flask) and cultured in Astrocyte Medium in an incubator (95 % air/5 

% CO2) at 37 ºC for 7 days. Medium was changed no later than 24 hours and 

then every 3 days. Figure 2.12, A refers to a one-day old astrocyte culture, 

characterized by small rounded bodies. 
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2.3.2.2 - Passage of Astrocytes 
 

 Astrocytes were passaged on day 7 when they reached confluence 

(Figure 2.12, B). Media was removed from flasks, the cells washed with 

warmed HBSS to remove serum, and incubated with 10 ml trypsin/EDTA 

solution for 5 minutes at 37 ºC. Trypsinisation was terminated by the addition 

of 1 ml FBS, and astrocytes were pelleted by centrifugation at 500 g and 4 ºC 

for 5 minutes. Pellet was resuspended in Astrocyte Medium and astrocytes 

cultured in twice the number of flasks for further 6 days in the conditions 

described above. Figure 2.12, C shows a detail of astrocyte culture at Day 8 

after medium change. 

 

2.3.2.3 - Plating on 6-well plates 
 

 On day 13 astrocytes (Figure 2.12, D) were removed from the flasks 

with trypsin, as mentioned in the previous section, and carefully resuspended 

in Astrocyte Medium. Cells were counted and seeded onto poly-lysine coated 

6-well plates (in 1 ml Astrocyte Medium) at a density of 1 x 106 cells/well. 

These were incubated for another 24 hours and experiments conducted at 

Day 14. 

For experiments shown in Chapter 5, Figure 5.1, B and Table 5.1 were 

performed on primary astrocyte cultures that were prepared according to the 

method described by Hamprecht and Loeffler (Hamprecht et al. 1985) by 

seeding 3 x 105 cells/well of 24 well dishes. These cultures were used at day 

15 -23. 
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 2.3.3 - Glutathione Release from Astrocytes 
 

At day 14 the media of six-well plates was removed and the cells were 

washed twice in 1 ml HBSS. 1 ml Minimal Medium (44 mM NaHCO3, 110 mM 

NaCl, 1.8 mM CaCl2, 5.4 mM MgSO4, 0.92 mM NaH2PO4, 5 mM glucose, 

adjusted with CO2 to pH 7.4) was added to each well, supplemented with 5 

mM sodium glutamate, 5 mM buthionine sulphoxime (BSO) or both. For BSO 

experiments, cells were incubated in minimal medium containing 5 mM BSO 

for two hours before and during supplementation with glutamate. After  

 

 stimulation for 15, 45, 120 and 240 minutes, 500 μl of medium was removed 

and centrifuged to remove cell debris (different wells were used for each 

timepoint). 250 μl of supernatant was added to the same volume of 30 mM 

ortho-phosphoric acid, centrifuged at room temperature for 5 minutes at 14000 

g to pellet protein and kept at -80 ºC for up to three weeks until high 

performance liquid chromatography (HPLC) determination of GSH. The 

stability of GSH extracted with 15 mM ortho-phosphoric acid was unaffected 

by freezing and storage at -80 ºC for at least one year.   

For experiments on primary cultures on 24 well dishes, cells were 

washed with 0.5 ml of pre-warmed (37 ºC) Minimal Medium, pre-incubated for 

2 h in 0.5 ml MM with 100 µM of the γ-glutamyl transpeptidase (γGT)-inhibitor 

acivicin (Dringen et al. 1997) in the absence or the presence of BSO (5 mM), 

and incubated in the cell incubator with 0.5 ml incubation medium (Minimal 

Medium with 100 µM acivicin) in the absence or presence of glutamate (5 mM) 

and/or BSO (5 mM). Extracts of cells and media in 1% (w/v) of sulfosalicylic 

acid were used to determined the total glutathione content (GSx = amount of 

GSH plus twice the amount of GSSG). For determination of the content of 

GSSG in lysates or media the GSH present was derivatised with 2-

vinylpyridine as described previously (Minich et al. 2006). For all conditions 

investigated the GSSG values were in the range of the detection limit of the 
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assay used (<5 % of GSx). Therefore, the GSx amounts determined are 

considered and addressed as GSH amounts. 

 

2.3.4 - Glutathione Quantification by HPLC 
 

 Cellular GSH quantification was determined by reverse-phase HPLC 

coupled to a dual electrode electrochemical detector as previously described 

by Riederer et al. (Riederer et al. 1989). Sample was injected by a Kontron 

HPLC 360 autosampler (Watford, UK) through a guard column (octadecasilyl; 

3 mm x 10 mm) to remove debris, and resolved using a reverse-phase 

Techsphere octadecasilyl column (particle size 5 μm, 4.6 mm x 250 mm) 

maintained at 30 ºC by a column heater (Jones Chromatography, Glamorgan, 

UK). The mobile phase was 15 mM ortho-phosphoric acid prepared in ultra 

pure water (milli-Q, Milipore) and degassed by a DEG-1033 degasser 

(Kontron Instruments). The flow rate was maintained at 0.5 ml/min by a Jasco 

PU-1580 pump (Great Dunmow, UK). Following separation by the column, 

GSH was electrochemically detected by an ESA 5010 analytical cell 

containing an upstream and downstream electrode (ESA Analytical, 

Aylesbury, UK). The upstream electrode screens out molecules with a lower 

oxidation potential than GSH, while the downstream electrode oxidizes GSH. 

Current generated by the oxidation of GSH at the downstream electrode was 

proportional to the amount of GSH and was recorded as a chromatogram on a 

Thermoseparation Products Chromejet integrator (Anachem, Luton, UK) at a 

chart speed of 0.25 cm/min. Prior to detection of samples mobile phase was 

circulated through the column and electrode for 18 hours to allow the 

electrochemical detector to settle and yield a low baseline current. 

Electrochemical detection of GSH standards (prepared in 15 mM ortho-

phosphoric acid and stored at -70 ºC) at + 0.85 V was linear between 0 and 10 

μM. These were injected at regular intervals between samples to monitor 
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analysis. Figure 2.13 shows a typical chromatogram for a GSH standard 

(5µM) (A) and a cortical  astrocyte sample (B).  

 

2.3.4 - Lactate Dehydrogenase Release  
 

LDH activity was determined by measurement of NADH oxidation at 

340 nm in the presence of pyruvate. The assay was performed in 96 well 

plates as described (Dringen et al. 1998). The percentage of LDH released  

 

GSH

A B

GSH

GSH

A B

GSH

 
Figure 2.13: Typical GSH chromatograms. A) A 5 µM GSH standard prepared in 15 mM ortho-
phosphoric acid and separated by reverse-phase HPLC. GSH was detected electrochemically at 
+0.85 V. Retention time was 12.9 minutes. B) GSH released from astrocytes. Following 
incubation with 5 mM Glu for 240 minutes an aliquot of supernatant was added to the same 
volume of 30 mM ortho-phosphoric acid and GSH quantified by HPLC. Arrows indicate point of 
injection.  
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 into medium was calculated for three separate preparations (mean ± SEM) by 

the following: (LDH activity in medium/Total LDH in medium after cell lysis with 

Triton X-100) x 100.  

 

2.4 - Statistical Analysis 
 

Results are expressed as mean ± SEM values, with n as indicated. As 

depicted in Figure 2.14, TRise is the time necessary to reach maximum current 

amplitude after signal onset from basal current levels. Peak [•NO] corresponds 

to maximum current amplitude converted to •NO concentration using 

sensitivity of microsensors. Signal charge values correspond to current 

integer. Statistical significance for the comparison of two groups was 

assessed using Student’s t-test. Multiple comparisons were made by one-way 

ANOVA followed by the Bonferroni test unless otherwise stated. Values 

considered significant were indicated by *, p<0.05 and **, p<0.01. For 

astrocytes, data expressed as ratios were transformed as previously 

described (Gegg et al. 2003) prior to statistical analysis. 

 
Figure 2.14: Signal parameters. Signals were analyzed to determine TRise (s), Peak [•NO] (nM) 
and signal charge (nC) (grey area) as indicated in text. 
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3.1 - Introduction 
 

A number of techniques can be used to measure •NO in biological 

samples, including gas and liquid phase chemiluminescence, electron spin 

resonance spectroscopy, UV/visible spectroscopy, fluorescence and 

electrochemistry. Owing to their analytical properties the latter are suitable to 

measure •NO in biological samples due to small electrode size, minimal 

damage to tissue, sensitivity, selectivity and low manufacturing cost 

(Ciszewski et al. 2003; Taha 2003). This led us to fabricate microsensors to 

measure •NO in rat hippocampal slices by means of electrochemical methods 

associated with microsensors, particularly amperometry. In this technique a 

constant potential is applied to the working electrode against a reference 

electrode, while recording the oxidizing or reducing current arising reaction at 

the electrode’s surface. Amperometry is widely used to investigate changes in 

concentration of an interest molecule with time because of its response time 

and sensitivity, and was thus appropriate to investigate the dynamics of •NO 

production in hippocampus. However, because other species can contribute to 

the analytical signal at the applied potential (+0.9 V) protective films were used 

to exclude interfering molecules from the microsensor’s active surface. As 

these films provide a limited protection care must be taken in determining the 

contribution of interferents to the measured signal, and particularly their effect 

at physiological concentrations.  

Glutamate is the principal excitatory neurotransmitter in hippocampus, 

a brain structure involved in learning and memory formation (Scoville et al. 

1957; Squire et al. 1991), where it mediates a great number of physiological 

pathways (Kullmann et al. 2007). Glutamate receptors, particularly NMDAR, 

were initially implicated in •NO production by Garthwaite and collaborators 

using cerebellar cells as a model system (Garthwaite et al. 1988). Wendland 
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and co-workers demonstrated that neuronal NOS was expressed in both 

dendrites and cell bodies of CA1 pyramidal cells (Wendland et al. 1994), and 

•NO was latter considered as a retrograde messenger involved in pre- and 

postsynaptic cells changes (Holscher 1997; Haley 1998; Prast et al. 2001) 

necessary for the maintenance of LTP (Lynch et al. 1985; Malinow et al. 

1990). Given the previous, microsensors were used to measure the rate and 

pattern of •NO change in hippocampus connected with the stimulation of 

ionotropic glutamate receptors. 

 

3.2 - Calibration and Response Time 
 

Microsensors were modified in a two-step protocol to optimize •NO 

detection. This included the use of NiTMHPP to enhance oxidation currents by 

electrocatalyzing the oxidation of •NO (Malinski et al. 1992; Friedemann et al. 

1996; Pontié et al. 1996; Taha 2003), and Nafion® to increase the selectivity 

towards •NO by preventing diffusion of anions like nitrite to the porphyrinic 

surface (Malinski et al. 1992; Friedemann et al. 1996). The use of DETA-NO 

to prepare •NO standards provided an easy-to-use calibration protocol, 

allowing each microsensor to be screened for sensitivity before experiments. 

This was also used to determine other key analytical properties. From data 

presented in Chapter 2, recorded oxidation currents were linear up to 1 μM 
•NO (prepared from DETA/NO), at a sensitivity of 679 ± 55 pA/μM •NO (n=55) 

for microsensors with six layers of Nafion®. Sensitivity loss was not 

statistically significant (p>0.05) from that obtained with microsensors modified 

with one layer of Nafion®. Detection limit was calculated to be 6 ± 3 nM •NO 

(n=10), while the response time, defined as the time required to obtain 50 % of 

maximal current change (T50%), was 0.38 ± 0.04 s (n=8). These properties are 

summarized in Table 3.1.  
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3.3 - Selectivity Ratios 
 

The use of Nafion® affords a gain of selectivity towards •NO, but a 

major drawback of increasing Nafion® layers is that improving selectivity with 

additional coatings is usually at the expense of sensitivity, as observed for 

microsensors coated with one or six layers (Table 3.1) (Friedemann et al. 

1996). Microsensors were coated with one and six layers of Nafion® and 

studied for selectivity against major interferents, as presented in Table 3.2. A 

Table 3.1: Calibration parameters for NiTMHPP- and 1x or 6x Nafion®-modified 
microsensors. 
 

 1x Nafion® n 6x Nafion® n 

Sensitivity (pA/µM •NO) 855 ± 56 8 679 ± 55 pA/µM •NO 55 

Detection Limit (nM •NO) - - 6 ± 3 10 

Response Time (s) - - 0.38 ± 0.04 8 

 
Values are mean ± SEM, n as indicated.  

Table 3.2: Selectivity ratios for 1x and 6x Nafion®-coated microsensors. Numbers indicate the 
concentration of interferent (in µM) necessary to reach the same oxidation current as 1µM 
•NO. 
 

  Selectivity Ratios 

Categories Interferent 1 x Nafion® n 6 x Nafion® n 

NO2
- 858:1 ± 88 10 2177:1 ± 319 ** 11 Endogenous 

molecules 
Ascorbic acid 2400:1 ± 354 10 2833:1 ± 683 11 

 Dopamine 32:1 ± 3 9 43:1 ± 4 * 11 

 5-HT - - 140:1 ± 19 10 

GluR modulators Glu -  >10000 6 

NMDA - - >10000 6 

AMPA - - >10000 6 

AP5 - - >10000 6 

 

NBQX - - >10000 6 

L-arg - - >10000 6 NOS substrate and 
inhibitors 

L-NAME - - >10000 6 

 

Values are mean ± SEM, n as indicated. *, p<0.05; **, p<0.01.  
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statistically significant 2.5-fold and 1.3-fold increase in selectivity was 

observed for both nitrite and dopamine, respectively, for microsensors coated 

with six layers of Nafion®. Selectivity against ascorbic acid also increased, 

although not significantly. On basis of these experimental results 

demonstrating a good compromise between gain of selectivity and sensitivity, 

microsensors used in hippocampal •NO monitoring were fabricated with six 

layers of Nafion®.  

 

 3.4 - Measuring Nitric Oxide in Hippocampal Slices 
 

3.4.1 - Glutamate vs NMDA 
 

•NO production dynamics in the CA1 region of hippocampal slices was 

investigated using distinct glutamatergic agonists (Figure 3.1). Slices were 
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Figure 3.1: Glutamate- vs NMDA-mediated •NO production. A) Representative amperometric 
recordings of endogenously-produced •NO after perfusion of 5 mM glutamate (upper trace) or 
50 μM NMDA (lower trace) for two minutes. B) Statistically significant increase in •NO 
production elicited by 100-times less concentrated NMDA solutions when compared to 
glutamate (p<0.05). Values obtained were 15.7 ± 2.5 nC for glutamate (n=8) and 43.8 ± 6.1 nC 
for NMDA (n=20). *, p<0.05. 
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perfusion-stimulated with 5 mM Glutamate or 50 µM NMDA for two minutes, 

and changes in •NO oxidation current were monitored. Typical signals 

obtained at +0.9 V reached a maximum oxidation current within minutes and 

decreased to baseline values typically after 30 minutes, thus reflecting a 

transient production of •NO (Figure 3.1, A). Comparative analysis 

demonstrated that NMDA induces a significantly higher •NO oxidation signal in 

hippocampal slices when compared to those obtained at a 100-fold higher 

concentration of glutamate (Figure 3.1, B). Mean results presented in Figure 

3.1, B suggest that NMDA is 250 times more potent than glutamate in eliciting 

a similar change in •NO oxidation current, probably due to the absence of an 

efficient removal mechanism (Gadea et al. 2001).  

 

3.4.2 - NMDA Receptor-Mediated Nitric Oxide Production 
 

Despite the good analytical properties of our microsensors towards 
•NO detection (Ledo et al. 2002; Ferreira et al. 2005), a number of control 

experiments were also devised to verify that the recorded signals were a result 

of •NO oxidation and not of another endogenous molecule. These included 

electrochemical and pharmacological controls, as detailed below. 

The first control addressed the activation of NMDAR. When perfusing 

slices with 50 µM NMDA in the presence of 50 µM AP5, a competitive 

NMDAR, inhibitor, •NO oxidation currents were abolished (Figure 3.2, A). AP5 

removal followed by a second stimulation elicited a marked •NO oxidation 

current, demonstrating that NMDAR activation was the pathway by which NO 

was being produced. Polarizing microsensors at +0.55 V was shown to 

prevent the detection of •NO (Chapter 2) while still enabling the oxidation of 

interferents with lower oxidation potentials. As expected, no signal current was 

observed in slices at +0.55 V after 50 µM NMDA stimulation (Figure 3.2, B),  
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Figure 3.2: Electrochemical and pharmacological controls for 50 µM NMDA-induced production 
of •NO. A) NMDA-induced signal abolishment and recovery (53.3 nC) in the presence and 
absence of 50 µM AP5, respectively. B) Polarizing microsensors at +0.55 V results in loss of 
oxidation current, previously detected at +0.9 V. C) Methylene blue inhibits NMDA-induced •NO 
production. Stimulation of hippocampal slices with 50 M NMDA after a 15 minutes incubation 
with 100 µM MB (NMDA+MB) leads to less intense signals when compared to control slices 
(NMDA). Values were 61. 4 nC (NMDA, n=5) and 30.2 nC (NMDA+MB, n=4). *, p<0.05.  
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 confirming that the previous signals were not due to the oxidation of 

endogenously-produced interferents but instead •NO. Additionally, a 

pharmacological strategy was devised to inhibit nNOS with MB, an heme-

oxidant agent known to inhibit nNOS (Griscavage et al. 1994) and used in 

humans to counteract sepsis-related widespread vasodilation and hypotension 

(Kwok et al. 2006). Also, this inhibitor was shown to decrease hippocampal 

nNOS activity in vivo (Volke et al. 1999). Incubation of slices with 100 μM MB 

for 15 minutes resulted in a 50.8% decrease  in •NO production following 50 

μM NMDA stimulation (n=4) (Figure 3.2, C), when compared to control slices 

not incubated with MB, further confirming its endogenous production. 

NMDA stimulation consisted in perfusing hippocampal slices for two 

minutes at the required concentration, using aCSF as a carrier. This was 

modified to address the role of extracellular Ca2+ on recorded signals, as 

nNOS activity is critically dependent on intracellular Ca2+ concentration 

increases. Hence, hippocampal slices were perfused with 50 μM NMDA in the 

presence and absence of Ca2+. As illustrated in Figure 3.3, the signal evoked 

by 50 μM NMDA obtained with one slice perfused with aCSF containing 1.5 

mM Ca2+ (left) was abolished upon perfusion with aCSF without Ca2+ (right). 
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Figure 3.3: Extracellular Ca2+ is necessary for •NO production in hippocampal slices. The 
amperometric •NO signal recorded after 50 μM NMDA stimulation in the presence of Ca2+ (left) is 
abolished after Ca2+ removal from the perfusion media (right). 
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This result demonstrated that measured currents were dependent on 

extracellular Ca2+, further supporting the detection of endogenously-produced 
•NO in hippocampal slices following NMDA stimulation.  

 

 To further investigate •NO production elicited by NMDAR we 

investigated whether hippocampal slices could sustain repeated stimulations 

with NMDA. Results obtained by perfusing hippocampal slices twice with 50 

μM NMDA are depicted in Figure 3.4 (filled bars). A 92.2 % drop in mean 

signal charge values between first (1st) and second (2nd) stimulation was 

observed. As this decrease could result from excessive NMDAR activation 

leading to a high level of endogenous •NO, the same experiment was repeated 
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Figure 3.4: •NO production upon two consecutive stimulations with NMDA. •NO signal charge 
significantly decreases after a second perfusion of hippocampal slices with 10 μM NMDA 
(empty bars; from 14.9 ± 2.9, n=15 to 5.6 ± 0.9, n=15) or 50 μM NMDA (filled bars; from 44.7 
± 6.0, n=22 to 3.4 ± 2.2, n=4). A concentration-dependent increase in •NO signal charge is 
observed after stimulation of slices for the first time with 10 or 50 μM NMDA (14.9 ± 2.9 vs 
41.7 ± 4.8, respectively), but not upon a second stimulation. **, p<0.01 
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with 10 µM NMDA. Under these conditions, a significant smaller •NO 

production was observed after the first stimulation, and this was accompanied  

by a 61.9 % drop in signal charge between first and second NMDA 

stimulations (Figure 3.4, empty bars). Interestingly, second signals were 

similar to the ones obtained with 50 μM NMDA, suggesting that •NO 

production in slices was only dependent on NMDA concentration for the first 

stimulation. Accordingly, statistically significant differences occurred between 

first and second stimulations with the same NMDA concentration and between 

first stimulations with either 10 or 50 μM NMDA, but not between second ones. 

Hence, an increase in endogenous •NO concentration did not account for 

signal loss after the second stimulation, suggesting that other mechanisms 

were responsible for its reduced production.  

When perfusing slices five consecutive times with 10 µM NMDA it was 

observed that, following the abovementioned drop from the first to the second 

stimulus, current remain approximately constant for the remaining stimulations 

(Figure 3.5). To ensure that signals were due to •NO oxidation an 

electrochemical control was performed by decreasing the oxidation potential to 

+0.55 V after the third stimulation. As expected a significant signal loss was 

observed (fourth stimulation), which was subsequently recovered by re-setting 

the oxidation potential to +0.9 V (fifth stimulation). Although difficult to 

reproduce, as a complete loss in •NO production was sometimes observed 

after third or fourth perfusion with NMDA, the ability to sustain up to five 

consecutive stimulations suggested that slices retained the ability to produce 
•NO via NMDAR stimulation, thus imparting biological relevance to the 

investigations using a single or double stimulation protocol used along the 

work. 

To further investigate how slices respond to NMDA stimulations in 

terms of •NO production we addressed the question of whether increasing the 
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Figure 3.5: Representative amperograms of five consecutive stimulations of hippocampal slices with 10 µM NMDA. A marked decrease 
in •NO  oxidation signal is observed between the first and second stimulations. Oxidation at +0.55 V resulted in signal loss, recovered 
after repolarization at +0.9 V. Signal charge values obtained for signals, from left to right: 49.6, 6.3, 4.9, 0.1 (at +0.55 V) and 1.4 nC. 
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 time period between stimulations could prevent the observed decay in •NO 

signals, as a result of more pronounced tissue recovery under continuous 

aCSF flow. Slices were stimulated with 10 μM NMDA for two minutes and 

allowed to rest in the recording chamber for 1 hour, after which a second 

stimulation with NMDA was performed. As illustrated in Figure 3.6, 

amperometric signals were similar to the ones previously obtained, and a 75.9 

% decay in •NO signal charge was observed between 1st and 2nd stimulations, 

indicating that, after the first stimulation, •NO production could not be 

maintained even after prolonged recovery periods.  
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Figure 3.6: Decay of •NO signal amplitude for long periods of recovery between NMDA 
stimulations. Slices were stimulated with 10 µM NMDA for two minutes and allowed to recover 
for one hour before the second stimulation. A second NMDA stimulation did not elicit the same 
production of endogenous •NO, with signal charge decreasing 75.9 % from 16.2 nC to 3.9 nC. 

 

To address the issue of whether •NO production was occurring at 

maximum rate we extended the stimulation period beyond two minutes to 

compare brief and continuous stimulations. Figure 3.7 details the observed 

results. When compared to the first two-minute stimulation (Figure 3.7, A), a 

second stimulation by continuously perfusing slices with 10 μM NMDA 
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resulted in a more robust signal that decayed linearly over time. A 

pharmacological control experiment with the NMDAR inhibitor AP5 was 

performed under conditions of continuous stimulation. The use of 20 μM AP5 

on-top of NMDA-induced signal resulted in a faster decay rate (Figure 3.7 B, 

right), suggesting that NMDAR where still active during current recovery and 

that a mechanism other than NMDAR inactivation was responsible for 

complete •NO production and decay. The data afforded by AP5  was also used 

in conjunction with that obtained by differential pulse amperometry (DPA) 

(Figure 3.7 B, left). This amperometric technique uses several potential steps 

to eliminate the current due to oxidation of undesired molecules, thus allowing 

increased selectivity towards the analyte. Experiments were conducted using 

a three-step protocol, by applying +0.5 V for 1.6 s, +0.7 V for 0.37 s and +0.9 

V for 0.03 s, with recordings at every 2 seconds. The signal detected was a 

result of current subtraction between +0.7 and +0.9 V and therefore only due 

to •NO oxidation, since at +0.7 V the most frequent contaminants in slices 

were already oxidized. As depicted (Figure 3.7 B, left), after continuous 

perfusion with 10 μM NMDA a robust signal was observed, which decayed to 

baseline levels when 100 μM AP5 was perfused on-top, suggesting that 

NMDAR were still active and mediating nNOS activity. A statistically significant 

3-fold increase in signal charge was observed after continuous stimulation of 

slices with 10 μM NMDA (Figure 3.7, C), indicating that previous two minutes 

stimulations did not induce •NO production at maximal capacity. 

 

 3.4.3 - KCl 
 

To extent the results obtained with NMDA and AMPA stimulations we 

investigated the endogenous •NO production following KCl perfusion. KCl 

induces a strong depolarization of postsynaptic cells and consequently a large  
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Figure 3.7: Transient vs continuous stimulation of hippocampal slices with NMDA. (A) Perfusion of slices 
with 10 μM NMDA for two minutes results in nNOS activation and •NO production. However, a continuous 
stimulation results in a stronger oxidation signal. (B) When stimulating slices continuously with 10 μM 
NMDA, on-top perfusion with AP5 (100 μM, left and 20 μM, right) induces an increase in current decay 
rate. Result were obtained using DPA (left) and amperometry (right). C) Signal charge values obtained 
after brief stimulations with 10 μM NMDA (14.9 ± 2.9, n=15) are significantly different from the ones 
observed after continuous perfusion (50.6 ± 8.7, n=6). DPA settings as in text. Dark bars represent NMDA 
perfusion, while grey correspond to AP5. **, p<0.01. 
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intracellular Ca2+ increase, being largely used to non-specifically stimulate  

excitable cells. As with NMDA, slices were perfused for two minutes with 100 

mM KCl in aCSF without Mg2+ while recording •NO oxidation currents at +0.9 

V. As illustrated in Figure 3.8 (left panel), and as observed after NMDA 

stimulations, •NO production was pronounced after the first perfusion with KCl 

(Figure 3.8, A) but decayed markedly (85.5 %) upon a second one (Figure 3.8, 

B and right panel). As our reference electrode was an Ag/AgCl pellet, high KCl 

solutions could interfere with the electrochemical cell, leading to a false 

positive result. However, placing the microsensor in the recording chamber in 

the absence of slice resulted in signal loss in the presence of KCl (Figure 3.8, 

C), thus indicating that the observed current was a consequence of •NO 

produced endogenously. Surprisingly, KCl perfusion also caused a change in 

signal profile as compared with previously used agonists. Following an initial  
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Figure 3.8: KCl perfusion induces depolarization and •NO production in hippocampal slices with 
distinct signal profiles. Left) •NO oxidation signal after a first KCl perfusion exhibited a two-
phase signal, characterized by a sharp increase but slow decaying profile, with an apparent 
plateau in between (A). A subsequent stimulation resulted in a sharp increasing and sharp 
decaying profile, with loss of plateau (B). KCl did not interfere with the electrochemical cell, as 
signals were lost when perfusing the microsensor in the absence of slice (C). Right) As 
observed for NMDA, KCl-induced •NO production dropped between first (28.9 ± 4.1, n=4) and 
second (4.2 ± 0.9, n=4) stimulations. ** , p<0.01. 
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sharp current rise a plateau phase became apparent, after which a slow decay 

phase was observed (Figure 3.8, A). Furthermore, a second •NO oxidation 

signal was significantly different, and displayed an almost symmetric profile 

due to a similar increase and decaying phases (Figure 3.8, B). This suggests 

the occurrence of winding routes for •NO production and decay. In this regard, 

a similar profile was observed for glutamate (Figure 3.1), and further 

suggested the existence of an endogenous modulatory mechanism regulating 
•NO production.  

 

 

3.4.4 - L-arginine and L-NAME 
 

 L-NAME is a derivative of the NOS substrate L-arg that inhibits NOS 

activity. Both the substrate and the derivative inhibitor are convenient tools to 

investigate the production of •NO from NOS. After insertion of microsensors in 

the CA1 region, hippocampal slices were continuously perfused with 500 μM 

L-arg (Figure 3.9). The expected increase in •NO oxidation current reached a 

plateau shortly after L-arg perfusion (Figure 3.9, I), and simultaneous 

perfusion with 500 μM L-NAME induced an approximately 50 % drop in signal 

current (Figure 3.9, II). L-arg was then removed from aCSF while keeping L-

NAME perfusion. This induced an additional drop of •NO oxidation current to 

baseline levels (Figure 3.9, III) that remained unchanged when aCSF 

supplemented with L-NAME was replaced by normal aCSF (Figure 3.9, IV). 

Although inducing considerable smaller signals when compared to those 

obtained with glutamate receptors agonists, L-arg perfusion led to •NO 

production after nNOS activation, in turn inhibited by L-NAME. This set of 

experiments represented a demonstration of the selectivity of •NO 

measurements and the applicability of the methodology to study •NO 

concentration dynamics in slices. 
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Figure 3.9: Substrate-induced •NO production in hippocampal slices. Perfusion of slices with 
500 μM L-arg leads to •NO production (I), which decreases with the co-administration of 500 
μM of the competitive substrate inhibitor L-NAME (II). Removal of L-arg while keeping L-NAME 
induces a slow but continuous decrease in signal current to baseline levels (III). Removal of L-
NAME and perfusion with normal aCSF had no effect on baseline current values (IV). 
 

 

3.5 - Discussion and Conclusions 
 

3.5.1 - Microsensors 
 

A recent work by Hrbac and co-workers address the attempt to lower 

the detection limit of porphyrin microsensors while keeping selectivity towards 
•NO (Hrbac et al. 2007). Interest in improving this analytical tool arises as this 

is a suitable methodology to measure the endogenous production of •NO in 

different biological systems (Taha 2003). The fabrication of NiTMHPP-based 

microsensors and the subsequent evaluation of their analytical properties 

allowed the use of this technology to follow •NO dynamics in hippocampal 

slices. Microsensors were initially screened by FCV to exclude those 
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exhibiting resistive characteristics, and therefore considered inadequate for 

hippocampal experiments. This led us to identify and exclude bad 

microsensors, a procedure that clearly highlighted  the advantage of using this  

strategy to avoid the use of malfunctioning sensors.  

The electroanalytical properties of microsensors supported their use in 

the real-time measurement of •NO. In fact, as shown in Tables 3.1, 3.2 and 3.3 

(see below) and as reviewed by others for a great number of porphyrinic as 

well as other polymer-modified •NO sensors (Ciszewski et al. 2003), they 

exhibited (1) high selectivity towards •NO; (2) elevated selectivity against 

major endogenous interferents (Stamford et al. 1992), resulting from the 

choice of a six layers of Nafion® coating; (3) high sensitivity and low detection 

limit; and finally (4) reduced dimensions, affording their use in neuronal tissue 

sections with minimal physical damage (Stamford et al. 1992). These and 

other features are summarized in Table 3.3 and agree with reports where 

NiTMHPP and Nafion® were employed to modify the active surface of 

 
Table 3.3: Comparison of microsensors fabricated in our lab and literature reports. 

 

 
Malinski 

and Taha 
(1992)1 

Friedemann et al. 
(1996)2 Lab made  Hrbac et al 

(2007)3 

NiTMHPP 0.5 mM 0.05 mM 0.5 mM  0.4 mM 

Nafion 
Layers 1x 1x, 85 ºC 6x, 200 ºC 1x, 85 ºC 6x, 85 ºC 1x, 45 ºC 

Detection 
Limit (nM) 10 - 76 ± 12 - 5.7 ± 3.1 2-3 

Response 
Time (ms) < 10 - 350 ± 24 - 380 ± 40 - 

Dopamine 3:1 1.3:1 4:1 ± 1 32:1 ± 3 43:1 ± 4 550:1 

Ascorbic 
acid - 139:1 986:1 ± 13 2400:1 ± 

354 2833:1 ± 683 18000:1 

Nitrite 20:1 43:1 181:1 ± 28 858:1 ± 88 2177:1 ± 319 600:1 

       
 
1: (Malinski et al. 1992). Selectivity values are estimates from text. 2: (Friedemann et al. 1996). 
Selectivity for 1x Nafion® estimated from text; 6x Nafion® as reported by authors. 3: (Hrbac et al. 
2007). 
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microsensors, particularly those presented by Malinski and Taha (Malinski et 

al. 1992) for NiTMHPP modified with 1 layer of Nafion® and Friedmann et al. 

for NiTMHPP with one and six layers of Nafion® (Friedemann et al. 1996).  

Differences can be partially explained by distinct surface modification 

strategies. Friedman and co-workers used a temperature of 200 °C to heat dry 

a single Nafion®-layered microsensor and suggest that this can increase 

selectivity (Friedemann et al. 1996), an observation supported by others 

(Brown et al. 2003). In turn, we obtained a Nafion® film by drying at a 

temperature of 80 °C, a fact that could account for the reduced performance in 

terms of selectivity. However, the concentration of NiTMHPP solution used to 

modify the active carbon surface seems to be a key aspect, as Hrbac and 

colleagues demonstrated recently that analytical characteristics are dependent 

on NiTMHPP monomer concentration (Hrbac et al. 2007). In agreement to 

this, the fact that we used a 10 times more concentrated NiTMHPP solution to 

coat microsensors when compared to that used by Friedman et al., with a 

considerable gain in selectivity, suggests this to be a critical aspect in 

determining microsensors analytical properties. Still, an additional gain in 

selectivity was observed by Hrbac et al. when going from 0.5 mM to 0.4 mM 

NiTMHPP solutions, suggesting that film formation could be favored at a 

slightly lower monomer concentration (Hrbac et al. 2007). Finally, different 

manufacturing procedures like cyclic voltammetry settings, number of voltage 

sweeps and selected reversal potentials may also determine analytical 

properties and explain observed differences. 

 

3.5.2 - Nitric Oxide Production Dynamics 
 

 Microsensors were used to investigate •NO dynamics in the CA1 region 

of hippocampal slices using glutamate as agonist. However, it became clear 

that glutamate stimulations elicited less intense signals, particularly when 
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compared to those following slice perfusion with the non-physiological agonist 

NMDA (Figure 3.1, A). Rapid glutamate clearance from the synaptic cleft is a 

result of specific glutamate transporter expressed in glial cells (Gadea et al. 

2001). Since synaptic glutamate concentration is within milimolar range after 

release of synaptic vesicles, and astrocytes in the CA1 region of hippocampal  

slices are capable of clearing extracellular glutamate within 1 ms after release 

(Diamond 2005), this could account for the fact that, despite the use of higher 

glutamate solutions, •NO oxidation signals were significantly lower than the 

ones elicited by NMDA. Incubation of slices with the nNOS inhibitor MB 

signals resulted in a decrease in signal charge, confirming the NMDA-induced 

production of •NO (Figure 3.2). 

 

 Subsequent studies were set to investigate hippocampal •NO 

production via NMDAR activation. The dependency of nNOS on intracellular 

Ca2+ became apparent after Ca2+ removal from the perfusion media (Figure 

3.3). The distinctive •NO oxidation current observed after stimulation with 50 

μM NMDA with 1.5 mM extracellular Ca2+ was abolished in the absence of the 

latter in aCSF. This clearly highlighted the interplay between nNOS and Ca2+, 

a very effective regulatory mechanism to control the production of •NO 

(Garthwaite et al. 1995; Alderton et al. 2001). A number of different types of 

channels are responsible for intracellular Ca2+ increases, namely voltage-

sensitive Ca2+ channels, store-operated channels, and receptor-operated 

channels such as the NMDAR. Ca2+ can mediate a number of cell death 

pathways and is therefore tightly regulated, being sequestered in organelles, 

particularly mitochondria and the endoplasmic reticulum (ER), or via one of 

numerous Ca2+- binding proteins (Hara et al. 2007). In this regard, a 

consequence of Ca2+ deregulation in excitotoxic events (Sattler et al. 2000; 

Arundine et al. 2003; Weiergraber et al. 2007) is the NMDAR-mediated •NO 

production, as it is implicated in neuronal damage (Dawson et al. 1991). 
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As different agonists elicited different •NO dynamics, the extent at 

which •NO could be produced in hippocampal slices after stimulation with 

NMDA was of obvious relevance. This was investigated by perfusing slices 

with NMDA and allowing •NO oxidation current to develop and return to 

baseline values; once this was achieved, slices were again perfused with 

NMDA at the same concentration. Results obtained after 10 μM or 50 μM 

NMDA displayed in Figure 3.4 demonstrate a close relation between •NO 

oxidation currents and NMDA concentration. Saturation of NMDAR is 

dependent on the conditions by which vesicular glutamate is released, namely 

the number of vesicles that fuse within the presynaptic membrane and the 

amount of glutamate molecules per vesicle (Holmes 1995). Obtained results 

suggest that, for the concentration range under study, receptors within the 

CA1 region could be activated only to a certain extent. They also demonstrate 

that •NO production could not be maintained in slices after the first stimulation, 

regardless of stimulus concentration and amount of •NO produced. A 

dependency on NMDA concentration was only apparent for the first 

stimulation, as a subsequent one elicited •NO signals with similar charge 

values, regardless of agonist concentration. This was further confirmed by 

increasing the number of stimulations. After consecutive challenges of 

hippocampal slices with low NMDA concentration (Figure 3.5), only the first 

signal was shown to be robust: in fact, a pronounced decrease in total signal 

charge was obtained between the first and second stimulations but not 

between subsequent ones, that in turn remained within the same range of 

signal charge. Selectivity studies with microsensors indicate that recorded 

signals were due to •NO oxidation, as lowering the oxidizing potential to values 

below •NO peak oxidation potential abolished signals (Figure 3.5). One 

possible explanation to the decreased •NO production after a first signal could 

be an insufficient recovery time between NMDA stimuli, despite the use of non 

toxic NMDA concentrations (Alano et al. 2002). This hypothesis was 
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addressed by increasing the time between NMDA perfusions to one hour after 

first signal recovery. Representative results, as displayed in Figure 3.6, 

demonstrated that this was not the case. Hippocampal slices nourished and 

perfused with normal aCSF for one hour were still incapable of restoring 

previous •NO production peak levels, as diminished •NO signals were still 

recorded one hour after the first NMDA perfusion under conditions of standard 

glucose, Ca2+ concentration and physiological pH. Hence, insufficient recovery 

after NMDA perfusion was ruled out to explain decreased •NO signals. Hence, 

evidences suggest the activation of regulatory mechanisms within slices that 

critically determine •NO dynamics following activation of NMDAR.  

A relevant issue was whether •NO was being produced at maximal rate 

in hippocampal slices. If this was the case, a reduced •NO production after an 

initial stimulation could be explained, amongst others, by nNOS inhibition 

and/or substrate depletion. This was addressed by perfusing slices 

continuously with NMDA. Results depicted in Figure 3.7 with 10 μM NMDA 

clearly suggest that hippocampal slices do not produce •NO at maximal 

capacity after a brief (two minutes) stimulation with NMDA, as a subsequent 

continuous perfusion resulted in a more pronounced •NO production (as 

observed in A and B). •NO levels were significantly higher when NMDA was 

perfused continuously and notably appeared to decay linearly over time, a 

feature not observed after previous brief stimulations (Figure 3.1 and Figure 

3.7). The same results were obtained by DPA, a different electrochemical 

technique (Figure 3.8), suggesting further that NMDAR were still active. 

Altogether, results indicated that nNOS activity could be modulated in 

hippocampal slices, and suggested a mechanism rather than nNOS inhibition 

or L-arg depletion to explain decreased •NO levels with repeated NMDA 

stimulations. 

NMDAR desensitization could result in a diminished Ca2+ influx and 

reduced nNOS activation in slices (Nakamichi et al. 2005). NMDAR 
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desensitization and nNOS inactivation were further discarded as the 

mechanism(s) responsible for decreased •NO production after a second 

stimulation because AP5, a NMDAR inhibitor, was able to increase •NO decay 

when perfused on-top of •NO signals elicited by continuous NMDA perfusion 

(Figure 3.7). Both NMDAR and nNOS were shown to be active and responsive 

to perfused antagonist by means of distinct electrochemical techniques, 

suggesting that they would not account for the previous decay in •NO 

production. This stimulation protocol also excluded nNOS substrate depletion 

as the reason why second stimulations result in diminished •NO levels: if this 

was the case, continuous NMDA perfusions would not elicit such robust 

signals, as cells would run out of L-arg (Figure 3.7). It could be argued that 

neuronal cells would increase L-arg uptake only during continuous NMDA 

perfusion but not after two-minute stimulations, thus diminishing intracellular L-

arg and •NO production upon a second NMDA perfusion. However, this 

possibility is difficult to accept, as 1 h in between stimulations (Figure 3.6) 

would allow neurons to restore L-arg levels (Cossenza et al. 2000). Cells that 

express eNOS were shown to have an intracellular L-arg available to L-arg-

requiring enzymes that is not freely exchangeable with extracellular L-arg 

(Closs et al. 2000), and this was also reported in the neuronal cell line CAD 

cells (Bae et al. 2005). Neuronal •NO production was shown to depend largely 

on extracellular L-arg on these cells, but their restrict intracellular L-arg pool 

supplies the substrate for •NO production in the absence of extracellular L-arg 

(Bae et al. 2005). Further supporting the notion that substrate depletion is not 

responsible for •NO decayed production, KM values for L-arg calculated in vitro 

for purified NOS were between 1 and 10 μM, one to two orders of magnitude 

below the intracellular concentrations of the amino acid measured in 

macrophages and endothelial cells (100-800 μM) (Forstermann et al. 1994; 

McDonald et al. 1997). L-arg is supplied to neurons by astrocytes (Kharazia et 

al. 1997) and hippocampal neurons in slices would rely on these cells to 



Real-Time Measurements of Nitric Oxide in Hippocampal slices Using Microsensors    107 

 

maintain nNOS-saturating L-arg levels (Grima et al. 1997), possibly after 

NMDAR activation (Cossenza et al. 2006). As a final note, experiments with 

500 μM L-arg demonstrated that nNOS could be activated by its substrate (as 

verified with 500 μM L-NAME) (Figure 3.9) but that L-arg supplementation had 

a small (although detectable) effect on •NO production when compared to 

NMDA or glutamate, as indicated by amplitude of signals (Figure 3.1). 

 
•NO regulates a number of events in neuronal cells that may underlie 

the pattern of stimulation observed. Mitochondria respiratory chain can be 

inhibited by •NO leading to the formation of ROS (Brown et al. 1994; Cleeter et 

al. 1994; Stewart et al. 2002), and nNOS itself can become uncoupled and 

produce O2
•- when L-arg levels are low (Pou et al. 1992). Both events can lead 

to increased levels of ONOO- following the reaction of •NO with O2
•- (Beckman 

et al. 1996), and this could result in the reported decrease in •NO oxidation 

signals. That is, following the first stimulation a more oxidized cellular 

environment, encompassing the production of O2
•-, would prevent •NO from 

diffusing extracellularly and rise to the initially observed concentration. 

Glutamatergic ionotropic receptors can also regulate nNOS activity by means 

of NMDAR, as demonstrated in cerebellar granule cells, being Ca2+ an 

important signal transduction molecule involved in this regulatory process 

(Baader et al. 1996). In this regard, nNOS is constitutively phosphorylated and 

NMDA receptor activation decreases this level of phosphorylation (enhancing 

NOS activity) by a mechanism that is blocked specifically by NMDAR 

antagonists in rat cortical neurons (Rameau et al. 2003). However, protein 

kinase C and Ca2+-dependent enzymes like Ca2+/calmodulin (CaM)-dependent 

protein kinases I an II (CaMKI and CaMKII) can counteract this NMDAR-

mediated nNOS activation by increasing phosphorylation nNOS on several 

serine residues, consequently decreasing •NO production (Nakane et al. 1991; 

Komeima et al. 2000; Song et al. 2004). •NO itself can feedback-regulate 
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NOS, decreasing its activity (Assreuy et al. 1993; Vickroy et al. 1995), and 

downregulate NMDAR activity by means of S-nitrosation of thiol group(s) 

located on the receptor's redox modulatory site (Lipton et al. 1993). •NO-

related species like nitroxyl anion (NO−) also bind to the NR2A subunit of the 

NMDAR to limit excessive Ca2+ influx, in what can be regard as a 

neuroprotective mechanism against excitotoxic insults. (Kim et al. 1999). More 

recently Tiso et al. demonstrated that the C-terminal tail of nNOS exerts 

multifaceted effects on the enzyme’s catalytic activity (Tiso et al. 2007), 

providing new insights into novel mechanisms that regulate nNOS catalysis. 

Therefore, a number of mechanism can account to the observed decrease in 
•NO production.  

 

Continuous NMDA stimulation of hippocampal slices can be 

considered as a model for studying the excitotoxic production of •NO following 

excessive NMDAR activation (Stewart et al. 2002) that leads to oxidative 

stress and cellular degeneration in a number of pathologies (Coyle et al. 

1993). In fact, the elevated •NO oxidation currents recorded suggest that a 

number of cellular pathways can become impaired, particularly mitochondria 

(Brown et al. 1994; Cleeter et al. 1994). Rameau demonstrated that treatment 

of neurons with 5 μM glutamate stimulated CaMKII phosphorylation of nNOS 

at serine 847 (thus decreasing its activity), whereas excitotoxic concentrations 

of glutamate (100-500 μM) induced serine 847 dephosphorylation by protein 

phosphatase 1 (presumably increasing •NO levels) (Rameau et al. 2004). The 

observation that a distinct decay in •NO signals occurred after continuous 

stimulation with NMDA supports the possibility that cellular impairment (but not 

physiological mechanisms) lead to •NO decay to baseline levels. This could be 

assessed by determining ROS formation in hippocampal slices and the extent 

of necrotic or apoptotic cell death following prolonged NMDA stimulations, 

thus providing relevant insights on •NO effects during these events. 
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Subsequent experiments using KCl as a general depolarizing agent in 

hippocampal slices (Youssef et al. 2006) provided an additional tool in 

addressing •NO dynamics. Results obtained after perfusion of 100 mM KCl for 

two minutes were similar to NMDA ones, as a marked drop in •NO oxidation 

currents was observed upon a second stimulation, but signal kinetics were 

clearly distinct (Figure 3.8). The fact that a plateau phase could be identified 

when using KCl (Youssef et al. 2006), and that this profile was lost upon a 

second stimulation, suggests the activation of different cellular pathways by 

KCl. Remarkably, this dynamic could be a result of Ca2+ accumulation by 

mitochondria, due to its ability to sequester and regulate intracellular Ca2+ 

concentration, as suggested by Baron and Thayer (Baron et al. 1997). In this 

report, intracellular free Ca2+ concentration ([Ca2+]i) was monitored by indo-1-

based microfluorimetry in single dorsal root ganglion neurons after 50 mM KCl 

perfusion. [Ca2+]i increased transiently upon depolarization with KCl, but a 

plateau phase was observed during recovery to basal values due to 

mitochondria-mediated [Ca2+]i buffering. Using an inhibitor of mitochondrial 

Na+/Ca2+ exchange the authors demonstrated that Ca2+ accumulates in 

mitochondria during depolarization and is latter released to the cytoplasm 

slowly. This afforded an equilibrium between mitochondrial Ca2+ release and 

Ca2+ extrusion from the cytoplasm, which lasted while mitochondrial Ca2+ was 

not depleted. The kinetics of our KCl-induced •NO amperogram followed a 

similar profile (Figure 3.8), suggesting that mitochondria could be implicated in 

Ca2+ regulation and modulation of •NO production in hippocampal slices. 

Simultaneous recordings of [Ca2+]i changes and •NO production could help 

clarify this issue, and provide relevant clues on the role of mitochondria 

regulation of hippocampal •NO production. 
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In summary, •NO production in hippocampal slices assessed in real-

time by •NO selective microsensors was shown to be transient and dependent 

on a number of factors. While the use of the physiological agonist glutamate 

required the use of elevated concentrations, the efficacy of NMDA perfusions 

in eliciting •NO production reflected the NMDAR-nNOS coupling in 

hippocampus. Consecutive and prolonged NMDA stimulations suggested that 
•NO dynamics is determined by effective regulatory pathways. Additionally, 

agents such KCl can lead to •NO increases in hippocampal slices and provide 

insights on pathways that condition •NO production, owing to the observed 

differences in •NO signal profiles. Last, the prolonged stimulation protocol with 

NMDA might constitute an adequate model to investigate •NO production 

during excitotoxic events, mimicking the overactivation of NMDAR.  
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4.1 - Introduction 
 

In the hippocampus, •NO has been implicated in the pathways leading 

to spatial memory formation and LTP by means of glutamatergic receptors 

activation (Morris et al. 1982; O'Dell et al. 1991; Schuman et al. 1991; Bliss et 

al. 1993). The NMDAR has been in the center of most studies (Garthwaite et 

al. 1995; Christopherson et al. 1999; Rameau et al. 2003), due to its 

permeability to Ca2+ and its role in •NO production (Sattler et al. 1999). 

However, it has been claimed that glutamate-dependent •NO production and 

ensued cellular events can be mediated by pathways other than NMDAR 

activation, while still requiring a rise in postsynaptic intracellular Ca2+ 

concentrations (Grover et al. 1990). The activation of voltage-gated calcium 

channels (VGCC) is one candidate pathway to explain Ca2+ rise (Grover et al. 

1990; Freir et al. 2003); alternatively, this can occur after AMPAR activation 

(Zamanillo et al. 1999). AMPAR have been implicated in both NMDA-mediated 

neuronal plasticity and LTP (Shi et al. 1999) as well as in NMDA-independent 

events. Concerning the later, a number of studies indicated that Ca2+-

dependent synaptic plasticity could be critically dependent on the entrance 

mechanism of Ca2+ in the postsynaptic cell (e.g. VGCC) and/or on AMPAR 

subunit composition (Chen et al. 1998; Chittajallu et al. 1998; Zamanillo et al. 

1999). GluR2-lacking Ca2+-permeable AMPAR have long been described as 

occurring throughout the hippocampus (Isa et al. 1996; Gryder et al. 2005), 

and in recent years an increasing number of reports have implicated these 

receptors in plasticity events in rat hippocampal slices (Ge et al. 2006; Plant et 

al. 2006). The expression of Ca2+-permeable AMPAR might change 

dramatically in non-physiological circumstances, as demonstrated after global 

ischemia, where pronounced and cell-specific reduction occurred in GluR2 in 
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CA1 vulnerable neurons, strikingly with no significant changes in AMPAR 

subunit GluR1 at CA1, CA3 or dentate gyrus (Opitz et al. 2000). 

Considering the abovementioned controversial scenario on the role of 

NMDAR and AMPAR in connection with •NO-dependent pathways the 

contribution of AMPAR in endogenous •NO production in hippocampal slices 

was investigated. 

 

4.2 - AMPA-Receptor Dependent Nitric Oxide 
Production  
 

 To investigate the effect of AMPAR activation on endogenous •NO 

levels we perfused hippocampal slices with 50 μM AMPA in Mg2+-

supplemented aCSF. As AMPA perfusion was expected to lead to cellular 

depolarization, recorded signals could arise via release of vesicular glutamate 

and activation of pos-synaptic NMDAR. Hence, and despite the fact that 

glutamate clearance from the synaptic cleft is a highly efficient mechanism 

(Diamond 2005), experiments were performed in the presence of the 25 µM 

AP5 to rule out their possible contribution in the recorded signals, as this 

concentration was shown to inhibit NMDAR in slices (Ledo et al. 2005). 

Perfusion of slices with 50 µM AMPA for two minutes in AP5-

supplemented aCSF afforded a marked production of •NO, as depicted in 

Figure 4.1 (panel A, left). As for NMDA, a number of experiments were 

conducted to ensure that recorded signals resulted from •NO production and 

ensuing oxidation at +0.9 V. In order to further determine that NMDAR were 

not contributing to AMPA-elicited •NO signals, slices were perfused with a 

higher concentration of AMPA with either 25 or 100 µM AP5. As depicted in 

Figure 4.1 (panel A, right), no significant differences were observed in •NO 

production when slices were stimulated with 175 µM AMPA in the presence of  
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Figure 4.1: AMPA elicits •NO production in hippocampal slices independently of NMDAR 
activation. A) In the presence of 25 µM AP5, 50 µM AMPA elicits a marked production of •NO 
(left). No differences were observed in AMPA-elicited •NO production by increasing the 
concentration of the NMDAR inhibitor AP5 to 100 µM, even with 175 µM AMPA stimulations 
(right, p>0.05). B) DPA amperogram was after a two minutes stimulation with 10 μM AMPA. 
Signal decay rate remained unchanged with 100 μM AP5 perfusion (↓). Black bar represents 
AMPA perfusion, while grey corresponds to AP5. DPA settings as in text. 



116    Chapter 4 

 

either 25 or 100 µM AP5. Still, AP5 was used in conjunction with DPA to 

further clarify the role of NMDAR on AMPA-induced •NO production. As 

depicted in Figure 4.1 (B), a distinctive signal was obtained after a two-

minutes perfusion of slices with 10 μM AMPA. No change in •NO oxidation 

current elicited by 10 μM AMPA was observed after on-top perfusion of 100 

μM AP5, demonstrating that NMDAR activation does not account for the 

recorded signal, and supporting the notion that AMPAR activation can lead to 

a marked production of •NO in hippocampal slices. 

 

Similarly to what was previously observed for NMDA and AP5, a 

pharmacological control with the selective AMPAR antagonist NBQX 

demonstrated that activation of this subtype of glutamatergic receptors, and 

not another pathway, was responsible for recorded signals with AMPA. Figure 

4.2 highlights the results obtained using a two-stimulation protocol. No 

oxidation current was observed when slices were perfused with 50 μM NBQX 

for 15 minutes and stimulated with 10 μM AMPA for two minutes (Figure 4.2, 

A). However, •NO oxidation signal was again observed after NBQX removal 

and an additional stimulation with AMPA. In order to confirm that signals were 

a result of •NO production and oxidation after AMPAR activation, experiments 

were conducted at +0.55 V. Recordings at low potential resulted in the 

abolishment of oxidation current following slices stimulation with 50 µM AMPA 

(Figure 4.2, B), suggesting that •NO and not other endogenous molecules 

were responsible for recorded signals. A pharmacological control designed to 

inhibit nNOS activity was performed, using MB as an inhibitor (similarly to 

what was previously presented for NMDAR in Chapter 3). Incubation of 

hippocampal slices for 15 minutes with 100 µM MB afforded a 55.7 % 

reduction (n=4) in •NO oxidation current (Figure 4.2, C), confirming its 

production by nNOS as a result of AMPAR activation.  
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Figure 4.2: Control experiments for AMPA-dependent production of •NO. A) Perfusion of slices 
with 10 μM AMPA for two minutes in the presence of 50 μM of the AMPAR antagonist NBQX 
abolishes oxidation current. Antagonist removal restores •NO signals upon a second stimulation 
(25.2 nC). B)  Perfusion of hippocampal slices with 50 µM AMPA for two minutes results in a 
robust •NO signal at +0.9 V, lost when the oxidizing potential is decrease to +0.55 V. C) MB 
inhibits •NO production elicited by AMPA. After incubation of slices with 100 µM MB for 15 
minutes, perfusion of 50 µM AMPA for two minutes (AMPA+MB, 16.9 ±5.9, n=4) results in a 
55.7 % reduction in •NO signal charge when compared to control (AMPA, 38.1 ± 5.7, n= 6). *, 
p<0.05 
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4.3 - Nitric Oxide Production and Stimulus Strength  
 

Following initial reports linking the production of •NO with NMDA-

receptor activation (Garthwaite et al. 1995) a quantitative analysis in terms of 
•NO concentration dynamics along the trisynaptic loop in hippocampus has 

only recently been achieved (Ledo et al. 2005). Here, and in order to compare 

with AMPAR-derived •NO production, we established a quantitative 

relationship between NMDA stimulus strength and endogenous •NO profiles 

measured in a selective and real-time fashion by means of microsensors 

inserted in the CA1 region of hippocampal slices. Results obtained after slice 

perfusion with 5, 10, 25, 50, 100 and 175 μM NMDA showed a concentration-

dependent production of •NO, that reached a plateau phase at 50 μM NMDA 

(Figure 4.3, closed circles). •NO peak concentrations (Peak [•NO], Figure 4.2, 

B) remained in the nM range and reached a maximum of 150 nM •NO (Figure 

4.3, closed circles). Signal charge values obtained for individual NMDA 

concentrations were also calculated and are displayed in Table 4.1. The half 

maximal effective concentration (EC50) value for NMDA stimulation was 

calculated to be 17.66 μM (R2=0.999) in our slice model, following Boltzmann 

sigmoidal fitting of values presented in Table 4.1 and Figure 4.3 (closed 

circles). 

In order to further study •NO production via AMPAR, hippocampal 

slices were stimulated with increasing concentrations of AMPA. This 

production was evident after 10, 50 and 175 µM AMPA perfusion, as 

previously mentioned, and even when slices were stimulated with 

concentrations as low as 5 µM AMPA (Figure 4.3, open circles). As presented 

in Table 4.1 and Figure 4.3, AMPA stimulation reached a plateau for  
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 concentrations higher than 50 μM, with an EC50 value of 23.12μM (R2=0.977) 

after Boltzmann sigmoidal fit of data.  

 

Contrary to what was observed with NMDA, 5 and 10 µM AMPA 

elicited a similar extracellular •NO increase. Interestingly, not only the EC50 

calculated for AMPA was higher than the one obtained for NMDA, but also a 

lower •NO peak concentration was obtained with AMPA when compared to the 

same concentration of NMDA (Figure 4.3). •NO increase in the extracellular 

medium is also a distinctive aspect between NMDA- and AMPA-dependent 
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Figure 4.3: Dose-response curve for NMDA- and AMPA-induced •NO production. Slices were 
perfused with NMDA (●) or AMPA (○) at indicated concentrations for two minutes. •NO 
concentration was calculated as indicated in Figure 4.1 and Table 4.1. •NO production reaches 
a plateau with either NMDA or AMPA with EC50 values of 17.66 µM and 23.12 µM after 
Boltzmann Sigmoidal fitting, respectively. 
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•NO production. When calculating the time necessary to reach maximum •NO 

oxidation current after signal onset (TRise, as presented in Figure 2.14) for both 

AMPA and NMDA (above 25 μM), it became evident that AMPA-dependent 
•NO production was 1.5-2.5 slower when compared with that dependent on 

NMDA (Table 4.1). This suggests that •NO production after AMPAR activation 

is slower and less effective, suggesting distinct contribution and involvement 

of these receptors in •NO production. 

 

4.4 - Selective Inhibition of Glutamate Receptors 
 

The activation of NMDA and AMPA receptors by the physiological 

agonist glutamate is an interrelated process and •NO plays a regulatory role in 

the pathways downstream the activation of these glutamate ionotropic 

receptors (Rameau et al. 2007; Sossa et al. 2007). We therefore investigated 
 
Table 4.1: Signal charge, TRise and Peak [•NO] values obtained after hippocampal slices 
stimulation with NMDA and AMPA. 
 

Agonist Concentration 
(μM) 

Signal Charge 
(nC, mean ± SEM) 

TRise  
(s, mean ± SEM) 

Peak [•NO] (nM) n 

NMDA      
 5 5.7 ± 1.2 257.3 ± 30.1 15.8 ± 2.8 8 
 10 13.7 ± 1.9 279.4 ± 17.5 42.5 ± 6.2 19 
 25 33.8 ± 6.1 225.6 ± 12.3 106.4 ± 23.3 10 
 50 44.8 ± 6.0 252.4 ± 7.6 126.2 ± 16.9 22 
 100 48.2 ± 6.3 211.8 ± 14.5 133.3 ± 21.5 9 
 175 48.9 ± 5.1 193.8 ± 13.0 124.1 ± 12.1 7 

AMPA      
 5 5.1 ± 1.1 305.1 ± 38.3 16.6 ± 2.4 7 
 10 4.0 ± 1.1 269.6 ± 34.6 12.3 ± 3.3 ** 6 
 25 19.7 ± 4.8 320.1 ± 44.6 * 43.3 ± 8.7 ** 5 
 50 33.1 ± 4.4 438.0 ± 43.6 ** 53.4 ± 9.2 ** 9 
 100 29.4 ± 5.9 309.2 ± 40.3 ** 64.6 ± 15.8 ** 5 
 175 35.9 ± 4.7 446.1 ± 39.8 ** 73.1 ± 14.6 ** 5 

 
AMPA TRise  and Peak [•NO] values significantly different at *, p<0.05 and **, p<0.01 when 
compared with corresponding NMDA concentrations. 
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if AMPA-dependent •NO production could be observed in the presence of  

glutamate by selectively inhibiting glutamate receptors, as a mean of 

determining the role of NMDAR and AMPAR on •NO production following 

glutamate stimulation. As depicted in Figure 4.4, hippocampal slices were 

perfused for 15 minutes with aCSF supplemented with 25 μM AP5 (an inhibitor 

of NMDAR), 25 μM NBQX (an inhibitor of AMPA/Kainate receptors) and a 

combination of both. 5 mM glutamate prepared in the perfusion media was 

applied for two minutes, and signals recorded as previously. As expected, 

glutamate induced the production of •NO, with an average •NO peak 

concentration of 69.5 ± 7.3 nM (n=4) (Figure 4.4, A and Glu). Repeating the 

stimulation in the presence of AP5 resulted in a decrease in peak 

concentration to 48.6 ± 3.0 nM (n=4), demonstrating a contribution of NMDAR 

to glutamate-induced •NO production, as expected (Figure 4.4, B and 

Glu+AP5). Interestingly, when an identical stimulation was conducted in the 

presence of 25 μM AP5 and 25 μM NBQX signals dropped even further, 

reaching 22.1 ± 0.9 nM •NO (n=3) (Figure 4.4, C and Glu+AP5+NBQX). 

Despite the absence of a complete inhibition, this suggests that AMPAR were 

activated by glutamate and induced NOS activation during NMDAR inhibition 

(i.e. in the presence of AP5). Therefore, we next tried to determine the 

mechanism responsible for this effect, as presented in the following sections.   

 

4.5 - AMPA Receptors and Extracellular Calcium 
 

Considering that a rise in cytosolic Ca2+ levels is essential for nNOS 

activation and that AMPAR are largely Ca2+ impermeable, we sought to 

determine the origin of Ca2+ in AMPA-mediated •NO production. Hippocampal 

slices were perfused for 5 minutes with aCSF without Ca2+ and subsequently 

stimulated with AMPA for two minutes. As shown in Figure 4.5 (right), Ca2+  
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 removal from aCSF prevented •NO production, as no signal was observed  

after 50 μM AMPA perfusion, and strongly suggested that •NO production was 

critically dependent on extracellular Ca2+ in our model. Accordingly, slices 

stimulated subsequently with 50 μM AMPA for two minutes in aCSF  
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Figure 4.4: AMPA and NMDA receptors contribution to •NO oxidation signals following stimulation 
with glutamate. A / Glu) Slices stimulated with 5 mM glutamate for two minutes (69.5 ± 7.3 nM, 
n=4). B / Glu+AP5) Stimulation in the presence of AP5 (25 µM) results in a decrease in peak •NO 
concentration to 48.6 ± 3.0 nM (n=4, * p<0.05). C / Glu+AP5+NBQX) The AMPA inhibitor NBQX 
(25 µM) induces an additional drop in endogenous •NO levels to 22.1 ± 0.9 nM •NO (n=3, ** 
p<0.01). 
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supplemented with 1.5 mM Ca2+ showed a small  but evident production of 
•NO (Figure 4.5, left). This observation led us to investigate possible pathways 

of Ca2+ entry that could be activated by AMPA.  

 

4.6 - Calcium-Permeable AMPA Receptors 
 

Literature reports recently highlighted the role played by Ca2+-

permeable AMPA receptors in LTP, and we investigated their role, if any, in 

AMPA-mediated •NO production using specific inhibitors. The naturally 

occurring wasp venom toxin philanthotoxin-4,3,3 (PhTx-4,3,3) is an 

uncompetitive antagonist of Ca2+-permeable AMPAR, and was shown to 

inhibit both homomeric GluR1 and GluR3 AMPA receptors (Toth et al. 1998; 

Terashima et al. 2004). Slices were placed in the recording chamber and 

perfused simultaneously with 50 µM AMPA and 10 μM PhTx-4,3,3 for two 

minutes. As depicted in Figure 4.6 (grey line), a statistically significant 20.7 %  
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Figure 4.5: AMPAR-dependent •NO production in hippocampal slices is dependent of 
extracellular Ca2+. Representative traces of •NO oxidation current observed after 50μM 
AMPA stimulation in the presence of Ca2+ (left), abolished when Ca2+ is absent from the 
perfusion media (right).  
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decrease in •NO oxidation currents recorded in the presence of PhTx-4,3,3  

(34.8 ± 0.3 nC, n=3)  was observed when compared to slices stimulated with 

AMPA alone (27.6 ±1.8 nC, n=3) (Figure 4.6, black line). This observation 

supports the expression of Ca2+-permeable AMPAR receptors in adult 

hippocampal CA1 region, and suggests their participation in intracellular Ca2+ 

changes following AMPA stimulation. 

 

4.7 - Discussion 
 

It is widely accepted that •NO plays a relevant role in hippocampal 

physiology, and we investigated the production of •NO in integral hippocampal 

slices mediated by different subtypes of ionotropic glutamate receptors. The 

physical and functional coupling of NMDAR to nNOS is a major and well-
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Figure 4.6: Inhibition of Ca2+-permeable AMPAR results in a decreased •NO production. 
Representative traces of co-administration of 50 µM AMPA and 10 µM PhTx-4,3,3 (grey line), an 
uncompetitive inhibitor of Ca2+-permeable AMPAR, highlighting a decreased •NO production in 
hippocampal slices when compared to those stimulated with AMPA alone (black line, n=3, 
p<0.05). 
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established pathway for •NO production: NMDAR interacts via PSD-95 with 

nNOS, enabling the enzyme to sense Ca2+ and leading to •NO diffusion to the 

extracellular media, which concentration dynamics has been demonstrated by 

the real time measurement of •NO (Ledo et al. 2005). Here, also on basis of 

direct and real-time measurement of endogenous •NO, we report that not only 

NMDA but also AMPA receptors are involved in •NO production in 

hippocampus, and suggest a role for Ca2+-permeable AMPAR in intracellular 

Ca2+ changes following slices stimulation with AMPA.  

 

Considering that AMPAR, despite their low conductance to Ca2+ 

(Hollmann et al. 1991), have been implicated in Ca2+-dependent plasticity 

(Chittajallu et al. 1998; Zamanillo et al. 1999) we investigated if and how 

endogenous •NO could be produced upon stimulation of this type of ionotropic 

glutamate receptor. Slice stimulation with 50 μM AMPA resulted in a marked 

production of •NO (Figure 4.1), confirmed by control experiments with the 

AMPAR inhibitor NBQX, following stimulation of slices below •NO oxidation 

potential, that resulted in complete signal loss, and by inhibiting nNOS activity 

with MB, which in turn led to a 55.7 % decrease in signal intensity (Figure 4.2). 

It is known that AMPA perfusion can cause depolarization of 

presynaptic cells and release of vesicular glutamate (Sattler et al. 2001), 

ultimately leading to activation of synaptic or extrasynaptic NMDAR. This 

event could account for the signal observed after perfusion with AMPA. 

However, the clearance rate of synaptic glutamate was shown to increase 

during development and to be higher in adult cells, with astrocytes in the CA1 

region of hippocampal slices being capable of clearing extracellular glutamate 

within 1 ms, thus preventing any extrasynaptic NMDAR activation (Diamond 

2005). AMPA-induced release of vesicular glutamate was therefore expected 

to be actively removed from the synaptic cleft and this is in agreement with 

previous experiments in this model system presented in Chapter 3, where 
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glutamate was shown to induce •NO production only at concentrations several-

fold higher (mM range) than the ones used (μM range). To further rule out any 

contribution of synaptic NMDAR in AMPA-stimulated slices all experiments 

were conducted in the presence of 25 μM AP5, a concentration shown to 

inhibit NMDAR (Ledo et al. 2005). Furthermore, stimulation of slices with 175 

μM AMPA in the presence of higher AP5 concentration (100 μM AP5) resulted 

in robust signals, without significant changes in •NO signal charge when 

compared to the ones obtained with 175 AMPA in the presence of 25 μM AP5 

(Figure 4.1). DPA experiments were AP5 was perfused on-top of AMPA-

elicited NO oxidation currents further excluded a contribution of NMDAR, as 

signal decay profile remained unchanged (Figure 4.1). 

 

Experiments using AMPA clearly demonstrate that other glutamate 

receptor agonists can induce •NO production. Considering that nNOS is long 

known to be coupled to NMDAR activation (Christopherson et al. 1999; Sattler 

et al. 1999) we addressed the relationship between •NO production and 

ionotropic glutamate receptor activation, particularly NMDAR and AMPAR. As 

observed in Chapter 3, perfusion of hippocampal slices with NMDA led to a 

transient •NO oxidation current, characterized by a rapid rising phase and a 

slow decreasing period with basal current values recovered approximately 30 

minutes after stimulation, as previously reported (Ledo et al. 2005). Perfusion 

of slices with 5 to 175 μM NMDA resulted in a concentration-dependent 

production of •NO (Figure 4.3, closed circles) that reached a plateau for 50 μM 

NMDA, with an EC50 for NMDA of 17.66 μM. This suggests that nNOS activity 

and •NO levels in hippocampus can be modulated within certain boundaries. 

Single synapses located in individual dendritic spines of CA1 pyramidal 

neurons are known  to release variable amounts of glutamate per action 

potential and increase NMDAR activation (Oertner et al. 2002), supporting the 

notion that NOS activity can be modulated as a result of stimulus strength 
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(Figure 4.3, closed circles). Previously, East and Garthwaite found, in a similar 

model system, a concentration-dependent elevation in hippocampal cyclic 

GMP levels upon a two minute stimulation with NMDA, with an EC50 of 

approximately 30 μM for NMDA (East et al. 1991). Our results clearly agree 

with these, but provide key information about the kinetics of production and 

decay of •NO, the cellular messenger linking NMDAR activation and cGMP 

production (Chetkovich et al. 1993; Monfort et al. 2002). The fact that TRise 

values were lower after NMDA stimulation of slices (Table 4.1) agrees with the 

notion that nNOS is physically linked to NMDAR. Furthermore, •NO is 

produced transiently and decays within a prolonged period of time, with peak 

concentrations remaining within nanomolar range. This demonstrated that, 

even at high NMDA concentrations, •NO concentration in slices remained 

below values considered to be toxic (micromolar). The fact that recorded 

signals took prolonged periods of time to drop to baseline levels conflicts with 

reports suggesting rapid inactivation mechanisms for •NO in cerebellum slices 

(Hall et al. 2006) and, moreover, raises intriguing questions as to the effects of 

prolonged elevated •NO levels in hippocampus.  

AMPA-mediated •NO production was observed over the concentration 

range used with NMDA (5 to 175 μM) and a similar plateau was reached at 50 

μM, but lower levels of •NO peak concentration were obtained (Figure 4.3, 

open circles). Signal analysis showed that, for concentrations higher than 25 

μM, not only the TRise following AMPA perfusion increased but it was also 1.5 

to 2.5 times higher in slices stimulated with AMPA than in those treated with 

NMDA (Table 4.1). This observation might be related to differences in nNOS 

activation following receptor activation. In fact, conversely to AMPAR, NMDAR 

where shown to bind nNOS by means of PDZ domains and protein-protein 

interactions with a number of proteins such as PSD-95 (Sattler et al. 1999), 

which would allow a close relationship between NMDAR opening, Ca2+ influx  

and nNOS activation. In which concerns AMPAR, PSD95 and a number of 



128    Chapter 4 

 

other synaptic proteins are also involved in the regulation and control of 

synaptic AMPAR activity in different brain structures (Beique et al. 2003; Bredt 

et al. 2003), including the hippocampus (Stein et al. 2003). Boehm et al 

concluded recently that, in organotypic hippocampal slice cultures, destroying 

or introducing a point mutation on the PDZ-ligand domain of the C-terminal of 

the AMPA receptor subunit GluR1 leads to different effects on synaptic 

plasticity (Boehm et al. 2006). However, although the AMPA GluR2/3 subunits 

also contain a PDZ domain on their C-terminal, the receptor binds proteins 

other than the PSD-95, including PICK1 (protein interacting with C kinase), 

GRIP1 (glutamate receptor interacting protein) and ABP (AMPA binding 

protein) (Dong et al. 1997). As such, activation of this type of glutamate 

receptor is not physically linked to nNOS activation, although its participation 

in the pathways of •NO production was reported years ago in cerebellar slices 

prepared from adult rats (Okada 1992). The lack of interaction of the AMPAR 

with nNOS may imply that the activation of this receptor is more appropriate 

for a fine tuning of •NO signaling. Thus, conversely to activation of NMDAR, 

the activation of AMPAR may lead only to a partial activation of nNOS. The 

Ca2+ required for nNOS activation may enter, for instance, through either Ca2+-

permeable AMPAR or voltage sensitive Ca2+ channels. 

 

In vivo glutamatergic synapses require the combined action of AMPA 

and NMDA receptors to induce membrane depolarization and Ca2+ entry. 

According to the classical mechanism, AMPAR activation allows Na+ entry into 

the post-synaptic cell, which results in membrane depolarization; this event 

subsequently allows for Mg2+ removal from the NMDAR pore, resulting in 

massive Ca2+ entry and activation of nNOS (among other enzymes and/or 

pathways). Therefore, it was pertinent to investigate if stimulating slices with 

the physiological agonist would result in the same pattern of •NO production 

observed with AMPA. Perfusion of 5 mM glutamate for two minutes originated 
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a signal similar to the ones previously observed, although less intense. In this 

regard, •NO peak concentration was almost half the one obtained with NMDA 

(69 vs 126 nM), despite the use of higher glutamate concentrations (5 mM 

glutamate vs 50 µM NMDA). This was considered a consequence of 

glutamate removal from the extracellular media by cells in the slice, that in 

physiological conditions maintain a tight regulation over extracellular 

glutamate activation (Diamond 2005). In the presence of 25 μM of the NMDAR 

inhibitor AP5 a decreased production of •NO was observed when compared to 

control experiments, highlighting the contribution of NMDAR following 

glutamate perfusion (Figure 4.4). Interestingly, when the stimulation was 

conducted with co-administration of 25 μM AP5 and 25 μM NBQX, to inhibit 

both NMDAR and AMPAR, •NO production dropped further, strongly 

suggesting that, even when NMDAR are inhibited, AMPAR activation can elicit 

a marked production of •NO (Figure 4.4). A basal •NO production was always 

observed in the presence of both inhibitors, probably as a result of the 

competitive nature of NMDAR and AMPAR inhibitors and/or incomplete 

inhibition of receptors. Nevertheless, this is in agreement with previous reports 

demonstrating in vivo changes in basal •NO in hippocampus following AMPA 

and NMDA receptors inactivation (Bhardwaj et al. 1997), as well increases of 

cGMP levels in cultured rat cerebellar astroglia after glutamate, AMPA or 

Kainate stimulation (Baltrons et al. 1997). Interestingly, the abovementioned 

AMPA-induced production was shown to be dependent on extracellular Ca2+ 

(Figure 4.5), as no current was observed due to •NO oxidation after slice 

stimulation in Ca2+-free aCSF, suggesting that Ca2+ was originating from the 

extracellular media and not intracellular stores. Following this result, we then 

addressed the issue of what AMPA-mediated pathway was responsible for 

intracellular Ca2+ increases. 

 Several reports recently demonstrated the role of Ca2+-permeable 

AMPAR in ischemic events (Noh et al. 2005) and plasticity (Plant et al. 2006) 
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in hippocampus. We therefore conducted experiments with the uncompetitive 

inhibitor PhTx-4,3,3 in order to clarify the role of these receptors in •NO 

production. Co-administration of 10 μM PhTx-4,3,3 with 50 M AMPA for two 

minutes led to a 20.7 % decrease in AMPA-induced •NO signals (Figure 4.6). 

This striking result might prove relevant in light of events known to be 

mediated by Ca2+-permeable AMPAR (Noh et al. 2005) and by •NO (Jiang et 

al. 2007), such as ischemia. The observation that AMPAR in CA1 and CA3 

pyramidal neurons are mainly hetero-oligomers containing the GluR2 subunit 

(Jonas et al. 1992) could rise questions as to the contribution of GluR2-lacking 

Ca2+-permeable AMPAR towards •NO production after stimulation of slices 

with AMPA, as this was observed with micro sensors inserted in pyramidal cell 

layer of CA1 region. This contradiction might be resolved considering that a 

fraction of hippocampal AMPAR (approximately 25%) could not be labeled 

after immunocytochemical localization of GluR2-containing AMPA receptors 

(Gryder et al. 2005). Furthermore, the small size of our microsensors affords a 

spatial discrimination between regions, but not so much between layers of the 

same region. In fact, we have recently demonstrated that •NO is able to diffuse 

as far as 400 μm away from the point of production, as verified by stimulating 

hippocampal slices with NMDA injected at increasing distances from the 

inserted micro sensor (Ledo et al. 2005). Hence, recorded oxidation currents 

might be attributed to •NO produced by cells located in the vicinity of the 

pyramidal cell layer (Isa et al. 1996). In this regard, Takata et al. have recently 

used the •NO-reactive fluorescent dye diaminorhodamine-4M (DAR-4M) to 

investigate time-dependent •NO production in hippocampal slices upon NMDA, 

and demonstrated an heterogeneous production between subregions of the 

CA1 region, with fluorescence being significantly greater in stratum radiatum 

when compared to stratum oriens or the pyramidal cell layer (Takata et al. 

2005). Thus, the marked decrease in •NO oxidation current detected after 

PhTx incubation cannot rule out the contribution of non-pyramidal cells like 
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interneurons located in other layers, proven by others to be involved in 

excitatory synaptic transmission in the hippocampus (Isa et al. 1996). 

 

In summary, results suggest that ionotropic glutamate receptors 

independently mediate the production of •NO although with distinctive 

features. Signals obtained with AMPA elicited smaller increases in •NO 

extracellular concentration and took longer to reach maximum intensity. This 

probably reflects a less effective coupling between nNOS and membrane 

receptors. The same result was observed with glutamate, with selective 

inhibition of ionotropic receptors with AP5, NBQX or both supporting the role 

of AMPAR in •NO increases. Signals were also showed to be dependent on 

extracellular Ca2+, and Ca2+-permeable AMPAR are suggested to mediate (to 

a certain extent) the increase in intracellular Ca2+. To fully account the 

importance of these results further experiments are required, in order to clarify 

the relevance of this pathway to the overall hippocampus physiological and/or 

pathological events. 
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5.1 - Introduction 
 

In conditions where release and/or uptake of glutamate are altered, 

extracellular glutamate can accumulate and cause a persistent or excessive 

activation of glutamate-gated ion channels, a condition known as excitotoxicity 

(Coyle et al. 1993; Mark et al. 2001). The extracellular levels of glutamate 

have been measured in various in vivo disease models by microdialysis and 

have been shown to reach concentrations of >500 µM following spinal cord 

injury (McAdoo et al. 1999) and be maintained at concentrations of >50 µM for 

1-2 hours during and following ischemic insults (Orwar et al. 1994; Ritz et al. 

2004; Homola et al. 2006). Astrocytes have a fundamental role in the 

regulation of extracellular glutamate levels and in the protection of neurones in 

ways such as through metabolic and antioxidant support (Hertz et al. 2004). 

One of the most important molecules in this respect is GSH (Schulz et al. 

2000), and the trafficking of GSH between astrocytes and neurons is 

particularly important in conditions of oxidative stress (Dringen 2000). 

Previous studies have shown that astrocytes increase GSH release in 

response to increases in reactive nitrogen and oxygen species (RNOS), such 

as •NO (Gegg et al. 2003) and H2O2 (Sagara et al. 1996). This increase in 

GSH release is hypothesized to be a neuroprotective mechanism which 

maintains and/or increases neuronal GSH levels to counteract the damaging 

effects of RNOS. Since oxidative stress is considered to be a key component 

of glutamate toxicity it was the aim of this study to investigate whether high 

concentrations of extracellular glutamate also had an effect on GSH release 

from astrocytes. 

 

 



136    Chapter 5 

 

 

 

5.2 - Glutamate-Induced Increase in Extracellular 
Glutathione  

 

 To assess the effect of extracellular glutamate on GSH release, rat 

cortical astrocytes were treated with glutamate and extracellular GSH was 

measured at various time points by HPLC (Figure 5.1, A). In these initial 

experiments 5 mM glutamate was used. Although this could be thought of as a 

comparatively high glutamate concentration, similar glutamate concentrations 

are thought to be reached in the synaptic cleft following release of a single 

synaptic vesicle (hypothesized to be between 0.24 - 11 mM) (Harris et al. 

1995) and milimolar glutamate has been used before to model glutamate 

excitotoxicity in astrocytes (Chen et al. 2000).  

In the absence of glutamate, extracellular GSH increased to 0.5 ± 0.1 

µM after 120 minutes and 1.2 ± 0.2 μM after 240 minutes (Figure 5.1, A ■). In 

the presence of 5 mM glutamate, the concentration of extracellular GSH was 

significantly higher after 120 and 240 minutes when compared to control 

astrocytes, reaching 1.2 ± 0.1 and 2.3 ± 0.2 μM, respectively (Figure 5.1, A □, 

p<0.05). Similar results were obtained for primary astrocyte cultures on 24-

well dishes (Figure 5.1 B). These results indicate that glutamate, at this 

concentration, induces an increase in extracellular GSH in rat astrocyte 

cultures. However, this increase in extracellular GSH could be the result of 

increased GSH synthesis following incubation with glutamate, increased 

leakage of intracellular contents due to glutamate toxicity or due to inhibition of 

extracellular GSH breakdown. The following sections address these 

hypotheses.  
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Figure 5.1: Glutamate induces an increase in extracellular GSH in astrocyte cultures. Cortical 
astrocytes on 6-well plates (A) and primary astrocytes on 24-well plates (B) were incubated 
with (□, dashed line) or without (■, full line) 5 mM glutamate in Minimal Media and 
extracellular GSH quantified at the indicated time points. Glutamate induced a marked 
increase in extracellular GSH when compared to control astrocytes. Astrocytes were also 
incubated with 5 mM of the GSH synthesis inhibitor BSO for 2 hours prior to and throughout 
experiments with (○, dashed line) or without (●, full line) 5 mM glutamate. No significant 
differences were observed in extracellular GSH between BSO treated and untreated cells. 
(n=4-6 different cell preparations; *, p<0.05 and **, p<0.01 control vs glutamate conditions). 
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 5.2.1 - de novo Synthesis of Glutathione 
 

 Glutamate can be used by cells for GSH synthesis, provided other 

precursors are not limited (Dringen et al. 1998), and constitutive GSH release 

from astrocytes correlates with intracellular GSH concentration (Sagara et al. 

1993). The increase in extracellular GSH observed in the presence of high 

extracellular glutamate could therefore result from increased GSH synthesis. 

To determine whether this was the case, glutamate-induced GSH release was 

measured in the presence and absence of the GSH synthesis inhibitor BSO 

(Figure 5.1). Astrocytes were incubated with or without 5 mM BSO (a 

concentration that has previously been shown to inhibit de novo GSH 

synthesis) (Gegg et al. 2002) in minimal media (MM) for 2 hours prior to and 

throughout experiments. In the absence of glutamate, extracellular GSH levels 

for BSO-treated astrocytes were not significantly different from control 

astrocytes, reaching 0.9 ± 0.1 μM after 240 minutes (Figure 5.1, A ●). When 

glutamate was added to BSO-treated astrocytes a significant increase in 

extracellular GSH was detected, reaching 2.3 ± 0.2 μM after 240 minutes 

(Cont+BSO vs. Glu+BSO, p<0.05) (Figure 5.1, A ○), similar to what was 

observed in glutamate-treated astrocytes in the absence of BSO. These 

results were confirmed for primary astrocyte cultures on 24-well dishes (Figure 

5.1, B). 

 

5.2.2 - Lacate Dehydrogenase Release 
 

In order to determine if the increase in extracellular GSH was due to 

glutamate-induced cellular damage, LDH levels were measured in media and 

cells as an indicator of membrane disruption. As determined for the 240 

minute time point, LDH levels were not significantly different between control 

(1.6 ± 0.3 %,) and glutamate-treated cortical astrocytes (2.0 ± 1.2 %, p>0.05), 
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suggesting that the increase in extracellular GSH was not a consequence of 

leakage of intracellular content. LDH release levels were also not significantly 

different between glutamate-treated and control astrocytes in the presence of 

BSO (2.2 ± 0.3 % vs. 2.4 ± 0.6 %, p>0.05, respectively). 

 

5.2.3 - Extracellular Glutathione and γGT Inhibition 
 

Expressed on the surface of astrocytes, γGT breaks down extracellular 

GSH  by catalyzing  the transfer of  the glutamyl residue of GSH to a number 

of amino acid and dipeptide acceptors (Dringen et al. 1997). Inhibition of γGT 

by acivicin has been shown to result in an increase in extracellular GSH 

(Dringen et al. 1997). To investigate the possibility that glutamate was 

increasing extracellular GSH levels by inhibiting γGT, the effect of acivicin with 

or without glutamate on the release of extracellular GSH by primary rat 

astrocytes was tested (Figure 5.2). 

Treatment with 100 µM acivicin resulted in a slight but not significant 

increase in extracellular GSH in control astrocytes after 240 minutes (1.4 ± 0.1 

µM for Cont vs. 1.7 ± 0.1 µM for Cont+Aciv), suggesting that γGT was not 

particularly active in our cultures to metabolize the GSH released from the 

cells. However, a combination of acivicin and glutamate did result in a 

significant increase in extracellular GSH after 240 minutes compared to 

astrocytes treated with glutamate alone (3.2 ± 0.1 µM for Glu alone vs 3.8 ± 

0.1 µM for Glu+Aciv, p<0.05). As acivicin was used at a concentration which 

has previously been reported to maximally inhibit γGT (Dringen et al. 1997) 

and glutamate increased extracellular GSH even in the presence of acivicin, 

this data suggests that glutamate does not act by inhibiting γGT. 
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Figure 5.2: Effect of acivicin on glutamate-induced GSH release from rat astrocytes. Cortical 
astrocytes were incubated with (Glu) or without (Cont) 5 mM glutamate for 240 minutes and 
extracellular GSH levels were determined. The same experiment was repeated in the presence 
of 100 µM acivicin (Glu+Aciv and Cont+Aciv columns). Acivicin did not have a significant effect 
on extracellular GSH in control astrocytes (Cont vs. Cont+Aciv; 1.4 ± 0.1 µM vs. 1.7 ± 0.1 µM; 
p>0.05) but significantly increased extracellular GSH in the presence of glutamate (Glu vs. 
Glu+Aciv; 3.2 ± 0.1 µM vs 3.8 ± 0.1µM; **, p< 0.01) (n=3 separate wells from the same 
astrocyte preparation).  
 

5.3 - Determination of Cellular Glutathione 
 

In order to further investigate the effects of glutamate and BSO on 

GSH metabolism and GSH release in astrocytes, intra- and extracellular GSH 

was measured before and after glutamate stimulation of primary astrocytes on 

24-well dishes (Table 5.1). Primary astrocyte cultures in wells of 24-well 

dishes were pre-incubated for two hours in MM with or without BSO (5 mM) 

before they were incubated for 4 h in 0.5 ml MM in the presence or absence of 

glutamate (5 mM) and/or BSO (5 mM). In the absence of glutamate, 

approximately 50 % of the initial cellular GSH was found in the medium after 

240 minutes incubation. This amount was increased to approximately 70 %, if  

Cont Glu Cont+Aciv Glu+Aciv
0

1

2

3

4
**

Ex
tr

ac
el

lu
la

r 
G

SH
 ( μ

M
)



Glutamate-Induced Release of Astrocytic Glutathione    141 

 

glutamate was present during the incubation. In contrast, the presence of BSO 

did not alter the extracellular GSH content compared to the respective controls 

without BSO. The differences found for the sum of cellular plus extracellular 

GSH after 240 minutes of incubation were not significant (p>0.05). For all 

conditions shown in Table 5.1, GSSG accounted for less than 5 % of the GSx 

contents in cells or media, indicating that GSH and not GSSG was released 

from astrocytes and that the presence of glutamate did not significantly affect 

the extracellular GSH/GSSG ratio. GSH release rates from cultured astrocytes 

have previously been reported to be between 2 and 4 nmol / mg / h (Gegg et 

al., 2003; Hirrlinger, Schulz and Dringen, 2002; Sagara, Makino and Bannai, 

1996). In the current study, the GSH release rate was calculated to be 2.25 

nmol / mg / h under control conditions and 3.5 nmol / mg / h after addition of 

glutamate. As previously observed, for all conditions the extracellular activity 

of LDH was less than 10 % of initial cellular LDH and the values did not differ 

 
Table 5.1: Intra- and extracellular GSH contents (nmol/well) of primary astrocyte cultures treated 
with glutamate and/or BSO.  
 

 
0 min 
Cells 

240 min 
Cells 

240 min 
Media 

240 min 
Cells + Media 

Cont 1.9 ± 0.2 
1.0 ± 0.1 
(53 ± 5%) 

0.9 ± 0.1 
(45 ± 4%) 

1.9 ± 0.1 
(98 ± 3%) 

Glu 1.9 ± 0.2 
1.1 ± 0.1 
(57 ± 5%) 

1.4 ± 0.1 * 
(70 ± 7%) * 

2.5 ± 0.2 
(127 ± 10%) 

Cont + BSO 1.7 ± 0.2 
0.7 ± 0.0 * 
(41 ± 3%) 

0.9 ± 0.1 
(51 ± 5%) 

1.6 ± 0.1 
(92 ± 7%) 

Glu + BSO 1.7 ± 0.2 
0.8 ± 0.1 
(48 ± 5%) 

1.2 ± 0.1 
(70 ± 7%) * 

2.0 ± 0.2 
(118 ± 11%) 

 
The basal cellular GSH content of untreated primary astrocyte cultures was 23.0 ± 1.8 nmol/mg 
protein. The two hour pre-incubation of these cultures without and with BSO (5 mM) lowered the 
GSH content to 19.7 ± 1.0 nmol/mg and 17.5 ± 0.5 nmol/mg, respectively. Data presented is 
from experiments performed on 4 independently prepared cultures. The significance of 
differences to the data obtained for the control condition (no glutamate, no BSO) are indicated 
as *p<0.05. 
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significantly between the individual groups, further ruling out membrane 

damage as the mechanism by which GSH was being released. 

 

5.4 - Ionotropic Glutamate Receptors and 
Glutathione Release 

 

 To study whether GSH release was dependent on the activation of 

glutamate receptors, agonists to the NMDA or non-NMDA ionotropic 

glutamate receptors were added to astrocyte cultures (50 μM NMDA and 50 

μM AMPA, respectively). No significant effect on GSH release at the 240 

minute time point was observed when compared to control astrocytes, and 

only glutamate had a significant effect on extracellular GSH when compared to 

control cells (p<0.01) (Table 5.2). The same result was obtained with agonists 

for metabotropic glutamate receptors. 

 

5.5 - Glutathione Release From Hippocampal 
Astrocytes  

 

 In order to investigate whether glutamate-induced increase in 

extracellular GSH could be observed in hippocampus, hippocampal astrocytes 

 
Table 5.2: Effect of glutamate receptor agonists on GSH release from astrocytes. 
 

 Ex GSH % control n 

Control 1.4 ± 0.2 100 ± 13.9 6 

5 mM Glutamate 2.8 ± 0.3 ** 208.8 ± 24.1 ** 6 

50 µM NMDA 1.3 ± 0.3 104.1 ± 14.8 3 

50 µM AMPA 1.2 ± 0.2 93.0 ± 7.1 3 
 
% control is the extracellular GSH concentration after 4 hours compared to the control for that 
experiment. n numbers are as indicated. **, p<0.01. 
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at DIV 14 were compared with cortical astrocytes (Figure 5.3). In the absence 

of glutamate, extracellular GSH increased to 1.1 ± 0.2 μM after 240 minutes in 

hippocampal cultures (Figure 5.3, ▲) compared to 1.2 ± 0.1 µM for cortical 

cultures (Figure 5.3, ■). As observed for cortical cultures (Figure 5.3, □), in the 

presence of 5 mM glutamate (Figure 5.3, Δ) the concentration of extracellular 

GSH in hippocampal cultures was significantly increased when compared to 

controls (2.7 ± 0.4 μM vs 1.1 ± 0.2 μM, respectively at 240 minutes; p<0.05). 

This increase in extracellular GSH is of the same order of magnitude to that 

observed in cortical astrocyte cultures. As observed for cortical astrocytes, no 

significant difference could be observed between control and glutamate-

treated hippocampal cells in terms of LDH release (1.7 ± 0.5 % vs 1.5 ± 0.3 %, 

respectively,). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3: Glutamate induces release of GSH in hippocampal and cortical astrocytes. 
Incubation with 5 mM glutamate for 15, 45, 120 and 240 minutes induced a significant increase 
in extracellular GSH in hippocampal astrocytes (Δ) when compared to control without glutamate 
(▲, n=3 separate cell preparations, * p<0.05 control vs glutamate conditions), similar to the 
increase observed for glutamate-treated cortical astrocytes (■, control; □, with 5 mM glutamate). 
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5.6 - Dose-Response Curve 
 

The above experiments were all performed using 5 mM glutamate, a 

relatively high concentration that is only likely to be present transiently under 

physiological conditions. Therefore the above GSH release experiments were 

repeated using lower concentrations of glutamate. The dose response curves 

generated for both cortical and hippocampal astrocytes indicate that GSH 

release is increased after 240 minutes even at relatively low glutamate 

concentrations (0.1 mM) and maximal GSH release is already achieved with 

0.5 mM glutamate (Figure 5.4). Half-maximal GSH release was achieved at 

approximately 250 µM glutamate for both hippocampal and cortical cultures. 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
Figure 5.4: Glutamate dose response curves, showing the effect of glutamate concentration on 
GSH release from primary cultures of cortical (□) and hippocampal (Δ) rat astrocytes after 240 
minutes incubation (n=3 separate cell preparations). For each cell preparation GSH release 
from control astrocytes with no glutamate added was considered 100%.  
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 5.7 - Discussion 
 

In the present Chapter it was demonstrated that prolonged exposure to 

glutamate induces an increase in the concentration of extracellular GSH in 

three different types of cultured astrocytes. These cells are known to release 

GSH (Sagara et al. 1996), and when cultured with 5 mM glutamate we 

observed a significant increase in the amount of extracellular GSH over 240 

minutes (Figure 5.1), without evidence of cellular damage. At least a 2-fold 

increase in extracellular GSH was observed in both cortical and hippocampal 

astrocytes after 240 minutes treatment with glutamate, suggesting this to be a 

feature common to astrocytes from different brain regions. Dose response 

curves also indicated that glutamate induces GSH release from astrocytes at 

concentrations as low as 0.1 mM (Figure 5.4). A number of possible causes 

for this increase in extracellular GSH have been investigated in this study and 

are discussed in more detail below. 

Glutamate is one of the precursors of GSH (Kranich et al. 1996), and 

an increase in the synthesis of GSH could result in its increased release into 

the media. However, under our experimental conditions, glutamate did not 

cause a significant increase in intracellular GSH (Table 5.1). This is not 

surprising as it has been shown previously that addition of 1 mM glutamate to 

astrocytes only results in an increase in intracellular GSH concentration if 

cystine/cysteine and glycine are also added (Dringen et al. 1996). The 

absence of these substrates in our media suggests that de novo GSH 

synthesis does not explain the increase in extracellular levels. Support for this 

argument also come from our experiments with BSO, a potent and specific 

inhibitor of glutamate-cysteine ligase (the rate limiting step in GSH synthesis) 

(Griffith et al. 1979). Presence of BSO had no significant effect on GSH 

release in the time frame of the experiment (Figure 5.1). A longer BSO 
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incubation would be expected to lower intracellular GSH to a larger extent, 

and possibly have an effect on glutamate-induced release if critical 

intracellular GSH levels were reached. Altogether, these results are in 

agreement with reports showing that astrocytes rely on stored GSH to resist 

otherwise harmful conditions, failing to survive only when these pools are 

depleted (Chen et al. 2000), and emphasize the capacity of astrocytes to 

release GSH when exposed to glutamate. 

High concentrations of glutamate can be toxic to some cell types, 

leading to necrotic cell death with membrane rupture and leakage of 

intracellular content (Coyle et al. 1993). Since intracellular GSH 

concentrations are about 1000-times extracellular concentrations (mM vs. µM, 

respectively) (Dringen 2000), an increase in membrane leakage could explain 

the significant increase in extracellular GSH in the current study. However, no 

significant differences could be detected between control and glutamate-

treated cells in terms of LDH release, suggesting that increased extracellular 

GSH detection was not a result of membrane rupture induced by glutamate. 

Our results are consistent with those of others in terms of the gliotoxic action 

of glutamate. Chen et al demonstrated that 10 mM L-glutamate leads to LDH 

release only after a very prolonged incubation period (16 h), during which 

changes in cell morphology and oxidative stress occurs (Chen et al. 2000). 

These changes could be terminated by removal of glutamate before the onset 

of cell damage (estimated to occur at 4h-6h), indicating that the glutamate 

effect was reversible and that continuous exposure was required for astrocyte 

death. Since glutamate did not appear to cause release of GSH through non-

specific cell leakage other mechanisms were investigated.  

The data in Table 5.1 show that glutamate increases the proportion of 

GSH that is extracellular in astrocyte cultures. Two possible explanations for 

this rise in extracellular GSH have been ruled out in this study - namely 
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glutamate inhibition of extracellular processing of GSH by γGT (Figure. 5.2) 

and glutamate affecting the extracellular GSH/GSSG ratio. Therefore the most  

 likely explanation for the increase in extracellular GSH in astrocyte cultures 

upon exposure to glutamate is stimulation of GSH release (Figure 5.5). This 

increased release of GSH from rat astrocytes could result from the activation 
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Figure 5.5: Proposed neuroprotective role of glutamate-induced upregulation of GSH release 
from astrocytes. (1) Extracellular glutamate is toxic to neurones via excessive stimulation of 
glutamate receptors (GluR) (Coyle et al. 1993), which may result in increased oxidative stress 
and an increase in GSH consumption (black full arrows). (2) In the present study we have 
demonstrated that extracellular glutamate also increases the release of GSH from astrocytes 
(grey full arrows) by an unknown mechanism(s), possibly via the transporter Mrp1 (Minich et al. 
2006) and/or modifications at gene level (Shih et al. 2003) (grey dashed arrows). (3) This 
extracellular GSH can be used by neurones to increase their intracellular GSH levels (Dringen 
2000), making them more resistant to glutamate-induced oxidative stress (Gegg et al. 2005). 
Increased extracellular GSH may also counteract glutamate toxicity by competing with 
glutamate for binding sites on glutamate receptors (Oja et al. 2000). 



148    Chapter 5 

 

of glutamate receptors and/or activation of downstream signaling pathways by 

glutamate. Glutamate receptors are considered to be expressed mainly on  

 neurons but are also present on astrocytes (Porter et al. 1996; Porter et al. 

1997), where they have been increasingly implicated in a number of important 

pathways, including e.g. regulation of intracellular Ca2+ levels, stimulation of 

protein kinase C and inhibition of adenylate cyclase (Porter et al. 1996; Winder 

et al. 1996; Porter et al. 1997). Neurotransmitter(s) released from pre-synaptic 

terminals could therefore activate receptors located on astrocytes, leading to 

GSH release. However, data from experiments using agonists for ionotropic 

glutamate receptors suggests that neither NMDA nor AMPA/Kainate receptors 

are involved in GSH release, since we were unable to detect elevated 

extracellular levels of GSH after incubation with NMDA or AMPA. Experiments 

have also failed to show a role of metabotropic receptors in GSH release. 

Glutamate is also able to induce various changes in astrocytes which are not 

mediated via glutamate receptors. These changes include a switch of 

astrocytic metabolism from glycolytic to oxidative, via decreased glucose 

utilization and increased mitochondrial activity (Liao et al. 2003). Such 

changes to astrocyte energy metabolism may also affect GSH metabolism and 

export, although this remains to be elucidated. 

 

RNOS such as H2O2 and •NO have also been implicated in the 

increase of GSH in cultured astrocytes (Sagara et al. 1996; Gegg et al. 2003), 

and oxidative stress was shown to result in the overexpression of Nrf2, a 

transcription factor implicated in GSH use, production and efflux pathways in 

astrocytes, via antioxidant-response element (ARE) activation (Shih et al. 

2003). Hypothetically, such transcription factor regulated changes could also 

be induced by glutamate and increase GSH efflux. However, significant 

changes to gene expression are likely to take hours rather than minutes and 

are therefore unlikely to contribute to the initial glutamate-induced GSH 
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release observed in this study. Several of the transporters reported to 

transport GSH are expressed in cultured astrocytes (Minich et al. 2006). 

However, so far only multidrug resistance protein 1 (Mrp1) has been identified 

in astrocytes to participate in GSH transport under basal conditions (Minich et 

al. 2006). Whether this transporter, other Mrps, organic anion transporters or 

the CFTR protein contribute to the elevated GSH release from astrocytes in 

the presence of glutamate remains to  

be elucidated.  

This increased release of GSH in response to high extracellular 

glutamate can be regarded as a candidate antioxidant defense mechanism 

preventing neuronal damage (Drukarch et al. 1997; Drukarch et al. 1998; 

Gegg et al. 2005), but GSH may also be implicated in other regulatory events. 

GSH has been described as candidate modulator of central nervous system 

excitability, through binding to the NMDA receptor complex as either an 

agonist or antagonist in particular circumstances (Ogita et al. 1995; Oja et al. 

2000); has been shown to limit cell sensitivity to NO-mediated mitochondrial 

injury (Bolanos et al. 1996; Gegg et al. 2005); and GSH and other reductants 

have also been demonstrated to increase the glutamate uptake current of 

glutamate transporters, an event that could be reversed by the oxidative agent 

5,5'-dithio-bis(2-nitrobenzoic) acid (DTNB) (Trotti et al. 1997). In light of this, 

the ability of astrocytes to release GSH may prove to be important in 

protecting neurons from glutamate toxicity in distinct brain structures by 

means other than its role as an antioxidant. 

 

In conclusion, our experimental strategy mimics conditions where 

extracellular glutamate levels are raised for prolonged periods such as during 

ischemia. Considering the range of glutamate-mediated mechanisms leading 

to neuronal death, including nitrosative and oxidative stress, the increased 

availability of GSH, an endogenous low-molecular weight antioxidant, may 
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constitute an important protective mechanism in response to excitotoxic 

insults. 
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Since its discovery as the EDRF in 1987, •NO activity in biological 

systems has been the matter of intense research. This has led researchers to 

identify and characterize a number of effects of this gaseous free radical in a 

growing number of biological actions. A comprehensive review of these is an 

overwhelming task, as it has been investigated in such different model 

systems as mammals, bacteria and plants. However, striking examples in 

humans are its role in vasorelaxation, where it regulates blood flow by 

determining vessel diameter at the smooth muscle level after being produced 

by endothelial cells; its participation in host defense, following reaction with 

radical superoxide anion to form the oxidizing agent peroxynitrite by activated 

macrophage; and its role in brain physiology and particularly memory 

formation, where it has been suggested to act as a retrograde messenger, 

being capable of integrating the activity of a number of neurons in the vicinity 

of its production, regardless of whether the neurons are connected directly by 

synapses. 

 

The bioactivity of •NO is afforded by its unusual chemical properties. 

Composed by only two atoms, it cannot convey information as other classical 

neurotransmitters and hormones, which make use of particular chemical 

structural features to activate specific receptors. Being highly diffusible, •NO 

cannot be stored in vesicles, and therefore the regulation of its production by 

nitric oxide synthases and the chemistry in the vicinity of its production are the 

relevant factors in determining its bioactivity. Finally, its free radical nature 

affords distinctive chemical properties in redox regulatory and pathological 

events. These chemical properties become apparent when considering the 

range of direct and indirect reactions mediated by •NO. By reacting with metal 

centers, protein residues, other free radicals or even with its own derivatives, 

the pathways modulated by •NO may be affected by the redox cellular 

environment and its local concentration. Hence, the real-time measurement of 



154    Chapter 6 

 

the local concentration of •NO in a particular tissue, as well as its pattern of 

change, is of obvious relevance to gain critical insights of its role in 

physiological and pathological processes. In this regard, indirect measures 

prevent a significant understanding of its activity in vivo, by missing the notion 

that •NO conveys information associated to its concentration dynamics. 

Given this scenario, hippocampal slice preparations exhibit a number 

of merits pertinent for measuring •NO dynamics, for functionally-induced 

changes with impact in extracellular •NO changes may be investigated. 

Particularly relevant is the production of •NO via glutamate-dependent 

receptors because these have been strongly implicated in learning and 

development processes, and •NO has been shown to play an essential role in 

the induction of LTP in the hippocampus, the most widely studied neuronal 

equivalent of learning.  

 

 In order to accurately follow •NO production in the hippocampus the 

present work was initiated by the fabrication of sensitive and selective •NO 

microsensors. These were of reduced dimensions, allowing •NO 

measurements with minimal tissue damage. In combination with 

electrochemical techniques, the modifications introduced (particularly the 

increase in Nafion® layers) allowed a gain of selectivity against endogenous 

interferents while maintaining suitable electrochemical characteristics such as 

low detection limit and good sensitivity. Its usefulness to monitor •NO 

production in hippocampus was demonstrated by the selective activation of 

glutamatergic receptors. Both NMDA and glutamate stimulations were shown 

to elicit •NO production, but with distinct features: while the former resulted in 

marked increases at even low concentrations, the later originated smaller 

signals, likely due to the activation of glutamate uptake pathways in the slice. 

Thus, the preferential use of NMDA allowed the targeting of a particularly 

effective pathway in •NO production, namely the NMDAR receptor-nNOS 
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coupling. The use of NMDA also demonstrated that hippocampal •NO 

production was dependent on regulatory pathways, as consecutive 

stimulations consistently resulted in signal intensity decay. Additional results 

where hippocampal slices were continuously stimulated with NMDA, a 

condition resembling excitotoxicity, proved that •NO production increased to a 

higher but limited extent, suggesting the existence of still unidentified cellular 

mechanisms for •NO removal. Finally, the induction of •NO production by the 

general depolarizing molecule KCl and the NOS substrate L-arg demonstrated 

the possible occurrence of distinct NOS activation mechanisms, by eliciting 

distinct •NO profiles when compared to the previous ones.  

 Glutamatergic receptors and •NO production have long been related in 

hippocampus, particularly those afforded by NMDAR. However, AMPAR have 

also been implicated in mechanisms known to be •NO related, and several 

reports highlighted the requirement of both pathways in synaptic alterations. 

When addressing the role of AMPAR receptors in •NO production it was found 

that, as for NMDAR, AMPA stimulation resulted in a lower but marked •NO 

production. To our knowledge, this was the first direct identification of •NO 

following AMPA stimulation in hippocampus. This was dependent on 

extracellular Ca2+ and exhibited distinctive characteristics as compared with 

NMDA-dependent production, particularly a slower rate of •NO appearance in 

the extracellular medium. The role of AMPAR in •NO production was further 

demonstrated by stimulating hippocampal slices with glutamate while inhibiting 

both NMDA and AMPA receptors. As nNOS is dependent on intracellular Ca2+ 

changes and AMPAR are known to be Ca2+-impermeable, a major issue was 

the Ca2+ source. Following reports where Ca2+-permeable AMPAR where 

identified in hippocampus, experiments with selective inhibitors for these 

receptors proved their involvement (at least partially) in AMPA-mediated •NO 

production.  
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 Excitotoxic conditions like the one mimicked by stimulating slices 

continuously with NMDA presumably lead to the activation of protective 

mechanisms, not only in neurons but also in other cell types. In this regard, 

astrocytes are major players in supporting and protecting neurons in harmful 

conditions. GSH is long known to be a major endogenous antioxidant, 

participating in a number of ROS detoxification pathways, and astrocytes are 

known maintain neuronal GSH levels by releasing GSH. When investigating 

the response of astrocytes in the presence of high glutamate it was observed 

the increase in extracellular GSH over time. A number of detailed results, 

namely absence of LDH release, no de novo GSH synthesis and lack of 

significant extracellular GSH degradation pointed to intracellular GSH release 

to be the mechanism responsible for the observed increase. Glutamate 

receptors where not responsible for this effect, observed in both cortical and 

hippocampal astrocytes, considered to be a possible protective mechanism 

against glutamate toxicity. 

 

 Owing the previous, the following conclusions are supported by the 

results: 

 

1. Porphyrin microsensors are suitable to follow in real-time conditions 

the endogenous production of the labile free radical •NO in 

hippocampal slices, following stimulation with both selective and non-

selective agonists of glutamatergic receptors and nNOS substrate; 

 

2. Hippocampal slices produce •NO transiently, and the signal amplitude 

decreases upon consecutive stimulations. Such decrease occurs for 

the whole range of stimuli concentration and is independent of initial 

stimulation strength and endogenous •NO produced. This suggests the 

existence of an inhibitory mechanism at the level of NMDAR or NOS. 
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Additionally, the transient vs prolonged stimulation of slices with NMDA 

affords distinct profiles in terms of •NO production, the later being 

stronger and decaying linearly, but under conditions in which NMDAR 

was still functional. The prolonged stimulation protocol might constitute 

an adequate model to investigate •NO production during excitotoxic 

events, in circumstances where the NMDAR is not (at least completely) 

inhibited via a feed-back mechanism by •NO; 

 

3. Similarly to NMDAR, the stimulation of AMPAR in hippocampus evokes 

the production of •NO. AMPAR-dependent signals are transitory but 

exhibit distinctive features as compared with those dependent on 

NMDAR, namely a slower rate of •NO production and lower •NO levels, 

despite similar recovery periods to baseline levels. These 

characteristics point to a less efficient coupling between AMPAR and 

nNOS as compared with that of NMDAR and nNOS. Overall, this is 

compatible with the notion of a fine tuning of •NO production via 

AMPAR; 

 

4. Both NMDA and AMPA receptors elicit a concentration-dependent 

production of •NO, and both are dependent on extracellular Ca2+. 

Pharmacological modulation of receptors suggest that NMDAR and 

constitutively expressed Ca2+-permeable AMPAR are responsible for 

Ca2+ influx required to elicit the •NO signals upon stimulation wit NMDA 

and AMPA, respectively, although other mechanisms cannot be ruled 

out after AMPAR stimulation; 

 

5. In conditions related to excitotoxicity, glutamate induces the release of 

GSH from intracellular pools in cultured astrocytes, in cells derived 

from cortex and hippocampus. Glutamate effect on astrocytic GSH is 
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not a consequence of astrocytes damage and subsequent GSH 

release, de novo synthesis, inhibition of extracellular degradation, or 

activation of membrane receptors, suggesting the participation of 

transmembrane transport pathway(s) in GSH release in what might be 

a protective mechanism to neurons. 

 

Two major issues could be considered in future experiments. The first 

relates to the •NO production and the signal profiles obtained after KCl and 

glutamate stimulations. These differ from the signals obtained with NMDA and, 

to a lesser extent, AMPA, and suggest the occurrence of decay mechanisms 

that determine •NO profiles and rates of change. In this regard, Ca2+ recycling 

across the cellular membrane or intracellular stores could critically influence 

cytosolic levels and consequently nNOS activity. This would contribute to the 

knowledge of •NO production downstream of membrane receptor activation, a 

theme detailed scarcely in literature. A second question addresses GSH 

release from astrocytes in slices, where two major questions arise: first, are 

Mrp proteins involved in the glutamate-induced GSH release as already 

reported by others and, if not, what could be the mechanism involved; and 

two, could GSH and/or GSNO determine the activity of glutamatergic 

receptors in slices, and influence •NO production ex vivo. This second line of 

research would clarify the possible protective role of GSH, and contribute to 

the field of the modulatory role of astrocytes on neuronal activity. 
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