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Abstract

Millions of antipersonnel landmines are left in the ground after past war conflicts across

many countries. Being functional for more than 50 years they provide a lot of humani-

tarian and economical problems long after the conflict is finished. Cleaning the existing

minefields, called humanitarian demining, is required in order to return the large areas

of the land to normal use and save the local civilians from the danger. Currently, the

only fully trustable solution for this problem is the manual clearance which is itself a

very dangerous and slow procedure. Automation of the humanitarian demining may

change the situation providing a faster approach which eliminates the participation of

humans on the minefield. This work is a part of the effort toward the development of

such approach.

Automation of the humanitarian demining meets a lot of technical problems which

currently do not have effective solutions. This work covers the ones related to the

automatic detection of antipersonnel landmines assisted by a mobile scanning platform

which carries the landmine detection sensors.

The landmine detection approach developed in this work assumes the employing

of several nonselective sensors most widely used for landmine detection which include

metal detectors, infrared sensors, and ground penetrating radar. The approach has a

multi-stage structure and is based on feature-level sensor fusion strategy. This process

is understood as a step-by-step reduction of the false alarm rate depending on the

quality of the available sensor data. During the first stage the sensor data are processed

in order to distinguish all objects suspected to be landmines against the background.

For this purpose a novel online algorithm was developed. It allows to detect the object

during the robot movement and is hardly sensitive to the quality of the sensor data. The

consequent stages are performed in order to recognize the landmines among the detected

suspicious objects. A number of new classification features were developed in order to

perform this recognition. Based on the feature analysis a concept of selective training

specially suited for the landmine recognition task was developed. This technique allows

to account for the high overlapping of the classes and multimodal distributions of the

classification features. Finally, a concept of dominant class was introduced in order to

provide high levels of detection rates even in case of poorly separated classes. Being

specially designed for the specifics of landmine detection the proposed algorithms allow
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to improve the results.

In order to assist the gathering of the sensor data, the problems related to the ef-

fective sensor data gathering,path planning and localization of the platform are also

addressed. The developed solutions are implemented on the previously created pneu-

matic scanning platform acting as a prototype demining robot. A number of practical

solutions improving the platform localization were developed. The positioning of the

robot is based on its odometry, compass and a novel vision system which are combined

together by means of a Kalman filter. The vision system employees a simple CCD

camera and is guided by a novel algorithm for the detection and association of natural

landmarks found on the ground surface.

Finally, considering the landmine detection problem in the scale of minefield the

problem of the field exploration is addressed. Assuming a general case in which the

minefield may be populated with some obstacles in unknown positions an algorithm for

online unknown area coverage was developed. The algorithm guarantees regularity of

the robot path necessary for the mapping of sensor data and the safety of the robot by

planning its path only inside already covered area.

The developed algorithms were implemented in a form of control software for the

real platform. Testing of the proposed ideas in simulation and in real conditions (on

a test minefield) provided promising results showing the perspective of the developed

concepts. Based on the experimental results the recommendations for future work are

formulated.

The automatic landmine detection task raises a number of challenging problems

which have connections to other areas of robotics, pattern recognition and control. In

this regards the development of the methods proposed in this work was considered in a

more broad sense. Thus, the results of this work can be used in the adjacent fields of

robotics: automatic subsurface sensing with online reaction to the found target, pattern

recognition in case of poorly distinguished classes, and online unknown area coverage

required for cleaning, grass cutting, agriculture, etc.
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Chapter 1

Introduction

This chapter provides an introduction to the problem of humanitarian demining and pos-

sible solutions for it. The landmines problem in described in Section 1.1, and Section 1.2

is dedicated particularly to the specifics of humanitarian demining. The solutions cur-

rently used for humanitarian demining and the ones being in development are reviewed

in Section 1.3. A special attention is paid to the sensor technologies and to the algo-

rithms available for landmine detection in Section 1.4 because this is one of the main

topics of this work. Finally, the goals of this research are formulated in Section 1.5

followed by an outline of the main contributions (Section 1.6) and an overview of the

thesis (Section 1.7).

1.1 The Landmines Problem

Only two things are infinite, the

universe and human stupidity,

and I’m not sure about the former.

Albert Einstein (1879 - 1955)

Landmines are used as a tactical weapon in time of war. This is a self-contained

explosive device which is placed onto or into the ground, designed to explode when

triggered by a vehicle, a person or an animal. Landmines are usually used to restrict

enemy movements and to secure disputed borders. Unfortunately, the effect of landmines

last much longer than the conflict, affecting not only the army forces but mostly the

civilian population after the conflict ending.

Among all types of landmines antipersonnel landmines produce the largest prob-

lem because they are specially designed to kill or maim people. An antipersonnel

landmine (APL) can be a very simple device which costs on average only 3$. Normally,

its size is not larger than 15 cm and it triggers from a pressure of several kilograms (see,

1
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(a) Belgian antipersonnel
landmine M35BG

(b) A child on a minefield
in Cambodia (image pro-
duced by The Lutheran
World Federation, http:

//www.lutheranworld.org)

(c) Falklands, Argentine

Figure 1.1:

for example, Figure 1.1(a)). To achieve their purpose during war-time the antiperson-

nel landmines are hidden in the ground and the minefields are not marked (specially

the minefields created by terrorists). The problem is that the same situation remains

after the conflict and the minefields are abandoned and left to the competence of local

authorities. Most landmines can be functional for 50 years and some last much longer.

The first things which can be done in this case are marking the minefield and educating

the local civilians not to enter it. However, this does not completely stop the acci-

dents when people return to their country and discover that their houses are now on

a minefield, as happens for example, in Cambodia, Figure 1.1(b). Often a minefield is

discovered only after some casualties have happened on it. There is a large economical

impact of landmines on the civilian life; large areas cannot be used for agriculture or

other purposes. Obviously, the effectiveness of antipersonnel landmines during the war

cannot excuse the danger they provide to civilians for many years after.

As it often happens in human history, the danger of landmines was only recognized

long time after the millions of them were laid in the ground. Since that time large effort

was made to change the situation. Very important results were achieved by International

Campaign to Ban Landmines (ICBL) http://www.icbl.org/ which was awarded for

this with the Nobel peace prize in 1997. ICBL provided the 1997 Convention on the

Prohibition of the Use, Stockpiling, Production and Transfer of Anti-Personnel Mines

and on Their Destruction [6] which is currently signed by 154 countries. This document

http://www.lutheranworld.org
http://www.lutheranworld.org
http://www.icbl.org/


1.1. THE LANDMINES PROBLEM 3

Figure 1.2: Global landmine problem [1]

significantly changed the politics of the member States according to use and production

of landmines but it is not signed yet by two large countries which still produce and

use antipersonnel landmines: USA and Russia. ICBL also maintains a comprehensive

report about the world landmine problem. This document, called Landmine Monitor,

is published every year and presents to the public an update of the situation in the

countries related to the landmine problem (information on landmine use, production,

trade, stockpiling, demining, casualties and survivor assistance in 126 countries and

areas). According to the Landmine Monitor 2006 [1] currently:

• At least 78 nations are affected to some degree by landmines;

• Antipersonnel landmines are still produced by 13 countries and are used by 10

countries (including official use by 3 governments);

• There are over 160 million antipersonnel mines stockpiled;

• There are 15,000-20,000 new casualties from landmines and explosive remnants of

war each year (recorded in 58 countries during 2005-2006), there are approximately

350,000 to 400,000 mine survivors in the world today which need long-term care;

Figure 1.2 shows the global situation about landmine distribution and accidents.
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Along with maiming civilian people minefields affect the environment as well. A

landmine left in the ground leaks heavy metals and explosives which can poison water

and soil. However, there is also an opposite effect when a minefield protects animals

from people providing more comfortable conditions for them. For example, penguins

on Falkland Islands freely mate on a minefield Figure 1.1(c). This situation is probably

looking more positive for ecologists but there are still no doubts that the minefields

should be cleared and the land returned to the normal use.

Important activities toward the solution of the global landmine problem include mine

risk education and survivor assistance which are needed while minefields exist. The

clearance of a minefield is a very dangerous and complex procedure called humanitarian

demining.

1.2 Humanitarian Demining

Following the ICBL there are many activities around the world related to humanitarian

demining. They are mainly coordinated by the standards of Geneva International Cen-

ter for Humanitarian Demining (GICHD) http://www.gichd.ch/. According to the

definition of GICHD [7]:

Humanitarian demining includes activities which lead to the removal of mine

and UXO (Unexploded Ordnance) hazards, including technical survey, map-

ping, clearance, marking, post-clearance documentation and handover of

cleared land.

The process of humanitarian demining consists in several steps:

1. Assessment : determining if a mine action is necessary and feasible;

2. Mine clearance surveys : technical and social survey of the area to be cleared,

determining the depth of clearance, local soil conditions, vegetation and marking

the area;

3. Mine clearance techniques

4. Post-clearance inspection: reports, marking;

5. Community notification

In contrast to military demining the humanitarian demining should lead to a com-

plete clearance of the specified area, so it can be safely used for civilian purposes. The

current standard of the clearance maintained by GICHD recommends considering the

area to be clean if all mines and UXO hazards are removed and destroyed [8]. By other

words, a clearance rate of 100% is required. This situation is further complicated by the

following:

http://www.gichd.ch/
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(a) Sudan (b) Afghanistan (c) Lebanon

Figure 1.3: Sample minefields (images produced by UNMAS, http://www.mineaction.

org)

Figure 1.4: Sample antipersonnel landmines

• Minefields are located in very different environmental conditions (see, for example,

Figure 1.3), often in hardly accessible areas;

• There are a lot of types of landmines worldwide. They differ in size, shape, used

materials (see, for example, Figure 1.4) which complicates the development of

standard detection methods.

• The landmine problem affects a lot those countries where the cost is often the

main concern. This limits the use of new and developing technologies.

Human inventiveness produced hundreds of different antipersonnel landmines (see,

for example, the ORDATA database [9]). However, it seems that currently the only

effective manner to remove and destroy a landmine is a manual technique. The basic

technique used during manual demining is probing the soil in front of the deminer

centimeter by centimeter. The landmines can be discovered as any other rigid object

by the force which the prober returns to the deminer’s hand (Figure 1.5(b)). This is a

very dangerous and slow procedure which requires good personnel skills of the deminer.

In most cases the process can be made more efficiently by using a handheld contactless

mine detector which is swept over the ground. Landmines usually contain some amount

of metal, thus a widely used tool for manual demining is a metal detector (Figure 1.5(a)).

However, only few types of landmine have metallic cases, and others may include only

some grams of metal (a fuse) which makes them undistinguishable from metal debris

left in the ground after the conflict. In this situation the data from a metal detector

is ambiguous providing a lot of false alarms and returning the situation to the case of

http://www.mineaction.org
http://www.mineaction.org
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(a) Probing the area with a metal detector (image
produced by Luke Powell, http://www.un.org.pk)

(b) Manual drilling and probing the soil (im-
age produced by MACC-SL, http://www.

mineaction.org)

Figure 1.5: Manual technique of mine clearance

careful probing.

The manual procedure is the basic tool of humanitarian demining nowadays. Even

so, other more advanced techniques exist; they are seldom used because their cost is

not affordable in most situations. The most common helpers of the deminers are dogs

which have great olfaction senses allowing them to detect the explosives leaking from the

landmines. However, a specially trained demining dog is still too expensive. From the

above information it can be seen that the technology of humanitarian demining needs to

be advanced in terms of speed and safety to make the complete clearance of the existing

minefields an affordable task. It was estimated that one deminer is killed for every 5000

landmines removed [10].

1.3 Automation of Humanitarian Demining

The problems related to the manual humanitarian demining have provoked many at-

tempts to automate this process. There are two main objectives for this effort:

• Decreasing the time of mine clearance

• Eliminating the human participation on the minefield

Following the pointed goals an automated system must still provide the same quality of

mine clearance archived by the manual technique. Automation of humanitarian dem-

ining should be understood here in a broad sense meaning any tool which allows to

diminish or completely eliminate participation of humans on the minefield. It is im-

portant to mention that there is no automated demining system which can provide the

required clearance rate yet. The research in this area is ongoing in several directions

which are presented below.

http://www.un.org.pk
http://www.mineaction.org
http://www.mineaction.org
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Figure 1.6: Sample machines for mechanical mine clearance

1.3.1 Mechanical mine clearance

A naive technique for mine clearance consists in a safe activating of the landmines

situated on a minefield. This is particularly useful in the case of antipersonnel landmines

because their destroying force is not sufficient to damage a relatively simple vehicle. The

field of mechanical mine clearance is the most developed one and there are commercially

available vehicles (Figure 1.6). There are a number of different ideas used for the

mechanical design:

• Mine Clearing Flails: this machine hits and churns the soil with long chains to

detonate and break apart mines.

• Earth Tillers: these machines till the ground to a pre-set depth, detonating or

breaking up mines.

• Wheel Shovel: a shovel fitted with a mesh basket. When the rubble is shaken out,

landmines and large ordnance remain.

• AP Mine Sifter: the contaminated soil is picked up and sifted and the remaining

debris can be inspected.

• Mine Protected Vehicle: vehicles designed to detonate mines and resist mine ex-

plosions.

However, these machines cannot guarantee a complete clearance, thus they have to be

used in combination with manual techniques. Moreover, the cost is still a limitation for

their wide use.

Along with using of brutal force to deal with a minefield there is some development

in the direction of mechanical systems which include some intelligence. For example, in

the framework of project ELADIN [11] it is proposed to use high pressure water for the

purpose of landmine detection and deactivation [12].
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Figure 1.7: A teleoperated robot and its operator panel at Meerdaal Bomb Disposal

Unit

1.3.2 Teleoperated vehicles

One step toward an automatic system is the teleoperated one which allows substituting

the human by a robot in the dangerous conditions. An example of such system can

be seen in Figure 1.7. A teleoperated vehicle is controlled by the operator from a

safe distance using video cameras. Changeable manipulators are used to perform the

necessary operations which include, for example, target deactivation by high pressure

air. Such machines are available in the market and are widely used by bomb disposal

units to assist in their missions. They are mostly suitable for short operations when the

location of the dangerous object is more or less known. However, teleoperated robots

for the humanitarian demining in a large scale are still in the state of development.

Several new designs of semi-autonomous robots are proposed in [2]. These vehi-

cles can move to a specified location and then scan a small area using an advanced

manipulator (Figure 1.8).

The advantage of the teleoperated concept is the ability to develop a relatively simple

vehicle and give the human operator with the complex task of decision making. Then,

the robot itself can be made very reliable which is important because the reliability is

one of the main concerns on a minefield.
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(a) Mine Hunter (b) Gryphon

Figure 1.8: Semiautonomous vehicles for landmine detection [2]

1.3.3 Autonomous vehicles

The largest degree of automation for humanitarian demining can be implemented in

a fully automated system which should be able to perform all of its stages. However,

this is a very complex and probably unaffordable task. So, currently the research is

mostly concentrated in the direction of automated mine clearance because it is the most

dangerous stage of humanitarian demining. An automated vehicle has to perform The

following main tasks in order to assist the mine clearance task:

• Landmine detection

• Removal or marking (for further removal by humans) of the detected landmines

• Planning a safe path through the minefield to ensure its full exploration

• Avoiding eventual obstacles on the way

In the area of automated mine clearance there are several platforms being developed.

Most of the research projects are dedicated to the mechanical design of the platform

to make it reliable in the harsh outside conditions. Few projects also incorporate the

landmine detection and the path planning tasks. There are also few developments in

the area of automated landmine removal.

A quadruped walking mechanical structure for the demining robot is proposed in

[16, 13, 17]. The implemented TITAN-IX robot shown in Figure 1.9(a) is able to change

working tools in the end of one leg allowing it to operate as a landmine detector (specif-

ically, a metal detector). The working principle of the robot consists in scanning of a

small area while staying stable and then moving to the next location.

Another spider-like robot SILO4 is proposed to be used for humanitarian demining

in [15]. The robot has a good adaptability for outdoor terrain Figure 1.9(d). The

developments also include an adaptable manipulator for a landmine detector.
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(a) TITAN-IX [13] (b) Finder [14]

(c) LADERO (d) SILO4 [15]

Figure 1.9: Sample mobile demining robots

Figure 1.9(b) shows a simple wheeled platform for testing of demining path planning

algorithms [14]. This project is concentrated mostly on the path planning and navi-

gation algorithms. The proposed unknown coverage algorithm is based on the Morse

decomposition of the area [18, 19]. The main disadvantage of this algorithm is its high

dependence on the precise localization of the robot which requires improvements in the

mobile platform localization sensors. There are also developments of probabilistic path

planning algorithms specially designed for fast landmine search [20, 21] appropriate for

the military but not for the humanitarian demining.

A pneumatic cartesian platform is proposed for landmine detection in [22, 4] (see

Figure 1.9(c)). The platform has a simple structure and is scanning the area during

movement. Several sensors can be installed in front of the robot to perform the landmine

detection. The last platform is used in the presented work for the development of the

algorithms for landmine detection and path planning.



1.4. SENSORS AND ALGORITHMS FOR LANDMINE DETECTION 11

Humanitarian demining:

mine clearance techniques

Naive mechanical Intelligent

Manual

Human deminers

Demining dogs

Vehicle-based

Teleoperated Automated

Airborne

(only detection)

Figure 1.10: Approaches for clearance techniques which can be used for humanitarian

demining. The only widely accepted technology is the manual demining (highlighted

with gray)

1.3.4 Summary

The automated techniques described in this section can be classified as shown in Fig-

ure 1.10. Currently, the most widely used technologies are mechanical mine clearance

and the teleoperated vehicles. There is also some work done in the area for airborn

assistance of landmine detection and minefield reduction [23, 24]. However, the do-

main of automated mobile platforms for landmine detection (and, eventually, removal)

is developing and can be considered the most promising for future applications.

1.4 Sensors and Algorithms for Landmine Detection

This section examines the existing techniques for landmine detection from the point

of view of an automatic demining system. Some of these approaches are widely used

for the manual humanitarian demining as well (metal detectors), but most of them are

currently in the stage of research and cannot be yet accepted for real operation.

If a landmine was recently placed into the ground, the place where it was buried in

can usually be well seen by an experienced deminer. An automatic system can use vision

sensors and pattern recognition techniques to perform the same operation and discover

the landmines [25]. However, in most cases landmines rest in the ground for many years

after which there may be no visible characteristics available (usually several levels of soil

and vegetation cover the minefield). Thus, in general it is logical to consider that the

landmine sensors should not rely on the visual information. Such sensors are related to

the domains of subsurface sensing and nondestructive control.

An antipersonnel landmine is a complex object composed from several heterogeneous
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Antipersonnel landmine

Case

Metal Plastic Wood Glass

Fuse

Metal

Charge

Explosive material

Figure 1.11: Characteristics of an antipersonnel landmine which could be sensed

parts: explosive charge, fuse system and case (see Figure 1.11). These parts have

physically different properties, thus there is no general “landmine sensor” which would

allow to sense a landmine as a whole object. However, the parts of the landmine can

be sensed separately, for example, as shown in Figure 1.11. Each of the characteristics

provides a disturbance of some physical property in relation to the surrounding soil.

Any of these characteristics can be used for the detection of the whole landmine if

it is unique for landmines in comparison to other objects located on the minefield.

It can be seen later in this section that, in general, all the characteristics shown in

Figure 1.11 except the Explosive material are not selective. From the other side, sensors

which are suitable for sensing of the explosive materials do not have high selectivity

themselves. In this situation, it is usually not possible to provide the required quality

of landmine detection by sensing only one of the landmine characteristics. Thus, there

are developments of sensing devices using different physical principles (appropriate to

the landmine characteristics) [26] in order to provide as more information as possible.

A combination of the characteristic and the sensing method defines a type of signature

which a specific detector acquires from the landmine. Landmine signature is a general

term which can be used both in the case of manual and automated landmine detection:

it is a set of signals provided by the detector together with their relation to some spatial

information. It should be noticed that the degree of nonselectivity of a sensing method

also depends on the approach used for the discrimination between landmines and other

objects. For example, the amplitude of the signal may not be a selective property, but

the shape of its spatial signature may provide enough information for the discrimination.

The quality of the sensing method is affected both by the selectivity of the sensor and

by the selectivity of the sensed property. It must be also mentioned that the final result

of landmine detection is a binary decision taken by some algorithm using the sensor

data. Thus, the parameters of the data processing algorithms also affect the detection

quality. The whole process of landmine detection is usually characterized statistically

using the notations of the Signal Detection Theory 1. As applied to the case of landmine

1Signal Detection Theory was introduced in 1966 by John A. Swets and David M. Green. It is
widely accepted for the analysis of signal detection algorithms in presence of noise
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detection the following terms can be defined:

• NM - number of landmines (or, more generally, dangerous objects) to be examined,

a number of landmines in a specified area S

• NM - number of nonhazardous objects in S

• False alarm - a decision that a landmine is present in its absence

• Probability of detection or detection rate is the ratio of the number of correctly

identified landmines to the total number of existing landmines

Pd =
NM+

NM

, (1.1)

where NM+ is the number of correctly identified landmines

• Probability of false alarm or false alarm rate is the ratio of the number of false

alarms to the number of nonhazardous object

Pfa =
NM+

NM

, (1.2)

where NM+ is the number of false alarms. This measure is convenient for estimat-

ing the quality of the detection algorithms. However, it is not very meaningful

for representing the quality of the landmine detection in overall because every

false alarm causes a costly operation of the landmine removal. Thus, not only the

number but also the area of false alarms is important. A widely used measure in

this case is the number of false alarms per square meter

Nfa/m2 =
NM+

S
, (1.3)

where every false alarm is allowed to cover an area not larger than a specified size

(otherwise it is considered as multiple false alarms).

1.4.1 Metal detection

Among all sensing technologies for landmine detection the detection of metal has the old-

est history and is the most developed. The contactless detection of metal is a relatively

simple task because all metals are conductive and thus they disturb electromagnetic

(EM) waves in some manner 2. There are two approaches which can be used: active

and passive. Active sensors produce a EM field in the direction of the investigated object

and measure the disturbance of the field the object provided. These are the most widely

2The first metal detector was invented by Gerhard Fischer in 1930’s after he noticed that his radio-
based navigation system worked abnormally in the areas which contain ore-bearing rocks
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(a) Shiebel ATMID Metal Detector (b) FEREX Magne-
tometer

Figure 1.12: Sample metal detector and magnetometer

used detectors, which are in fact called metal detectors. The passive metal detection

consists in measuring of the Earth’s magnetic field which is disturbed by a magnetic

metal object. This type of sensors, called magnetometers (see Figure 1.12(b), can be

used only for detection of relatively large metal objects and thus have limited usage in

humanitarian demining.

Currently, metal detectors are widely used in manual humanitarian demining to

assist the landmine detection 3. This technology was the only available for a long period

when the landmines normally included large amounts of metal (for example, a metal

case). Modern landmines may contain only few grams of metal (only the fuse) which

significantly complicates the detection: the signal provided by a landmine has the same

strength as the signal provided by the metal debris present in the ground or by the soil

itself (providing high false alarm rate). This limitation forces the development of other

sensing technologies. However, a standard metal detector (MD) is a trusted tool for

manual demining as it is assumed that the landmines contain at least some amount of

metal 4. An example of a metal detector for manual demining is shown in Figure 1.12(a).

It usually contains a search head, control electronics and headphones which provide to

the deminer an audio signal proportional to the measured amount of metal.

Conventional metal detectors employ the principle of electromagnetic induction:

1. An alternating current is applied to the active element of the metal detector (called,

search coil or search head);

3Other areas where metal detectors are used include treasure hunting, investigation of pipes, cables
etc. in civil engineering, and other related fields

4The manufacture of completely nonmetallic antipersonnel landmines is banned by the Protocol II
of the United Nations Convention on Conventional Weapons (CCW) of 3 May 1996
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(a) (b)

(c)

(d)

Figure 1.13: Sample data obtained from test minefields by different metal detectors:

a - pulsed metal detector (Vallon GmbH ML 1620C), b - two frequency continuous

wave metal detector with phase-sensitive demodulation (Foerster Minex 2FD 4.500), c

- continuous metal detector (Shiebel ATMID), the shape of the search head influenced

the output signature, d - pulsed metal detector (EBEX 420 PB Ebinger) using the audio

frequency as the output signal (the maximum is cut off)

2. The search coil current produces an alternating EM field around the coil (primary

EM field);

3. The primary EM field induces (alternating) eddy currents in the metal object and,

in case of a magnetic metal, magnetizes it;

4. The magnetized object and the eddy currents also produce a EM field (secondary

EM field);

5. The secondary EM field is related to the amount and type of metal in the investi-

gated object. It is measured by the detector and compared with the primary EM

field;

In the modern metal detectors this basic principle is implemented in many different

ways. The working conditions and the types of targets to be detected determine the

most suitable implementation. A comprehensive overview of metal detectors technology

and their use for humanitarian demining can be found in [27].

There are two basic types of metal detectors which differ by the type of EM field

they utilize: pulsed and continuous. The pulsed metal detector (PMD) produces a short
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pulse of electromagnetic field and measures its decay time. The presence of a metal

object slows down the decay of the pulse. The continuous metal detector (CMD) uses a

continuous sinusoidal signal to produce the primary EM field. Then the amplitude and

phase of the secondary EM field provide information about the presence of the metal

object. The type of the EM field used by the MD is essential for the interpretation of its

output signal because it determines the design of control electronics, control principles,

the approach for ground compensation, etc. The shape and size of the search coil also

influences the output signal pattern of the detector. Moreover, when using a MD in an

automated landmine detection system the signal acquisition principle is also important.

Metal detectors are usually designed to provide an audio signal of changing frequency

which is the most representative form of the output for a human deminer and can

be measured by the automated system. An automated system may also utilize a raw

output which is not transformed to the conventional audio signal. Without taking into

account the operational principles of the used MD and the acquisition principle the data

interpretation may provide wrong results. Figure 1.13 illustrates this showing the data

obtained from different metal detectors. It can be seen that the signatures of the metal

objects are significantly different for different types of metal detectors. For example,

the MD used to obtain the data shown in Figure 1.13(b) provides a bipolar signal where

the position of the metal object is defined by a zero signal, while the signals from most

of the others MDs have maximums at the locations of the objects. In Figure 1.13(c)

the shape of the signature is related to the shape of the search coil but not to the shape

of the metal object (the MD coil has the shape shown in Figure 1.12(a)). In this case

the interpretation of data must incorporate the specifics of the detector. The signatures

presented in Figure 1.13(d) are less variable because the used output audio signal does

not provide a large variation (it is designed to provide to the deminer an almost discrete

signal).

The most intuitive approach for automated landmine detection using a metal detec-

tor consists in analyzing the signal amplitude which is proportional to the amount of

metal. If it can be assumed that the landmines contain an amount of metal different

than the surrounding soil and other objects, then a simple signal thresholding can be

used for detection. However, the amount of metal is not a selective property of a land-

mine. The signatures provided by metal detectors can be very similar for landmines and

other artificial and natural objects, like cans, coins, nails, mine and UXO fragments,

metal-bore stones, etc. The soil itself may contain magnetic components which provide

the same signal as a landmine. So, a simple thresholding is not efficient in most real

word cases.

A more sophisticated approach consists in studying and using the physical model of

the detector response for landmines and clutter. For example, in [28] it is proposed to

utilize properties of two frequency metal detector to discriminate between mines and
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(a) (b)

Figure 1.14: Example of passive radiometer data (a) and IR camera data (b)

metal debris. It is assumed that mine targets have certain sizes (non minimum metal

mines) which is larger than the size of the clutter. It is shown that the size difference can

be obtained by analyzing the phase of the received signal and the “phase threshold” can

be used to reject clutter. However, in practice this approach is difficult to implement

under non ideal conditions because it is influenced by electrical and magnetic properties

and orientation of the object. It is proposed in [29] for a pulsed metal detector to use ge-

ometrical particularities of mine signature. Spatial signatures of energy of the measured

output signal are considered and it is assumed that metallic mines have symmetrical

spatial energy signature in contrast to the clutter. The symmetry is determined by

subtracting the values of energy along two orthogonal axes. In [30] the output of the

metal detector is modeled based on a weighted sum of decaying exponential functions.

The parameters of the model are determined using training data obtained from a test

field with buried landmines and clutter. For each type of object an exhaustive search

over all possible values is performed to obtain the parameters which provide the best

fit of the model to the measured signal. In that way, the approach proposed in [30]

incorporates greater amount of statistical learning into the model which makes it more

reliable in real conditions.
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1.4.2 Detection of thermal radiation

Landmines, as all other objects with nonzero temperature, emit thermal radiation in

form of electromagnetic waves of specific frequency. Measuring this radiation can allow

to distinguish an object if its temperature is different from the background. The detec-

tors of thermal radiation use for the measurements various frequency bands. The most

widely used are passive microwave radiometers which work in microwave range (2-15

GHz) and infrared cameras for infrared range (1-15 µm). Sample signatures obtained

from these sensors can be seen in Figure 1.14. The IR cameras are more convenient

because they allow to perform measurements immediately from a large area of surface

similar to the usual video cameras. Thus, the infrared cameras were widely investigated

for the purpose of landmine detection (the only landmine detection technology which

can be used for relatively large areas without scanning). However, there are a number

of problems associated with the detection of thermal radiation in general:

• The obtained data are highly ambiguous because the number of clutter objects

is very large (any natural or artificial objects, soil heterogeneities and voids may

produce thermal signatures)

• Thermal radiation has low soil penetration allowing to detect objects not deeper

than 5-10 cm

• Thermal signatures highly depend on weather conditions, time of day, season, etc.

An example of such complex data from IR camera can be seen in Figure 1.15: only

the surface-laid objects are well seen, the images contain a lot of clutter and highly

depend on the time of the day.

The situation is also complicated by the fact that the landmines buried in the ground

for a long time are in temperature equilibrium with the surrounding soil. The tempera-

ture difference can only be noticed if the soil is heated or cooled: materials with different

thermal conductivity achieve the equilibrium after different times, thus, there is a period

of time when a buried landmine is in contrast (warmer or colder) with the background.

Naturally the heating happens in the morning after the sunrise, and the cooling - in the

evening after the sunset. There is also some time during the day and night when the soil

and buried objects are in equilibrium (transition period) and the landmine detection is

normally not possible. This process is illustrated in Figure 1.16. Taking into account

the mentioned limitations the thermal radiation detectors usually should be coupled

with other technologies.

The temperature of the object can be determined from the measured radiation.

However, the temperature itself does not represent meaningful information for object

recognition, since it depends on a large number of unknown parameters. The difference
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(a) 15:25 (b) 20:20

Figure 1.15: Example of data from IR camera obtained at different time of the day

(a) Mid-day, positive contrast (b) 6-8 a.m., no contrast (c) 10 p.m., negative contrast

Figure 1.16: Signature of buried landmine during the day (the red arrow shows the

location of the landmine), the experiment was done by HUDEM WorkGroup-2 (HUDEM

IR trials at Meerdael, Belgium, April 1-4, 1998) using AGEMA IR camera (3µm-5µm)

between the temperatures of the object and the background is also an ambiguous pa-

rameter because it depends on the time of the day. In general, the theoretical modeling

of the thermal radiation detectors is usually not used for landmine detection due to un-

affordable complexity of real outside environment (an example of microwave radiometer

response modeling for ideal conditions can be found in [31]). In this situation the shape

of the signature, which usually represents the shape of the object (for example, the

case of a landmine), is probably the only parameter which should be used for landmine

detection.

Usually the image is analyzed using techniques of computer vision, particularly the

approaches for circle detection. For example, Hough transform and Tophat filter are

used in [32] and [33], mathematical morphology is used in [34]. These methods are

well developed only for circular shapes leading to an important limitation. However,
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in many locations most or even all landmines have circular cases making this approach

applicable. However, standard methods for circle detection usually do not perform well

enough because the signature does not have a sharp edge. A modified approach is

proposed in [35]: a set of features which represent radial profile are used. These features

are base on the value of mean pixel intensity at given distances from the center of the

analyzed region.

There are some attempts aiming to decrease of the IR data ambiguity . One approach

is proposed in [35] where data from several IR sensors with frequency bands 3-5 µm and

8-12 µm are combined together. In [36] it is proposed to use additional information from

video camera to decrease the influence of grass and other visible clutter those thermal

signatures can be very similar to the ones of landmines. Visual imaginary provides

additional features for object discrimination which improves the detection result.

In addition to simple passive IR measurements a research in the areas of active

techniques is ongoing in order to improve the reliability of the method. An approach of

polarized infrared imaging is specifically designed for detection of surface laid landmines.

This method relies on the fact that the surface of a landmine polarizes the reflected IR

radiation because of its regular structure (flat surface) while most natural objects do not

have this ability. The IR radiation is measured through the polarization filter allowing

to obtain images of higher contrast where the landmines are better distinguishable from

natural clutter. Some examples of application of this method can be found in [37, 38,

39, 40].

Active infrared imaging intends to decrees the influence of the environmental con-

ditions on the IR measurements. In this case the ground surface is artificially heated

usually by using a microwave heater (for example, a heater similar to the one used in

microwave ovens) and then the measurements are performed. This approach can op-

erate continuously and provide more predictable results than the passive techniques.

However, the presence of the heater significantly increases the weight and power con-

sumption of the system. Moreover, there are some investigations suggesting that the

microwave heating may be dangerous because the metallic parts of a landmine may be

overheated which can cause its detonation [41].

1.4.3 Ground penetrating radars

GPR is a geophysical technology widely used for subsurface imaging. This method is

based on the following principle:

1. A transmitting antenna emits short pulses of high-frequency electromagnetic waves.

2. The electromagnetic pulse is reflected from a buried object or a boundary with

different dielectric constants. The reflected signals arrive back to the receiving
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(a) Y=250mm (b) Y=750mm (c) Y=950mm (d) Y=1250mm

Figure 1.17: Sample GPR B-scans obtained by ERA SPRScan during MACADAM

experiment on the test scenario 2 (clean agricultural soil) [3]

antenna at different times which depend on the depth of reflection.

3. The receiving antenna records samples of the time varying reflected signal provid-

ing a scan which contains around 250 points, called A-scan.

4. The A-scan provides information about variation of dielectric properties at dif-

ferent times of reflection. The time of reflection roughly represents the depth of

reflection. However, there is no exact transformation due to the unknown proper-

ties of the materials where the signal is propagating.

The A-scans are difficult to analyze because they do not contain any reference informa-

tion. Thus, they are usually combined to form B and C-scans:

• B-scan is an image formed by A-scans obtained along a linear scanning path

(for example, along axis X) as shown in Figure 1.17. A buried object is usually

represented on the B-scan as a set of hyperbolas.

• C-scan is an image formed from the points of A-scans obtained at different X-Y

locations at the same depth. Due to the complex transformation between the time

and the depth of reflection, C-scans are often formed for a certain time of reflection

instead of a certain depth as shown in Figure 1.18. Such images are representative

enough if the soil is homogenous. In the ideal case a C-scan can show the real

shape of the buried object.
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(a) Time stamp 130 (b) Time stamp 140 (c) Time stamp 160 (d) Time stamp 170

(e) Time stamp 180 (f) Time stamp 200 (g) Time stamp 220 (h) Time stamp 240

Figure 1.18: Sample GPR C-scans obtained by ERA SPRScan during MACADAM

experiment on the test scenario 2 (clean agricultural soil) [3]

The frequency of the transmitted radio pulse determines its penetration depth. For

the purpose of humanitarian demining GPR antennas with frequencies around 1-2 GHz

are normally used. This allows to detect antipersonnel landmines up to the depth of

around 30 cm. It can be seen from Figures 1.17 and 1.18 that landmines represent clear

signatures on the GPR data in case of clean soil. However, GPR is also sensitive to a

large amount of clutter objects and any dielectric heterogeneity of the soil. To recognize

the landmines in presence of clutter B or C-scans are usually employed. In the case of

B-scan the analysis is typically based on models of landmines and clutter [34].C-scans

are analyzed using computer vision techniques similar to the ones used in the case of

thermal imaging [38].

1.4.4 Other sensing technologies

The most developed technologies for landmine detection were considered in the previous

three sections. The main problem of these approaches is their low selectivity for the

discrimination of landmines and clutter. Thus, there is an ongoing research in other
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(a) Genetically modified Arabidopsis plant
which changes its color in presence of nitrous
oxide (image produced by Aresa Biodetection
ApS, Solvgade 14, kld., 1307 Copenhagen K,
Denmark, http://www.aresa.dk/)

(b) Scan of fluorescenting bacteria that re-
sponds to trinitrotoluene (3 by 4 meters area
with mine targets within 1 meter of indi-
cations), image produced by the demining
research team at the University of West-
ern Australia, http://www.mech.uwa.edu.

au/jpt/demining/

(c) Map of the minefield generated by bees
[42]

Figure 1.19: Biotechnologies for landmine detection

areas in order to provide additional detectors. The most important domain is the

detection of explosive materials because the presence of explosives is a selective property

of a landmine. Trinitrotoluene (TNT) is a common explosive material used in modern

landmines. It should be mentioned that the detection of explosives is only possible if it

is leaking from the landmine into the surrounding soil.

There are several physicochemical methods for explosive detection which show good

results in well controlled laboratory conditions. However, their implementation for a

real outside environment meets a lot of obstacles. Such methods are based on the

spectroscopic analysis such as mass-spectrometry and nuclear quadrupole resonance

[43, 44, 45, 46]. Usually these devices are very expensive, slow and heavy. Thus, in the

current stage of development, they should be considered as additional sensing technology

which can be used for reduction of false alarm rate provided by faster sensors described

http://www.aresa.dk/
http://www.mech.uwa.edu.au/jpt/demining/
http://www.mech.uwa.edu.au/jpt/demining/
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before.

Biological systems provide much better results for explosive detection due to very

sensitive capabilities of olfaction. Specially trained demining dogs are widely used to

assists the manual humanitarian demining. It is known that some animals have even

better olfaction than the dogs. There is also some work done in the area of using

rats for explosives detection [47] [48]. Using of highly developed animals like dogs in

the automation system for landmine detection is not straightforward, however, other

biological technologies may be used as an additional landmine “detector”:

• Aresa Biodetection ApS is developing a genetically modified plant which changes

the color of its leaves in presence of explosives [49] as shown in Figure 1.19(a)

• Honey bees can be trained to provide a “map” of explosives concentration [42]

(see Figure 1.19(c))

• A genetically modified fluorescent bacteria may be also used to detect TNT as

shown in Figure 1.19(b) [50], [51]

1.4.5 Algorithms for landmine detection

Each sensor technology has an associated appropriate algorithm to be used for landmine

detection. Some of these techniques were mentioned in the previous sections. In this

section several basic principles valid for different detectors are summarized.

There are basically two approaches for landmine detection:

• Physical model based where it is assumed that the response of the sensor for land-

mines and clutter can be modeled. Then, the difference between the models is used

to discriminate landmines from clutter [30, 52, 31]. A certain implementation of

this approach depends on each sensor technology.

• Learning based approach does not assume any specific model for the sensor re-

sponse (the model is hidden). Instead, a set of classification features which char-

acterize the response are used. The relations between the features and the detected

object are determined by learning the hidden pattern from training data. Such

approaches are based on the techniques of pattern recognition [53]. Then, the land-

mine detection is usually considered as a classification with two classes: landmines

and background. Different classifiers and feature extraction methods were used

in previous works: Bayesian classification is used in [33, 52, 54, 55, 56], Support

Vector Machines in [57, 52], Dempster-Shafer classification in [58, 59, 60], neural

networks in [61, 62, 63], etc. In some works the different methods are compared,

however, a definite conclusion about the most suitable approach is not made. This

can be explained by the fact that the performance of landmine detection is affected
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by many parameters including the techniques for estimation of classification fea-

tures and preprocessing of the sensor data.

There are also approaches which combine the both mentioned strategies. For exam-

ple, the parameters of the physical model can be estimated using one of the learning

techniques [30]. Analyzing the previous work which uses both approaches it can be

concluded that the model based techniques are less appropriate for the detection of

landmines in real conditions and at least some amount of learning should be incorpo-

rated in the algorithm. Moreover, the physical modeling is well applicable only for some

of the sensor technologies (mostly, metal detection) and is usually not appropriate for

using of multiple sensors together.

The basic two-class learning-based strategy is usually not effective enough due to

the large complexity of the landmine detection task: the division of all the objects into

categories landmines and background is not logically sound because of the presence of

not-landmine objects which significantly differ from the background. There are few

works which pay attention on this issue. A two-step strategy for landmine detection

using handheld detector is used in [30]. Several works consider a preprocessing step of

Region-Of-Interest extraction [35, 64, 23, 34].

The currently existing algorithms for landmine detection do not achieve the required

high quality yet; the research in this area is ongoing in several directions. It is widely

accepted that the integration of data from several sensors, called sensor fusion, should

improve the landmine detection in comparison to the performance of each sensor used

alone. This fact was also confirmed experimentally in several previous works [65, 59, 66].

In this situation the development of the learning-based algorithms is an important step

forward to develop a reliable landmine detection system.

Sensor fusion

In general, the process of multisensor integration can be implemented in different man-

ners [67]:

• Separate operation for each sensor

• Controlling one sensor by the information from another one

• Fusion of data from several sensors

The sensor fusion approach is widely accepted as the most promising approach to

improve the landmine detection process. The term sensor fusion has several definitions,

which can be found for instance in [68, 67], and basically means any techniques which

assist the integrated usage of several sensor sources to achieve a common goal or decision.
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Figure 1.20: Sensor fusion techniques for landmine detection

Four main types of sensor fusion can be distinguished: signal-level, pixel-level, feature-

level and decision-level fusion [67]. The signal and pixel-level approaches provide the

highest degree of integration. However, they can be used only for sources with equal

working principles. While the feature-level fusion can be used for any combination

of sensors: the integration is performed using features which can be extracted from

heterogenous sources but have the same structure themselves. The decision-level fusion

represent the highest level of abstraction from the used sources. The integration is

performed after the decisions were obtained for each source separately. The structure of

the most appropriate method is determined by the specifics of the used sensors and the

final goal of sensor fusion. In the case of landmine detection the following properties

should be noticed:

• Sensors have different physical principles

• Sensors are not selective for the landmines leading to a high false alarm rate

The sensor fusion techniques which can be used for landmine detection are summarized

in Figure 1.20. It can be seen that the final stage of sensor fusion should be always a

decision or feature-level algorithm because the goal of the landmine detection is a binary

decision about the presence of a landmine. The decision-level sensor fusion combines

the decisions made separately by each sensor, while in the feature-level the raw data

(classification features) from all sensors are processed together. This processing can be

performed on the raw data or on the result provided by a lower level fusion algorithm

(signal- and pixel-level fusion).

There is a lot of research made in the domain of sensor fusion for landmine detection

which utilizes principles shown in Figure 1.20. Examples of using the feature-level

sensor fusion can be found in previous works for different combination of sensor sources:
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metal detector and GPR are used in [58, 61], IR camera and GPR are used in [38, 33],

and a combination of three sensors (metal detector, IR camera and GPR) are used

in [69, 70, 71] An example of pixel-level sensor fusion used for IR cameras with different

bands can be found in [72, 73]. The decision-level fusion is the simplest approach in

terms of implementation. It is explored for a combination of metal detector and GPR

in [30, 61, 74], for IR camera and GPR in [75], for a combination of IR cameras in [65]

, and for the three sensors in [59, 76, 77, 69, 60, 78, 66]. There is also some research

in the domain of sensor fusion for landmine detection without considering any specific

sensors [79, 80] In some works these two concepts are compared [61, 76, 69, 60], but

there is no experimentally proven conclusion which strategy is better. However, it is

considered that the feature-level fusion is more preferable because it provides a deeper

integration of data.

1.5 Problem statement

The present work is focused on development of a sensor fusion approach for landmine

detection assisted by autonomous mobile demining robot. The main goal is creation

of new sensor data processing algorithms and implementation of them for a prototype

scanning platform. It is assumed that the demining robot can be equipped with the

available sensor technologies, such as metal detector, infrared sensors, and ground pen-

etrating radar. The algorithms should be implemented on a prototype demining robot

which has cartesian mechanical structure and is controlled by pneumatic actuators.

This simple scanning platform is in accordance with the idea of simplicity to be used

throughout the developed algorithms which should not be computationally expensive to

be implemented on ordinary hardware.

Fusion of results obtained from different sensors providing the required quality of

landmine detection is a key issue. However, the acquisition of reliable data from the

sensors is not possible without correct positioning of the sensors and without an adequate

path planning for the robot providing full coverage of the scanned area. Therefore,

another important goal in this thesis is development of new algorithms for a robot-

assisted sensor data gathering including the path planning and the positioning of the

platform.

The combination of the two mentioned tasks and implementation of them in one

framework on a demining robot is another target leading to new important step forward

in the direction of creation of reliable autonomous mobile demining robot.
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1.6 Contributions

The main task of this work, sensor fusion for landmine detection, raised several related

problems. That is why the original contributions made in this work belong to three

research topics: data processing algorithms for automatic multisensor landmine detec-

tion, path planning algorithms for mobile scanning platform to assist the sensor data

gathering, and software implementation.

Landmine detection

• A dedicated multi-stage strategy was developed for landmine detection [81, 82].

Following this approach, the raw sensor data are first processed to extract regions

which contain objects suspected to be landmines. Then, the detected objects are

classified into two groups: man-made objects and natural objects. On the final

stage, the man-made objects are classified to be landmines or other objects. The

last two steps represent together the recognition stage of landmine detection. The

advantage of this strategy is the ability to perform landmine detection according

to the quality of the available sensor data: the better the sensor data, the larger

number of stages can be accomplished. Different types of multi-stage strategies

were used in previous works without paying attention on this issue.

• A novel online algorithm for automatic extraction of ROI was developed in order to

complete the first stage of landmine detection, detection of suspected objects, [81].

In the previous works a similar problem is usually solved using computer vision

techniques including circle detection, contour detection, etc. However, it was

found that such techniques are inconvenient or completely inappropriate for the

online implementation required in this work. The developed approach is able to

detect the region right after it was fully scanned by a scanning device. Other

advantages of the algorithm include the low number of parameters which need to

be adjusted (two sensor dependent parameters), the general object model which

allows to detect objects of different shapes, and an ability to handle changes of

environmental conditions.

• Several novel classification features were developed to be used for landmine recog-

nition together with the ones adopted from other fields of pattern recognition

or previously utilized for landmine detection [83]. The developed features help to

analyze the shape and nature of the objects and to improve the recognition results.

• Taking into account the specificity of the landmine detection task the new con-

cepts of selective training and of dominant class were developed after the analysis

of the classification features. It was revealed that the large number of features
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have bimodal distributions for one of the classes. The larger maxima are usually

highly overlapped, while the smaller one is better separated. This is interpreted

as specifics of the landmine recognition where the signatures of the landmines

and other objects can be very similar: the property reflected by the classifica-

tion feature is almost equally present in both classes of objects (larger maximum),

however, a small amount of objects can be separated (smaller maximum).

The developed approaches alter in some way the training of the classifier using

only the well-separated maximum of the feature distribution. As a result this

improves the recognition .

• In the framework of feature-level sensor fusion implemented in this work a concept

of mixed features was developed [82]. It implements an idea of signal-level sensor

fusion used in the case of heterogeneous landmine detection sensors. This strategy

improves the stability of the feature and allows to solve the problem of missed

features. However, it can be used only for high-level features related to shape and

nature of the object. In previous works the concept of signal-level sensor fusion for

landmine detection was used only for the sensors which utilize the same physical

principle.

Path planning and positioning

• To improve the reliability of the cartesian pneumatic platform special algorithms

for simultaneous movement of parallel cylinders and for smooth landing of the legs

were developed.

Attempting to solve the remaining problems an additional incremental positioning

system based on vision was developed. The system utilizes a CCD camera pointed

downward to detect located on the ground natural landmarks and their relative

movements. For this purpose novel algorithms for detection and association of

natural landmarks were developed [84]. In previous works natural landmarks are

usually utilized for global localization and the local positioning is performed using

more computationally expensive techniques.

• A novel algorithm for unknown area coverage to allow the scanning platfom to

acquire the sensor data at each point of the specified area [85]. The algorithm

satisfies the restrictions applied by the demining task: the coverage path must

be regular to allow acquiring data from the sensor and the path of the platform

should always lie in the already covered area. An addition advantage consists in its

poor dependence on the robot odometry which makes it suitable for other mobile

robot applications like cleaning [86].
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Software implementation

• The developed algorithms for landmine detection and path planning were imple-

mented in one software framework written in C++. The diversity of the imple-

mented problems allowed to develop a convenient structure of object abstraction

for mobile robot programming which was not available in the existing software

frameworks. For the experimental part of this work two mobile devices with com-

pletely different mechanical structures were used: the legged scanning platform

and a wheeled differential drive mobile robot. To allow a transparent transition

of the algorithms between platforms an appropriate robot abstraction was imple-

mented. With this software the developed algorithms were tested on the wheeled

robot and then used for the demining platform with no change.

• A graphical operator interface was developed in order to show the state of the

robot in real time and to allow manual control (even is the demining robot is

developed to be a completely autonomous device). The functions of this software

were extended to assist the research in landmine detection allowing to test the

developed algorithms offline and maintain a database of landmine signatures. By

doing this, it is simulated that the testing is performed in real conditions on the

robot avoiding any transitions of the developed algorithms for the real usage.

An important contribution of this work is the combination of landmine detection

and path planning algorithms assuming the restrictions of one to another. In previous

works only one aspect of the problem is usually considered and often the main attention

is paid to the mechanical design of the robot or the landmine detection is considered

apart.

1.7 Short Thesis Overview

Chapter 1 provides an introduction to the problem of humanitarian demining. Here an

overview of the landmine problem in general and the specifics of humanitarian demining

is given. The currently available solutions together with the ones being still in devel-

opment are reviewed. Then, the discussion is focused on the sensor technologies and

algorithm for automated landmine detection. Finally, the goals of this research are also

formulated here.

Chapter 2 provides a global overview of the techniques developed in this work and an

overview of the used hardware. The prototype demining robot used for the experiments

is introduced providing information about its mechanical structure, installed landmine

detection sensors, control hardware, and structure of the control software. General

strategy used in this work for the development of landmine detection and path planning
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algorithms is also presented here together with the tools which were used during this

research.

The approach for sensor fusion based landmine detection is described in detail in

Chapters 3 and 4. Chapter 3 is dedicated to the first stage of the landmine detection

process, the problem of suspected object detection performed on the raw sensor data

during scanning. Here, the novel approach developed for Region-Of-Interest extraction

is presented together with the results of its experimental testing.

Chapter 4 provides a description of the algorithms developed for the last stages of

landmine detection. The classification features used for landmine recognition including

the novel features developed in this work are described in detail together with techniques

used for the feature analysis. The newly developed concepts of mixed features, selective

training and dominant class are presented. The Chapter is finalized by the experimental

results which allow to verify the proposed approaches.

The positioning of the mobile scanning platform is described in Chapter 5. The

two localization systems are investigated: the odometry of the robot and the additional

vision system. The description of the developed vision based localization system includes

the novel algorithms for detection and association of natural landmarks and results of

their experimental testing. Several techniques are proposed here in order to improve

the odometry system of the robot as well.

Chapter 6 provides the description of the online unknown area coverage algorithm

with simulation and experimental results of its performance.

Chapter 7 presents the results of experimental tests performed with the prototype

demining platform on the test minefields located in Meerdaal bomb disposal unit.

Finally, the conclusions and recommendations are presented in Chapter 8.
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Chapter 2

System Organization

This work is part of the project DEMINE which is being developed in Institute of

Systems and Robotics, Coimbra, Portugal. The goal of the project is to develop a

mobile robot able to explore a certain area and detect antipersonnel landmines located

in it. This chapter describes the system developed in this work as a whole together

with the tools used to assist the development. The used prototype demining platform

is described in Section 2.1 together with the improvements made in the preset work.

Sections 2.2 and 2.4 provide an outlook on the basic strategies which were used during

the development of algorithms for landmine detection and path planning. The detailed

explanation of these approaches can be fond in the subsequent chapters. The additional

differential drive mobile Nomad Super Scout robot used for testing of path planning

algorithms is also introduced in Section 2.4.

The experimental environment used for testing of landmine detection algorithms in

this research, which was composed of public databases of landmine signature data and

experimental test minefields, is presented in Section 2.3.

Finally, the structure of the software in which all the developed algorithms were

implemented is described in Section 2.5. The details about implementation of each

particular algorithm are located in the section Implementation of each chapter.

2.1 Demining Robot Prototype

The main objective of this research is the development of new algorithms for landmine

detection and path planning. The practical implementation of these algorithms is han-

dled with assistance of a previously developed prototype demining platform LADERO

[22]. It has a cartesian mechanical structure with four axes supported by eight legs

(see Figure 2.1). The movements of the robot are performed using discrete pneumatic

actuators powered by an external air compressor. The following control and sensing

equipment was already installed on the robot at the beginning of the present work [4]:

33
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Dimensions

width 750 mm

length 750 mm

height without equipment 280 mm

Weight without equipment 48 kg

Maximum obstacle height 150 mm

Air pressure 6 bar

Maximum step length 20 cm

Figure 2.1: Prototype demining robot LADERO before the start of this work and its

technical characteristics [4]

Figure 2.2: The demining robot prototype by the end of this work



2.1. DEMINING ROBOT PROTOTYPE 35

• Main control board (Card12 based on Motorola HC12) able to control the actuators

and acquire data from sensors via slave boards;

• Slave boards based on Microchip PIC microprocessors to control: 4 ultrasound

sensors, metal detector, electronic compass, and end sensors of the cylinders;

• Schiebel All Terrain Mine Detector (ATMID) metal detector with acquisition

board providing the audio frequency output signal to the main control board;

• Two infrared sensors with acquisition boards providing analog output signals to

the main control board;

• End sensors of the pneumatic cylinders measuring their limit positions;

• Ultrasound sensors to measure positions of the legs relatively to the robot body

(odometry system);

The installed hardware and existing software algorithms did not provide all the required

means for a reliable landmine detection. For the purposes of this research the following

improvements of the platform hardware were made:

• The audio frequency output used from metal detector was substituted by a more

informative analog signal as described in Section 2.1.2;

• The odometry system was changed to a more reliable one based on discrete sensors

installed on the cylinders (see Section 5.3 );

• Additional equipment was installed: onboard PC, video camera, ground contact

foot sensors, ultrasound sensors for obstacle detection, power supply;

• A mechanical structure to support the control electronics was constructed (see

Figure 2.2);

Next sections describe in detail the scanning principle of the robot and the installed

equipment.

2.1.1 Scanning Principle

The functional structure of the robot is simple as shown in Figure 2.3(a) (additionally

there are also end sensors installed on each cylinder and control electronics not shown

here). The robot can perform two types of cartesian motions in order to scan a specified

area: a scanning step performed along X-axis in order to acquire data from the current

scanning line, and an advancing step along Y-axis in order to move to the next scanning

line and start the motion in the opposite direction. The rotations are theoretically



36 CHAPTER 2. SYSTEM ORGANIZATION

1 - 2 advancing cylinders;

2 - 2 scanning cylinders;

3 - 8 feet

4 - 8 lifting cylinders;

5 - landmine detection sensors;

6 - valves;

7 - body for electronics installation;

8 - 8 ground contact foot sensors;

9 - 8 ultrasound sensors;
(a)

(b)

Figure 2.3: A functional scheme of the robot (a) and its basic scanning step (b)
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(a) (b)

Figure 2.4: ATMID metal detector

possible [22]. However, experiments show that the performed motion is unreliable due

to the slippage and deformation of the robot body, so it cannot be used in practice to

achieve a predictable rotation.

The basic scanning step is performed in several stages shown, for example, in Fig-

ure 2.3(b) for a left-to-right step:

1. The feet of supporting axes are landed, and the moving axes are shifted to the

right;

2. The feet of moving axes are landed and the feet of supporting axes are lifted;

3. The moving axes are moved left making the robot body to drive right;

Depending on the step direction the supporting and the moving axes are changing. The

advancing step is performed in a similar manner, but the moving axes are shifted by a

small distance providing a small step.

2.1.2 Landmine Detection Sensors

Landmine detection sensors are installed in front of the robot providing a possibility

to detect landmines in advance in order to avoid them by the robot. The currently

installed sensors are one metal detector and two infrared sensors.
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(a)

(b)

(c)

Figure 2.5: Signature of a landmine using output audio frequency of metal detector [4]

(a) and a typical form of audio signal as response to a distant (b) and a close (c) metal

object

Metal detector

The Schiebel ATMID metal detector installed on the robot is a professional metal detec-

tor certified for manual demining Figure 2.4(a). Its control electronics is able to control

one of the two available search heads: continuous (ATMID) and pulsed (AN 19/2). The

continuous mode is known to be more sensitive. Thus, the ATMID search head is used

in order to make possible the detection of small metal objects. The control board used

to acquire the output signal of the metal detector processes the frequency of the audio

signal provided for the human operator [4]. However, the informativity of this signal is

relatively low since the obtained landmine signature has very rigid edges as in the case

of an almost discrete sensor Figure 2.5(a).

In order to obtain a better output signal the control electronics of metal detector was

investigated in more detail. It was found that the audio signal shape depends on distance

and size of metallic object as shown in Figure 2.5(b) and 2.5(c). The processing of this

signal is usually simplified (analyzing only the main frequency) which lowers the provided

information. However, the audio signal is the most widely used, probably because it

is the easiest to obtain from the control electronics. The control board of ATMID

metal detector is based on a microcontroller which outputs the audio frequency signal.
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Spectral band 6.5 - 14 µm

K-type output
(a) OS36-10-K-80F

Spectral band 8 - 14 µm

J-type output
(b) OS65-J-R2-4

Figure 2.6: Infrared sensors installed on the robot

Meanwhile, most of the signals received by the microcontroller are preprocessed before.

Thus, there are several testing points on the circuit that provide intermediate data of

the process. Based on this, at least two testing points can be considered as outputs of

the metal detector (see Figure 2.4(b)). A26 TP provides an analog signal changing from

-5V to 5V. It is located after the compensation of air and ground properties (stored

during balancing procedure) and before filtering. The speed of the search head does not

affect this signal and small metal objects cause a constant value. A29 TP is situated

after filtering. When a small metal object is near the search head and motionless it

does not change A29 signal. The sensitivity potentiometer located in the front panel

does not influence A29 and A26 signals. Both signals change their values to negative if

there is an extra metal object and to positive if there is less metal than it was detected

during air and ground compensation. Thus, the negative part of the signal can be used

to estimate the amount of the detected metal, and the positive part to determine if a

new compensation is necessary.

The slave control board for the metal detector was modified to provide the negative

part of the A26 signal as the output value of the metal detector.

Infrared sensors

Two infrared sensors shown in Figure 2.6 are also installed on the robot. They are

based on the thermocouples with different characteristics: K and J. The sensors provide

signals proportional to the temperature of the soil at the current location. To obtain

an IR image of a larger area the sensors should be moved over the area by a scanning

device. An example of the data obtained from IR sensor with K-type output (shown

in Figure 2.6(a)) can be seen in Figure 2.7. It should be noticed that these signals are

very noisy due to the natural fluctuation of the thermal radiation from the soil.
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Figure 2.7: Experimental data obtained from an IR sensor in the area containing one

hot and one cold object.

2.1.3 Control Hardware and Software

The structure of the robot control hardware and software is modular. The tasks which

belong to different layers are distributed among the layers of hardware:

• Onboard PC is a VIA EPIA (VIA Embedded Platform Innovative Architecture)

embedded PC dedicated to high-level control tasks: path planning, navigation,

obstacle avoidance, landmine detection, archiving of the data, and communication

with graphical interface. It is operated under Linux OS.

• Main control board is an Elektronikladen Card12 module based on Freescale MC912DG128A

processor. It controls the actuators of the robot, acquires data from infrared sen-

sors, and communicates with slave modules and with the onboard PC.

• Slave modules are based on Microchip PIC16 microcontrollers and were developed

previously as reported in [4]. They are connected to the main control board via

the SPI bus and control the peripheral functions: metal detector, end sensors of

the cylinders, ultrasound sensors, and an electronic compass.

The structure of the control hardware of the robot is shown in Figure 2.8. The main

control board and the onboard PC are connected via serial link using a protocol based

on Modbus. Using this protocol the PC can access the memory of the robot where

its current state is stored (middle table in Figure 2.9) using the standard Modbus read

registers command (0x04). The control commands which the PC can execute on the

robot are coded as user-defined Modbus commands: 0x41 - do step, 0x42 - rotate, 0x43
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Ultrasound slave module
(control of 4 US sensors)

Ultrasound slave module
(control of 4 US sensors)

(control of end sensors of the cylinders)
End−of−movement slave module

Navigation slave module
   (electronic compass)

Metal detector slave module

Main control board

IR sensors

Onboard PC

SPI

RS 232

Actuators

(a)

Low-level control
Sensor and actuator

interfacing, trajectory control

Control program
Path-planning, navigation,

sensor fusion

HC12

Linux PC

Robot

?

6
Serial link

Operator

Graphical interface
Remote control,

archiving

Linux PC

�

-

Ethernet WLAN

(b)

Figure 2.8: Software and hardware organization
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Figure 2.9: Organization of the robot memory for Modbus-based protocol

- stop, 0x44 - calibrate. Usually, the communication between the PC and the robot

consists in repeating the read registers, command to update the current state of the

robot and sending the control commands. The memory of the robot contains all its

parameters, but in most cases only some of them are needed depending on the goal

of the control program running on the PC. The necessary parameters may be located

in different places of the memory table and require several read registers commands

to be send. Thus, to simplify the communication an additional memory mapping is

implemented on the robot (see Figure 2.9): the Modbus addresses from 0 to 0x7FFF

contain the actual addresses of the robot parameters which will be read using Modbus

addresses from 0x8000 to 0xFFFF. This way only one read registers command is needed

to read all the parameters required by the current program. The program must first

initialize the mapping (left table in Figure 2.9) using the standard Modbus write registers
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Figure 2.10: Graphical interface screenshot

command (0x10). The detailed format of the commands and the robot memory can be

found in Appendix C.

The control software of the robot is also modular following the hardware where it is

executed (see Figure 2.8). The control program contains all the algorithms developed

in this work for landmine detection, path planning, positioning of the robot, etc. Its

structure is described in Section 2.5. Part of the algorithms for robot positioning is

implemented inside the low-level control program because they require low-level control

of the robot movements (Chapter 5). Besides the robot software there is also a graphical

interface connected to the robot via a wireless LAN. It provides visualization of the robot

current state, results of landmine detection and allows to remotely control the robot (an

example of the graphical interface screen is shown in Figure 2.10).

2.2 Approach for Landmine Detection

The most developed sensing technologies for landmine detection currently include metal

detectors, infrared sensors and ground penetrating radar as discussed in Chapter 1.

They are considered here as typical detectors whose data should be combined by means
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Figure 2.11: General structure of the proposed methodology for sensor fusion

of sensor fusion techniques. The goal of this process is to provide a single decision

about presence or absence of a landmine. The approach developed in this work is based

on feature-level sensor fusion and has several stages. The multi-stage nature of the

approach is necessary to address the specific challenges associated with the landmine

detection task.

First of all, it is important to mention that the used sensors do not detect the

landmines directly. Instead, they can only distinguish heterogeneity of some physical

parameter against the background. This physical property found in a landmine can also

be present in other objects, called clutter. The presence of heterogeneity signifies only

that there may be an object suspicious to be a landmine. The difference between the

background and the objects (heterogeneities) gives the largest variation in the sensor

signal, while the difference between landmines and clutter is much lower. An attempt to

separate the three categories (background, landmines, and clutter) in one classification

process is a complicated task because the signatures of landmines and clutter are nearly

the same in relation to the background. Thus, the most effective first stage of the

landmine detection process seems to be the classification with two classes: Background

and Suspicious Objects. Here Suspicious Objects include the actual landmines, other

man-made objects, natural debris, and can also represent just heterogeneities of the soil

properties. The algorithm for detection of suspicious object developed in this work is

described in detail in Chapter 3. It uses the difference of the sensor value and the spatial
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information to detect a region, called ROI, where the signature of the object is located.

In the following step, the ROIs which represent the signatures of the same object for

different sensors are combined together forming a complete signature of the suspicious

object.

Next stage of landmine detection should finally recognize the landmines from the

previously detected Suspicious Objects. An important issue at this point is the clas-

sification features which can be used for this purpose. While the difference between

the background and the objects is well seen on the spatially mapped sensor data (see,

for example, Figure 1.13), the signatures of the landmines almost do not contain any

visual tokens which would help to recognize them among other objects. As there is no

single “selective” classification feature, a large number of unselective features can be

used to perform the classification. This situation is similar to the usage of sensor fusion

for several nonselective sensors each of which cannot be used alone. The classification

features may reflect the difference between signatures based on their shape, statistical

and information measures, etc, as described in Chapter 4. The common idea behind the

classification features is an attempt to recognize some regularity in the object signature

because a landmine has a regular structure with certain locations of the parts and some

symmetry. This property is probably the only possibility that can be used to separate

the landmines from clutter. However, regularity is also present in many other man-made

objects. If the landmines were laid only on the ground surface their structural signa-

tures could be easily recognized from other artificial objects by a vision system, but the

subsurface detectors cannot usually provide so rich information.

The recognition stage is further divided in sub-stages which can be performed or

not depending on the data quality: the Suspicious Objects are classified in classes

Man − made Objects and Natural Clutter, and then the Landmines are recognized

among the Man−made Objects. The new algorithms for these two stages are developed

in the present work as described in detail in Chapter 4. The quality of the sensor data

obviously limits the possibilities of the recognition method. Having better sensor data

this process could be even extended to the recognition of certain types of landmines.

However, such data is not currently available.

Figure 2.11 shows the process of landmine detection described above. One more stage

is added to it for the research purposes: the signatures of detected suspicious objects are

collected in a database. Each object in the database is associated with the experiment

where the data were obtained, the coordinate data, the ground truth, etc. providing an

unified approach for representation of landmine signatures. The stored signatures are

later used offline for the testing of classification algorithms. The developed database is

described in detail in Chapter 3 (Section 3.6).

One of the advantages of the proposed strategy is its ability to account for the

quality of the sensor data as shown in Figure 2.12. The landmine detection process can
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Landmines Other Objects

Man-made Objects Natural Clutter

Suspicious Objects Background

Sensor data

Figure 2.12: Three-step landmine detection (classes highlighted with gray background

can be associated with landmines)

be terminated at any stage if the data quality is not enough to perform a more precise

classification. Then, all objects of the appropriate class (shown with gray background

in Figure 2.12) are considered to be Landmines allowing to perform the detection but

with higher false alarm rate. Thus, the developed landmine detection strategy naturally

appears as a step by step reduction of the false alarm rate.

2.3 Experimental Environment for Landmine De-

tection

To acquire experimental data for the development and testing of landmine detection

algorithms significant resources are needed. This basically includes the creation of a test

minefield with buried landmine dummies (usually, real landmines without explosives).

Such effort supported by international programs was already made in order to provide

model minefields for robots testing and to create databases of experimental data open

for the public access. The data are usually acquired by a precise scanning device so

they can be used for landmine recognition. For the purposes of this research (testing

of the landmine detection algorithms) additionally to the testing results obtained by

LADERO platform two databases which contain multisensor data were used.

2.3.1 Landmine signatures databases

Multi Sensor Mine Signature database

MSMS database is maintained by the EU Joint Research Center (JRC) in Ispra, Italy [5].

The database contains multi-sensor data recorded on 21 test fields of 7 different soil types

(see Table 2.1), populated with mine surrogates and other objects. In this work the data

from four sensors were used: Vallon ML 1620C pulsed metal detector, Foerster Minex
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Soil type\Landmines Small size Medium size Large size

Cluttered grassy terrain A1 B1 C1

Loamy soil A2 B2 C2

Sandy soil A3 B3 C3

Pure sand A4 B4 C4

Clay soil A5 B5 C5

Soil with organic A6 B6 C6

Ferromagnetic soil A7 B7 C7

Table 2.1: MSMS test fields [5]

2FD 4.500 continuous metal detector, AGEMA 570 infrared camera and experimental

ground penetrating radar C scans. Only data from 9 fields are available for all four

sensors: A1, A2, A3, C1, C2, C3, C4, C5, C7 [5]. Thus, a combination of three sensors

(without the GPR) was also used for experiments in order to maximally use all data

sets obtained from 21 fields. Each field measures about 6m x 2m.

MACADAM

The MACADAM campaign was performed on the test fields of JRC by Thomson-CSF

Missile Electronics [3]. The data are recorded for the following sensors: Mitsubishi IR

540 CD infrared camera, Ebinger EBEX 420 PB metal detector, Thomson-CSF TME

SA X-band passive microwave radiometer, and ERA Technology SuperScan ground

penetrating radar. The test fields are of three soil types: clean agricultural soil (12m x

6m), clean sandy soil (8m x 6m), and undisturbed local terrain (9m x 6m). Comparing

to the MSMS database, the objects in these fields are located closer to each other

providing a less realistic scenario (and a more challenging situation for the recognition

algorithms).

2.3.2 Experimental test minefields

The experimental data obtained in well controlled conditions by a stationary scanning

device as in the case of public databases are usually of a relatively good quality. This is

important in the stage of development of the landmine detection algorithms to eliminate

the influence of the scanning platform. However, to make a step towards the real

situation it should be also confirmed that a mobile scanning platform is able to provide

the data which can be used at least for some of the stages of the landmine detection.

Such data will obviously have lower quality, but there is always a possibility for the

improvement of the scanning mechanism with new technologies.

There are few test minefields available in Europe for the testing of the prototype
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Figure 2.13: A part of the test minefield with mixed soil at Meerdaal bomb disposal

unit

landmine detection platform according to its size and necessary equipment. A test

field located at Meerdaal bomb disposal unit, Brussels, Belgium [87] was used for the

experimental testing of LADERO platform . There are several fields with different soil

types. However, only the one with mixed soil (see Figure 2.13 was used here because

of easier accessability by the robot. The results of these experiments are presented in

Chapter 7.

2.4 Approach for Path Planning

The landmine detection strategy described in the previous section defines the require-

ments for the path planning strategy of the robot. The main requirement is gathering

of spatially mapped sensor data which can be used to acquire complex feature for land-

mine recognition. Assuming that the landmine detection sensors are fixed on the robot

the robot itself has to execute a path which provides such data. The most convenient

and widely used trajectory for this purpose is a back-and-forth path (also called, zigzag

or boustrophedon pattern) when the robot moves along one coordinate forth and back
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Figure 2.14: Basic back-and-forth motion of the robot

advancing for a small distance along the other coordinate. A scanning device is usually

executing the same strategy. The prototype scanning platform is well suitable for such

motion because it can move along straight lines in four directions. However, due to the

low controllability of the pneumatic cylinders the coordinate grid which the robot can

provide is not regular as shown in Figure 2.14(a). An algorithm for grid regularization

required for further processing of the data is described in Chapter 3.

An accurate positioning of the platform is complicated both by internal and by

external problems. Chapter 5 describes several of these problems and the solutions

developed during this work including:

• Poor contact of the feet with the ground does not always allow a reliable motion.

To improve this situation contact sensors were installed on the feet of the robot

and a special algorithm for adjustment of the legs heights was developed.

• Two parallel cylinders of the robot are supposed to move with equal speeds to

provide a reliable motion of the robot body. However, it is not practically possible

to adjust their speeds with the required precision, which leads to the deformation of

the robot and consequently to the distortion of its path. The developed algorithm

provides an adjustment of the speed during the motion controlling the positions

of the rods and switching the motion of the cylinders on and off.

Assuming these improvements the trajectory of the robot is still affected by unavoidable

slippage and small rotations which provide localization errors if navigation is based only

on the robot odometry. In order to solve this problem a controlling video system is

installed as explained in Chapter 5. It uses a simple CCD camera and allows detection of

relative displacement of the robot based on the virtual movements of natural landmarks

found on the ground surface.
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(a)

(b)

(c)

Figure 2.15: Nomad SuperScout Robot (a) and the control electronics for its connection

to a PC: (b) - installed on the robot, (c) - installed on the PC.

The back-and-forth path executed by the robot is enough for scanning of an area if

it does not contain any obstacles. Some minefields may be free of obstacles. However,

it is considered in general that some obstacles could be present on the way of the

robot. Then, the simple path cannot provide a complete coverage as shown, for example,

in Figure 2.14(b). Moreover, the locations of the obstacles are usually not known,

because of difficulties in the exact mapping of the minefield which cannot be entered.

To assist the complete coverage of such area an online coverage algorithm was developed

as described in Chapter 6.

2.4.1 Nomad SuperScout Robot

Testing of the path planning algorithms is usually complicated when using the prototype

scanning platform due to its large size and low speed. Employing a smaller robot instead

of the large one is possible in many cases if the algorithm does not rely on certain robot

mechanics. In this work a Nomad SuperScout mobile robot was used for this purpose.
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Figure 2.16: Structure of control hardware and software used for Nomad SuperScout

mobile robot

This robot is based on a two-wheel differential drive and is equipped with 16 sonars for

obstacle detection (see Figure 2.15(a)). The control of the robot is performed on a remote

PC which is connected to the robot via wireless interface based on Radiometrix Radio

Packet Controller (RPC) (Figure 2.16). The control board of the robot is connected

by a serial link to the Card12 board which controls the RPC and simply transmits

the data to/from the serial interface (Figure 2.15(b)). The same pair of Card12 and

Radiometrix RPC is connected to the control computer (Figure 2.15(c)). Such interface

allows a transparent wireless link, in which the control computer can behave in a way

as if it was installed on the robot and directly connected to its control board. This

design is especially convenient for the testing applications because it allows to save the

battery power and eliminates the problems related to the installation of an onboard PC

(hardware failures due to the movements of the robot and lack of power). A detailed

description of the implemented hardware and software can be found in Appendix A.

The results of the path planning experiments obtained with this robot are described in

detail in Chapter 6.

2.5 High-level Control Software

As it was described in Section 2.1.3 the algorithms developed in this work are imple-

mented in the control program. This software is written in C++ to run under Linux

OS. The developed framework is not only dedicated to the implementation of the tasks

of this research but also has some conceptual structures useful for robot programming

in general.

There are several attempts to provide a common software framework for robotics
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[88, 89, 90, 91, 92]. However, still there is no general framework which would support

a diversity of robotic tasks. The existing projects in this area are usually focused on a

certain type of mobile platform. This leads to dependence of the control algorithms on

a particular mechanical structure of each robot. There are other frameworks which only

provide an interface for communication between software objects and are convenient for

large-scale projects which involve many developers.

The framework developed in this work does not claim to provide general software for

robotics. However, the problems which were not addressed before are highlighted here

and can be used in future developments of such a general mobile robot programming

framework.

The structure of the control program developed here is object-oriented. A class

represents an abstraction of a physical object or an algorithm. There is one working

loop which contains all the fast processing required periodically, including reading of the

robot status, taking decisions about the next actions and moving the robot. There is

a separated thread for archiving and interface. Each software object may also have an

additional thread for time-consuming processing.

This section describes the general principles of organization of the control program.

The remarks about the implementation of certain algorithms are located together with

their description in the next chapters.

2.5.1 Object Abstraction

The logical structure of the control program is determined by the goals of this work: it

implements algorithms for path planning, navigation and sensor fusion. This variety of

tasks can still be defined using a relatively simple tree-like structure of software objects:

© Robot

© Sensor

© Filter

© Map

© Behavior

© Decision maker

The Robot object defines the mechanical structure of the robot and its control hard-

ware architecture. There is also an additional category Robotconnection which denotes

the real interface between the program and the robot hardware, for example, it can be

a real robot or a simulator. Object Robot contains several Sensor objects each of which

provides an interface to the sensor data. Sensor obtains its current value automatically
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Figure 2.17: Structure of the control program

via the object Robot every cycle of the working loop. A Sensor may have two different

types of conversions of its value:

• Filter performs a conversion without changing the type of the signal (for example,

a Kalman filter provides an output value of the same type as the input value)

• Map converts the sensor value to a different form (for example, performing a

spatial mapping)

The Behavior object provides an unified interface for any motion or behavior which

the robot can execute. It defines a procedure for taking a decision about the next motion

command to be sent to the robot. The algorithms for this processing are organized as

objects Decisionmaker. A Decisionmaker is usually associated with several Sensors

(and their Filters and Maps) to obtain the necessary data and provides a status which

can be used by the Behavior. A recognition or sensor fusion algorithm is an example

of the Decisionmaker.

Every software object has a possibility to perform fast processing in the working loop.

However, this may be not enough for complex objects like pattern recognition algorithms
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Figure 2.18: Example of a wall-following motion controlled by the same algorithm for

two different robots

which require long time for processing. The main control working loop cannot be frozen

for such tasks because it controls the movements of the robot. For example, in the case

of landmine detection, there is no specific working loop in which the landmine must be

recognized, as long as it is far enough in front of the robot, and if the processing did not

finish until the path-planning decision must be taken, the robot can be stopped. For

this purpose each object can also implement its slow processing in a separated thread.

To avoid multiply access of the same data from different threads an unified structure

of such fast-slow object is implemented. It is based on standard possibilities of C++

including templates. A detailed explanation of this implementation can be found in

Appendix B.

The structure of the control program described above is shown in Figure 2.17. This

example shows a rough structure of the program for the demining robot: it contains a

sensor fusion algorithm for landmine detection and an exploration behavior, and controls

the robot.

2.5.2 Robot-Behavior Abstraction

The object abstraction allows to develop variety of sensor fusion, path planning and

navigation algorithms without special attention on the robot mechanical structure. To

support the robot abstraction the most challenging is to implement the behaviors of the

robot because they have deal with the robot structure most closely.

The availability of two different robots for this research gave rise to an interesting

problem: how to implement the abstraction between robot and behavior so that the path

planning algorithm can be performed on both robots without changes and having a good

efficiency. One solution can be to provide the simplest path which can be executed by

all robots, but in this case more advanced robots are not used efficiently enough (for
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example, the Nomad SuperScout can provide a smooth trajectory while the demining

robot can only perform a path with rigid edges).

The approach implemented in this work is based on vector representation of the

movement. The Behavior takes the decision about the desirable movement of the robot

and forms the vector whose parameters define:

• starting point of the vector - desirable position of the robot;

• angle of slope - direction of the following trajectory;

• vector length - safe distance without obstacles in this direction;

Having this information each type of robot plans the actual motion. An example of how

this strategy works is shown in Figure 2.18 where the same algorithm for wall-following

is executed by both robots.

2.6 Summary

The approaches developed in the present work were outlined in this chapter in order

to show a general picture of the system. The tools and the experimental environment

which was needed for this research are also presented. Finally, it was necessary to show

the structure of the software in which all the algorithms were implemented in order

to be used onboard of the demining robot. The following chapters describe the newly

developed algorithms in detail together with some details on their implementation inside

this software framework.



Chapter 3

Suspicious Objects Detection

This chapter describes the algorithm developed in this work for the recognition of sus-

picious objects using landmine detection sensors. This process is a necessary first stage

of landmine detection which provides preprocessing of the data to be used further by

more advanced recognition techniques. The state of the at in this topic is described in

Section 3.1 and the problem statement is formulated in Section 3.2. The novel approach

developed for recognition of the suspicious object signatures for each sensor is presented

in Section 3.3 and the approach for their association in order to form a complete object

- appears in Section 3.3.6. This is followed by the experimental results in Section 3.5

and the description of the created landmine signature database in Section 3.6. Some

details about the implementation of the algorithm are given in Section 3.4.

3.1 State of the art

The task of suspicious object detection was recently addressed in several works devoted

to landmine detection. In most cases this processing is not concentrated solely on the

detection of all possible objects against the background, but also attempts to include

some recognition ability to reject the clutter, mixing several classification tasks in one.

This process is also called Region-Of-Interest extraction by the name of a similar task

in computer vision area. The suspicious object to be detected is a collection of Regions-

Of-interest which represent signatures of the same real object obtained from the data

of different sensors. The signature from each sensor is present in this collection only

one time or can be missed in case if the sensor does not detect the object (as a metal

detector will not detect a plastic object). The ROI is an area of spatially mapped sensor

data which fully contain the signature of the object. It is characterized by its bounding

rectangle. The task of this stage of landmine detection is the detection of ROIs and

association of the ones representing the same object.

It is widely accepted that this stage is required for further landmine recognition

55
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which includes feature extraction and classification. Similarly to other fields of pat-

tern recognition in some works the ROIs are even selected manually [35] allowing to

concentrate only on the recognition step. The common techniques for automatic ROI

extraction are also adopted from computer vision by treating the spatially mapped sen-

sor data as a gray image. These techniques include image segmentation and detection

of certain shapes (circles, contours, etc.).

The simplest approach is a segmentation based on thresholding. It is used, for ex-

ample, in [33] for segmentation of GPR data. A threshold value is applied to the image

in order to create its binary representation where the objects (areas with abnormal

intensity) are highlighted. Then a region growing algorithm is used to determine the

connected pixels which finally form the ROI. To choose a good threshold value the whole

image must be usually analyzed (for example, by analyzing its histogram). A too high

threshold may lead to missing some objects, while a too low threshold may join several

close objects together. Thus, the same threshold may not be used for data obtained

in various environmental conditions when the background image intensity is typically

different. In general, the threshold has to be constantly adjusted to the changing con-

ditions. More advanced texture segmentation may also be used. However, without

remarkable improvement in comparison to the usual thresholding [93]. It seems that

the texture segmentation is not very applicable in this case because the data are poorly

structured.

There is a group of approaches which use information about the shape of the object

instead of its intensity. Tophat filter and Hough transform are used for the detection of

circles [32]. In this case the radius of the circle has to be specified beforehand. Methods

of mathematical morphology can be used as shown in [34]. For the application of these

techniques the data have to be preprocessed with, for example, a Gaussian filter in order

to reduce the noise.

A more general approach which does not rely on a certain shape of the objects is

proposed in [58]. A watershed algorithm is applied there after a Laplace filter.

A common problem of these methods is the large number of parameters which have

to be selected based on the data themselves (like, kernel size for a filter). This makes

the tuning of the parameters complicated and restricts an online implementation. The

existing algorithms also do not provide any means to determine if an object was fully

scanned by the scanning device. In fact, the algorithm can be only started when the

signature of the object is fully available, otherwise, it will detect only a part of the

object. This fact provides one more limitation for an online implementation.
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3.2 Problem Statement

There are no reliable algorithm of ROI extraction for landmine detection developed

up to now. The following requirements should be accomplished by the ROIs detection

algorithm:

• The algorithm should be able to use data of low-quality in terms of spatial resolu-

tion and noise. This requirement is important to allow the usage of the algorithms

on the mobile scanning platform which is not able to provide good spatial resolu-

tion of the data.

• Signatures with different shapes should be detected. No particular shape, for

example, circular, should be considered as a feature for the detection because the

signatures are not limited to simple shapes. Even in the case of only circular

signatures the data can be deformed due to the scanning errors, thus distorting

the signature shape.

• The algorithms should provide all the processing online, which means that the

signature of the object should be detected right after it is fully scanned by the

scanning device. It should also not be detected only as a part until it is fully

scanned.

An algorithm which satisfies the above requirement is needed and was developed in

this work and is described in the next section.

3.3 Approach

The main idea behind the algorithm is a simple assumption that the ROIs can be

found in places where heterogeneities in sensor readings occur. Such heterogeneities

are analyzed using two iterative filters. This process is performed in 1D which helps

to make the algorithm to perform online. The difference between the filters is mapped

spatially and then the ROI is created using a technique based on region growing. All

the process can be referred as a rule-based classifier because the region growing part of

the algorithm is controlled by a set of rules. These rules, in fact, determine the model of

the object to be detected and allow to obtain the required ability to detect the objects

of different shapes.

All the stages of the developed approach are described in detail below.

3.3.1 Preprocessing of the data

It is assumed here that the sensor data are obtained by a scanning device. It can be

a stationary scanning mechanism, as the one used, for example, in [5, 3], or a mobile



58 CHAPTER 3. SUSPICIOUS OBJECTS DETECTION

X−direction movement

Y
−d

ir
ec

tio
n 

m
ov

em
en

t

measurement point
regular grid
robot path

Figure 3.1: Example of a path followed by the robot

scanning platform as the prototype demining robot used in this work. The cartesian

mechanical structure of the robot allows to scan the terrain while performing the move-

ments of the robot body. To obtain the map (image) of the sensor data the robot

performs back-and-forth motions covering the defined area. The robot performs the

scanning of the area alternating between the two basic movements which were described

in Section 2.1.1: scanning step along X axis and advancing step along Y axis.

In an ideal case this set of motions would form a regular grid of sensor readings, but

in reality the situation is complicated by using discrete pneumatic cylinders which leads

to a not completely regular data grid as shown in Figure 3.1. Therefore, regularization

of the grid is needed in order to provide the data suitable for further processing.

Grid regularization is performed using a simple algorithm based on 1D linear inter-

polation. The mapping process is performed as follow:

1. During X-direction movement each two real points form a set of temporary points

with the same Y coordinates. X coordinates of the temporary points fit to the de-

sired grid knots whose values are calculated using linear interpolation (Figure 3.2a

and b).

2. Two temporary points with the same X coordinate obtained in step 1 form the val-

ues of the grid knots situated between them by linear interpolation as well(Figure 3.2c).

In case of a stationary scanning device the same algorithm is used for the grid

reshaping if necessary. This simple algorithm does not require significant processing
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Figure 3.2: Mapping the sensor values into a grid-map
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Figure 3.3: Detecting signal heterogeneities: the fast filter (gray line) follows the signal

(gray dotted line), and the slow filter (black line) follows its average.

time, thus a grid-map for each sensor can always be updated online.

3.3.2 Detecting signal heterogeneities

While the sensor signal is acquired it is processed to detect heterogeneities which may

signify the presence of a suspicious object. This is a 1D analysis without considering

the spatial location of the current sensor value. An even when the heterogeneity occurs

is called an interesting point.

A heterogeneity in sensor readings can be detected by analyzing changes of its value.

It is proposed to use for this purpose two iterative filters based on the principles and

equations of the Kalman filter with different parameters.

The process model is assumed to be: xk = axk−1 + wk−1 where a = 1. This means

that the initial signal is considered to be constant with the process noise wk. The process

noise covariance Q represents a possible signal deviation from a constant value. Q is
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Figure 3.4: Detecting signal heterogeneities: the slow filter is pulled up (down) to the

fast one at the interesting points

considered to be constant in time. Selecting different values for Q it is possible to obtain

filters with different behaviors: the larger Q, the more exact and faster a filter follows

the signal. Figure 3.3 shows a sample signal and two filters with Q = 40 and Q = 0.004.

The measurement noise covariance R for both filters has the same value. It can be

noticed that the slow filter provides an average level of the signal while the fast filter

tracks it more closely. An interesting point is detected if the difference between the slow

filter and the fast filter exceeds a threshold. This threshold takes the same value as Q

used in the fast filter : this value is considered to be significant to form an interesting

point.

Every time an interesting point is discovered the slow filter is “pulled up” to the fast

filter by changing its system parameter a. This procedure prevents detecting the same

interesting point several times and allows to track the dynamics of the filters differences

which will be used for the next steps. This process is shown on Figure 3.4.

3.3.3 Segmented Map

Segmented Map (SM) is a grid-map which represents interesting points spatially. It is

formed as follows:

1. An initial integer current value is chosen (it can be any number, for example 100)

2. If V aluefastfilter − V alueslowfilter > threshold then current value is incremented

If V alueslowfilter − V aluefastfilter > threshold then current value is decremented

3. Current value is mapped to the segmented map according to the interesting point

coordinates
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Figure 3.5: Value of the Segmented Map is increased and decreased by an integer value

depending on the difference between the filters
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Figure 3.6: An example of Segmented map (a) and extrema searching in it (b)

This process forms a map with homogeneous segments that differ from each other by an

integer value (the values inside segments are not important for the rest of the algorithm,

whereas the difference between them allows to distinguish the segments from each other).

Figure 3.6a shows a segmented map obtained from the sample data.

An important property of the segmented map is: the center of the ROI along X

coordinate corresponds to the local extremum on the segmented map along X coordinate.

A maximum/minimum searching is performed to detect all local extrema for each value

of Y coordinate. The nature of the sensor determines which type of extremum should

be used: for a metal detector only maxima are appropriate, while for an IR sensor both

maxima and minima are considered. The result of a maximum searching is presented

in Figure 3.6b.
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3.3.4 Region growing

Each extremum encountered on the previous step starts a region growing process as

follows:

1. Selecting a segment to which the extremum point belongs - start segment. The

start segment forms an initial Object Area - a grid map containing all the segments

which belong to the detected object

2. Detecting all segments adjacent to the Object Area

3. Any detected segment is tested according to the rules presented below. If the

segment passes the test it is joined to the Object Area

4. If there are no new segments joined the region growing is finished, otherwise repeat

from step 2.

In step 3 each segment is tested to satisfy the following requirements:

• 95% of the path between the current segment and the start segment must be

located inside the Object Area

• The aspect ratio of the Object Area should not be increased by the addition of the

segment

• The extremum value inside the segment must not exceed the one in the start

segment (this ensures that the region growing is started from the middle of the

object)

The obtained Object Area (OA) is tested again in order to reject the object whose

aspect ration exceeds 3. If the object is rejected the extremum which started it is

marked in order not to initiate a new region growing. This algorithm is applied to all

encountered extrema.

3.3.5 Final ROI representation

The final ROI is a rectangle which contains the obtained Object Area. This rectangle is

brought in correspondence with the initial grid-map forming a Data Map (DM).

The final ROI consists of three grid-based maps shown in Figure 3.8: Data Map

(DM), Object Area (OA) and Segmented Map (SM). The two additional maps increase

the amount of information about the object:

1. The Object Area contains a rough geometrical shape of the object. Thus, by

multiplying the Object Area with other maps, the background around the object

can be fully eliminated.
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Figure 3.7: Stages of ROIs extraction process: (a) - object to be detected (a small part

of the sensor data map), (b) - Segmented Map, (c) - result of region growing in the

Segmented map, (d) - Data Map of the obtained ROI
18

(a) Raw Map
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(b) Object Area
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Figure 3.8: Example of ROI maps (high-metal landmine seen by pulsed metal detector):

(a) Data Map, (b) Object Area and (c) Segmented map).

2. The Segmented Map presents a more unified fingerprint of the object. Thus, some

features show better performance when calculated using the Segmented Map than

with the Data Map (see Chapter 4).

3.3.6 Object Association

After completing the ROIs detection step, the ROIs from different sensors that represent

the same object are associated together in order to form a complete suspicious object

which will be further processed by the landmine recognition algorithms. This association

is performed if the distance between them is less than a certain threshold (e.g. 100 mm)

and one ROI can be associated with different objects.
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3.4 Implementation

The described algorithms are implemented as a number of C++ classes embedded in the

software framework developed in this work. For each sensor the objects of the following

classes are used:

• Detecting signal heterogeneities is implemented by a decision maker CTimeROIDetector

which uses two Kalman filters as the sources and runs in the common working loop

• Mapping the sensor data (regularization of the grid) is implemented in classes

CPlaneGridMap (for Data Map) and CSegmGridMap (for Segmented Map). They

include fast parts which only acquire the data from the sensors and store them in

the buffer. The slow parts perform the actual mapping using the stored data.

• ROI detection is executed by a decision maker CGridROIExtractor which also

performs the processing in a separated thread of its slow part.

• Object association is carried out by a decision maker CObjectAssociation

Please refer to Appendix D for more details.

3.5 Experimental Results

The developed ROI detection algorithm was extensively tested on simulated and real

experimental data. The performance requirements for it should be very strict: if an

object is not detected by the ROIs extraction, it will not be considered for the classifica-

tion, and thus an eventual landmine can be missed. On the other hand, if a part of the

background is selected as an Object, the performance of the classifier will be degraded.

Sensor data which has to be processed by the ROI detection algorithm allows to test

it on several cases of object shapes and experimental conditions. Before providing these

results the general properties of the algorithm can be tested on simulated sensor data

which allows more detailed analysis. The simulated data were generated by placing

a number of objects simulated as 2D Gaussian distributions inside a test area. The

locations and parameters of the objects (mean and deviation) are generated randomly

from predefined ranges. This technique results in test data with different density, shape

and contrast of the objects as it can be seen in Figure 3.9.

Figure 3.9 shows the results of ROI detection on simulated data in cases of different

density of objects. The case shown in Figure 3.9(a) depicts one of the simplest sensor

data because the objects are well separated from each other. However, it can be seen

that the performance of the algorithm is not degraded in the case of higher density of

objects, as shown in Figure 3.9(b). The intersections of the ROIs detected on this data
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Figure 3.9: Example of ROI detection on simulated data with different density of objects

do not mean that the algorithm specifies the same part of the area to belong to different

ROIs. In most cases only the bounding rectangles of ROIs are intersecting, and the

Object Areas of the detected objects do not intersect and allow discrimination of the

objects.

ROI detection should provide good results on objects with different shapes and in

different experimental conditions. It should be noticed that a number of failures in

the data acquisition system may occur but the object still has to be detected. In a

case of failure the signature of the object will be deformed which will probably not

allow to classify it with high accuracy. However, the object should be detected by

the ROI detection algorithm to be considered at all. A number of cases with different

parameters of data acquisition system were simulated in order to test the performance of

the algorithm. As a reference of the algorithm performance, the result of ROI detection

in case of nondeformed object is considered as shown in Figure 3.10(a). Figure 3.10(b)

presents a case when background conditions change (due to a sensor failure or a real

change in environmental conditions like changing of temperature in case of IR sensor).

The failure occurs in the middle of the object, but, the result of ROI detection is

unchanged. This is possible due to the fact that the algorithm relies on the relative

changes of sensor values (recorded in the Segmented Map) and not on the absolute

sensor values. Another source of possible failure is the positioning of the scanning
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Figure 3.10: Example of ROI detection for different parameters and failures of the data

acquisition system: (a) - original object for reference (using data with grid size 1×1mm),

(b) - changing of background conditions, (c) - the shape of the signature is deformed

due to the positioning system failure, (d) - using data with grid size 1.5× 1.5mm, (e) -

using data with grid size 2× 2mm, (f) - using data with grid size 2.5× 2.5mm

device which can result in a deformation of the object shape as shown in Figure 3.10(c).

In this case, the middle part of the object is still detected by the algorithm. If a

larger deformation occurs, the result will most probably consist in two separated objects

because the algorithm will not be able to recognize the connection between the two parts.

Different scanning systems provide sensor data with different quality, which first of

all consists in the size of data grid, the larger the size the worse the quality of data.

To examine the influence of this parameter on the performance of ROI detection three

cases with different grid size are considered in Figures 3.10(d) - 3.10(f). It can be seen

that the object is detected in all case. However, comparing with the original object in

Figure 3.10(a) (with the smallest grid size) a larger part of the area is detected as ROI.

The small dependency of the performance on the data quality is essential because the

algorithm is intended to be used on the mobile scanning platform.

The algorithm allows the operation in several modes depending on the contrast of

suspected objects: positive or negative contrast, and the manner how to handle the

objects with different contrasts. The available modes include:
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Figure 3.11: ROI detection results for different modes of the algorithm (simulated data,

positive contrast is shown with darker areas, negative contrast is shown with lighter

areas): (a) - detecting only objects with positive contrast (mode 1), (b) - detecting

only objects with negative contrast (mode 1), (c) - detecting objects with positive and

negative contrast separately (mode 2), (d) - detecting objects with any contrast ignoring

the difference between positive and negative contrast (mode 3)
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1. detecting objects with only one type of contrast (positive or negative)

2. detecting objects with any contrast separately

3. detecting objects with any contrast considering them as one type of contrast

The mode of operation is controlled by the type of extrema which is analyzed during

extrema searching inside the Segmented Map (see Section 3.3.3. Figure 3.11 shows the

results of ROI detection performed on the same simulated data with different modes of

operation. When only one type of contrast is considered (Figure 3.11(a) and 3.11(b))

the objects of the other contrast are mostly ignored (however, there are some cases of

joining a low-contrast object to a high-contrast object of different contrast). It should

be noticed that the considered data are confusing when the algorithm is operated in this

mode because it assumes that the objects are surrounded by the background and not

by the other objects. Figure 3.11(c) shows the result of operation in the second mode.

Now all objects are detected separately with one failure when two objects with different

contrast are joined. This mode of operation is the most challenging but important for

several sensors, like IR sensors and GPR, where the type of contrast the objects have is

usually not determined. For example, for IR sensors the contrast of objects depends on

the time of the day and on the environmental conditions). The last mode of operation

allows to ignore the difference between the types of contrast and to detect the objects

consisting of the parts with different contrast. It can be seen in Figure 3.11(d) that

closely located objects with different contrast are joined together and detected as one

object. This mode is used in case of continuous metal detector as shown below.

The developed algorithms were tested using experimental data from MsMs database

[5]. An example of ROI detection performed on the data from four sensors can be

seen in Figure 3.12. The sensor data were processed in different modes: pulsed metal

detector and ground penetrating radar - in mode 1 considering only objects with positive

contrast, continuous metal detector - mode 3, infrared camera - in mode 2. It is well

seen that the data provided by the infrared camera and ground penetrating radar have

a lot of clutter objects which provide the main source of false alarms.

To estimate the performance of the ROI detection algorithm, the experimental data

were labeled to create a sensor-specific ground-truth map, which contains all the objects

seen by a human on the sensor data with adjustable scales. Only data from pulsed MD

and continuous MD were analyzed, because the other sensors are difficult to process

manually. The detection rate (DR) was estimated as the number of ground-truth objects

detected by at least one ROI divided by their total amount. The false alarm rate (FAR)

was calculated as the area occupied by false detections divided by the total area of

background. A performance of DR = 90% and FAR = 4% was achieved.

From the 90% of the detected objects, 47% were detected more than once. This

large number of repeated detections increases the processing time but, on the other
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Figure 3.12: Example of ROIs extraction for the data from C7 MSMS field [5] (a) -

pulsed metal detector, (b) - continuous metal detector, (c) - infrared camera, (d) -

ground penetrating radar; the objects are marked with dashed rectangles and numbers

according to the legend shown on (a)
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Figure 3.13: Results of ROI detection for data obtained by the mobile scanning platform

LADERO from an IR sensor

hand, most of such objects have weak (or confusing) fingerprints. Therefore, in the case

of a landmine several detections may improve the probability to detect it by at least

one of the ROIs.

Sensor data obtained by the mobile scanning platform LADERO has much lower

spatial quality than the experimental data obtained by a precise scanning device in [5].

Next examples show the performance of the ROI detection algorithm on such data.

Figure 3.13 depicts the data obtained from one of the IR sensors in a test area with

two objects of different contrast (hot and cold). The algorithm is operated in mode 2

so both objects are detected. Examples of data obtained by the metal detector from

real landmines located on the test field are shown in Figure 3.14. In both cases the ROI

detection algorithm allows to detect all the objects even having data with the low spatial

quality. However, some of the objects are deformed due to the positioning failures of

the platform and detected as several objects.

The detection of suspicious objects may appear to be the first and the last step

of landmine detection if the quality of sensor data does not allow further processing.

Then, according to the strategy descried in Chapter 2 all the suspicious objects should be

considered to be landmines as shown in Figure 3.15. In order to estimate the performance

of landmine detection in this case the data from [5] for four sensors obtained from 9 fields

was analyzed (the considered sensors were: Vallon ML 1620C pulsed metal detector,

Foerster Minex 2FD 4.500 continuous metal detector, AGEMA 570 infrared camera and

experimental ground penetrating radar C scans). By treating the entire detected object

as landmines for a 95% detection rate a value of 12.1 FA/m2 was obtained.

3.6 Object Signatures Database

The presented algorithms allow transformation of the raw sensor data into a unified

form when only the objects are considered. This can be used not only for the online

landmine detection but also as a convenient preprocessing for further research on more
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Figure 3.14: Results of ROI detection for data obtained by the mobile scanning platform

LADERO on the test minefield; the objects are marked with dashed rectangles and

numbers according to the legend shown on each image

sophisticated recognition technologies. For this purposes a database of suspicious object

signatures was created in this work. It stores the objects as collections of signatures ob-

tained from different sensors associated together. Each signature is associated with the

experiment where the data was taken, includes coordinate information, and is composed

by three maps: Data Map, Segmented Map, and Object Area. Thanks to this database

most of the analysis performed for the development of the landmine recognition tech-

niques described in the next chapter was performed offline.

The database is implemented in MySQL and has interfaces in C++ and PHP for

data management and visualization (see Appendix E for details).
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Figure 3.15: Landmine detection considering only first step

3.7 Summary

This chapter presented the novel algorithm for online detection of the suspicious objects

based on their signatures obtained from several landmine detection sensors. The algo-

rithm is able to detect the object right after it was fully scanned by the scanning device

thus enabling an online processing of the data while the mobile scanning platform is

exploring the terrain. Depending on the quality of sensor data it can provide the final

result of landmine detection or the preprocessing result for the further recognition. As-

suming the second possibility next chapter describes the algorithms developed in order

to decrease the false alarm rate achieved by this first step.



Chapter 4

Landmine Recognition

This chapter describes the algorithms developed for recognition of landmines among the

suspicious objects detected during the first step of landmine detection strategy (Chap-

ter 3). The landmine recognition approach is developed in the framework of feature-level

sensor fusion accounting for the specifics of this task by proposing new concepts. After a

short overview of the prior art in Section 4.1 and the problem statement in Section 4.2,

the classification features are described in Section 4.3. The overall classification strat-

egy based on Bayesian classifier is presented in Section 4.4. After the discussion of the

problems arising from the high nonselectivity of the classification features the novel pos-

sible solutions are presented. The concept of selective training aiming in improvement

of classification in presence of bimodal feature distributions is described in Section 4.5.

The concept of dominant class which allows to improve the classification results further

in the conditions of low data quality is presented in Section 4.6

Section 4.5.1 describes a combined strategy for using of the developed approaches

together. Finally, the developed concepts are verified experimentally and the results are

presented in Section 4.8 starting from the justification of the multi-stage approach and

following by the results related to each concept. The implementation details are given

in Section 4.7.

4.1 State of the art

Having a suspicious object obtained during the first step of landmine detection the task

of the consequent steps is to assign a class label to it. This is a classification task

which can be accomplished by different classifiers as mentioned in Chapter 1. However,

using different classifiers in previous reports did not lead to a clear conclusion on a

preferable one. Probably, this is due to the fact that the performance of the classification

depends on many other factors, including classification features, training strategy, and

the availability of data for training. It must be noticed that landmine recognition is a

73
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Figure 4.1: Two classification tasks

very challenging classification task due to the high ambiguity of the sensor data. As the

classifier represents the top structure in this process, the best strategy seems to be the

implementation of a simple classifier and using it for analyzing of the other factors.

Particularly, the analysis of classification features is one of the important tasks to

be done before a conclusion about the best configuration can be made. The problem

of selection and estimation of classification features is not considered with the required

attention as it can be concluded from the analysis of previous works. The most used

features are statistical measures ( [35, 64, 23]), such as mean value inside the ROI, and

measures related with simple shapes [35, 59, 34, 58]. More complex features like entropy,

contrast and correlation are considered in [23] for processing of IR data, but the results

are difficult to analyze due to the small number of samples in the available data sets.

In [94] the possibility to use shape symmetry features for landmine detection is analyzed.

However, the presented results were obtained only for well controlled conditions. Texture

features are used in [65] for surface landmine detection.

In summary, there is definitely a need for a detailed research which would clarify the

choice of the classifiers and classification features. Moreover, the existing solutions do

not provide the performance required by humanitarian demining standards yet, so new

ideas are needed.

4.2 Problem Statement

This step of landmine detection is represented, in fact, by two classification tasks as

shown in Figure 4.1. These tasks are naturally the same in terms of classification

strategy but should be accomplished separately in order to improve the separability of

the classes and to account for the quality of sensor data.

The basic classifier considered in this work is a Bayesian classifier which models the

joint probability as a multi-variate Gaussian distribution. Based on this model effective

classification features should be developed. The classifier should perform as a fusing

algorithm which accepts the feature vector created from the features calculated for each

signature of the object. Thus, the fusion is performed on the feature-level by using this
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combined feature vector.

Taking into account that landmine recognition is characterized by high overlapping

of the classes, suitable solutions based on the simple classifier should be developed.

4.3 Classification Features

The first stage of any classification process is the estimation of the classification features.

In general, the raw sensor data can play the role of the feature themselves. However,

such strategy is prone to overtraining. It is considered here that a classification feature

is a single number calculated for a ROI (its Data Map, Segmented Map or Object Area)

or a collection of ROIs. Such features are suitable to be used in the framework of

feature-level sensor fusion forming the combined feature vector.

Some of the features described below were adapted from different fields of pattern

recognition mostly related to computer vision, and others (object skewness, fractal di-

mension and golden ratio measure) were specially developed here. The main property

which a feature should reflect is the regularity of the signature, which may signify the

regularity of the object itself and provide useful information for landmine recognition.

As long as, there is no any perfect feature which provides this information, several less

specific features can be used instead.

4.3.1 Sensor-Based Features

This group of features reflects the properties of a signature obtained from data of a

single sensor.

Features based on absolute value

These are the most intuitive features. For example, when using a metal detector the

landmines usually have low metal contents, while artificial metal objects have much

higher metal contents. However, this criterion cannot provide good results alone because

natural and artificial metal debris may also be low-metal objects.

Statistical measures: mean, standard deviation, skewness, kurtosis

Contrast

C = max(Ci,j),

where Ci,j is the local contrast

Ci,j = |xi,j − (xi−1,j + xi+1,j + xi,j−1 + xi,j+1)/4|
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Features related to object shape

Sensors like IR cameras and GPR may provide a good estimation of the object shape.

Size, aspect ratio

Vertical skewness of object

V S =
| max(Di)−min(Di) |

width
,

where Di is the distance between the center of the object along X axis and the local

maximum along X axis

Horizontal skewness of object

HS =
| max(Di)−min(Di) |

height
,

where Di is the distance between the center of the object along Y axis and the local

maximum along Y axis

Occupied part

OP =
Area of object

Size of ROI

Compactness

Mcmp =
µ00

µ20 + µ02

,

where µ00, µ20, µ02 are central shape moments

Eccentricity

Mect =

√
(µ20 + µ02)2 + 4µ2

11

µ20 + µ02

,

where µ20, µ02, µ11 are central shape moments

Circularity

F =
4πS

P 2
,

where S is area and P is perimeter of the object

Features related to object nature

These features are the most challenging ones because they intend to analyze if the

object is natural or artificial. One of such features is the Fractal dimension: in most

cases its value for natural objects must be higher than for artificial ones. A novel feature

introduced here is based on the idea of the Golden Ratio.

Fractal dimension (measure of self-similarity)

FD =
log(Nr)

log(1/r)
,

where Nr is a number of copies of the object scaled down by ratio r. FD is estimated

using a differential box-counting approach [95]
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Entropy (measure of disorder)

H(X) = −
∑
x

P (x) logP (x),

where P (x) is the probability that X is in the state x

GR measure (measure of golden ratio) The Segmented Map is analyzed as follows in

order to determine how different the averaged ratio between two neighboring segments

from the Golden Ratio is:

GRM =
N−1∑
i=1

grmi/N,

grmi =

∣∣∣∣∣min(Si, Si−1)

max(Si, Si−1)
− 1

φ

∣∣∣∣∣ ,
where Si is the size of segment i, N is a number of segments and φ = 1

2

(
1 +
√

5
)

is the

golden ratio

4.3.2 Multi-Sensor Features

Besides using of the sensor-based features there is a possibility to analyze the relation

between the signatures obtained from different sensors. This feature can be calculated

directly using several ROIs, as correlation features, or a combination of several sensor-

based feature - combined features.

Correlation features

Distance between ROIs

Aspect ratio correlation

HWC =
HW1

HW2
if

HW1 < HW2

and

HWC =
HW2

HW1
otherwise. Where HW is Aspect ratio.

Correlation (image correlation)

Corr = max
s1,s2

[Corr(s1, s2)] ,

Corr(s1, s2) =

∑N1,N2
p1=s1,p2=s2 V n1p1 · V n2p2

2∑N1
p1=s1 V n12

p1 ·
∑N2

p2=s2 V n22
p2

,

where V n1 and V n2 - normalized values, s1 and s2 - coordinates of the starting points

for the maps. Changing of s1 and s2 provides the shift of one map relatively to the

other allowing to search for the best correlation.
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Shape correlation

SC = max
s1,s2

[SC(s1, s2)]

SC(s1, s2) =
N1,N2∑

p1=s1,p2=s2

OA1p1 ·OA2p2/N(s1, s2),

where s1 and s2 - see Correlation, N(s1, s2) - number of common points for both maps.

Contour correlation

The Object Area is processed to obtain its contour chain code (represented by numbers

from 0 to 7). Then the correlation between the chains is calculated as follows:

ContourCorr =
N1,N2∑

i1=0,i2=0

7− |C1i1 − C2i2|
7

,

where C1 and C2 - values of the chain codes, |C1i1 − C2i2| are adjusted to be always

≤ 4.

Combined features

The combination of several sensor-based features can improve the feature performance if

they represent a general property of the object reflected in signatures of different sensors

in a similar way. By other words, the feature should not highly depend on the sensor

from which the signature was obtained. The process of feature combination is identical

to the signal-level sensor fusion when the signals are fused, for example, by averaging.

In this work the combined features are calculated by averaging the values of the

same feature calculated for signatures of the object obtained from different sensors. In

this case the confidence in the feature value should increase with the number of sensors

detecting the object. Moreover, even if there is only one sensor detecting the object, the

feature is still present. Of course, this operation cannot be considered for very simple

features like mean or size, but it can show a good performance for the more complex

ones, like entropy.

4.3.3 Feature Analysis

The large number of features analyzed in this work cannot be directly used by a clas-

sifier because the amount of training data is usually not enough to estimate the joint

distribution with so many parameters. Therefore, using of too many features decreases

the performance of a classifier. Moreover, some features can even confuse the classifier

because they do not represent useful information for the separation of classes. Each fea-

ture should be evaluated in terms of relevance, and only the most relevant ones should

be considered for the classification. This process is usually called feature selection and

is commonly used in pattern recognition tasks to reduce the dimension of the feature

vector in order to reduce the processing time.
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Feature evaluation

Classification features are evaluated in this work using two evaluation criteria.

Mutual information.

Mutual information gives a measure of how much information a random variable

contains about another [96]. Two random variables are considered: continuous value of

the feature f and discrete class c. All possible feature values are divided into K intervals

with the width ∆f to create a histogram. Then the mutual information is estimated as:

I =
M∑
i=1

K∑
j=1

p̃(ci,∆fj) log
p̃(ci,∆fj)

p̃(ci)p̃(∆fj)
,

where M is the number of classes, and p̃ is an estimation of the appropriate probability,

calculated as the number of samples appeared in the histogram interval divided by the

whole number of samples. In this work 20 histogram intervals were used for feature

evaluation.

Hausdorff distance.

Hausdorff distance characterizes the position of each point of one set, relatively to

the points of another set [97]. It can only be applied for feature selection in problems

with two classes. Considering a set Fc1 containing feature values corresponding to the

class c1, and a set Fc2 containing feature values corresponding to the class c2,

H = max[h(Fc1, Fc2), h(Fc2, Fc1)]

where

h(Fc1, Fc2) = max
Fc1

[D(fc1, Fc2)]and

D(fc1, Fc2) = min
Fc2

[d(fc1, fc2)],

d is a measure of distance.

The larger the value of the evaluation criterion, the more relevant the corresponding

feature should be. However, it was noticed that the nature of the evaluation criterion

must be taken into account for the correct interpretation of the results:

• Large values of Mutual information do not provide good separability of classes.

• Large values of Hausdorff distance might appear due to scattered samples inside

the distribution, and together with a large enough value of the Mutual information

it can mean a good separability of classes.

Approach for feature selection

In order to benefit from both evaluation measures, the product of them is used as an

evaluation criterion for the selection of the most relevant features. The feature selection

was performed manually by choosing the features with the largest value of the evaluation

criteria.
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4.4 Classification

4.4.1 Multi-stage classification

As it is defined by the strategy of landmine detection the recognition of landmines should

be performed in several stages according to the quality of sensor data. After each stage,

only the objects of a landmine-suspicious class are taken for the further stages. In this

work this process is limited to a two-stage classification, as it does not seem reasonable

to extend it more with the available sensor data.

Each stage is implemented as a standard Bayesian classifier [53]. The Bayesian

classifier is based on the optimal decision rule, which is in case of two classes:

decide class1 if P (class1|x) > P (class2|x),

overwise decide class2,

where x is a feature vector representing the state of the object to be classified, and

P (classi|x) is the probability of the object represented by x to belong to the class

classi, also called posterior probability. The posterior probability can be obtained by

the Bayes’ formula:

P (classi|x) =
p(x|classi)P (classi)

p(x)
,

where p(x|classi) is a probability of observing feature vector x from an object of class

classi. This probability can be learned from the training data set using one of the

techniques for parameters estimation [53]. Then, the decision rule can be modified as

follow:

decide class1 if
p(x|class1)

p(x|class2)
> λ,

overwise decide class2,

where λ is a constant which includes the unknown P (classi) and risk factors. Varying

λ the decision can be shift in favor to one class, which can be used in case of landmine

detection in order to achieve high detection rate. To obtain an optimal value of λ the

training data set can be used.

The analysis made in this work showed that the probability distribution of most

classification features can be modeled by a Gaussian function. Thus, p(x|classi) is

modeled as multivariate Gaussian:

p(x) =
1

(2π)n/2

√
Σ̂

exp[−1

2
(x− µ̂)tΣ̂−1(x− µ̂)], (4.1)

where n is the dimension of the feature vector, and Σ is an n × n covariance matrix.

A maximum likelihood estimation is used to compute the parameters of (4.1) from the
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Table 4.1: Number of samples of training and evaluation sets used in experiments (LM

- landmines, Others - not landmine objects)

Experiment Training set Evaluation set

description All LM Others All LM Others

3
se

n
so

rs 1. Random 1287 183 1104 1287 183 1104

2. Soil 2 666 82 584 1908 284 1624

3. Manual 404 168 236 2170 197 1972

4
se

n
so

rs 4. Random 965 129 836 965 129 836

5. Soil 2 472 52 420 1458 205 1253

6. Manual 351 98 252 1579 159 1420

training data set [53].

µ̂ =
1

N

N∑
k=1

xk (4.2)

Σ̂ =
1

N − 1

N∑
k=1

(xk − µ̂)(xk − µ̂)t, (4.3)

where N is the size of the training set.

4.4.2 Classifier Training

One important challenge in landmine detection is the absence of the ability to train the

classifier on the data obtained directly from the minefield. In most cases it is possible to

acquire some data from the background and nonhazardous objects which can be useful

for adjusting parameters of suspicious objects detection. However, the availability of

the data from real buried landmines should not be considered. In this situation the

algorithm has to be pretrained beforehand with data obtained from other experiments

made on test fields. To address this issue, different training scenarios are considered in

this work:

• Randomly chosen training set. The whole data set is randomly divided in two

equal sets, one of which is used for training, and another one for evaluation.

• The training set only contains data from one field with some soil type. Each

soil type can be considered as a separated training experiment, and then other
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fields are used for evaluation. This scenario models the case when the algorithm

is trained in one type of conditions and then is used in others.

• The training set is chosen manually to contain only “good” signatures. Such

scenario models a case when only well controlled experiments are available for

training. If it is possible to train the algorithms in such a way, then it would

simplify the experiments, and thus increase the amount of the training data.

Table 4.1 shows the number of samples of the considered training and evaluation

sets. It is logic to assume that among the mentioned possibilities the use of randomly

chosen training sets may give better classification results. However, in practice it is not

possible to implement this scenario because the full data set (from which the random

samples would be chosen) is usually not available.

4.4.3 Missed Features

A practical problem of any object recognition system is the fact that in real conditions

some features can be missed. A Bayesian classifier can solve this problem by integrating

the posterior probabilities over the missed features [53]. However, in the case of landmine

detection, the features are missed only when a sensor does not detect the object at

all (for example, a metal detector does not sense a plastic object). In this situation,

all features related to that sensor are missed. Thus, there are a limited number of

feature combinations determined by the number of sensors (for example, there are 15

combinations for 4 sensors: 1, 2, 3, 4, 1-2, 1-3, 1-4, 2-3, 2-4, 3-4, 1-2-3, 1-2-4, 1-3-

4, 2-3-4, 1-2-3-4). It is practically possible to consider all the combinations and train

several classifiers. Then, during the process of object classification, a classifier with the

largest possible number of features is chosen (Figure 4.2(a)). Another solution comes

automatically if only combined features are used as shown in Figure 4.2(b) because all

features are always present if at least one sensor detects the object. However, the last

approach is probably limited because there are not enough features which show good

performance in the combined version. Thus, the strategy implemented in this work is a

combination of both techniques.

4.5 Concept of Selective Training

The classification features implemented in this work basically show high overlapping of

the classes, which is represented by two types of behaviors:

1. Distributions for different classes have shapes close to the Gaussian distribution

and maxima are poorly separated (see, for example, Figure 4.3).
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Figure 4.2: Possible solutions for missing features problem: (a) - training several clas-

sifiers, (b) - using only combined features

2. One of the distributions is bimodal: the main maxima are overlapped, and another

weaker maximum is separated from the main one (see Figure 4.4(a)).

The usual strategy followed in the second case is to consider only the main maximum.

However, if the feature has a weak (or equally sized) but better separated maximum, it

may signify that it reflects a specific property of the landmine, but this property is not

present in the majority of the samples. In these conditions, the main maximum can be

ignored, and then only information from the least overlapped maximum is used for the

classifier training. This process is called in this work selective training. It is performed
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Figure 4.3: Example of a feature whose distributions for different classes are poorly

separated (solid line - Landmines, dotted line - Other objects)

by analyzing and modifying the histograms of the distributions. For example, assuming

that the Landmines class has a bimodal distribution, the algorithm is performed as

follows:

1. Landmines distribution histogram is searched for the maximum which has the

lowest overlapping with the Other objects distribution histogram (the maximum

is considered together with the neighboring descending intervals).

2. All histogram segments besides the found maximum of the Landmines distribution

are reduced to zero.

3. Histogram segments of the Other objects distribution which overlap with the new

Landmines histogram are also reduced to zero.

The obtained distributions (see, for example, Figure 4.4(b)) are then used for training.

If there are enough features with such property able to separate different samples,

this process may improve the separability between the classes. Figure 4.5 shows an

example of two features that satisfy this requirement. There are samples which are

separated by both features, but there are a lot of samples which are separated only by

one feature.

Assuming that only a well-separated part of the distribution of each feature is used,

the relationships between the features change. It becomes inappropriate to represent

p(x|classi) as a multivariate Gaussian because it reflects an AND relation between the

features. However, the features processed by the selective training algorithm have an

OR relation to each other: the effect of one feature should be added to the others to



4.5. CONCEPT OF SELECTIVE TRAINING 85

Histogram of feature distribution

P
ro

ba
bi

lit
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Contrast (7.5 - 13 mkm IR camera-RM*)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Contrast (IR camera on RM!*)

(a) raw distributions
Histogram of feature distribution

P
ro

ba
bi

lit
y

0

0.02

0.04

0.06

0.08

0.1

0.12

Contrast (7.5 - 13 mkm IR camera-RM*)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Contrast (IR camera on RM!*)

(b) distributions selective for Other objects class

Figure 4.4: Example of a feature which has bimodal distribution for Other objects class:

(a) initial distributions, (b) distributions processed by the selective training algorithm

(solid line - Landmines, dotted line - Other objects)

assure that the object is detected if values of some of its properties are in the selected

ranges (but not values of all properties, as would be the case for AND relation). In this

case a more suitable model for p(x|classi) is an additive Gaussian model which can be

represented as follows:

p(x) =
∑ 1√

πσ̂
exp[−1

2
(
(x− µ̂)t

σ̂
)2], (4.4)

The parameters of each univariate distribution are estimated using (4.2) and (4.3).
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Figure 4.5: Example of two features which have bimodal distributions for Landmines.

The highly overlapped area is indicated by the circle, the vertical and horizontal lines in-

dicate approximate borders for the Landmines distribution in case of applying selective

training

4.5.1 Combined Strategy

Analysis of the classification features suggested that the ideas presented above should

be combined in order to provide an optimal strategy. Thus, the combined strategy

merges the structures shown in Figure 4.2 assuming only some of the features to be

averaged, while the others to be used directly as sensor-based and correlation features.

The features which reveal the bimodal behaviors are processed by the selective training

algorithm while the others are used in their initial form. The combined p(x|classi) is

then represented by the following equation:

p(x) =
1

(2π)n1/2

√
Σ̂

exp[−1

2
(x− µ̂)tΣ̂−1(x− µ̂)]+

n2∑
j=1

1√
πσ̂j

exp[−1

2
(
(xj − µ̂j)

t

σ̂j

)2], (4.5)

where n2 is the number of the features for which the selective training is applicable, and

n1 is the number of other features.
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4.6 Concept of Dominant Class

The concept of selective training allows to perform the classification in case of highly

overlapped classes as in the case of landmine detection task. Experimental results

show that this strategy helps to improve the quality of the recognition (see Section 4.8.

However, there is one specific feature of the landmine detection task which is not fully

accounted from this concept: the recognition process should provide the highest possible

detection rate (which is specified to be 100% by the landmine detection standards). A

usual solution for achieving a high detection rate is to choose the classification constant

λ appropriately. This allows to shift the working point on the ROC curve to the area of

higher DR (and consequently higher FAR). However, the problem still remains because

for high detection rates a small increase of DR causes much higher increase of FAR and

in most cases the DR of 100% cannot be reached at all. This follows consequently from

the fact that the classification process intends to obtain the best solution in respect to

the classification error which includes the quality of detection for the both considered

classes. On the other side, in case of landmine detection one class (Landmines) should

dominate allowing to achieve the 100% DR (which cannot be achieved by simply shifting

the λ).

It is proposed in this section to develop the concept of selective training further

to provide the domination of the Landmines class. Following the same principle the

feature distributions are modified before they are used for the classifier training. The

goal of the modification is to consider only the dominant class where the distributions

overlap and let the distribution of the other class to be present only outside of the main

class. Here, any type of distributions are considered, both unimodal and bimodal. The

preprocessing of the distributions is performed in the following steps (see Figure 4.6):

1. Landmines distribution histogram is searched for the main maximum (the maxi-

mum is considered together with the neighboring descending intervals).

2. Histogram segments of the Other objects distribution which overlap with the

found maximum are reduced to zero.

The obtained distributions are then used for the training of the classifier which later

processes the data using the model (4.1).

This process obviously leads to loss of information about the Other Objects class.

However, it might be not possible in general to perform a classification which achieves

good quality in relation to both classes in case of highly overlapped distributions. By

using this concept, in turn, it can be still possible to obtain the highest possible quality

of classification keeping the DR on a high level.

The concept of dominant class logically supports the idea of the multistage landmine

detection as a process of FAR reduction because it allows to be sure that the DR remains
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Figure 4.6: Illustration of the training process to account for a dominant class: (a) -

original distributions, (b) - distributions after processing assuming Landmines class to

be dominant
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on the same lever after each classification step. Considering the worst case when the

distributions of the classes completely overlap, this approach will output a 100% FAR

which is a poor result from the point of view of the classification error but, an acceptable

result from a point of view of safety of landmine detection.

4.7 Implementation

The developed classification algorithms for landmine recognition were implemented as a

set of classes representing decision makers. Each classifier is implemented as a separate

class which provides two main methods: training and classification. The concepts of

selective training and dominant class are implemented inside the training procedures.

The classification features are implemented in separate classes derived from CGridMapFeature

class. Please refer to Appendix F for more details.

4.8 Experimental Results

The concepts developed in the present work and described above can be used together

in some cases, for example, forming a combined classifier, while in other cases only

some of them are applicable, as can be in the case of the dominant class concept. In

this section the developed approaches are evaluated using real sensor data available in

MsMs database [5]. The feature selection process was performed first, according to the

strategy described in Section 4.3.3, to provide a relevant feature vector to be used for

classification. To illustrate the performance of the different ideas developed for landmine

detection several questions were analyzed as described below.

4.8.1 One-stage vs multi-stage classification

It is not obvious that for landmine detection a multi-stage classification is required.

To analyze this issue, the feature space was processed by principal component analysis

(PCA) [53]. Figure 4.7(a) shows a feature space produced by the first two principal

components where the classes Landmines and Other Objects are highlighted. It can

be seen that the variance in the data revealed by PCA does not reflect the difference

between classes confirming the idea of highly overlapped classes in the case of landmine

detection. Moreover, during such classification most false detections consist in other

man-made objects: the classifier is not able to distinguish landmines from other man-

made objects.

The same result of PCA is shown in Figure 4.7(b), but here the classes Man-made Ob-

jects and Natural Clutter are highlighted (these principal components provide only 31%
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(a)

(b)

Figure 4.7: Principal component analysis of the feature space: (a) Landmines - o,

Other Objects - x, (b) Man-made Objects - o, Natural Objects - x
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Figure 4.8: Comparison of different classifications (on the training set) in terms of

detection rate and false alarm rate

of the whole variance in the data). It can be seen that these classes are better sepa-

rated than the previous pair. Thus, the presented results demonstrate once again that

breaking the classification in (at least) two stages as shown in Figure 4.1 is reasonable

and can improve the final result.

Another possibility to support the two-stages approach is to compare the classifica-

tions involved in the one-stage and two-stage classifications in terms of detection and

false alarm rates. A comparison of ROCs for different classifications shown in Figure 4.8

also confirms this idea. It can be seen that, as expected, the classification with classes

Man-made Objects/Natural Clutter has better performance than the classification with

classes Landmines/Other Objects. Moreover, the classification Landmines/Other Ob-

jects performs better when used to distinguish among the Man-made Objects.

4.8.2 Influence of the training set

The problem of classifier training is important due to the difficulties in obtaining of the

sensor data for landmine detection. To analyze this issue a classifier which contains only

sensor-based features was constructed eliminating the influence of the combined features

and selective training on the results. Table 4.2 shows the results of classification using

different combinations of training/evaluation data sets and the mentioned classifier with
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Table 4.2: Sensor fusion results for different training/evaluation sets, N - number of sets
from Table 4.1

N Performance on training set Performance on evaluation set

DR, % FAR, % FA/m2 DR, % FAR, % FA/m2

1 98 36 3.3 96 37 3.3

2 90 13 2.7 70 23 2

3 90 35 3 74 37 4.9

4 96 35 4.7 95 35 4.9

5 100 13 2.8 77 20 2.8

6 93 23 2.6 74 19 3

Table 4.3: Comparison of sensor fusion results for different feature sets and different

types of training, N - number of sets from Table 4.1

N Training Performance on evaluation set

DR, % FAR, % FA/m2

normal 90 30 2.7

1 selective 95 32 2.8

normal 90 32 4.1

4 selective 95 32 3.9

fixed λ. Three possibilities for the forming of the training set were considered: random,

manually chosen “good” signatures and data from a selected type of soil (Table 4.1). As

expected, the using of the randomly created training set leads to the best classification

results (Table 4.2 with N=1 and N=4). From the two other possibilities, the training

based on the selected experimental field is the most practical because it shows better

results (Table 4.2, N=2,5) than in the case of manual selection (Table 4.2, N=3,6). This

signifies that the manually chosen training set does not contain enough information due

to, for example, the absence of clutter. The ability to train the classifier on one type of

soil is important for the practical implementation of the automated landmine detection

system in which neither random nor leave-one-out training is possible.

4.8.3 Selective training

In order to show the benefits of the concept of selective training, the performance of the

classification with and without it was compared. A combined classifier containing sensor-

based and combined classification features was created for this purpose. In one case

the classification features with bimodal distributions were trained normally (without
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Table 4.4: Changing of false alarms per m2 for detection rate 95% over the steps of

landmine detection
Two-step classification

ROIs extraction Man-made Objects/

Natural Clutter

Landmines/ Other Ob-

jects
FA/m2 12.1 5.4 4.5

One-step classification

7

ignoring the parts of the distribution), in the second - according to the selective training

concept. Table 4.3 shows the results of applying this classifier with fixed λ for both

cases. It can be seen that introduction of the selective training improves the results.

4.8.4 Dominant Class

The dominant class concept is tested here using the experimental data from [5]. These

data are extensive allowing the selective training to be performed as it was confirmed

in the previous section. While the dominant class concept is expected to be specially

effective in the case of poor sensor data, the results of applying both concepts are very

similar in the case of rich sensor data. To perform a clear comparison of the training

concepts the performance of the classifier was intentionally degraded by using only few

combined features simulating a situation when the sensor data are not enough to per-

form the training. Training and evaluation of the classifier were carried out with the

sets under number 5 in Tab. 4.1. The results of comparison of three training techniques

in this case are shown in Figure 4.9. The dominant class training outperforms the

selective training and normal training (where the distributions of the classification fea-

tures are not changed). The selective training, in turn, outperforms the normal training

confirming again its usefulness.

A more appropriate case when the dominant class training is vital is considered in

Chapter 7 where the landmine recognition is performed on the sensor data obtained by

the mobile platform LADERO.

4.8.5 Step by step reduction of false alarm rate

In the previous subsection only the one-stage classification was performed in order to

evaluate other approaches. Here the multi-stage strategy can be finally evaluated by

providing specific landmine detection results. A combined classifier incorporating com-

bined features and selective training where applicable is used for this purpose. The

classifier is trained on the data set obtained from soil type 2 in [5] and evaluated on the

rest of the data. The developed multi-step landmine detection strategy allows to track
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Figure 4.9: A comparison of ROCs for different training strategies: dominant class

training, selective training and normal training (without the change of distributions),

(a) - performance on the training set, (b) - performance on the evaluation set
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the reduction of the false alarm rate at each step therefore monitoring the improvement

of the recognition (assuming that all objects of the landmine-suspicious class are con-

sidered to be landmines). Table 4.4 shows how the FAR is changing over the stages. It

starts from a very high FAR after the detection of suspicious objects, and is constantly

reduced. Comparing the final FAR with the one for one-step classification illustrates a

significant improvement.

4.9 Summary

This chapter completes the development of landmine detection strategy proposed in this

work. The strategy itself has the necessary ability to detect the objects online, while

the mobile platform is scanning the area, thanks to the suspicious object detection algo-

rithm. The detected objects can be further processed to improve the recognition using

the algorithms described in this chapter, if the quality of the sensor data is sufficient

enough. The recognition algorithms are especially suitable for landmine detection ac-

counting for the high overlap of the classes by implementing the selective training and

by introducing the dominant class. Both concepts deserve attention as they shall be

used in different situations depending on the quality of the sensor data. Having this

processing available the next challenge consists in the ability of the robot to acquire

appropriate sensor data. This problem will be addressed in the next chapter.
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Chapter 5

Platform Positioning during

Scanning

The landmine detection approach proposed in this work analyzes the spatially mapped

sensor data in order to distinguish the signatures of the landmines among the other

objects and the background. Such technique allows to benefit from the usage of an

automated landmine detection platform, in contrast to manual techniques when only

one-point measurements are usually possible. In order to provide the spatial mapping

of data, the platform should be able to perform scanning of the area with appropriate

precision. This includes appropriate control of the robot in order to perform the move-

ments required for scanning, and localization of the current position of the landmine

detection sensors. The specificity of this task is the need of accurate local positioning

of the robot body while walking in rough terrain affected by slippage problems. At the

same time the global positioning of the robot is less important assuming, for example,

that the locations of the detected landmines can be marked directly on the ground. In

this chapter the problems related to the task of platform positioning are analyzed in

order to find possible solutions and to conclude if the used scanning platform is sufficient

for the job.

An overview of the prior art in the fields related to robot positioning is given in

Section 5.1. The odometry system of the robot is described in Section 5.2. The factors

which can affect its reliability are analyzed in Section 5.3 together with the solutions

developed in this work for the most critical problems of the platform positioning. To

improve the positioning performance, a possibility to use an additional relative position-

ing system based on vision is analyzed in Section 5.4. The developed vision system is

combined together with the odometry system of the robot by means of data fusion based

on Kalman filter. This process is presented in Section 5.5 followed by implementation

details in Section 5.7 and the experimental results in Section 5.6.

97
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5.1 State of the art

The problem of robot localization is considered in many previous works. This problem

is vital in most of the applications of mobile robots, from a package delivery task to

exploration missions. The developed approaches often incorporate both localization

and mapping, and thus are called Simultaneous Localization and Mapping (SLAM).

However, there are no investigations about positioning of a scanning platform which

requires high accuracy on the local level. Among localization methods there are mainly

two groups: relative localization and absolute localization.

The relative localization1 approach is based on incremental updating of the robot

position using only internal robot information. The calculation of the position is per-

formed relatively to some known initial position. The input information for a relative

localization system is usually obtained from dead-reckoning sensors, e.g. encoders for a

wheeled robot. In case of a legged robot the calculation of the position can be performed

in a similar manner based on relative positions of the legs and the body of the robot,

although there are no standard dead-reckoning sensors available (see for example [98]).

Moreover, there are additional sensors which can be used for continuous control of the

robot position: accelerometers, gyroscopes and compasses. Relative positioning system

is usually cheap and simple to implement. However, due to its incremental nature it has

a drawback consisting in the accumulation of small position errors. The accumulated

error can be reset from time to time using an absolute localization system.

As a mathematical basis for relative localization, the Kalman filtering technique is

widely used. It allows the fusion of data from several sensors and improve the overall

performance of the system [99, 98]

Absolute localization techniques provide information about the robot location in

each given position without taking into account the previous position and motions of

the robot. The main idea of these approaches is to use information about range and

angle between the robot and several known markers present in the environment. The

markers can have different nature, and mainly there are two types: active beacons and

landmarks (natural and artificial). Localization is performed in the following main steps:

• In the beginning of the operation the robot is provided with a map which contains

the locations of the markers relatively to the global coordinate system

• When the position of the robot needs to be determined, it identifies surrounding

markers and finds their positions on the map. Then, each marker is localized in

the robot coordinate system

• If there are at least three markers with know positions then the robot position rela-

tively to the global coordinate system can uniquely be found using a triangulation

1It is also called position tracking or trajectory control.
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or a trilateration approach

In the triangulation approach it is assumed that the distances between the markers are

known. After the visual angles between markers relatively to the robot are determined,

it can be said that the robot is situated on an arc of the circle spanned by each pair

of markers. Trilateration approach determines robot position using values of distances

between the robot and markers: the robot is situated on the circle with the center in

the marker location and radius equal to distance between the robot and the marker.

As well as in case of the triangulation at least three markers are needed to find robot

position as intersection of the circles generated but each marker.

In spite of the large history of the described technologies there are still unsolved

problems related to the precise localization of a mobile platform like the one used in the

present work. The goal of the methods presented below consists in aiming to improve

the positioning of the platform by using both internal and external resources.

5.2 Robot Odometry

Analysis of previous reports shows, that an absolute localization system is not applicable

for the mobile scanning platform due to the high cost in case of good precision systems

(e.g. DGPRS or difficulties in the deployment of active beacons). Thus, it is assumed

in this work that only relative techniques, which do not require any external systems,

can be used. So, the localization of the robot is performed using its odometry system.

In this case the safety of the robot does not depend on the functionality of the external

systems, which can be disturbed by unpredictable outdoor conditions, e.g. occlusion of

line-of-sight to the active beacon or of a satellite.

Current position of the robot body is determined incrementally using its position

relatively to the legs of the moving axes. The location of the robot at time t is determined

as follows:

Xt = X0 +
Nt∑

k=1

lk + ∆lNt+1(∆t), (5.1)

where lk is the length of step k, Nt is the number of full steps performed by the time t,

∆lNt+1(∆t) is the position of the robot body relatively to the back legs of the moving

axes (see Figure 5.1), and ∆t is the time passed since the beginning of the current step.

The simple pneumatic cylinders used for the robot construction do not contain the

in-built possibility for the continuous measuring of the piston rod position. To provide

this information a contactless measuring system based on ultrasound sensors for the

measuring of the leg positions relatively to the robot body was previously implemented

[4]. However, experiments showed that this system is not reliable, being dependant on

the environmental conditions. Thus, a simpler approach which utilizes discrete magnetic
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Figure 5.1: Determining the location of the robot body for odometry calculation (5.2)

Figure 5.2: Sensors for the position control

sensors was proposed in the present work. The sensors are installed directly on the

cylinders as shown in Figure 5.2. The position of each sensor can be adjusted with high

accuracy and reliably fixed. It is assumed that the speed of the body is constant during

each interval between sensors. Then, the position of the robot body for the current step

is determined as follows:

∆lk(∆t) = ∆sm + (∆t− tm) · Vm→m+1, (5.2)

where m is the number of the last sensor passed, the time ∆t is the interval from the

beginning of the step k, ∆sm - position of sensor m, tm - time when the sensor m was
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(a)

(b)

Figure 5.3: Experimental results of the mapping obtained by the robot from the point

video sensor : (a) the real image of the covered area, (b) obtained map

passed (relatively to the beginning of the step), and Vm→m+1 is the speed of the body

between sensors m and m + 1. In the beginning of the the operation a calibrating

scanning step is performed to determine the speeds Vm−>m+1 on each segment between

the sensors. During the sequent steps the speeds are constantly recalculated in order

to account for the changing conditions, so Vm−>m+1 in (5.2) is the value of the speed

calculated during the step k − 1.

There are three magnetic sensors installed on each of the scanning cylinders (as

shown in Figure 5.2) and one sensor installed on each advancing cylinder. For the

Advancing step the sensors are used as stopping points, so their locations determine the

length of the step (currently adjusted to 50 mm). The sensors installed on the scanning

cylinders are used for the calculation of the position in (5.2) and as stopping points for

performing smaller steps in order to provide a more precise obstacle avoidance.

The presented positioning system allows to acquire sensor data approximately every

5 mm during the scanning step. This rate is determined by the relation between the

speed of the scanning cylinders and the speed of the data acquisition. For the exper-

iments carried out in this work the speed of the scanning cylinders was adjusted to

be approximately 40mm/s. Faster speeds were found to reduce the reliability of the

movement.

To evaluate the mapping abilities of the robot, the following simple experiment was

performed:

• A point sensor was emulated using a Web-camera horizontally mounted on the

robot pointing to the ground. An averaged grayscale value of the central region

of the image was used as the sensor value, providing a point video sensor
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• The experiment was performed indoor using a box with real soil and a high-

contrast object for the sensor input

During the experiment the robot followed a scanning path covering the area of 800x280

mm. The obtained image is shown in the Figure 5.3 together with the real image of the

covered area. Due to the robot slippage, the final position of the robot as recorded by

odometry was shifted by 10 mm along the X axis and 20 mm along the Y axis from the

real one, and the robot rotated by 2◦. On a longer path and in more complex outdoor

conditions, the increase of odometry errors can be expected. The most relevant problems

are caused by the small rotations of the robot body since such rotations significantly

deform the trajectory and cannot be corrected due to the mechanical limitations.

5.3 Platform Positioning

An important property of the utilized mobile scanning platform is its simplicity, which

in turn causes its relatively low cost. Additionally, the positioning of the platform can

be also realized by simple control algorithms. In ideal conditions the positioning can

be performed by the basic steps (scanning step and advancing step) while the position

is calculated using the techniques described in the previous section. However, due to

its simple structure, the reliable positioning of the robot implies several assumptions,

which are not always held in a nonideal situation:

• During the scanning step, the body of the robot is moved by two parallel cylinders.

In order to provide a reliable movement, the cylinders should move with equal

speeds. Experiments showed that this assumption does not hold in most cases. At

the same time, the difference in speed of parallel cylinders provides bending of the

robot and can even make the movement to stuck completely. Such deformations

also provoke slippage and small rotations.

• Due to the cartesian structure of the platform, a situation when at least one foot

does not have ground contact is easy to occur. This happens even while walking

on a flat surface because the legs do not have exactly the same height. Lack of

the ground contact provides in turn slippage and rotation of the robot.

During experiments it was found that the two situations described above significantly

affect the quality of the robot positioning. To improve the situation, additional simple

algorithms described below were developed.

In order to control the foot ground contact, force-sensitive sensors were mounted on

the feet as shown in Figure 5.4. The utilized sensor is a square-shaped Force Sensing

Resistor (FSR) whose resistance changes depending on the applied force (from several

MΩ in unloaded state to several hundreds Ω). The FSR is included into a voltage divider
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(a) (b)

Figure 5.4: Foot ground contact sensor (a) and its mounting on the foot (b)

and the voltage measured on the FSR VFSR is considered to be the output signal of the

sensor. To determine if the ground contact is present the value of VFSR is compared

to a threshold which corresponds to an appropriate value of applied force (weight of

the robot). It is practically very challenging to determine the threshold by measuring

the values VFSR corresponding to the ground contact because in most cases it is not

possible to provide a reliable ground contact of several legs simultaneously (due to the

different height of the legs as it was described above). Thus, it was decided to use the

value of VFSR measured in unloaded state (when the foot is lifted) as reference V air
FSR.

Experiments showed that the value 0.8V air
FSR can be used as the threshold. Thus, the

foot contact is determined as follow

Foot contact =

 1 if VFSR < 0.8V air
FSR

0 if VFSR ≥ 0.8V air
FSR

(5.3)

The FSR sensors need to be periodically calibrated because their reference value may

change due to a mechanical disturbance (small shift of the mounting rubber, dust, etc.).

Thus, each time the leg is lifted (the topmost position of the leg cylinder is measured

by a magnetic switch) the value V air
FSR is recorded.

Having the information about the ground contact of the feet, an algorithm for adap-

tive landing of the legs providing reliable ground contact of all legs was developed. An

additional objective was to decrease the mechanical stress applied to the robot at the

moment when the legs are landed, which can provide extensive shaking of the robot and

provoke slippage.
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Figure 5.5: Leg landing algorithm (the loop is controlled by a timeout not shown on the

diagram)

Figure 5.6: Algorithm for moving of the cylinder during the scanning step

The algorithm consists of simple rules applied to each landing leg as shown in Fig-

ure 5.5. It allows the legs, which already have a ground contact, to support the remaining

legs by moving up by a small distance. This algorithm executed for each leg leads to a

global behavior of the robot which consists in adapting to the ground surface allowing

also less shock at the moment of landing.

Assuming that the required ground contact of the robot feet can be provided, the

problem with the inequality of the cylinders speeds still remains. In practice, even if

the speeds are adjusted properly, they depend on the current conditions (e.g. ground

surface) and may change during the operation of the robot. Thus, it is assumed that the

speeds of the parallel cylinders are in general different. To account for this difference the
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algorithm shown in Figure 5.6 is executed for each cylinder. The algorithm implies that

the faster cylinder waits for the slower one at reference points specified by the installed

magnet switches. This way if the speeds are different, one of the cylinders will move in

steps and prevent a large deformation of the robot.

Although having these improvements, the robot trajectory is still affected by small

slippage and rotations which are intended to be detected with the help of the vision

system described below.

5.4 Vision based positioning

Vision based navigation for mobile robots has been extensively explored by many re-

searchers (see, for example, [100]). Many developed algorithms provide good results in

indoor environment, but still there is a number of difficulties for utilizing this concept in

outdoor and specially in unstructured environments, which is the typical environment

of a demining robot. The largest challenge for outdoor (and unstructured) vision-based

navigation seems to be the detection of natural landmarks, because a well-defined land-

mark model is not available. An appropriate correlation function is also required for

the association of the detected landmarks. Moreover, it is assumed here that the land-

mark detection algorithm should take into account the data association problem: the

landmark should be good enough so it can be associated with itself at the next moment.

A number of approaches for landmark detection in natural environment have been

investigated in the previous works. For example, [101] uses color and orientation features

utilizing the concept of saliency map, [102] uses the Scale Invariant Feature Transform

(SIFT) descriptors and a Gaussian filter for identifying natural landmarks in forest

environment, [103] proposed to use fractal dimension for landmark extraction when the

landmarks have some texture property.

5.4.1 Detection of Natural Landmarks

The objective for the development of a new algorithm in this work is to provide a simple

solution for the problem addressing the specificity of mapping for a demining robot.

The nearest surroundings of a demining robot usually contain few obstacles. Distant

objects, like mountain peaks or the sun, do not provide enough information for relatively

small movements of the robot. However, suitable landmarks can be found on the ground

under the robot, because the natural ground usually contains a lot of objects like stones

and leaves. A simple Web-camera pointed to the ground is utilized for this purpose as

shown in Figure 5.7. It should be pointed out that this approach is not appropriate

for a completely empty terrain like, for example, in a desert. However, the proposed

vision system is considered as supplementary to the odometry of the robot. Thus, its



106 CHAPTER 5. PLATFORM POSITIONING DURING SCANNING

Figure 5.7: A camera mounted on the robot for landmark detection.

temporary inaccessibility in case of too few or no landmarks does not disable the whole

localization of the robot.

The landmark detection algorithm developed in this work utilizes a similar principle

as the ROI extraction algorithm for detection of suspicious objects. But for the algorithm

used here only segments which contain extrema can be joined to form the Object Area.

The criterion for object detection is general, so no special landmark model is required.

The algorithm detects only complete objects implying that they will have a good chance

to be detected in the next frame and can be successfully associated. An example of a

detected and associated landmark can be seen in Figure 5.8.

5.4.2 Landmark Association

The landmark detection algorithm provides a number of landmarks each time a new

image from the camera is obtained. Then the algorithm has to associate each new

landmark with some landmark from the previous image (if the corresponding landmark

exists). The information provided by the landmark detection algorithm allows to use

for this purpose the following correlation functions:

• Image correlation.

This measure is widely used in computer vision, for example, in stereo-vision. In
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(a) (b)

Figure 5.8: An example of the detected landmark (raw image and shape): (a) and (b)

show the same landmark detected on different frames and successfully associated with

itself

this work the image correlation is calculated between the images of two landmarks

as follows:

Corr = max
s1,s2

[Corr(s1, s2)]

Corr(s1, s2) =

∑N1,N2
p1=s1,p2=s2 V n1p1 · V n2p2

2∑N1
p1=s1 V n12

p1 ·
∑N2

p2=s2 V n22
p2

Where V n1 and V n2 are normalized values of the images, s1 and s2 are the coor-

dinates of the starting points for the images. Changing of s1 and s2 provides the

shift of one image relatively to the other allowing to search for the best correlation.

• Shape correlation.

An estimation of the shape provided by the landmark detection algorithm is used

to calculate the measure of shape correlation as follows:

ShapeCorr = max
s1,s2

[ShapeCorr(s1, s2)]

ShapeCorr(s1, s2) =
N1,N2∑

p1=s1,p2=s2

OA1p1 ·OA2p2

N(s1, s2)

Where s1 and s2 - see image correlation, OA is the Object Area of the object

(taking values 0 or 1) and N(s1, s2) is the number of common points for both

landmarks for the corresponding s1 and s2.

• Contour correlation.

The shape of the object can be also analyzed using its contour. For this purpose

the Object Area of the landmark is processed to obtain its contour chain code: a

representation of the contour by numbers from 0 to 7, where each number signifies

a direction of the current pixel relatively to the previous one.
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Figure 5.9: Distribution of the combined correlation measure for a set of 86 correct (blue

dotted line) and 86 wrong (red solid line) associations
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Then the correlation between the chains is calculated as follows:

ContourCorr =
N1,N2∑

i1=0,i2=0

7− |C1i1 − C2i2|
7

Where C1 and C2 are the values of the chain codes and |C1i1 −C2i2| is adjusted

to be always ≤ 4.

Experiments showed that the image correlation itself provides good results for landmarks

association. However, combination of it with the other two measures confers further

improvement of the results. The combined correlation is calculated as a multiplication

of all three measures. If the image correlation between the landmarks is less than 0.85, it

is assumed that the other measures may be not reliable, so the value of Corr is reduced

by 0.85/0.65 before the multiplication (the value 0.65 was chosen because it requires

both the ShapeCorr and the ContourCorr to be greater than 0.96 to pass the test

for a correct association). When a new camera image is obtained, for each landmark

one object is selected, which provides the maximum value of the combined correlation:

CombinedCorrmax. If

CombinedCorrmax > 0.6 the landmark is associated with this object.

The aforesaid algorithm for calculating the combined correlation and the threshold

of the correct association were determined based on heuristics obtained from sample

images. Then a manually created set of 86 correctly associated pairs of landmarks and
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86 wrong associations was considered to show its performance for the separation of the

correct and incorrect associations (see Figure. 5.9). The combined correlation increases

the value of Hausdorff distance [97] for the selected set of samples from 0.07 (for image

correlation only) to 0.12.

5.4.3 Experimental Results

Figure 5.10 shows the performance of the algorithm during robot movement: linear

movement (Figure 5.10(a)) and rotation (Figure 5.10(b) and 5.10(c)). The relative

displacement of the robot during the motions is 20cm (the maximum length of the

robot step) and the images from the camera were taken every second. The quality of

the images presented in Figure 5.10 is different due to the changes in camera performance

and light conditions. However, the algorithm does not require any specific adjustment

for each case.

The presented results were obtained without assuming any constrains for the robot

movement. If such constrains are applied, it can be seen that almost all wrong associa-

tions (showed in red in Figure 5.10) can be eliminated.

5.5 Fusion of Odometry and Vision System

The Kalman filter is widely used in case of sensor fusion for mobile robot localization

[104, 105, 99, 98]. There are basically two approaches for using the Kalman filter for

sensor fusion: state-vector fusion and measurement fusion [104]. In the first case the

state is tracked by every sensor separately and then the state estimates are fused using

their covariance and cross covariance matrixes. The measurement fusion combines data

from different sensors when the measurement vector is formed. One approach can be to

obtain a weighted average of the measurements from different sensors and then to track

this combined measurement by the Kalman filter. In this case the sensors should provide

the measurements of the same parameter. Another approach is to form an augmented

measurement vector by merging the measurement vectors obtained from each sensor.

The last strategy allows a greater flexibility and does not require the sensors to provide

measurements of all parameters. Thus it is used in this work as the base strategy.

The state vector to estimate determines the 2D position of the robot

x =


robotx

roboty

α


There are three sensors which provide the measurement vectors:
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(a) (b)

(c)

Figure 5.10: Detection and association of landmarks during linear movement (a) and

rotation (b) and (c), yellow - landmarks detected in the current frame, green - landmarks

detected in the previous frame and correctly associated with the new ones, red - wrong

association, green and red lines connect the associated landmarks
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• Odometry of the robot provides estimation of relative displacement along X and

Y axes, the measurement vector is formed as

z1
k =

 robotxk−1 + ∆robotxodometry
k

robotyk−1 + ∆robotyodometry
k


• Vision system provides estimation of relative displacement along X and Y axes

and rotation angle

z2
k =


robotxk−1 + ∆robotxvision

k

robotyk−1 + ∆robotyvision
k

αk−1 + ∆αvision
k


• Electronic compass provides estimation of the heading

z3
k =

[
αcompass

k

]
According to the measurement fusion concept the measurement vector is formed as

follow

zk =


z1

k

z2
k

z3
k


The measurement model is represented by equation

zk = Hxk + υ,

where υ is the measurement noise and H is the matrix:

H =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 1


The system model is determined as follows:

xk = xk−1 + uk−1 + ω,

where ω is the system noise and u is the control input which is updated according to

the current movement of the robot as follows:

uk =


∆robotxcontrol

k

∆robotycontrol
k

∆αcontrol
k
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Figure 5.11: Landmine detection platform on the test setup

An important problem to be solved in the case of sensor fusion using Kalman filter is

the determination of the process and measurement noise. In the case of the measurement

noise, it can be done experimentally. The process noise is obtained based on the current

state of the robot which determines the probability of failure for the considered sensors

and the system model. The following conditions are considered:

• Starting or ending of the movement: the probability of slippage is high, thus the

system noise is high

• The robot is moving or stopped: the system noise is low

The sensors used in this work provide measurements at different time intervals due to

the specificities of the hardware. When the sensor value is not available, it is ignored by

setting the appropriate measurement noise covariance to infinity, forcing the filter not

to consider the data at this time. The same process is performed for the vision system

if there are not enough landmarks for determining the robot displacement.

5.6 Experimental Results

An experimental testing of the proposed system was done in an indoor environment

using a box with soil to provide the input information for the vision system (Figure 5.11).
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(a)

(b)

Figure 5.12: Trajectories obtained by the robot during the experimental test: a) - “true”

trajectory measured by an external camera, b) - trajectory obtained by the developed

system

During the tests the robot covered an area of 600x140 mm2 with back-and-forth motions.

The true position of the robot was monitored by an external camera mounted above the

test side using an easy to detect color mark on the robot. The trajectories obtained by

the proposed system and external camera are shown in Figure 5.12.

5.7 Implementation

The proposed low-level algorithms for robot positioning are implemented in the low-level

control program which runs on the main control board of the robot.

The additional vision-based system is implemented in the control program which

runs on the onboard PC of the robot. The Kalman filter sensor fusion is implemented

as a decision maker. The odometry and vision systems are implemented as sensors. The

detection of natural landmarks obtained from the video camera was employed for the

suspicious objects detection, so here, the already developed class CGridROIExtractor

is used as a base class. Please refer to Appendix G for more details.
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5.8 Summary

Several possibilities to improve the positioning of the mobile scanning platform, from

low-level control algorithms to a vision-based system, were investigated in this chapter.

The combined system of vision and odometry has an ability to detect the deformations

of the robot path, like slippage. Unfortunately, this approach cannot be adequately

applied on the current platform prototype, since correction of small errors is not possible:

the discrete cylinders cannot provide precise positioning and pure rotations are not

possible in principle. The largest problem is originated from the small rotations of the

robot body which introduce a constantly increasing error to its trajectory. However,

the improvement of low-level control allows to minimize these situations, although not

eliminating them completely.

If an absolute localization system is available it can be used in complementary to the

developed system by means of data fusion based on Kalman filter. However, it can be

concluded that the problems resulted from small distortions of the robot path cannot

be completely eliminated, because even being detected they cannot be corrected. To

allow the corrections, the mechanical structure of the platform has to be substituted by

a more appropriate design as suggested, for example, in Section 8.3.



Chapter 6

Unknown Area Coverage

In this chapter the task of a high-level path planning for the mobile scanning platform

is considered. This task is known as unknown area coverage. After a review of prior

art in Section 6.1, the problem statement is formulated in Section 6.2. The developed

approach is presented in general in Section 6.3. The basic elements which compose the

algoithm are described in detail in Section 6.4. Section 6.5 is dedicated solely to the

sensor processing required by the execution of the algorithm. Then, it is followed by

some details about its implementation (Section 6.6) and the simulation and experimental

results (Sections 6.7 and 6.8).

6.1 State of the art

The task of unknown area coverage is a well-known challenge for mobile robotics. Area

coverage is a stategy which should lead the robot to visit every point of an area at

least once. In contrast to the search strategy, where the visiting of all the area is not

required to complete the test, here it is the most important condition. It is considered

in general that the robot is not given with any information about the configuration of

the space which should be covered. There are two basic approaches which can be used:

approximate cellular decomposition when the area is represented by a grid map, and

exact cellular decomposition where the area is represented as a set of simple subareas.

There are also other strategies, for example, the concept of neural networks can be used

to plan the path [106, 107, 108].

Examples of using approximate cellular decomposition with rectangular grid cells for

online coverage can be found in [15, 109, 110]. A common specificity of such algorithms

is a high number of turns in the provided path which makes the robot trajectory not

regular, and therefore not suitable for landmine recognition.

The exact cellular decomposition [111, 112, 20, 19, 18, 113] seems a more appropriate

strategy for a demining robot because it can produce an optimized path in terms of reg-

115
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ularity. Choset et al. propose an algorithm to perform an exact cellular decomposition

of the free area using a virtual line (also called slicing line) that moves across the map

splitting it into smaller areas [113]. Cells are formed when the line finds an event (i.e.

when it makes a tangent with the bound of an obstacle which can be detected by range

sensors). Then each cell is covered using back-and-forth motions. For the online im-

plementation of this algorithm it is important to find all points on the obstacle bounds

where the cells must be formed. Acar et al. propose two ways to detect these points

using robot range sensors [19]. There are also similar approaches which, however, do

not use the exact cellular decomposition directly. Hert et al. suggested an algorithm

which incrementally explores the area and covers it using back-and-forth motions [114].

Here the environment is represented as a combination of inlets and islands which are

investigated during the exploration. Wong and MacDonald proposed a topological cov-

erage algorithm which is based on a topological map representation of the environment

and landmarks sensed on the obstacle boundaries [115].

Most of the existing unknown area coverage algorithms heavily rely on a high pre-

cision of the robot localization. Considering both problems this becomes a problem

of SLAM. SLAM solutions are still not reliable enough for a large and almost empty

environment ( [116]), which is a typical environment for a minefield. In most cases, the

coverage algorithm has to consider the odometry of the robot as the main source for

localization dealing with its unreliability leading to algorithm failures [19].

6.2 Problem Statement

Path planning algorithm should work for two main purposes: assisting the data gath-

ering for landmine detection algorithms and visiting all the points of the specified area,

thus providing it’s complete coverage. First goal imposes a restriction on the shape of

the robot path. It should mimic a path followed by a stationary scanning device. Then,

the sensor data can be properly mapped enabling the landmine detection. In order to

guaantee the safety of the robot any non-scanning trajectory (any free path between

two points) should be always located inside the already covered area. Such intermedi-

ate paths should be as short as possible to prevent accumulation of large localization

errors which again lower the safety of the robot and affect the landmine detection. Such

requirements were not considered in the previous works. However, they can improve

the performance of the algorithm itself making it less dependent on the localization.

Instead of assuming that a source of global localization is available, the path should

be planned relying as much as possible on the environmental features, as implyed by

SLAM strategies, increasing the reliability of the algorithm.
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6.3 Approach

The developed coverage algorithm has a hybrid behavior-based architecture: it is based

on a situated activity design which incorporates simple reactive behaviors [117]. The

robot behaviors which compose the algorithm also serve as building blocks of the as-

sociative memory where the positions of obstacles are recorded. Instead of memorizing

coordinates of a point, a sequence of several basic behaviors required to arrive to that

point from the current position is recorded. In the case of a coverage algorithm the

amount of possible situations is relatively small allowing a practical implementation of

the proposed strategy. Thus, the algorithm operates with situations and sequences of

behaviors needed to navigate between them, avoiding the use of global positioning in-

formation. The only positioning data which is considered to be available globally is the

directional information (heading of the robot). However, this information, in any case,

is required to maintain a regular coverage pattern.

To fulfill the requirements for the coverage algorithm, the most suitable strategy

seems to be the exact cellular decomposition when the area is divided into cells of

different sizes and shapes in such a way that the total area of the cells is equal to

the initial area. This allows to implement a regular coverage pattern, back-and-forth

motion, and simplifies the planning. The approach developed in this work is inspired

by [113] and [114].

Being based on the cellular decomposition the proposed coverage algorithm should

assure the coverage of all cells in which the environment is decomposed. There is always

one cell, called current cell, being covered at a given moment. While proceeding with

the coverage of the current cell the environment is observed in order to reveal conditions

for further decomposition. This process provides a set of cells and paths between them

which are executed when the coverage of one cell is finished and another one is chosen.

6.4 Basic Elements of the Coverage Algorithm

Figure 6.2 shows a general structure of the algorithm. The algorithm is based of several

simple behaviors which are used in all different situations. These behaviors, in turn,

compose more complex ones which provide the ability to sense the critical points and

deadlocks. Combinations of simple and complex behaviors provide the required func-

tionality which is logically devided in three processes: area decomposition, cell coverage

and path between cells. These processes are even more complex basic elements which

finaly compose the algoithm as shown in Figure 6.2.

The basic elements, starting from the premitive behaviours, are described in more

details below.
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Figure 6.1: Basic coverage pattern

Behaviors

There are two basic behaviors used by the algorithm:

• Direction-following is a forward movement of the robot in a specified direction.

The robot direction is constantly corrected by a feedback from the heading sensor

of the robot. The behavior is terminated if an obstacle is encountered on the way.

• Wall-following is an adaptive movement of the robot at a safe distance along the

boundary of the closest obstacle. The distance to the obstacle is measured by the

robot sensors and used to control the robot actuators in order to keep it constant.

There are two types of wall-following motion defined by the side of the robot which

is faced to the obstacle (wall-following side): left or right.

The basic coverage pattern (back-and-forth path) is performed by switching between

the direction-following and the wall-following behaviors (Figure 6.1):

Direction-following along the sweeping vector until an obstacle is encountered

m
Wall-following until an intersection with the sweeping vector

When the behaviors are switched, the sweeping vector and the wall-following side are

corrected appropriately. This procedure implies the using of coordinate information

(while moving the sweeping vector). However, this information is used only locally.

The associative memory of obstacle positions is organized using the following modi-

fications of the basic behaviors:

• Directed wall-following is a wall-following executed until a specified direction is

empty from obstacles, which signifies that a direction-following can be started in

this direction.

• Find obstacle behavior is a combination of the two basic behaviors which is used

to reach the specified obstacle. The “location” of the obstacle is defined by its

number from the current position of the robot and by the direction in which

the direction-following should be performed in order to discover it. Intermediate

obstacles are overtaken by the wall-following.
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Figure 6.2: General structure of the coverage algorithm. * and ** - Section 6.4.2, *** -

Section 6.4.3

These behaviors are used to guide the robot between the cells of the decomposition.

Critical Point Sensing

A critical point is a part of the obstacle which does not allow the robot to complete

the coverage by simple back-and-forth paths (Figure 6.3). At this point the area has

to be split into two cells so that each of them can be covered separately (for a strict

mathematical explanation see, for example, [18]). A critical point is called forward if it is

located in the main sweeping direction (Figure 6.1), and backward otherwise (Figure 6.3

shows an example of a forward critical point).

Range sensors of the robot (sonars) are utilized in this work to detect the critical

points. For a forward critical point, the sensing process is started during the direction-
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Figure 6.3: Forward critical point sensing: (a) sensing the distance during the direction-

following, (b) confirming the critical point during the wall-following

following (Figure 6.3(a)) by measuring the range to the obstacle in the main sweeping

direction. A local minimum of distance along the robot path signifies the presence

of a critical point. However, the distance information is not very reliable and, thus,

the critical point is said to be found only when it is followed by the robot during the

consequent wall-following (when the robot returns to the previous sweeping vector as

shown in Figure 6.3(b)). The information obtained from the range sensors during the

direction-following is utilized in order to determine the wall-following side when the

obstacle is encountered: the sides are opposite for the border and a forward critical

point, and they are the same for the border and a backward critical point. Sensing of a

backward critical point is similar considering the whole process in the direction opposite

to the main sweeping direction.

Deadlock Sensing

An obstacle bounding the area in the main sweeping direction provides a situation

when a back-and-forth path of the robot comes to a deadlock. The deadlock is sensed

in the same way as a critical point : it may occur if the robot returns to the previous

sweeping vector during the wall-following. In this situation, the direction of the robot

displacement during the wall-following is analysed in order to distinguish between a

deadlock and a critical point (a direction opposite to the direction of the sweeping

vector signifies the deadlock). If a dealock is sensed the covering of the current sell is

finished, however, no new cells are created (as it would happen in the case of a critical

point)

6.4.1 Area Decomposition

Every critical point encountered as described in Section 6.4 signifies a discontinuity of

the environment. Thus, the decomposition is performed by creating two new cells for

each found critical point (in a general case, the number of created cells is equal to n+1,

where n is the number of critical points found on the same sweeping vector). After that,

the current cell is considered to be covered and the next cell is chosen (Figure 6.2). The
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created cells are considered to be child cells and the cell which contains the critical point

- parent cell. The direction of the critical point defines the direction of the created cell

(forward or backward). Forward and backward cells have the opposite main sweeping

direction.

This process leads to a decomposition structured as a tree (see simulation example

in the end of this section and Figure 6.7(c)). The cells are chosen for coverage in the

order in which they are created and the tree structure is used for the planning of the

paths between the cells. The process of creation of the new cells is controlled by several

logical assumptions which do not allow to double-cover the same area in the case of a

pair of backward and forward cells which represent the same part of the environment.

6.4.2 Cell Coverage

The coverage of each cell is performed by the back-and-forth path as shown in Figure 6.4.

One of the following situations completes the cell coverage and may result in the creation

of new cells:

• forward critical point is found ⇒ new forward cells are created

• backward critical point is found ⇒ new backward cells are created

• deadlock ⇒ no new cells are created

The critical point which caused the cell creation is called a starting point. The coverage

of the cell is started from the starting point by a directed wall-following. The parameters

of the latter (the wall-following side and the direction) are made unique for all created

child cells when the coverage of the parent cell is completed in one of the cases mentioned

above. For example, if the coverage of the current cell is completed due to the descovery

of a forward critical point, two new cells will be created, one with right wall-follwing

side and another - with left.

6.4.3 Path to the Next Cell

The path between two cells of the decomposition is based on the idea of associative

“location” of critical points relatively to each other. The paths are updated every time

the current cell is covered: the path from the cell ending situation to its starting point is

added to the end of the path. The directed wall-following is used to navigate around the

same obstacle, and the find obstacle behaviour is used to move between the neighboring

obstacles.
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Figure 6.4: Cell coverage

6.5 Sensor Processing

The developed coverage algorithm relies on the sensor data as a primary source of

information about the environment (in contrast to a map-based approach which would

rely on a predefined map). It implies the existence of range sensors which report the

distance to the nearest obstacles from the robot in different directions. In this work the

sonars, usually used for mobile robots, were considered for this purpose. The Nomad

Super Scout robot is equipped with 16 sonars which provide 360◦ field of view as shown

in Figure 6.5. On the mobile scanning platform one sonar is installed on each leg (see

Figure 6.5) providing the view in four directions. Sonars confer acceptable performance

being relatively cheap. However, there are a number of possible failures which commonly

occur in the system of several sonars:

• A crosstalk occurs when the beam emitted by one sonar is received by another

one. In this case the value obtained by the second sonar is unpredictable.

• Multiple paths situation happens when the beam is reflected from an obstacle

at a high angle, so it does not arrive back to the sonar. Instead, the beam is
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(a) (b)

Figure 6.5: Location of sonars on the mobile scanning platform (a) and Nomad Super

Scout (b)

reflected from other surfaces and finally arrives back with a large delay leading to

overestimated value of distance.

One of the possible strategies which helps to reduce the influence of the mentioned

situations is the mapping of the sensor reading to a grid-map, called occupancy grid

[118]. Experiments performed in this work showed that this approach confers significant

reduction of the sonar errors.

A probabilistic approach is used in this work to form the occupancy grid. A proba-

bility of being occupied by an obstacle is assigned to every grid cell. Every time a new

sensor reading is available it is analyzed using a simplified model of the sonar beam as

shown in Figure 6.6. Each grid cell which falls into the cone of the beam (shown in dark

gray) is updated according to the following rule:

pk =
p̃kpk−1

p̃kpk−1 + (1− p̃k)(1− pk−1)
, (6.1)

where pk is the probability of the cell to be occupied at time moment k, p̃k is the

probability of the cell to be occupied given the current sensor reading. Probability p̃k

is assigned according to the area in which the cell is located: 1, 2 or 3 in Figure 6.6:

1. p̃k = 0.4 (most probable these cells are not occupied)
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Figure 6.6: Updating of the occupancy grid from a sonar reading, L - the value of

distance reported by the sonar (the shortest distance to the target surface inside the

cone of measurements)

2. p̃k = 0.45Lmax−L
Lmax

+ 0.5 (most probable the cells are occupied but the reliability of

this assumption decreases with distance)

3. p̃k = 0.5 (the state of these cells is unknown)

The obtained occupancy grid is used for the detection of critical points when the

direction following is finished. In this case there is enough data obtained during the

direction following which are constantly incorporated into the grid providing a reliable

map.

It should be mentioned that the wall following behavior is performed based on the

raw sonar data in order to reduce the computation time. Still the performance of the

wall following is acceptable due to the reactive nature of the behavior.

6.6 Implementation

The coverage algorithm is implemented in the control program by the class CExplorationBeh

representing a behavior in the object model described in Chapter 2. It contains the ba-

sic behaviors, as shown in Section 6.4, and performs by switching between them. All

behaviors are implemented also as behavior objects, so they are nested by the main

behavior :

• Wall-following is implemented by the class CWallMotion

• Directed wall-following and Direction-following are implemented by the class CFor-

wardBeh

• Find obstacle behavior is implemented by the class CFindObstacle
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Several objects are used to detect specific situations when the behavior should be

switched. These objects are implemented as decision makers :

• The finishing of the current cell coverage are analyzed by ACellEndDetector,

AWallDirDetector and ACellEndAfterWallDetector

• Critical points are detected by COccupancyGrid class (this class also peforms the

processing of the occupancy grids)

The exact cellular decomposition which is constantly constructed by the behavior is

implemented as a map object by CAssociatedED class. Finally, the top-level behav-

ior controls the robot using a hardware-independent interface so the algorithm can run

both on the Nomad Super Scout and on the demining robot prototype without changes.

The robots are represented by CTwoWheelsRobot and CDemineRobot classes respec-

tively. These classes implement the necessary abstraction interface to allow the requied

transparant transition from one platform to another. Please refer to Appendix H for

more details.

6.7 Simulation Results

A simulation test was performed in order to evaluate the performance of the coverage

algorithm. The used simulation environment is provided by Nomand to emulate the

Super Scout mobile robots. Simulation performance of the robot is realistic. However,

many problems cannot be tested with this simulation, like the accumulation of the

odometry errors which is tested further in this chapter during the real experiments.

Figure 6.7(a) shows the map of the simulated environment which was covered by the

robot. Figure 6.7(c) presents the obtained decomposition tree (the numbers of cells are

shown also in Figure 6.7(a)) and Figure 6.7(b) shows the trajectory followed by the

robot during the coverage.

Using this example the following features of the coverage algorithm described earlier

can be seen:

• Coverage of cells 1, 3, 6, 17 and 18 was finished by a deadlock

• Backward cells 9, 10, 15 and 16 were not covered because the corresponding for-

ward cells 7, 8, 13 and 14 were successfully determined

• Cells 0, 4, 5, 11 and 12 each created two child forward cells
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Figure 6.7: Simulation testing (a) simulation environment, the cell numbers of the cre-

ated decomposition are shown in gray; (b) trajectory of the robot during the simulation

test; (c) obtained decomposition tree (white - forward cell, gray - backward cell, dashed

border - cell not covered due to a corresponding forward cell)
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Figure 6.8: Experimental setup (a), (b) - map of the experimental setup (the obtained

cell decomposition is shown in gray), (c) - decomposition tree created during the coverage

(white - forward cell, gray - backward cell, dashed border - cell not covered due to a

corresponding forward cell)

6.8 Experimental Results

Indoor testing of the path planning algorithms using the demining robot prototype is

complicated due to its large size so large areas are needed for testing. In turn, covering of

the large area leads to the accumulation of the directional error due to unavoidable small

rotations of the robot which does not allow to complete the path. Thus, experimental

evaluation of the proposed algorithm was performed using only Nomad Super Scout

mobile robot. The robot covered a bounded testing area with two obstacles shown in

Figure 6.8(a) while creating a cellular decomposition presented in Figure 6.8 (b) and

(c). A complete coverage was achieved. Figure 6.9 shows the trajectory recorded by
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the robot odometry sensors (Figure 6.9(a) shows the trajectory corrected for odometry

errors which is close to the real trajectory followed by the robot).

It can be seen from Figure 6.9(b) that during the coverage large odometry errors were

accumulated. Such position errors would probably disable the possibility to perform a

coordinate-based coverage. However, the proposed algorithm successfully covered the

area. The measurement of direction in this experiment was obtained from the robot

odometry which also accumulated the error. This error obviously affects the performance

of the coverage because it does not allow a high-quality control of the direction for the

direction-following. An absolute direction sensor might be installed on the robot as part

of future work.

6.9 Summary

The algorithm for complete online coverage described in this chapter meets the require-

ments given by the landmine detection system: it utilizes a regular coverage pattern and

provides a safe path. Because this task was considered in a broad sense, the algorithm

also has a feature of low dependency on the robot localization which showed its reliabil-

ity during the experiments. The usage of this strategy is not limited to demining only,

but can be also employed in other fields of mobile robotics, like cleaning, grass cutting,

agriculture, etc.
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Figure 6.9: The trajectory of the robot obtained during the experiment shown in Fig-

ure 6.8
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Chapter 7

LADERO Experimental Testing

This chapter presents the results of the experimental testing of the mobile scanning

platform LADERO performed on a test minefield in real conditions. The testing included

the gathering of the sensor data from a test minefield and landmine detection data

processing. Section 7.1 presents the details about the data acquisition process. Then,

the obtained sensor data were processed by the landmine detection algorithms developed

in this work as described in Section 7.2.

7.1 Data Acquisition

Having the landmine detection and path planning algorithms developed in this work,

there is a question about their performance in real conditions when they are assisted by

a mobile scanning platform. Therefor, the LADERO prototype with control software

based on the developed algorithms was tested on a test minefield located at Meerdaal

bomb disposal unit in Belgium. Figure 7.1 demonstrates the robot on the test field

during the scanning.

The data were acquired from 27 objects using metal detector and two IR sensors

installed on the platform. Figure 7.2 shows the layout of the test minefield. Each object

on the field is located in a separated rectangle with size 50×100cm and surrounded with

an empty area to allow easy access. Not all of the available objects could be scanned

by the robot because of its relatively large size. Each object was scanned in a separated

experiment conferring reduction of the positioning errors which would be accumulated

on a larger area. Examples of the data can be seen in Figures 7.3-7.5.

The metal detector used on the robot showed a good performance on the landmine

targets located on the test field. It detected all low-metal plastic landmines buried in

0-15 cm depth, except one. Even with the relatively low quality scanning provided

by the platform, allows us to obtain representative data from the metal detector due

to the large size of the sensor head which compensates for the position inaccuracy of

131
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Figure 7.1: Robot on the test field

the platform. The performance of the infrared sensors is acceptable only in few cases

depending on the time of day and weather conditions (the tests were performed from 8

a.m. until 8 p.m.). Unfortunately, it is questionable if such sensors can be used on the

platform because of the small area of the soil that they cover providing large dependence

on the accuracy of the platform. It has to be concluded that the IR data are ambiguous

due to the small spots provided by the sensors on the ground and, thus, only the data

from metal detector were used for the classification.

The scanning performed by the robot is very unreliable in terms of slippage and small

rotations. However, the possibility to use a similar platform for landmine detection in

general can be tested using its current version. The testing requires constant assistance

by a researcher in order to correct the small disturbances of the robot trajectory which

cannot be corrected automatically due to the mechanical limitations. The speed of

the robot is limited by the time required for sensor data acquisition. In its current

version an average scan 100x50 cm requires about 40-50 minutes (this was an average

time required for scanning one object on the Meerdaal test fields) due to the speed of

scanning cylinders adjusted to be approximately 40mm/s in order to provide reliable

motions as described in Section 5.2.

The data obtained during the tests are unique in a sense of being acquired by a

mobile platform from two sensors at the same time in real conditions. The condition
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Figure 7.2: Layout of the test field (APL - antipersonnel landmine, AT - antitank

landmine), sections An contain APL M35BG, sections Bn contain APL PMN-2, section

C contains APL PRB409

of the field is close to natural because it was not used for a long time. The usage of

these data represents a real ability of employing a mobile robot for landmine detection

in contrast to the case when the data obtained by high precision scanning devices are

used.

7.2 Landmine Detection

The data obtained by the mobile platform during scanning were used for landmine

detection. Taking into account the low spatial resolution of the data it is reasonable to

consider only a two-stage classification as shown in Figure 7.6. The first stage of the

detection, namely the detection of suspicious objects, showed good results providing the

detection of all objects. If the detection process is terminated after this stage (all the

detected objects are considered to be landmines) the value of the false alarm rate would

be 5.4 FA/m2.
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(a) Metal detector (b) IR0 (c) IR1

Figure 7.3: Antitank landmine VS 1.6, x = 500 mm, y = 250 mm, depth = 0 mm; IR0

- 6.6-14 µm, IR1 - 8-14 µm; the landmine is marked with a dashed rectangle

(a) Metal detector (b) IR0 (c) IR1

Figure 7.4: Antipersonnel landmine PMN-2; x = 250 mm, y = 500 mm, depth = 0 mm;

IR0 - 6.6-14 µm, IR1 - 8-14 µm; the landmine is marked with a dashed rectangle

A possibility to perform further classification is tested using the concept of dominant

class. This concept assures that the failure of the classification step does not lead to

a significant change of the detection rate leaving the false alarm rate also unchanged.

After the ROI detection stage for these experimental data the obtained data set has

70 objects, including the 27 real objects, several double detections and clutter. The

size of this data set is obviously not enough for performing training and evaluation of

a classifier. Therefore, it was decided to investigate a possibility to train the classifier

using experimental data from [5]. This task is especially important because the situation

of not having enough training data can easily happen in reality. The main obstacle to

this approach is the fact that the sensors installed on LADERO are not considered in

the MsMs database [5]. This means that the classifier has to be trained on the data
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(a) Metal detector (b) IR0 (c) IR1

Figure 7.5: Antipersonnel landmine M35BG; x = 500 mm, y = 250 mm, depth = 100

mm; IR0 - 6.6-14 µm, IR1 - 8-14 µm; the landmine is marked with a dashed rectangle

Landmines Other Objects

Suspicious Objects Background

Sensor data

Figure 7.6: Two-step landmine detection performed for the obtained experimental data

(classes highlighted with gray background can be associated with landmines)

obtained from different sensors.

The only possibility to perform such training is to reveal classification features which

have weak dependency on the nature of the sensor. Such features could be fused for

signatures of the same object obtained from different sensors using the idea of combined

features introduced in Chapter 4. To choose the classification features which are general

enough to be used for the created classifier a measure of feature generality in respect

to the dominant class is introduced. This measure intends to estimate the difference

between the distributions of the feature for the dominant class obtained from different

sensors. The closer are the distributions of the same feature for different sensor to each

other, the more general the feature is. Only the distributions for the dominant class are

considered here allowing the feature to be not general in respect to the other class. The

measure is calculated as follows:

FG =
1

N

N∑
k=1

∆µref −
∣∣∣µcomb(class1) − µk(class1)

∣∣∣
∆µref

(7.1)

∆µref =
∣∣∣µcomb(class1) − µcomb(class2)

∣∣∣ , (7.2)
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Table 7.1: Landmine detection results over the stages of two-step detection process (the

evaluation set contains 19 landmines)

Classification step

ROIs extraction Classification Landmines/ Other Objects

Landmines detected 19 18

DR 100% 95%

FA/m2 5.4 2.9

where N is the number of sensors, µcomb(class1) is the mean of the combined feature dis-

tribution for class1, µk(class1) is the mean of the feature distribution for class1 obtained

by sensor k, and class1 is the dominant class. The measure shows how far the individ-

ual features calculated for each sensor are from the averaged feature normalized by the

distance between the means of the classes (after processing the distributions to account

for the dominant class). It should change from 0 to 1, but can also be negative showing

a very high nongenerality. Only the features which have the value of FG close to 1 will

be considered for the construction of the classifier.

Figure 7.7 shows a comparison of the classification features in terms of feature gen-

erality in respect to the dominant class. Now three features with highest values of FG

are chosen:

• combined Occupied part (OA)

• combined Entropy (SM)

• combined GR measure (SM)

The created classifier is then trained on the database experimental data from [5]

using the largest available data set which includes data from four sensors and counts
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2574 samples. The evaluation of the classifier is performed on the data obtained by

LADERO. After the classification one of the previously detected landmines is missed

and the FA/m2 is reduced from 5.4 to 2.9. The results of landmine detection through

the classification stages are shown in Table 7.1.

The achieved possibility to employ a classifier trained on the data obtained in differ-

ent conditions which do not match to the conditions where it is used, is very important

since such situation can easily arise during the real operation. It should be noticed that

this is possible thanks to the abstract classification features.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The research conducted in the present work confirmed once again that automated land-

mine detection is a very challenging task. All stages of the development of such a system

contain important unsolved problems, from low-level positioning of a mobile landmine

detection platform in unstructured environment, to the high-level recognition task com-

plicated by nonselectivity of the landmine detection sensors. Several of the most critical

problems were considered in this work and possible solutions were developed.

The central problem addressed in this work is the automatic landmine detection

using the sensor data obtained by a mobile scanning platform. Therefore, the available

scanning platform LADERO was sufficiently improved in terms of installing necessary

control hardware and sensors and implementing the newly developed control software.

The landmine detection task was analyzed in detail, first, using the experimental data

available from public databases of landmine signatures. This analysis revealed several

specific properties of this task and allowed to develop an optimal strategy consisting

in a multi-stage approach. Such division of the detection process accounts for the

fact that the considered landmine detection sensors are not selective for the landmines.

Instead, each sensor distinguishes objects with differing values of some physical property

which can be also present in a landmine. This may lead to a situation where the data

quality is not enough to perform any recognition. The multi-stage strategy allows to

overcome this problem by terminating the detection process after an appropriate stage

and safely considering all undistinguishable objects to be landmines. Thus, the detection

process can be viewed as a step by step reduction of the false alarm rate where the next

improvement is possible if the quality of the sensor data allows it.

The first stage of the landmine detection process consists in the detection of all

suspicious objects against the background. A special algorithm was developed for this

purpose in order to provide the features essential for the processing of the available
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sensor data, characterized as follows:

• The algorithm is operating online which means that a suspicious object is detected

right after it is fully scanned by the scanning platform. This property is crucial

to enable a fully automated landmine detection on a mobile robot because there

is no predefined knowledge about the locations of the suspicious objects. Having

this feature, the robot is able to detect the object in advance and plan a safe path

to avoid landmines.

• The developed algorithm does not use the shape of the object as a vital charac-

teristic for the detection process. Even if it is possible to specify the shape of

the objects located in a specific area, they can be deformed due to positioning

failures of the scanning platform making an assumption of a certain shapes to be

not reliable.

• Operation of the algorithm can be performed in different modes conferring detec-

tion of the objects with different contrast in relation to the background. Thus, the

specificity of each sensor data can be taken into account by choosing an appropri-

ate mode of operation, for example, detecting only objects with positive contrast

from pulsed metal detector data, and objects with both negative and positive

contrast from IR camera data.

• The algorithm is based on the analysis of relative changes of the sensor signal.

Thus, it is not sensitive to the changes of environmental conditions which cause

the constant changes of the background level.

The performance of the suspicious object detection algorithm was tested against simu-

lated and experimental data obtained from the public database and from the experiments

carried out with the mobile scanning platform LADERO. The obtained results clearly

demonstrate that the presented algorithm provides a reliable basis for the subsequent

stages of the landmine detection process.

The next stages of the landmine detection provide the recognition of landmines

among the detected suspicious objects. Analysis of large amounts of experimental data

showed that this task should be divided in two stages in order to provide better sep-

arability of the classes on each stage: first, the suspicious objects are classified to be

man-made or natural, and then the landmines are recognized among the detected man-

made objects. A feature-based sensor fusion approach is used for the classification

considering the Bayesian classifier and multivariate Gaussian model for representation

of the feature parameters. A number of new classification features, which reveal the

nature of the object, are proposed, and several other features are adapted from other

fields of pattern recognition. The main goal for the development of new classification
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features is the improvement of their independence from the nature of a particular sensor.

Several of the proposed features meet this requirement and, thus, their values can be

fused for the signatures of the same object obtained from different sensors by averaging,

conferring a combined feature with better characteristics. The considered classification

features were analyzed in detail with the help of mutual information and Hausdorff dis-

tance measures in order to research the possibilities to improve the classification results.

The main obstacle in this direction is a very high overlapping of the classes in the feature

space. This problem naturally follows from the fact that the utilized sensors are not

specific for the landmine detection. The separation of the classification in two stages is

one step toward this goal. However, the classification process was improved further as

summarized below.

The modification of the classifier training process is proposed in this work aiming in

improvement of the separability of the analyzed classes in case of landmine detection.

Therefor, the concept of selective training was developed here. This approach benefits

from the fact that some of the classification features have bimodal distributions for one

of the classes where one of the maxima is better separated from the distribution of the

other class. In this case the ignorance of the highly overlapped maximum is acceptable,

since the second maximum confers better separability of classes. The model of the

classifier is then changed to an additive Gaussian model accounting for the new relation

between the features when some parts of the distributions are ignored. However, only

the presence of several classification features with this behavior can assure improvement

of the classification results: if the better separated maxima characterize different sets of

objects, a combination of several features can allow to classify the whole set of objects

even if large parts of the distributions are ignored. This result can be explained by

the fact that the highly overlapped areas of the distributions do not provide any useful

information for the classifier. Instead, they can even confuse the classification and reduce

its performance.

Although, the selective training remarkably enhances the classification results in

comparison to the naive approach, the concept of dominant class was additionally

introduced here in order to account for one more specifics of the landmine recognition

task. The selective training reduces the classification error without any specific restric-

tions on the values of the resulting detection and false alarm rates, similar to the most

approaches in pattern recognition. However, the case of landmine detection is specific

in this sense because it is essential to keep the highest possible level of the detection

rate (ideally 100%). In order to overcome this problem the concept of selective training

was further modified to provide a possibility to specify one of the classes to be a dom-

inant class modifying the distribution of the classification features before the training

of the classifier. In this case the distribution of the dominant class is unchanged, and

the overlapping part of the other class distribution is ignored. The remaining parts of
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the nondominant class distribution now represent the whole distribution allowing the

dominant class to prevail during the classification. This simple concept leads to a dif-

ferent level of performance consisting in higher detection rates and still conferring the

reduction of the false alarm rate. The dominant class approach is especially useful if

the quality of sensor data is low. The fine training of the classifier using the selective

training only can be complicated in this case due to lack of information. The introduc-

tion of a dominant class makes the classification possible and in some cases reduces the

false alarm rate.

The developed landmine detection algorithms were implemented on the mobile scan-

ning platform LADERO after being tested on a large amount of experimental data from

the public database. The specificities of the data acquired by the platform include low

spatial resolution and deformations of the object signatures due to the positioning fail-

ures of the platform. Having low-quality data, the concept of dominant class was used

for the classification. The important result is that the data acquisition problems do

not affect the performance of the suspicious object detection algorithm. The data set

obtained during the experiments was sufficient only for the evaluation of the classifica-

tion and was not large enough to use a part of it for the classifier training. Thus, the

classifier was trained using the data available from the public database., although, the

sensors installed on LADERO were not employed in that database. It is evident that

such process is not possible in the case of the classification features which are highly

dependent on the sensor characteristics. However, there is a possibility to use the fea-

tures which are relatively independent from the sensor as combined features. A special

measure for estimating the degree of generality of the feature in respect to the dominant

class was developed. Based on this measure, only the three best features were chosen

to form the classifier. After being trained on the experimental data from the public

database obtained from four different sensors, the classifier showed good performance

on the experimental data obtained by LADERO reducing the false alarm rate by the

factor of 1.9. Such operation is only possible thanks to the special classification features

which include a high degree of abstraction from the nature of sensor. This achievement

proves the possibility to train a classifier for landmine detection using experimental data

obtained in different conditions which do not match the conditions where it will be used.

The landmine detection task raises a number of adjacent problems which have to

be solved in order to enable the automated operation of a demining robot. First of all,

spatially mapped sensor data are required for the functioning of the suspicious object

detection algorithm. According to the idea of the project DEMINE the data are ob-

tained by the mobile scanning platform LADERO which has a simple mechanical design

based on pneumatic cylinders arranged to form a cartesian structure. The experiments

performed with the platform revealed several positioning problems when operating on

a rough terrain, which cause unintentional rotation of the platform and slippage of the
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legs. Several low-level control algorithms were developed in order to solve some of

these problems, namely the the parallel cylinders uneven speed and poor foot ground

contact. However, several unsolved problems still remain and probably can be solved

only by reconsidering the mechanical design of the platform. An additional vision

system for the detection of positioning failures was developed and integrated with the

odometry system of the robot.

Stepping from the low-level control of the platform to its behavior on the level of a

minefield, the problem of high-level path planning is next addressed. In general, the

area where the robot is operating is completely unknown in advance which means that an

obstacle can be situated on the robot path. To perform the scanning of the area in case

of obstacles, the problem of complete area coverage has to be solved. The algorithm

developed here for this purpose utilizes the concept of sensor-based exploration of an

unknown area. During the scanning path of the robot the environment is sensed using

sonars and decomposed in several cells if an obstacle is encountered. The decomposition

is performed in a way that each cell can be completely covered by the simple scanning

pattern of the robot. An important feature of the developed algorithm is its weak

dependence on the quality of the robot localization system assuring higher safety of

the robot in case of failures. Other properties consist in the regular path generated by

the algorithm allowing the scanning task to be performed and in the restriction for any

path taken by the robot to be situated inside of the already covered area. The developed

algorithm implemented on the test mobile robot demonstrated good performance during

the experimental tests conferring complete coverage of the given area.

Summarizing the results gained during this research it can be concluded that the

application of a mobile scanning platform for automatic landmine detection is promising.

The algorithms developed for the platform allow:

• effective landmine detection promising high detection rates;

• improved positioning of the LADERO platform leading to more reliable data ac-

quisition;

• complete coverage of an unknown area assuring high safety of the robot;

The main pitfall seems to be the local positioning of the used experimental platform

which has to be improved on the mechanical level or by redesigning the concept of

the platform. The promising results of experimental trials on test minefields using the

LADERO platform equipped with the developed algorithms confirms their applicability

for autonomous landmine detection robots.

It should be also mentioned that the landmine detection task raises many challeng-

ing problems which interlap with other areas of robotics and pattern recognition. For
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example, the unknown area coverage algorithm developed in this work can also be used

for similar tasks, like cleaning or grass cutting.

8.2 Original contributions and key publications

• Combination in one framework of the landmine detection and the path planning

algorithms assuming the restrictions of one to another.

• A multi-stage pattern recognition strategy specially dedicated for landmine detec-

tion [82].

• A novel online automatic ROI extraction algorithm with low number of parameters

and general object model [81].

• Novel classification features for better reflection of shape and nature properties of

the objects [83].

• Dedicated concepts for landmine recognition, selective training and dominant

class, which allow to benefit from the bimodal distributions of classification fea-

tures.

• A concept of mixed features which allows to use the idea of signal-level sensor

fusion for landmine recognition [82].

• A number of solutions for increasing of the reliability of the cartesian pneumatic

platform and a vision system for slippage control based on the detection of natural

landmarks on the ground [84].

• An approach for unknown area coverage which satisfies the restrictions applied by

the demining task: the coverage path must be regular to allow acquiring data from

the sensor and the path of the platform should always lie in the already covered

area [86, 85].

• Implementation of the developed algorithms for landmine detection and path plan-

ning in one software framework which allows a transparent transition between

different mechanical platforms.

• A graphical operator interface with the ability of simulation based on the acquired

experimental data.

List of key publications:

• [119] S. Larionova, N. Almeida, L. Marques, and A. T. de Almeida. Olfactory

coordinated area coverage. Autonomous Robots, 20(3):251-260, 2006.
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• [82] S. Larionova, L. Marques, and T. de Almeida. Multi-stage sensor fusion for

landmine detection. In Int. Conf. on Intelligent Robots and Systems (IROS),

Beijing, China, 9-15 October, pages 2943-2948, 2006.

• [84] S. Larionova, L. Marques, and T. de Almeida. Detection of natural landmarks

for mapping by a demining robot. In Int. Conf. on Intelligent Robots and Systems

(IROS), Beijing, China, 9-15 October, pages 4959-4964, 2006.

• [85] S. Larionova, L. Marques, and T. de Almeida. Path planning for a demining

robot. In Int. IARP workshop RISE, Brussels, Belgium, June, 2006.

• [83] S. Larionova, L. Marques, and T. de Almeida. Features selection for sensor

fusion in a demining robot. In Int. Conf. on Robotics and Automation, ICRA,

pages 3175-3180, 2005.

• [81] S. Larionova, S. Larionova, L. Marques, and T. de Almeida. Toward practical

implementation of sensor fusion for a demining robot. In Int. Conf. on Intelligent

Robots and Systems (IROS), Sendai, Japan, 28 September-2 October, volume 3,

pages 3039-3044, 2004.

• [120] Feature-level sensor fusion for a demining robot. In IARP Int. Workshop

Robotics and Mechanical Assistance in Humanitarian Demining and Similar Risky

Interventions, Brussels, Belgium, 16-18 June, 2004.

• [86] S. Larionova, N. Almeida, L. Marques, and T. de Almeida. Olfactory coor-

dinated area coverage. In IEEE Int. Conf. on Automation and Robotics (ICAR),

Coimbra, Portugal, 30 June-3 July, pages 501-506, 2003.

8.3 Recommendations for Future Work

• Improvement of the mobile scanning platform is a necessary step toward the real

implementation of automated demining technology. Based on the developed land-

mine detection strategy it seems that the most appropriate structure of the robot

consists in two layers:

1. A platform with good adaptability to move in rough terrain which can pro-

vide a reliable trajectory and a course scanning during the movement. The

sensor data obtained from the platform can be processed by the algorithm

for suspicious objects detection. If an object is detected, the platform should

switch to the second layer.

2. A precise scanning device able to scan an area roughly equal to the size

of landmines signatures. This device is carried by the main platform and
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activated in case an object is detected. These data are then of high quality

and can be processed by the landmine detection algorithms.

• The concept of selective training can be tested on other classification tasks with a

similar problem of highly overlapped classes. There is evidence that the classifica-

tion features with a bimodal distribution for one of the classes may be present in

other pattern recognition problems. For example, considering a task to recognize

between pictures of cats and dogs, one of the classification features can be the size

of the body. The distribution of the size for the dogs class most probably would

be bimodal with one maximum overlapped with the cats class.

• The online coverage algorithm can be improved for other robotic applications, in-

cluding its usage for mobile robot cleaning in indoor environment. The improve-

ment should be mostly related with localization sensors of the robot, particularly

the direction sensor. Some work has been done in the topic of using an electronic

compass indoor (which is complicated by the existence of the metallic parts of the

buildings). The preliminary results show that this can be made possible by fusing

the values of the compass with the odometry direction sensor (for example, angu-

lar position of the wheeled robot monitored by its encoders) if the fusion process

is controlled according to the current behavior of the robot. For example, if the

robot moves forward (which means, its wheels are driven with the same speed)

than the odometry sensor is expected to provide reliable value, while the compass

can be influenced by the changing conditions along the robot path. When instead

the robot rotates without changing the position, the situation is opposite. The

fused value can benefit from the best sensor in each moment.
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Figure A-1: Structure of control software/hardware

A Nomad Super Scout control software and hard-

ware

A Nomad Super Scout robot is used in the experiments related to the path planning algorithms

developed in Chapter 6. In order to provide a convenient development environment the robot

is controlled from a remote PC via wireless link. Even so there is a possibility to install an

onboard PC on the robot it was not used because the setup described here showed to be more

appropriate.

The control board of the Nomad Super Scout provides low level control of the robot by

means of commands transferred via a serial link. An onboard computer would be connected

to the serial port of the control board. Instead, in the current setup a wireless transmitter is

connected. It consists of a Card12 board with MC912D60A microcontroller and a Radiometrix

RPC radio transmitter. The serial port of the microcontroller is then connected to the robot

control board or to the remote PC serial port. Having two pairs of these devices (one for the

robot and one for the remote PC) provides a wireless connection which is transparent for the

control programm running on the PC: the programm is not aware that it is running on the

remote PC and not on the robot. Figure A-1 shows an overall structure of software/hardware

of this setup.

The Radiometrix RPC radio is controlled by the HC12 using an 8-pin interface as shown in

Figure A-2 and the converter program which is listed below. The main purpose of the converter

program is to transfer all the data between the serial link and the radio connection without

any changes. Besides this function the program includes a feature of parsing the Nomad Super

Scout commands in order to transfer additional data from the robot, for example, information

from additional sensors. The latest possibility was used in the experiments to acquire data
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Figure A-2: Interface between the Radiometrix RPC transmitter and Motorola

MC912D60A microcontroller

from an electronic compass connected to HC12 via SPI [4].

The format of the Nomad Super Scout commands was found to be the following:

CC N Data CS 0x5c
,

where CC - 1-byte command code (e.g. gs - 0x01)

N - 2-byte length of data in bytes

CS - 1-byte check sum (sum of all bytes: command code, data length and data, limited to one

byte)

In the current implementation the command 0x01 (gs command which returns all data of

robot) is parsed in order to include the data from the electronic compass. Two unused values

of the state vector State[] are used to store the compass data: STATEV ELT URRET for X

component, STATECOMPASS for Y component. For more details about the robot interface

refer to Nomad Super Scout manual.

A.1 Converter program

The converter program is run on the Motorola HC12 microcontroller and its primer goal is

to transfer data between radio and serial links. Moreover, it performs parsing of the Nomad

Super Scout commands in order to include additional sensor data. In the setup presented here

the data from electronic compass developed in [4] are obtained from a SPI link and included

in the command 0x01 as described above. The full listing of the program, named rpcprog can

be found on the attached CD.

Main control and command parsing

#define F i l a S i z e 200

char f i l a [ F i l a S i z e ] ;

#define SCOUT 1
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int main (void )

{
stat ic INT8U va lo r1 ;

stat ic int ptw=0;

stat ic int p s t a r t =0;

stat ic int f l a g = 0 ;

stat ic int f l a g c o u n t = 0 ;

int f l a g l e n = 0 ;

INT16U chk sum = 0 ;

int cc = 0 ;

int d i f f =0;

asm( ” s e i ” ) ;

PseudoVectorTbl ( ) ; // Create pseudo v e c t o r t a b l e

DDRP = 0 ;

PWCTL = 0 ;

s e t S e r i a l (BAUD38K) ; // Set speed o f s e r i a l connect ion to 3800

I n i c i a l i z a S P I ( ) ;

PORTP &= 0 x7f ; // s e l e c t board

asm( ” c l i ” ) ;

DDRA=0x60 ;

PORTA|=0x60 ;

// i n i t i a l i z a t i o n o f RPC

send byte (0xC0) ;

send byte (0 x33 ) ;

i f ( !RXR) IRQ Handler ( ) ;

SendThroughSPI (0 x55 , 0 ) ;

while (1 ) {
i f ( g e t c h a r S e r i a l t (& va lo r1 ) ) {

f i l a [ ptw ] = va lo r1 ;

i f (SCOUT) {
// parse Scout command

i f ( ( va lo r1 == 0x5c | | f l a g c o u n t > 100) && f l a g == 6) {
f l a g = 0 ;
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f l a g c o u n t = 0 ;

f l a g l e n = 0 ;

chk sum = 0 ;

}
else i f ( f l a g == 5) {
i f ( f l a g c o u n t == ( f l a g l e n −1) ) {

f i l a [ ptw ] = ( chk sum&0 x f f ) ;

f l a g = 6 ;

}
f l a g c o u n t ++;

}
else i f ( f l a g == 4 && f l a g c o u n t >= 32) {
i f ( new vals == 1)

f i l a [ ptw ] = c u r v a l s [ f l ag count −32+1];

else

f i l a [ ptw ] = 0 x f f ;

f l a g c o u n t ++;

i f ( f l a g c o u n t > 35) {
f l a g = 5 ;

new vals = 0 ;

}
}
else i f ( f l a g == 4)

f l a g c o u n t ++; // count ing the data b y t e s

else i f ( f l a g == 3) { // p a s s i n g the h igh b y t e o f l e n g t h (

...because the low b y t e >= 0x26 )

f l a g = 4 ; // the l e n g t h i s l a r g e enough

f l a g l e n |= ( ( valor1 <<8)&0x f f 0 0 ) ;

}
else i f ( f l a g == 2) { // high b y t e o f l e n g t h

f l a g l e n |= ( ( valor1 <<8)&0x f f 0 0 ) ;

i f ( va lo r1 > 0)

f l a g = 4 ; // the l e n g t h i s l a r g e enough

else

f l a g = 0 ;

}
else i f ( f l a g == 1) { // low b y t e o f l e n g t h

f l a g l e n = va lo r1 ;

f l a g = 2 ;

i f ( va lo r1 >= 0x26 )

f l a g = 3 ;
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}
else i f ( f l a g == 0 && va lo r1 == 0x01 ) { // beg inn ing b y t e 0x01

f l a g = 1 ;

f l a g c o u n t = 0 ;

f l a g l e n = 0 ;

chk sum = 0 ;

}
i f ( f l a g > 0 && f l a g < 6)

chk sum += f i l a [ ptw ] ;

}
i f ( f i l a [ ptw ] == ENDCHAR | | (ptw−p s t a r t ) >= 23 | | ( ptw < p s t a r t

...&& ptw >= 23) ) {
i f ( ptw >= p s t a r t ) {
send packet ( f i l a+pstart , ptw−p s t a r t +1 ,1) ;

}
else {

send packet ( f i l a+pstart , F i l aS i z e−pstar t , 1 ) ;

send packet ( f i l a , ptw+1 ,1) ;

}
i f ( ptw+1 < F i l a S i z e )

p s t a r t = ptw+1;

else

p s t a r t = 0 ;

}
ptw = ( ptw < ( F i l aS i z e −1) ) ?(1+ptw ) : 0 ;

}
}
}

RPC control

#define TXA ( (PORTA & 0x80 ) >> 7 )

#define RXA( x ) x==1?(PORTA|=0x20 ) : (PORTA&=0xdf )

#define TXR( x ) x==1?(PORTA|=0x40 ) : (PORTA&=0xbf )

#define RXR ( (PORTA & 0x10 ) >> 4 )

#define BROADCAST 0

#define ADDRESS 1

#define BASE 7

#define ENDCHAR 0x5c
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typedef struct {
int dest ;

int o r i g ;

int s i z e ;

} comand struct ;

int byte count = 0 ;

char l a s t n i b b l e =0;

char c o n t r o l e x p e c t e d =1;

char addre s s expec ted =0;

char Dest OK=0;

unsigned char RF byte ;

INT8U v a l s [ 5 ]={0 , 0 , 0 , 0 , 0} ;

int v a l i = 0 ;

INT8U c u r v a l s [ 5 ]={0 , 0 , 0 , 0 , 0} ;

INT8U coms [5]={0 x08 , 0 x88 , 0 x10 , 0 x90 , 0 x55 } ;

int time = 60 ;

int new vals =0;

comand struct RF comm ;

int tc = 0 ;

#define LWAIT 1000000

#define SWAIT 5000

int send byte (unsigned char byte ) {

TXR(0) ; // r e q u e s t a data t r a n s f e r

i f (SCOUT) {
i f ( v a l i == 0 && v a l s [ 2 ] <= 0x03 && v a l s [ 4 ] <= 0x03 ) {

c u r v a l s [ 0 ] = v a l s [ 0 ] ;

c u r v a l s [ 1 ] = v a l s [ 1 ] ;

c u r v a l s [ 2 ] = v a l s [ 2 ] ;

c u r v a l s [ 3 ] = v a l s [ 3 ] ;

c u r v a l s [ 4 ] = v a l s [ 4 ] ;

new vals = 1 ;

}
i f ( tc == ( time+22) )

PORTP &= 0 x7f ; // s e l e c t board

}



A. NOMAD SUPER SCOUT CONTROL SOFTWARE AND HARDWARE 165

unsigned long c = 0 ;

while (TXA && c < LWAIT) c++; // wai t f o r r e q u e s t accep t

i f ( c >= LWAIT) {
TXR(1) ;

return 0 ;

}
DDRA = 0 x6f ; // RXA and TXR as o u t p u t s

PORTA &= 0 xf0 ; // r e s e t data b i t s to 0

PORTA |= byte & 0 x0f ; // LS n i b b l e

TXR(1) ;

c = 0 ;

while ( !TXA && c < SWAIT) c++; // wai t when r e q u e s t accep t becomes

... 1

i f ( c >= SWAIT)

return 0 ;

TXR(0) ;

c = 0 ;

while (TXA && c < LWAIT) c++; // wai t f o r r e q u e s t accep t

i f ( c >= LWAIT) {
TXR(1) ;

return 0 ;

}
PORTA &= 0 xf0 ; // r e s e t data b i t s to 0

PORTA |= ( byte & 0 xf0 ) >> 4 ; // MS n i b b l e

TXR(1) ;

i f (SCOUT) {
// read data from SPI e l e c t r o n i c compass

i f ( tc == ( time+30) ) {
i f ( v a l i >= 0 && v a l i < 5) {

v a l s [ v a l i ] = SendThroughSPI ( coms [ v a l i ] , 0 ) ;

i f ( v a l i == 4)

time = 60 ;

else

time = 20 ;

}
i f ( v a l i < 4)

v a l i ++;

else

v a l i = 0 ;
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tc = 0 ;

}
else

tc++;

}

c = 0 ;

while ( !TXA && c < SWAIT) c++; // wai t when r e q u e s t accep t becomes

... 1

i f ( c >= SWAIT)

return 0 ;

DDRA = 0x60 ; // RXA and TXR as o u t p u t s

return 1 ;

}

void send packet (unsigned char ∗dados , int tamanho , int de s t ino ) {
int i ;

unsigned char b cont ro l , enderecos ;

b c o n t r o l = 0 ;

b c o n t r o l |= ( tamanho+2) & 0 x3f ;

send byte ( b c o n t r o l ) ;

enderecos = 0 ;

enderecos |= des t ino ;

enderecos |= ADDRESS << 3 ;

send byte ( enderecos ) ;

for ( i =0; i < tamanho ; i++) {
i f ( ! send byte ( dados [ i ] ) )

break ;

}
}

// IRQ on RXR

void IRQ Handler (void ) {
IRQCR = IRQCR & 0xBF ;

asm( ” c l i ” ) ;

// r e q u e s t o f data t r a n s f e r from RPC
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DDRA=0x60 ; // A5 and A6 − o u t p u t s

i f (RXR) {
IRQCR = IRQCR | 0x40 ; // r e a c t i v a t e i n t e r r u p t

return ;

}
RXA(0) ; // acknowledge the data t r a n s f e r

unsigned long c = 0 ;

while ( !RXR && c < SWAIT) c++; // w a i t i n g when RXR becomes h igh

i f ( c == SWAIT) {
RXA(1) ; // acknowledge t h a t the data was r e c e i v e d

IRQCR = IRQCR | 0x40 ; // r e a c t i v a t e i n t e r r u p t

return ;

}
RF byte = PORTA & 0x0F ; // LS n i b b l e

l a s t n i b b l e =1;

RXA(1) ;

c = 0 ;

while (RXR && c < LWAIT) c++;

i f ( c == LWAIT) {
IRQCR = IRQCR | 0x40 ; // r e a c t i v a t e i n t e r r u p t

return ;

}

RXA(0) ;

c = 0 ;

while ( !RXR && c < SWAIT) c++; // w a i t i n g when RXR becomes h igh

i f ( c == SWAIT) {
RXA(1) ; // acknowlendge t h a t the data was r e c e i v e d

IRQCR = IRQCR | 0x40 ; // r e a c t i v a t e i n t e r r u p t

return ;

}
RF byte = RF byte | ( (PORTA & 0 x0f ) << 4) ; // MS n i b b l e

l a s t n i b b l e =0;

i f ( c o n t r o l e x p e c t e d ) {
RF comm . s i z e=RF byte & 0x1F ; // s i z e o f packe t

RF comm . s i z e −= 2 ; // number o f data b y t e s which w i l l come next

Dest OK = 0 ;

i f ( RF byte & 0xE0)

c o n t r o l e x p e c t e d = 1 ; // no data
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else {
c o n t r o l e x p e c t e d = 0 ;

addre s s expec ted = 1 ;

}
}
else i f ( addre s s expec ted ) {

addre s s expec ted = 0 ;

RF comm . dest = RF byte & 0x07 ;

RF comm . o r i g = ( RF byte >> 3) & 0x07 ;

i f (RF comm . dest == ADDRESS | | RF comm . dest==BROADCAST)

Dest OK = 1 ;

else

Dest OK = 0 ;

byte count = 0 ;

}
else {
i f ( Dest OK == 1) {
i f ( ! qFul l ( TXbuff ) ) {
poeFi la ( TXbuff , RF byte ) ;

SC0CR2 |= 0x80 ; // Enable Tx i n t e r r u p t

}
}
byte count ++;

i f ( byte count == RF comm . s i z e ) {
c o n t r o l e x p e c t e d = 1 ;

addre s s expec ted = 0 ;

byte count = 0 ;

Dest OK = 0 ;

}
}
i f ( RF byte == ENDCHAR) {
i f ( ! c o n t r o l e x p e c t e d ) {
// packe t i s broken

i f ( ! qFul l ( TXbuff ) ) {
poeFi la ( TXbuff , ’ ∗ ’ ) ;

SC0CR2 |= 0x80 ; // Enable Tx i n t e r r u p t

}
}
// r e s e t

c o n t r o l e x p e c t e d = 1 ;

addre s s expec ted = 0 ;
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byte count = 0 ;

Dest OK = 0 ;

}

RXA(1) ; // acknowledge t h a t the data was r e c e i v e d

IRQCR = IRQCR | 0x40 ; // r e a c t i v a t e i n t e r r u p t

}

Interface with SPI and serial port

INT8U SendThroughSPI (INT8U i , // data to send

INT8U s l a v e ) { // s l a v e to s e l e c t ( i f 0 no s e l e c t i o n i s made)

// send and r e c e i v e data

SP0DR = i ; // Reg i s to para dados

while ( ! ( SP0SR & 0x80 ) ) ; // wai t w h i l e a l l data i s s en t

i = SP0DR; // data

PORTP |= 0x80 ;

return (SP0DR) ; // re turn data from SPI r e g i s t e r

}

void I n i c i a l i z a S P I (void ) {
DDRP = 0x80 ; // PP7 − output

PWEN = 0 ;

PORTP |= 0x80 ;

DDRS = 0xFF ;

SP0CR1 = 0x5C ;

SP0CR2 = 0x00 ; // Normal ( not bi−d i r e c t i o n a l ) mode

SP0BR = 0x02 ; // 1MHz

}

#d e f i n e q I n i t ( x ) ( ( x ) . in = ( x ) . out = 0)

#d e f i n e qEmpty( x ) ( ( x ) . in==(x ) . out )

#d e f i n e qFul l ( x ) ( ( ( ( x ) . in +1) & QMASK) == ( x ) . out )

#d e f i n e poeFi la (Q,REG) \
(Q) . q [ (Q) . in ] = REG; \
(Q) . in = (++((Q) . in ) ) & QMASK

#d e f i n e t i r a F i l a (Q) \
(Q) . q [ (Q) . out ] ; \
(Q) . out = (++(Q) . out ) & QMASK

#d e f i n e i n i t S c i (BAUD) \
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SC0BD = BAUD; \
SC0CR2 |= 0x2C

typedef struct {
INT8U in ;

INT8U out ;

INT8U q [ QSIZE ] ;

} Queue ;

Queue RXbuff , TXbuff ;

void s e t S e r i a l ( BaudRate baud ) {
q I n i t ( RXbuff ) ;

q I n i t ( TXbuff ) ;

i n i t S c i ( baud ) ;

}

void s c i i s r (void ) {
INT8U ssr , sdr ;

s s r = SC0SR1 ;

sdr = SC0DRL;

i f ( ( s s r & SCI RDRF) && // b y t e r e c e i v e d

! qFul l ( RXbuff ) ) {
poeFi la ( RXbuff , sdr ) ;}

i f ( s s r & SCI TDRE)

{
i f ( ! qEmpty( TXbuff ) ) /∗ Existem b y t e s para env iar ∗/

{
SC0DRL = t i r a F i l a ( TXbuff ) ;

}
else

SC0CR2 &= 0x7F ; // Turn o f f TIE i n t e r r u p t

}
}

int g e t c h a r S e r i a l t (char ∗c ) {
INTR OFF( ) ;

i f (qEmpty( RXbuff ) )

{
INTR ON( ) ;
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return 0 ;

}
∗c = t i r a F i l a ( RXbuff ) ;

INTR ON( ) ;

return (1 ) ;

}
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B Control Software Implementation Details

High-level control program of the demining robot is implemented as a set of C++ classes

which allow to execute the developed sensor fusion and path planning algorithms providing

the necessary object abstraction (the full listing of this program, named lowpr,can be found on

the attached CD). All the classes are derived from one basic class CControlledObject which

defines a basic interface allowing to control all the objects in the working loop. This interface

includes the following abstract functions:

• void ProcessFast(CControlledObject* p) is called for each object each cycle of the

working loop. The objects reimplement this function to include the specific processing

(which should be fast not to block the whole control loop).

• bool Init(CControlledObject* p) is called before making any processing to allow

initialization of the object. After this function returns true it is not called any more

and the processing is started.

• void ArchiveFast() is called every cycle of working loop and should implement a

code for archiving the object information (or can be empty if the object does not need

to archive anything).

Having these two functions implemented the object is controlled automatically by the

following code which is called every cycle of the working loop:

i f ( ! I s I n i t ( ) )

{
S e t I n i t F l a g ( I n i t (p) ) ;

i f ( I s I n i t ( ) && m arch ive un i t < 0)

this−>In i tArch ive (p) ;

i f ( I s I n i t ( ) )

Sta r t ( ) ;

}
i f ( I s I n i t ( ) && m is on )

{
this−>ProcessFast (p) ;

i f ( this−>GetArchiveUnit ( ) >= 0 &&

( g manager . m archive . CheckTime ( this−>GetArchiveUnit ( ) ) ==

...true ) | |
g manager . m archive . IsNeedUpdate ( this−>GetArchiveUnit ( ) ) )

{
i f ( IsChanged ( ) | |

g manager . m archive . IsNeedUpdate ( this−>GetArchiveUnit ( ) ) )

this−>ArchiveFast ( ) ;

else
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this−>ArchiveEmpty ( ) ;

this−>Archived ( ) ;

}
}

For some of the objects the possibility to perform fast processing in ProcessFast is not

enough as they incorporate some processing which may take significant time. Possibility to

perform slower processing is implemented by an additional class CSlowObject whose interface

consists in abstract function ProcessLong(). The slow part of the object is run in a separated

thread and is started as follow:

void CSlowObject : : S ta r t ( )

{
i f ( Started ( ) )

return ;

m must stop = fa l se ;

int r e s = pthr ead c r ea t e (&m process th ,NULL,& s low loop , this ) ;

i f ( r e s < 0)

{
p r i n t f ( ” Error whi l e c r e a t i n g thread f o r slow p r o c e s s i n g \n” ) ;

m process th = 0 ;

}
}

Both the slow and the fast parts of the object need to share the same data with each other.

It is well known that the access of the same data from different threads is prone to variety

of errors which are difficult to discover. Therefor, a unified interface for the data access was

implemented here. If a part of data needs to be accessed by slow and fast parts of the object

it is organized as a class derived from ProtectedData class presented below:

class ProtectedData

{
template <class T, class P> friend class Contro l l edAcces s ;

public :

virtual ˜ ProtectedData ( ) {} ;

protected :

ProtectedData ( ) ;

private :

/∗∗ Index in @ref CContro l l edObjec t : : m p r o t p a r t s . The d e r i v e d

... c l a s s must pr ov i de

s t a t i c f u n c t i o n GetNumber () which r e t u r n s t h i s index to a l l o w

...ADD PD macro to work∗/
stat ic int m number ;
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/∗∗Locking acce s s to t h i s o b j e c t f o r @p o b j ∗/
bool Lock ( CControl ledObject ∗ obj ) ;

/∗∗Unlocking a cce s s to t h i s o b j e c t f o r @p o b j ∗/
void Unlock ( CControl ledObject ∗ obj ) ;

/∗∗Threads which l o c k e d the o b j e c t ∗/
pthread t m locked threads [ 5 ] ;

int m num;

/∗∗Mutex which i s used to c o n t r o l a cce s s ∗/
pthread mutex t m mutex ;

pthread mutex t m help mutex ;

} ;

ProtectedData : : ProtectedData ( )

{
m num = 5 ;

int i ;

for ( i =0; i<m num; i++)

m locked threads [ i ] = 0 ;

pthread mutex in i t (&m mutex ,NULL) ;

pthread mutex in i t (&m help mutex ,NULL) ;

}

bool ProtectedData : : Lock ( CControl ledObject ∗ obj )

{
pthread mutex lock(&m help mutex ) ;

int i ;

int i 0 =−1;

pthread t s e l f = p t h r e a d s e l f ( ) ;

for ( i =0; i<m num; i++)

{
i f ( pthread equa l ( m locked threads [ i ] , s e l f ) != 0)

{
pthread mutex unlock(&m help mutex ) ;

return fa l se ;

}
else i f ( ( m locked threads [ i ] == 0) && ( i 0 < 0) )

i 0 = i ;
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}
i f ( i 0 >= 0)

{
m locked threads [ i 0 ] = s e l f ;

pthread mutex unlock(&m help mutex ) ;

pthread mutex lock(&m mutex ) ;

return true ;

}
p r i n t f ( ” lock ing , no f r e e p lace \n” ) ;

pthread mutex unlock(&m help mutex ) ;

return fa l se ;

}

void ProtectedData : : Unlock ( CControl ledObject ∗ obj )

{
pthread mutex lock(&m help mutex ) ;

int i ;

p thread t s e l f = p t h r e a d s e l f ( ) ;

for ( i =0; i<m num; i++)

{
i f ( pthread equa l ( m locked threads [ i ] , s e l f ) != 0)

{
m locked threads [ i ] = 0 ;

pthread mutex unlock(&m mutex ) ;

break ;

}
}
pthread mutex unlock(&m help mutex ) ;

return ;

}

The object of class CControlledObject has an array of ProtectedData and only these

data can be accessed from inside the fast and slow parts of the object. The access is provided

by creation of an object of class ControlledAccess:

/∗∗
\ b r i e f Provides c o n t r o l l e d acc es s to the p r o t e c t e d p a r t s o f the

... o b j e c t .

T d e f i n e s the c l a s s o f the c o n t r o l l e d o b j e c t ( d e r i v e d from @ref

...CContro l l edObjec t ) ,
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and P − c l a s s o f i t s p r o t e c t e d par t to c o n t r o l ( d e r i v e d from @ref

... ProtectedData ) .

Creat ion o f the c l a s s o b j e c t i n i t i a t e s the access , and i t s

... d e l e t i o n terminates i t .

@author s v e t l a n a . lar ionova@gmai l . com

\ ingroup c o n t r o l

∗/
template <class T, class P>

class Contro l l edAcces s

{
public :

/∗∗ I n i t i a t e s c o n t r o l l e d acc es s to the p r o t e c t e d par t ( s p e c i f i e d

...by P) o f the o b j e c t @p o b j or i t s common o b j e c t ( @ref

...CContro l l edObjec t : : m common obj ) i f i t e x i s t s ∗/
Contro l l edAcces s ( CControl ledObject ∗ obj ) ;

/∗∗Terminates the acc es s ∗/
˜ Contro l l edAcces s ( ) ;

/∗∗Provides acc es s to the members o f P∗/
P∗ operator−>() ;

protected :

/∗∗C o n t r o l l e d o b j e c t ∗/
CControl ledObject ∗ m obj ;

/∗∗Object which asked f o r c o n t r o l l e d ac ces s ∗/
CControl ledObject ∗ m cobj ;

int m number ;

} ;

template <class T, class P>

Contro l l edAccess<T,P> : : Contro l l edAcces s ( CControl ledObject ∗ obj )

{
i f ( obj == 0)

return ;

m cobj = obj ;

m obj = obj−>m common obj ;

i f ( m obj == 0)

m obj = obj ;

m number = P : : GetNumber ( ) ;
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i f ( m obj != 0)

{
i f ( m obj−>m prot parts [ m number]−>Lock ( obj ) == fa l se )

m cobj = 0 ; // i t was a l r e a d y l o c k e d by t h i s thread

}
}

template <class T, class P>

P∗ Contro l l edAccess<T,P> : : operator−>()

{
return (P∗) ( (T∗) m obj )−>m prot parts [ m number ] ;

}

template <class T, class P>

Contro l l edAccess<T,P> : :˜ Contro l l edAcces s ( )

{
i f ( m obj != 0 && m cobj != 0)

m obj−>m prot parts [ m number]−>Unlock ( m cobj ) ;

}

The access to a protected part is performed by creation of an object of ControlledAccess

and terminets when the object is deleted. In between the data of the protected part can be

only access through the ControlledAccess object using usual member access operators: .

and ->. The objects can initialize their protected data using the flowing function:

void CControl ledObject : : AddProtectedData ( int n , ProtectedData ∗ data )

{
m prot parts [ n ] = data ;

}

or the macro:

#define ADD PD( c l ) AddProtectedData ( c l : : GetNumber ( ) ,new c l ) ;
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C Demining Robot Communication Protocol

Command format:

: ADR CC Data CS 0x10 0x13
,

where ADR - 1-byte address of the device (0x01 for the robot)

CC - 1-byte command code

CS - 1-byte check sum (sum of all bytes: command code, data length and data, limited to one

byte)

Commands:

0x04 Read multiply registers (according to Modbus specification)

0x10 Write multiply registers (according to Modbus specification)

0x41 Do step. Data = 2-byte step mode:

LSB:

_ ___ ____

| ||||___ step back

| |||____ step front

| ||_____ step left

| |______ step right

|_________ number of sensor s

MSB:

________ 0 - step until sensor s starting from end-position

|||___ complete step with half-step return

||____ step from sensor s

|_____ step from current position

0x45 Calibrate foot sensors. Moves legs up and down and measures extreme values of foot

sensors.
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Robot memory:

Modbus address Value (2 bytes)

0x0000 X coordinate high byte

0x0001 X coordinate low byte

0x0002 Y coordinate high byte

0x0003 Y coordinate low byte

0x0004 Azimuth

0x0005 Pitch

0x0006 Roll

0x000A
Axes end-sensors:

B2left|B2right|B1left|B1right|C2front|C2back|C1front|C1back

0x000B
Legs end-sensors:

Leg is up

8|7|6|5|4|3|2|1
Leg is down

8|7|6|5|4|3|2|1

0x000D

Current step state:

____ ____ ____ ____

|||| |||| \_\__ current position of the body

|||| ||||____ moving back (or rotating left)

|||| |||_____ moving front (or rotating right)

|||| ||______ moving left

|||| |_______ moving right

||||_________ preparing for the step -

||| moving legs

|||__________ preparing for the step -

|| moving axes to the starting positions

||___________ step is finished -

| waiting when all data are transmitted

|____________ step was not finished (something blocked)

0x0030 Metal detector radio signal

0x0031 Metal detector raw signal

0x0040 IR sensor 1

0x0041 IR sensor 2

0x0060 Sonar of leg 1

0x0061 Sonar of leg 2

0x0062 Sonar of leg 3

0x0063 Sonar of leg 4

0x0064 Sonar of leg 5

0x0065 Sonar of leg 6

0x0066 Sonar of leg 7

0x0067 Sonar of leg 8
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D Suspicious objects detection implementation

Detection of suspicious objects is implemented using several classes:

• CKalmanFilter - implementation of iterative filter

• CTimeROIDetector - detection of interesting points using two iterative filters: providing

the value for the Segmented Map

• CGridROIExtractor - implementation of extrema searching and region growing

• CStoreGridMap - data storage for ROI grid maps: Data Map, Object Area, Segmented

Map

• CPlaneGridMap - data storage for the grid map obtained from the sensor data during

scanning; implementation of the grid regularisation

• CPlaneSegmGridMap - data storage for the grid map where the Segmented Map value

obtained by CTimeROIDetector is mapped spatially

• CObjectsAssociation - implementation of the object association algorithm

• CROIsCollection - collection of ROIs which represent the same object as obtained after

object association

This appendix contains short descriptions of the main functions according to the stages of the

algorithm. The program listing can be found in the project lowpr on the attached CD.

D.1 Detection of interesting points

Detection of interesting points is performed by the class CTimeROIDetector which is derived

from CDecisionMaker. The used sensor value (m sensors[0]) is first processed by two itera-

tive filters implemented by the class CKalmanFilter. The parameter m threshold is initialized

to the same value as the system noise of the fast filter. The main processing is performed by

the function:

template <class T> void CTimeROIDetector<T> : : ProcessRobot (CRobot∗) ;

D.2 Extrema searching

Extrema searching is performed by the class CGridROIExtractor inside the Segmented map

whose pointer is stored in protected data Data::m segm map. The following functions performs

the extrema searching:

template <class MT, class ST>

void CGridROIExtractor<MT, ST> : : SlowPart : : FindMinMax(

MaxPoint∗ maxpoints , // array o f extrema

int end y i ) ; // maximum Y
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D.3 Region growing

During region growing the border of the object being detected is followed in order to determine

new segments which might be joined. The following function of CGridROIExtractor performs

the core processing of region growing.

template <class MT, class ST>

int CGridROIExtractor<MT, ST> : : SlowPart : :

FollowBorderAndFindMoreROIs (

CStoreGridMap<MT>∗ storemap , // Object Area o f the

...processed ROI

MT∗ count , int end y i ) ;

The following function of CGridROIExtractor determines a region of the same value inside

the Segmented Map.

template <class MT, class ST>

int CGridROIExtractor<MT, ST> : : SlowPart : : FindSameValue (

MT val , // v a l u e to d e t e c t

int i , int j , // s t a r t i n g p o i n t o f search

int∗ i min , int∗ i max , // l i m i t s o f the found reg ion

int∗ j min , int∗ j max , // l i m i t s o f the found reg ion

CStoreGridMap<MT>∗ storemap , // Object Area map

MT mapvalue , // v a l u e to s e t to Object Area f o r the

... d e t e c t e d reg ion

int end yi , // maximum Y

bool i s w a i t f o r v a l i d ) ;
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E Suspicious objects database

The detected suspicious objects are stored in the database using the following table hierarchy:

rois groups stores data of objects: name of data file, index of sensor group (sensors groups.indx),

index of experiment (experiments.indx)

sensor types defines the types of sensors

sensors defines the used sensors according to their types

experiments define parameters of the experiments at which the data were obtained

expr sensors define parameters of the experimental data for a particular sensor (sensors.indx)

and experiment (experiments.indx)

The objects are stored in text-files according to the following format:

1. Number of sensors whose ROIs are represented in the file (Number of sensors)

2. For each sensor:

• Type of sensor, which corresponds to sensor types.address+sensors.indx in type

(Sensor indx)

• Index of experimental data from which this ROI was obtained, corresponds to

expr sensors.indx (DB expr sensor index)

• Number of maps for this ROI, usually 3 which means: Raw Map, Object Area,

and Segmented Map (Layers)

• Coordinates of the ROI:

XStart=... XStep=... XNum=...

YStart=... YStep=... YNum=...

• For each map: data of the map where columns correspond to X and rows correspond

to Y
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An example of a data file is presented below:

Number o f s e n s o r s 2

Sensor index 66

DB expr s en so r index 14

Layers 3

XStart =1700.000000 XStep=10.000000 XNum=9

YStart =4270.000000 YStep=10.000000 YNum=5

37751 36847 37938 37867 37218 37120 37623 37902 37396

37899 37077 37062 37063 37851 37889 38107 37288 37188

38544 37110 37187 37021 36942 36751 37343 36576 36741

38332 37271 37104 36757 37070 37153 37059 37093 37004

38132 36462 36838 37001 37122 37022 36879 37126 36875

0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 1 1 15 15 15 15 15 15

5 5 3 3 1 1 1 1 1

91 91 91 1 1 1 9 9 9

1 1 1 1 1 1 1 1 1

Sensor index 49

DB expr s en so r index 156

Layers 3

XStart =1710.000000 XStep=10.000000 XNum=9

YStart =4250.000000 YStep=10.000000 YNum=4

32764 32764 32765 32765 32765 32767 32767 32769 32768

32765 32765 32765 32766 32766 32767 32767 32767 32768

32765 32766 32766 32766 32766 32768 32768 32770 32769

32769 32770 32770 32771 32772 32773 32773 32774 32775

0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 12 12

1 1 1 12 12 12 12 12 12

1 1 1 1 1 1 12 12 12

1 1 1 1 12 12 12 12 12
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The suspicious object database created during this work can be found on the attached CD.

In order to view the database or to use it for the testing of landmine detection algorithms the

interface program inttest should be used with the project file fa.prj located on the CD.
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F Landmine recognition Implementation

The following classes were developed in order to implement the landmine detection algorithms

proposed in this work:

• The classification features are implemented by the classes derived from CGridMapFeature,

for sensor based features, and from CROIsCollectionFeature, for multi-sensor features.

The combined features are implemented by CAverageFeature class. Each particular

feature is implemented in a separate class (for example, CFractalDimentionFeature,

CGRMeasureFeature). The features are calculated on the objects of CStoreGridMap

class obtained after suspicious object detection algorithm (see Appendix D)

• CFeaturesCollection - represents a collection of features used for the classification

• CAdditiveBayesClassifier - implementation of the combined classifier which includes

the possibility to use the concepts of selective training and dominant class

• CDecisionTree - implementation of a decision tree classifier

• CFeatureEvaluation - implementation of the feature analysis techniques which wee

used in this work (this class is used by the interface program inttest to allow the feature

analysis)

The classifiers have the following main functions to perform all the processing:

• Training of the classifier is performed by:

void Train ( CFeaturesCo l l e c t ion ∗∗ fc , int fc num ) ;

• When an object has to be classified the following function is used:

void C l a s s i f y ( CFeaturesCo l l e c t ion ∗∗ fc , int fc num ) ;

The program listing for these classes can be found in the project lowpr on the attached

CD.



186

G Implementation of vision- and odometry-based

positioning system

The odometry of the robot is implemented in the low-level program which run on the Motorola

MC12 microcontroller located on the robot. This program contains the developed algorithms

for improvement of the robot movements (compensation for uneven speeds of parallel cylinders

and adjusting the ground contact). The full listing of the program, named dprog gcc, can be

found on the attached CD.

The vision based localization system is implemented in the control program lowpr as a set

of classes:

• The detection of natural landmarks located on the ground is performed by the class

CLandmarkDetector which is derived from the previously developed ROI extraction

algorithm (class CGridROIExtractor).

• CCorrelationFeature - calculation of the correlation between landmarks

• CShapeCorrelationFeature - calculation of the shape correlation between landmarks

• CContourCorrelationFeature - calculation of the contour correlation between land-

marks, while the contour of the object is obtained by

int CStoreGridMap : : GetObjPerimeter (bool i s c o u n t ) ;

• CCombinedCorrelationFeature - calculation of the combined measure used for the

landmark association

• CKalmanFusion - implementation of the Kalman sensor fusion for combining the vision

and the odometry systems

The program listing for these classes can be found in the project lowpr on the attached

CD.



H. COMPLETE COVERAGE IMPLEMENTATION 187

H Complete coverage implementation

The following classes are used for the implementation of the developed complete online coverage

algorithm:

• CExplorationBeh - top-level behavior of the robot; this behavior contains other, lower-

level, behaviors and controls the robot switching between them in the function:

void CExplorationBeh : : NextMotion ( int s ta te , CRobot∗ rob ) ;

• CWallMotion - wall-following behavior

• CForwardBeh - directed wall-following behavior (is implemented as a top-level behavior

for CForwardMotion and CWallMotion)

• CFindObstacle - find obstacle behavior (is implemented as a top-level behavior for

CForwardMotion and CWallMotion)

• COccupancyGrid - implementation of the occupancy grid map where the sonar readings

are mapped in order to be used for detection of critical points

• CAssociatedED - the incremental cellular decomposition performed by the coverage

algorithm stored as a map

• ACellEndAfterWallDetector, ACellEndDetector, AWallDirDetector - decision mak-

ing in order to determine the finishing of the current cell

The program listing for these classes can be found in the project lowpr on the attached CD.
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