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Abstract 

The hippocampus plays an important role in learning and memory formation, and the cellular 

and molecular mechanisms involved have been elucidated to some extent. This brain region 

is particularly vulnerable and is highly affected in stroke episodes. Brain trauma, Alzheimer’s 

disease and Huntington’s disease are also known to affect the hippocampus. 

Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins and 

is known to activate the high-affinity TrkB receptor and the pan-neurotrophin low-affinity 

receptor p75NTR. BDNF and its cognate receptor, TrkB, are widely expressed in the brain, 

including the hippocampus, where they play important roles in development, synaptogenesis, 

regulation of synaptic transmission, and in synaptic plasticity. Furthermore, BDNF plays a 

neuroprotective role in stroke episodes. In this work we performed a comprehensive study of 

the effect of BDNF in the proteome of cultured hippocampal neurons, which will contribute to 

elucidate some of the biological effects of the neurotrophin. 

The proteome of a mammalian organism exceeds hundreds of thousands of different 

proteins. The hippocampal proteome is still being mapped, with several studies being 

conducted aiming at mapping the complement of the genome in this brain region. However, a 

comprehensive proteomic analysis of the mammalian proteome using conventional broad 

range two-dimensional gel electrophoresis has been limited by the resolving power of the 

technique. In order to increase the number of proteins of the hippocampal proteome resolved 

by 2D-SDS-PAGE, narrow range immobilized pH gradient gels were used in isoelectric 

focusing together with sample fractionation by ultracentrifugation. Two-dimensional gel 

electrophoresis is particularly sensitive to contaminants including salts, lipids, nucleic acids, 

and other non-soluble content (e.g. membrane and membrane-associated proteins). The 

majority of these interfering components can be removed from protein samples through 

ultracentrifugation and TCA precipitation followed by acetone washing. However, the protein 

pellet obtained after TCA precipitation is difficult to solubilize using two-dimensional gel 

electrophoresis compatible buffers, which results in loss of sample and decrease in the 

reproducibility of the technique. In order to overcome these two drawbacks, sample (rat brain 

hippocampus and cultured hippocampal neurons) sonication was introduced to increase 

sample recovery and improve the reproducibility of two-dimensional gel electrophoresis. This 

resulted in a better and faster software analysis, with an increase in the number of spots 

automatically matched across the gel image. 
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BDNF exerts long-term actions on hippocampal neurons through the modulation of protein 

synthesis mechanisms. However, the changes in the proteome induced by BDNF have only 

been monitored in a neuroblastoma cell line. Therefore, this work focused on the proteomic 

changes induced by the neurotrophin in cultured hippocampal neurons upon exposure to 

BDNF for 12h. In order to evaluate the differential gene expression induced by BDNF, the 

neurotrophic stimulation was performed in the presence of radiolabelled amino acids, which 

allows monitoring the expression levels of newly synthesized proteins. The proteomic 

changes induced by BDNF in cultured hippocampal neurons were mainly analysed using 

two-dimensional gel electrophoresis of the soluble fraction and the pellet resulting from the 

ultracentrifugation at 126,000×gav (S126), taking advantage of the increased reproducibility 

achieved. The differential gene expression analysis was performed using gel images of 

narrow pH ranges (4.5-5.5, 5.0-6.0, 5.5-6.7 and 6.0-9.0) in order to increase the number of 

detected spots. Proteins from both fractions resolved in all pH ranges were identified using 

MALDI-TOF mass spectrometry. Once differential expression levels were correlated with 

protein identification, selected gene products were clustered according to their ontologies. 

Gene ontologies provide detailed information of gene products based on their molecular 

function, biological processes and cellular components. Clustering gene products associated 

with differential expression induced by a specific stimulus allows the functional interpretation 

of obtained data. Therefore, this approach was used for the evaluation of changes in protein 

expression induced by BDNF (upregulation and downregulation), retrieving several regulated 

ontologies, including “carbohydrate metabolism”, “protein metabolism” (“protein biosynthesis” 

and “translation”) and “nucleobase, nucleoside, nucleotide and nucleic acid metabolism” 

(particularly “RNA processing”). Besides these clusters, several gene products belonging to 

other ontologies showed changes in expression in response to BDNF stimulation. 

The S126 fraction represents a protein fraction containing mainly membrane proteins, 

membrane-associated proteins, and other gene products insoluble in two-dimensional gel 

electrophoresis buffers. Therefore, another high-throughput proteomic approach, two-

dimensional liquid chromatography coupled with tandem mass spectrometry, was used to 

increase the proteome coverage of cultured hippocampal neurons and to further investigate 

the differential gene expression induced by BDNF. This technique resolves peptides and 

identifies gene products based on the fragmentation pattern of resolved peptides, in contrast 

with the gel-based approach which resolves proteins. The quantification analysis was 

performed using the peptide isotope labelling conferred by iTRAQ. The analysis of the 

identified proteins showed that the gel-based and liquid-based approaches are 
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complementary techniques for the coverage of the proteome of a given species, with several 

proteins being identified by only one of the methods.  

 

In conclusion, the work presented in this thesis provided improved methodologies for 

resolving complex protein mixtures on two-dimensional gel electrophoresis and two-

dimensional liquid chromatography, and their identification by mass spectrometry. Several 

gene products regulated by BDNF were clustered according to their ontologies and the 

results are expected to contribute as starting points for further analysis of the physiological 

effects of the neurotrophin, particularly its role in the mechanisms of neuroprotection and 

brain repair. The diversity of proteins which expression is affected by BDNF may also explain 

the multiplicity of effects of this neurotrophin in the nervous system. 
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Resumo 

O hipocampo desempenha um papel importante nos processos de aprendizagem e 

formação de memória, e os mecanismos celulares e moleculares envolvidos neste processo 

foram ainda apenas parcialmente esclarecidos. Esta região do cérebro é particularmente 

vulnerável sendo severamente afectada em episódios de trombose cerebral. Nas doenças 

de Alzheimer e de Huntington, assim como os traumatismos cerebrais, afectam também o 

hipocampo, ainda que de uma forma menos acentuada. 

 

O BDNF (Brain-Derived Neurotrophic Factor) pertence à família das neurotrofinas, activando 

receptores de elevada afinidade, do tipo TrkB, e receptores de baixa afinidade, do tipo 

p75NTR. O BDNF e o seu receptor, TrkB, são expressos abundantemente no cérebro, 

incluindo no hipocampo, onde desempenham funções importantes no desenvolvimento, 

sinaptogénese, regulação da transmissão sináptica e na plasticidade sináptica. O BDNF 

também possui um papel neuroprotector em episódios de trombose cerebral. Neste trabalho 

efectuou-se um estudo exaustivo dos efeitos do BDNF no proteoma dos neurónios do 

hipocampo em cultura, com o objectivo de melhor compreender alguns dos efeitos 

biológicos das neurotrofinas. 

O proteoma de um mamífero ultrapassa as centenas de milhar de proteínas diferentes. O 

proteoma do hipocampo ainda não foi concluído, havendo vários estudos a decorrer no 

sentido de “mapear” o complemento do genoma desta região do cérebro. Uma análise 

proteómica exaustiva desta região cerebral não poderá ser efectuada por electroforese bi-

dimensional na sua forma convencional com a utilização de géis para focagem isoeléctrica 

de gama mais alargada, dado que esta abordagem não possui poder de resolução 

suficiente. Para aumentar a capacidade de resolução de proteínas através de 2D-SDS-

PAGE neste trabalho foram usados géis com gradiente de pH de apenas uma unidade para 

a focagem isoeléctrica em combinação com fraccionamento por ultracentrifugação. A 

electroforese bi-dimensional é particularmente sensível à presença de contaminantes como 

sais, lípidos, ácidos nucleicos e outras substâncias não solúveis (p.e. proteínas 

membranares e proteínas associadas à membrana). A maioria das substâncias que 

interferem com a técnica pode ser removida das amostras proteicas utilizando 

ultracentrifugação seguida de precipitação por TCA e lavagem com acetona. No entanto, o 

precipitado proteico que se obtém deste processo é de difícil solubilização quando se utiliza 

um tampão compatível com a electroforese bi-dimensional, resultando na perda de amostra 
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e diminuição da reprodutibilidade associada à técnica. Para ultrapassar estas desvantagens 

técnicas, introduziu-se um passo de sonicação da amostra na presença de tampão de 

solubilização de modo a aumentar a solubilização e melhorar a reprodutibilidade dos géis 

obtidos. Este processo resultou num melhoramento na qualidade e na velocidade da análise 

das imagens obtidas a partir dos géis utilizando software apropriado, com um aumento no 

número de manchas correlacionadas de forma automática em todo o gel. 

O BDNF exerce acções lentas e duradouras nos neurónios de hipocampo através da 

modulação dos mecanismos de síntese proteica. Porém, as alterações no proteoma 

induzidas pelo BDNF apenas foram ainda monitorizadas numa linha celular com origem num 

neuroblastoma. Neste trabalho foram investigadas as alterações do proteoma induzidas pela 

neurotrofina em neurónios de hipocampo em cultura, expostos ao BDNF durante 12h. De 

modo a avaliar a expressão genética diferencial induzida pelo BDNF, o estímulo neurotrófico 

foi realizado na presença de aminoácidos marcados com enxofre radioactivo. As alteração 

proteómicas induzidas pelo BDNF em neurónios de hipocampo em cultura foram analisadas 

recorrendo principalmente à electroforese bidimensional da fracção solúvel e do sedimento 

obtido após ultracentrifugação a 126,000×gme (S126), tirando partido do aumento da 

reprodutibilidade adquirido. A análise da expressão diferencial foi realizada em géis com 

uma gama de pH estreita (4.5-5.5, 5.0-6.0, 5.5-6.7, 6.0-9.0) de modo a aumentar o número 

de spots a serem detectados. As proteínas das duas fracções, resolvidas em todas as 

gamas de pH apresentadas, foram identificadas utilizando espectrometria de massa 

(MALDI-TOF). Uma vez correlacionados os níveis de expressão diferencial com a 

identificação das proteínas, os produtos dos genes apresentando alterações de expressão 

foram agrupados de acordo com as suas ontologias. As ontologias dos genes permitem 

caracterizar os produtos dos genes com base na sua função molecular, processo biológico 

ou componente celular do qual fazem parte. O agrupamento dos produtos de genes cuja 

abundância é afectada em resposta a um determinado estímulo contribui para a 

interpretação funcional dos dados obtidos. Assim, esta abordagem foi utilizada para avaliar 

as alterações induzidas pelo BDNF na expressão de proteínas (aumento e diminuição da 

expressão) em neurónios do hipocampo em cultura tendo retribuído várias ontologias que 

são reguladas pelo BDNF: “metabolismo dos hidratos de carbono”, “metabolismo proteico” 

(“biosíntese de proteínas” e “tradução”) e “metabolismo das bases nucleicas, nucleósidos, 

nucleótidos e ácidos nucleicos” (particularmente “processamento de RNA”). Para além 

destas ontologias, outras proteínas pertencentes a outras ontologias mostraram ser 

reguladas em resposta ao estímulo com BDNF em neurónios do hipocampo em cultura.  
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A fracção S126 contém principalmente proteínas membranares, proteínas associadas à 

membrana e outras proteínas insolúveis nos tampões utilizados na electroforese bi-

dimensional. Por isso, foi utilizada outra abordagem para análise em larga escala do 

proteoma contido nesta fracção, a cromatografia bidimensional acoplada a espectrometria 

de massa com fragmentação, de forma a aumentar a cobertura do proteoma dos neurónios 

de hippocampo em cultura e permitir a investigação da expressão diferencial dos genes 

induzida pelo BDNF. Esta técnica permite o fraccionamento de péptidos e identifica os 

produtos da expressão dos genes com base no padrão de fragmentação dos péptidos 

separados por cromatografia, ao contrário da abordagem com base em separação em gel, 

que permite a separação de proteínas. A análise quantitativa foi realizada utilizando a 

marcação isotópica dos péptidos conferida pelo iTRAQ. A análise das proteínas 

identificadas levou-nos a concluir que as abordagens líquida e em gel são técnicas 

complementares para a cobertura do proteoma de uma dada espécie, tendo-se observado a 

identificação de várias proteínas por apenas um dos métodos. 

 

No seu conjunto, o trabalho apresentado nesta tese permitiu melhorar as metodologias 

utilizadas na análise do proteoma do hipocampo, utilizando electroforese bi-dimensional e 

cromatografia bi-dimensional, com a identificação de proteínas por espectrometria de 

massa. Foi possível agrupar vários produtos de genes regulados pelo BDNF de acordo com 

as suas ontologias, e os resultados obtidos poderão constituir pontos de partida para uma 

análise dos efeitos fisiológicos da neurotrofina, em particular do seu papel nos mecanismos 

de neuroprotecção e reparação cerebral. A diversidade de proteínas que revelaram 

alterações na sua expressão induzidas pelo BDNF poderá explicar a multiplicidade dos 

efeitos desta neurotrofina no sistema nervoso. 
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1.1 - Proteomics 

The term proteomics was first used in September 1994 by Marc Wilkins, a student at 

Australia’s Macquarie University, at a scientific conference in Italy. While struggling to find 

the right word that could replace the repeated sentence in his PhD thesis “all proteins 

expressed by a genome, cell or tissue”, he settled on proteome, after discarding ‘proteinome’ 

and ‘protome’, ‘the one that seemed to work best and roll off the tongue nicely (Huber, L. A., 

2003). 

Proteome projects are a direct consequence of the various ongoing and/or already 

concluded genome projects and most of the search algorithms currently used rely on these 

large databases for protein identification. In contrast with the genome projects, which are 

based on a static collection of genes of a given species, the proteome projects are not based 

on a concrete entity, but rather on a dynamic collection of proteins that differ from individual 

to individual, from cell to cell, and in different life stages. Although there is ‘the human 

genome’ as a species-specific set of genes, it is highly unlikely that there will be a single 

collection of proteins that can be defined as ‘the human proteome’, because, for instance, 

there will be many proteomes that are characteristic of specific cell types, developmental 

stages and disease conditions. Therefore, proteomics represents, at least in part, the next 

step in understanding how genes are related to biological functions and disease states. 

Another major aim of proteomics is the identification of new targets for disease intervention 

and treatment, given the fact that most drug targets are proteins (Huber, L. A., 2003). 

Proteomic projects intend to perform the systematic analysis of gene function at the protein 

level, which has direct implications in the understanding of most of the reactions necessary 

for cell function (Andersen, J. S. and Mann, M., 2000).  

The launching of the Human Genome Project provided researches with new and better 

equipment, as a result of competition between manufacturers. The same is true for 

proteomics, with mass spectrometry and separation/fractionation techniques entering an 

exponential developmental stage due to competition and market takeover by several 

companies. For most protein based approaches to gene function, mass spectrometry is the 

method of choice, allowing the identification of proteins with a very high sensitivity and 

medium to high throughput. Mass spectrometry instrumentation continues to improve and 

novel instrumental concepts are also being put into use (Andersen, J. S. and Mann, M., 

2000). 

The mapping of the human genome, one of the major scientific challenges of the past 
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century, was also one of the biggest hopes for overcoming disease and ageing. It is now 

evident that genetic information alone is not sufficient for the understanding of cellular 

processes, with the protein complement of the genome being more complex, because it is 

not known which messenger RNA (mRNA) and/or alternative splicing form(s) will be 

translated, and which post-translational modifications will be present in the protein. 

Consequently, little advances have been made so far in the diagnosis and therapy of most 

neurodegenerative disorders and ageing processes. The most promising approach, 

therefore, is to analyse the whole proteome of a cell or tissue, at a distinct stage or status, 

hopefully leading to the identification of disease-related biomarkers that can be used in 

diagnosis and drug targeting (Meyer, H. E. et al., 2003). 

Although the total number of coding genes in humans appears to be about 25,000 (±5,000), 

the complexity of the human proteome can, nevertheless, be overwhelming (Righetti, P. G. et 

al., 2005). An illuminating example on such a vast complexity is the identification of more 

than 300 distinct types of amino acid modifications in prokaryotic and eukaryotic proteins, 

each being specific to one or more amino acids, according to the RESID database (release 

41) (Garavelli, J. S., 2004). One or more distinct types of modifications can occur in a 

protein, and in various combinations, extending the structural diversity of a gene product 

(Boeckmann, B. et al., 2005), with cysteine being the amino acid which undergoes the most 

possible kinds of alterations. Assuming that there are just 500 true “plasma proteins”, each 

present in 20 variously glycosylated forms and in five different sizes, one would end up with 

50,000 molecular forms. Moreover, considering that the human proteome contains about 

25,000 gene products, each having on average 10 splice variants and cleavage products, 

this would yield a further 250,000 protein forms. Finally, single proteins, such as antibodies, 

might contain more than 1,000,000 different epitope sequences, which add complexity to the 

serum content. Therefore, considering the diversity of protein modifications, it is thought that 

a mammalian proteome may contain more then 10 million different proteins. An additional 

difficulty in the study of the proteome comes from the fact that there is a large difference in 

the abundance of the various proteins, which in the serum show a dynamic range of more 

than 10 orders of magnitude (Huber, L. A., 2003; Boeckmann, B. et al., 2005; Righetti, P. G. 

et al., 2005). 

Given the large number of proteins that comprise the proteome of mammalian species, the 

dynamic ranges, the differences in tissue proteome, etc, an organization was formed, the 

Human Proteome Organization (HUPO), to promote research and large-scale analysis of 

the human proteome. By consolidating national proteome organizations into an international 
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body, HUPO coordinates international initiatives, biological resources, protocols, standards 

and data for studying the human proteome (Merrick, B. A., 2003). HUPO coordinates several 

different projects through various departments, with two of them having major relevance for 

the purpose of this review. The protein standards initiative (PSI), and the Human Brain 

Proteome Project (HBPP). The first project was initiated due to the complexity and difficulty 

to process the proteomics data with the available tools, which do not allow easy interchange 

of data among different hardware, software and operating systems or application platforms. 

Currently, not all proteomic data are definitive since identification of a single peptide is not 

enough to determine the identity of the protein or protein isoform from which it is derived. 

There is also the problem of analysis and interpretation of enormous volumes of proteomic 

data coming from different software and equipment, particularly for gel-free approaches. This 

hurdles marathon resulted in the need of informatics standards for data representation in 

proteomics to facilitate data comparison, exchange and verification (Ravichandran, V. and 

Sriram, R. D., 2005). The HBPP intends to define and decipher the normal brain proteome, 

including polymorphisms and modifications, and to identify brain-derived proteins present in 

body fluids. It also intends to identify, validate, and functionally characterise disease-related 

proteins, by techniques and methods available within the participating groups. Brain derived 

proteins are analysed in the CSF and plasma in order to search for early-onset markers or 

pharmacological targets in Alzheimer’s disease (AD), Down’s syndrome, Parkinson’s disease 

(PD), and ageing. The participants of this project created several committees and made 

decisions about basic strategies such as standardisation guidelines for specimen handling, 

methods, and data formats, taking into account the international standardisation programmes 

of the Brain-Net Europe and the HUPO standardisation initiatives (Meyer, H. E. et al., 2003). 

Although PCR allows signal amplification in nucleotide studies, a technical capability lacking 

in protein studies, the analysis of relative mRNA expression cannot provide detailed 

information on all changes in protein content of cell systems (Unwin, R. D. et al., 2006). 

Furthermore, DNA microarrays have limited utility for the analysis of biological fluids, and for 

uncovering assayable biomarkers directly in body fluids. Also, changes may occur at the 

protein level that do not correlate with the original DNA, or even changes at the mRNA level 

(Hanash, S., 2003). The lack of correlation between changes in mRNA and in protein levels 

are due to differences in the rates of translation, posttranslational modification, subcellular 

localization and degradation, underlining the need for proteomic relative quantification 

techniques (Unwin, R. D. et al., 2006). Proteomic approaches are providing essential data for 

clinical practice, leading to a growing interest in the development of microarrays or 
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biochips for the systematic analysis of thousands of proteins (Hanash, S., 2003). Protein 

array approaches are now available, to quantify the changes in defined protein targets, 

selected in a subjective manner. 

Proteomics studies facilitate the identification of proteins in a non-hypothesis-driven manner 

and can be taken forward by several different methodologies (Unwin, R. D. et al., 2006). The 

clinical proteomics approaches may find important direct bedside applications in the future, 

with physicians and pathologist using different proteomic analysis at many points of disease 

management. Several critical elements of patient care and management will be directly 

targeted: (i) early detection of the disease using proteomic patterns of body fluid samples, (ii) 

diagnosis based on proteomic signatures as a complement to histopathology, (iii) 

individualized selection of therapeutic combinations that best target the patient’s entire 

disease-specific protein network, (iv) real-time assessment of therapeutic efficacy and 

toxicity, and (v) rational redirection of therapy based on changes in the diseased protein 

network associated with drug resistance (Petricoin, E. F. and Liotta, L. A., 2003). This 

creates numerous opportunities as well as challenges to meet the needs for high sensitivity 

and high throughput required for disease-related investigations (Hanash, S., 2003). 

All these opportunities created a huge interest in proteomics by the pharmaceutical 
industry, evidenced by implementation of proteomics programmes by most major 

pharmaceutical companies. However, this interest is accompanied by a cautious attitude, 

from the prior heavy investment in genomics, with some uncertainty surrounding the 

adequacy and scalability of proteomics to meet the needs of the pharmaceutical industry. 

Proteomics approaches can be used not only for the identification of new targets but also to 

facilitate the identification of drug action mechanisms and to measure toxicity levels, both in 

the preclinical and clinical phases (Hanash, S., 2003). 
 

1.1.1 - Proteomics in practice 

Despite the rapid development of methodologies used in proteomics, there are still 

considerable limitations (Huber, L. A., 2003). The two major approaches used for protein 

separation before protein identification, two-dimensional electrophoresis and liquid 

chromatography, require proper solubilization of proteins and peptides from raw samples. 

The two other major limitations, the need of removing interfering substances and the 

proteome dynamic range, can be circumvented, at least to some extent, by sample 

fractionation and protein enrichment. Several different chemical mixtures and sample 
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processing steps have been introduced in order to improve the quality of the results obtained 

in proteomic studies (see below). 

A chief difficulty in defining and quantifying a proteome is sample complexity (Unwin, R. D. 

et al., 2006). Besides the number of different proteins, there is an enormous diversity in 

protein concentrations in most proteomes, with a 106 difference in protein abundance in E. 

coli and 109 in man. Considering that most mass spectrometers have a dynamic range of 

104, it is clear that low abundance proteins have to be enriched. When liquid chromatography 

is used, the coelution of peptides with low and high expression makes difficult the analysis of 

low abundant peptides since their ionization is suppressed and their spectra masked by high 

abundance species. This problem is often circumvented by removing high abundant proteins 

from the sample, and this step is followed by multidimensional separations to reduce the 

number of proteins that are coeluted (Julka, S. and Regnier, F., 2004). Alternatively, 

subcellular fractionation is used, providing (i) access to the proteome of intracellular 

organelles and multiprotein complexes, with a reduction in sample complexity, and (ii) 

enrichment in low abundance proteins and signalling complexes. Analyzing subcellular 

fractions and organelles also allows tracking proteins that shuttle between different 

compartments (Stasyk, T. and Huber, L. A., 2004; Righetti, P. G. et al., 2005). Fractionating 

organelles, coupling sonication with ultracentrifugation to isolate membrane proteins, or 

isolating a protein set with a specific property (e.g. tyrosine phosphorylated proteins), are 

only some of the approaches that have been available for several years, but only now had a 

great impact on state-of-the-art proteomics, providing increased penetration in the proteome 

of the organelles (Barnidge, D. R. et al., 2005; Unwin, R. D. et al., 2006). 

In recent years subproteomes have been extensively studied by the increasing usage of 

complex and multistep proteomic methods. Many of these studies assume that there are 

minimal or no loss of proteins during the proteomic procedures, although several steps 

involve sample loss. This leads to the need of increasing the initial sample size, whenever 

multiple cleaning, purification, and fractionation steps are considered (Zhou, S. et al., 2005). 

 

1.1.2 - Gel electrophoresis 

Two-dimensional gel electrophoresis (2D-SDS-PAGE) allows the separation of proteins 

according to their isoelectric point by isoelectric focusing, in the first dimension, and 

according to their molecular weight, by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis, in the second dimension. Although the initial resolution was estimated in 
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5000 proteins per gel (O'Farrell, P. H., 1975), under normal and reproducible conditions less 

then 2000 proteins can actually be resolved in a 2D gel. In order to increase the total number 

of protein spots detected in a 2D gel, while decreasing spot overlapping, three major 

approaches can be used: increase the gel size, exploit narrower pH gradients over the same 

separation distance, or both (Campostrini, N. et al., 2005). The use of narrow pH gradients, 

also named “zoom” gels [i.e., a series of narrow-range immobilized pH gradient (IPG) gels 

covering usually only 1 pH unit (Hanash, S. M. et al., 1991)], has become available due to 

industrialization of IPG gels, and increased the reproducibility and protein resolution, allowing 

to build “cybergels” (Oguri, T. et al., 2002). These comprise overlapping “zoom” gels, and 

sometimes overlapping gels with different acrylamide concentrations, with distinct molecular 

weigh resolution capabilities. In a particular case, the number of spots identified in a pH 3-10 

range was increased from 853 spots to 6677 spots by using a 70×67cm cybergel 

(Campostrini, N. et al., 2005). 

2D-SDS-PAGE has several advantages and disadvantages over other separation 

techniques. It allows the separation of several hundreds to thousands of proteins and protein 

isoforms in a single gel (Baker, M. A. et al., 2005), and is compatible with several different 

visualization techniques (fluorescence, Coomassie and silver staining, radiolabelling and 

western-blot, among others), allowing the simultaneous quantification of hundreds to 

thousands of spots and proteins (Unwin, R. D. et al., 2006). The protein visualization method 

is chosen taking into consideration several issues: intended result (staining for all proteins, or 

radiolabelling, for visualization for newly synthesized proteins), dynamic range and sensitivity 

(silver staining is sensitive but has a reduced linear dynamic range when compared to 

fluorescence staining), availability of visualization instruments (fluorescence methods require 

expensive equipment for image acquisition) and cost (radiolabelling and fluorescent methods 

are usually more expensive then silver and Coomassie staining). Another advantage of 2-DE 

over alternative gel-free peptide-based approaches comes from the fact that protein 

modifications can induce changes in both mass and pI, with different isoforms and 

posttranslationally modified protein species being resolved (Unwin, R. D. et al., 2006), 

quantified and identified from a single gel.  

One of the major disadvantages of 2D-gels is the poor performance of membrane proteins, 

which comprise the largest category of proteins that remains under-identified (Pedersen, S. 

K. et al., 2003; Unwin, R. D. et al., 2006). Most of them are insoluble in the protein solvents 

normally used in sample preparation for 2D-electrophoresis, and represent in some cases 

30% of the total proteome, as is the case of yeasts (Pedersen, S. K. et al., 2003). In order to 
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overcome these limitations, several detergents have been tested for their efficacy in the 

solubilization of membrane proteins and compatibility with 1D and 2D electrophoresis, and it 

was concluded that a combination of detergents is preferable, but this step usually requires 

optimization for 2D-PAGE (Churchward, M. A. et al., 2005). 

Despite the wide dynamic range of the protein staining methods, the most abundant proteins 

detected in 2D-gels may be present at >10,000 copies per cell and may obscure proteins 

expressed at a low level (10-1,000 copies per cell). Prefractionation (Unwin, R. D. et al., 

2006) and “zoom” gels increase resolution and protein loading (Westbrook, J. A. et al., 

2001), allowing to overcome these difficulties. The detection and quantification of low 

abundant proteins present in the vicinity of poorly resolved protein smears or streaks may 

also be made difficult due to poor focusing at pH>7. The smears and streaks can result 

mainly from protein intra- and/or inter-molecular disulfide bridges (-S-S-) following the 

oxidation of the cysteinyl thiol groups (-SH). This occurs primarily due to the depletion of the 

reducing agent, such as dithiotreitol (DTT) or its isomer dithioerythritol (DTE), in the basic pH 

range, due to migration towards the anode during the IEF. In an environment lacking a 

reducing agent, the cysteinyl thiol groups tend to crosslink again, leading to the restoration of 

the disulfide bridges (Pennington, K. et al., 2004; Bai, F. et al., 2005). Different strategies 

have been used to overcome this issue: decreasing the protein sample concentration, anodic 

cup-loading, shortening IEF duration, addition of a DTT wick to replenish DTT at the cathode, 

or using an alternative reducing agent such as hydroxyethyldisulphide (HED) (Pennington, K. 

et al., 2004; Bai, F. et al., 2005). An alternative approach consisted in preparing samples in a 

way to prevent the regeneration of the crosslinks between cysteinyl thiols, inducing a 

permanent modification of the free thiol groups through alkylation (Herbert, B. et al., 2001; 

Bai, F. et al., 2005). Unfortunately, both compounds tested for this purpose, iodoacetamide 

and acrylamide, changed the gel patterns or generated extra artifatual spots in 2-DE maps. 

Iodoacetamide also reacts with methionine, lysine and histidine, and the lack of specificity to 

the cysteinyl thiol groups in the alkylation reaction leads to the formation of multiple alkylating 

products with various pIs and/or molecular weights, further increasing mass spectra 

complexity (Bai, F. et al., 2005). Other compounds have been tested, but the drawbacks 

associated did not overcome the benefits (Herbert, B., 1999; Bai, F. et al., 2005). 

Once most of the limitations have been overcome, 2D-SDS-PAGE is performed successfully, 

and gel images are acquired, image analysis is then performed using the several software 

packages available in the market, which make use of different approaches and distinct 

algorithms. Their main function is to perform spot detection, quantification, normalization, 
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matching, and data analysis across several gel images. Relevant quantitative information is 

combined in latter steps together with protein identification, usually by mass spectrometry. 

 

In summary, two-dimensional gel electrophoresis has met several important improvements 

in the last 10 years. The understanding of its drawbacks allowed researchers and industry to 

overcome the limitations by introducing new equipment, different chemical mixtures, 

automation, large scale production of IPG strips, etc. Although many drawbacks have been 

overcome, new challenges are posed every year. Comprehensive gel analysis with 

differential expression can be performed, and the relevant spots identified in the latter steps, 

without the need of hundreds of thousand euros of investment in a mass spectrometer for 

data acquisition. On the other hand, liquid-based approaches, such as liquid 

chromatography, are not used alone and require the use of a mass spectrometer for data 

acquisition and subsequent analysis. 

 

1.1.3 - Liquid chromatography 

Two major approaches are presently used for large scale protein profiling and quantification, 

the gel-based and liquid-based approaches. In the latter case, liquid chromatography is the 

method of choice, with the capability of combining different separation techniques, and using 

two (2D-LC, two-dimensional liquid chromatography) or even more fractionation steps 

(MudPIT, multidimensional protein identification technology). Liquid chromatography 

techniques (usually associated with proteomic studies) allow sample fractionation based on 

the principle that the analyte interacts with a column and is subsequently eluted with 

increasing concentration of a mobile phase (as in the case of strong cation exchange and 

reverse phase). Different analytes with distinct affinities to the columns will elute at different 

concentrations of the mobile phase, and hence having different retention times (Aebersold, 

R. and Mann, M., 2003). Combining two or more types of chromatographic separation (e.g. 

size exclusion with reverse phase) enables further fractionation of complex mixtures, thereby 

increasing both the number of peptides identified and coverage of the proteome (Washburn, 

M. P. et al., 2001; Wang, H. and Hanash, S., 2005). Liquid chromatography has been mainly 

used to fractionate complex peptide mixtures prior to identification by mass spectrometry 

(Wang, H. and Hanash, S., 2005; Unwin, R. D. et al., 2006). Although liquid chromatography 

was initially used after direct incubation of complex samples with trypsin, several different 

approaches are presently used in combination, e.g.: (i) two peptide separations, usually 
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combining strong cation exchange with reverse phase; (ii) reverse phase separation of intact 

proteins followed by reverse phase separation of tryptic peptides; (iii) combination of gel-

based and liquid based approaches (GeLC). Besides these “classic” fractionation strategies, 

the use of affinity columns and immunocapture are becoming more common, including biotin 

protein tagging and resin purification, and IMAC phosphopeptide enrichment (Wang, H. and 

Hanash, S., 2005). 

The major advantage of peptide fractionation by liquid chromatography, when compared to 

2D-SDS-PAGE of proteins, comes from the fact that peptides are more stable then proteins. 

This technique is usually coupled with mass spectrometry, allowing the direct identification, 

and in some cases quantification, of proteins from complex mixtures, resulting in time saving. 

 

1.1.4 - Mass spectrometry 

Mass spectrometry is a technique based on instruments that combine ionization techniques, 

a mass analyser and a detector, in order to determine the mass of a given analyte. For the 

purpose of this review, only MALDI-TOF-TOF and ESI-Qq-TOF will be discussed. 

The identification of protein spots harvested from 2D gels is usually carried out by MALDI-
TOF and MALDI-TOF-TOF, due to their high throughput and cost per spot analysed. Gel 

spots from 2D gels are usually digested, for instance with trypsin, and after peptide extraction 

the proteins are identified by ionization of the peptides followed by determination of their 

molecular weight. Peptides are ionized by energy transfer from a laser into a matrix (Matrix 

Assisted Laser Desorption Ionization - MALDI), and their molecular weight is estimated by 

the time required to travel over a defined path (Time Of Flight - TOF) when subjected to an 

intense electric field. This time is closely related to the molecular weight, and can be 

determined through the equation m/z=(2eU/L2)t2 [m, mass of the ion; z, charge of the ion 

(mainly +1 for peptides ionized by MALDI); e, elementary charge; U, acceleration voltage; L, 

length of flight tube; t, time of flight]. For each given experimental condition using MALDI-

TOF, all variables but two are known, t, measured by the instrument, and m, determined 

after measuring the time of flight of the peptide. In the following step, the molecular weight of 

the peptides, determined by the mass spectrometer, is subjected to database search 

algorithms, comparing possible in silico digestions of known genome sequences with 

obtained spectra from a given spot digest (Peptide Mass Fingerprint - PMF) (Cottrell, J. S., 

1994). Addition of information regarding peptide fragmentation, whenever provided by the 

equipment, as is the case of TOF-TOF instruments, further increases identification scoring. 
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Besides peptide analysis, MALDI-MS has become a valuable tool to address a broad range 

of questions in many areas of biomedical research requiring full proteome analysis. In 1999, 

MALDI-MS imaging was introduced for protein analysis from intact biological tissues. MALDI 

tissue profiling allows rapid detection of over a thousand peptides and proteins from a variety 

of tissues, with its application having a special interest in disease processes, mainly when 

combined with histological staining prior to MALDI analysis, tissue protein profiling and 

imaging, and data analysis. The amount of information obtained from tissue protein profiling 

and imaging is considerably large, but does not replace existing molecular biological 

techniques. Rather, these tools together provide a comprehensive understanding and 

support new discoveries in biology and medicine (Caldwell, R. L. and Caprioli, R. M., 2005). 

Besides this increase in MS applications, there has also been a considerable upgrade in 

instrument sensitivity and speed, accompanied with better sample preparation and 

purification procedures, allowing deeper digging into the proteome (Unwin, R. D. et al., 

2006).  

Electrospray ionization (ESI) is normally employed when mass spectrometry is used in 

combination with liquid chromatography, although LC-MALDI has become a common 

practice. For electrospray ionization, peptides are usually eluted from the chromatography 

column in an acidic mobile phase, resulting mainly in positively charged peptides. Once in 

the electrospray needle, and in the presence of a high voltage, solvents nebulize along with 

the peptides. These charged droplets lose water when passing through a nitrogen curtain, 

leading to an increase in repulsion between positively charged peptides, and resulting in 

single peptide ions, ready for MS and MS/MS analysis (Fig. 1.1). Fragmentation spectra 

provide more information about a given peptide, allowing search algorithms to identify the 

protein in the database, even if the peptide is present in a complex mixture. Liquid 

chromatography is usually coupled to tandem mass spectrometers able to induce peptide 

fragmentation, such as ion-traps, triple quadrupoles or hybrid systems [e.g. ion-trap/triple 

quadrupoles or quadrupole/time-of-flight (Q-TOF) instruments]. The Q-TOF instruments 

combine the superior mass selection of a quadrupole, with the collision-induced dissociation 

(CID) or peptide fragmentation, in addition to the accuracy, resolution and rapid full scan 

capabilities of TOF technology (Steen, H. et al., 2001). 

Although MS provides sensitive detection and identification of proteins and peptides, it is not 

directly quantitative, with two peptides from the same protein possibly generating different 

intensity signals, because differences in amino acid composition and sequence will affect the 

ionization efficiency. Differences in sample composition, in addition to the age, condition (e.g. 



 

 

In
tr

od
uc

tio
n 

 

13

degradation due to solvents) and even the position of the electrospray needle can affect the 

ionization efficiency, changing the peptide signal, and this represents some of the causes of 

quantification related problems (Unwin, R. D. et al., 2006). In order to attain high throughput 

quantification by mass spectrometry in large proteomic studies, several methods have been 

developed, with chemically identical but isotopically distinct tags being used to modify 

different peptide populations. This allows samples from different experimental conditions, 

each containing a distinct label, to be pooled and analyzed by liquid chromatography, with 

identical peptides eluting at the same time (coeluting) and ionizing with the same efficiency. 

A relative or absolute quantification of the peptides is obtained by comparing their signal 

intensities with a defined isotope-induced mass difference (Andersen, J. S. and Mann, M., 

2000; Unwin, R. D. et al., 2006). Several methods are currently being used for this purpose: 

iTRAQ (Isotope Tags for Relative and Absolute Quantitation), SILAC (Stable Isotope 

Labelling with Amino acids In Cell culture), ICAT (Isotope Coded Affinity Tag), ICPL (Isotope 

Coded Protein Labelling), 18O labelling, among others (Blagoev, B. et al., 2003; Unwin, R. D. 

et al., 2006). Briefly, besides the label itself, these methods are mainly different in the 

labelling step, with SILAC performing the labelling by the time proteins are synthesized inside 

the cells. ICAT and ICPL label proteins prior to analysis, 18O labels peptides when proteins 

are proteolyticaly digested, and iTRAQ labels peptides. All methods, but iTRAQ, allow 

quantification in the MS spectra, while iTRAQ only allows quantification in the fragmentation 

 
 

Figure 1.1 – Ion evaporation during electrospray ionization. Each charged droplet contains 
solvent and both positive and negative ions, with ions of one polarity being predominant (due to the 
acidic medium). A simple view of the droplet as a conducting medium suggests that excess 
charges reside at the droplet surface. As the solvent evaporates, the electrical field at the surface 
of the droplet increases due to the decreased radius of the droplet. At a given point, a critical field 
is reached at which ions are emitted from the surface. Eventually, all the solvent will evaporate 
from the droplet, leaving a dry particle consisting of the non-volatile components of the sample 
solution (Biosystems, A., 2004). 
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(MS/MS) spectra. This method allows quantification of up to four different samples 

simultaneously, by incorporating four isobaric tags that label the N terminus of every peptide 

(along with free amines in lysine side chains). These isobaric tags, with approximately 

145Da, contain a reporter group (114, 115, 116 or 117Da), a balance group (31, 30, 29 or 

28Da) and a peptide reactive group. Although equal peptides contain different tags, they 

behave similarly in the chromatography column and in the mass spectrometer. Once inside 

the mass spectrometer, identical peptides from different samples are fragmented, yielding a 

fragmentation spectra used for protein ID. Besides this data, each peptide also produces a 

fragment from its reporter group (114, 115, 116 or 117Da). Quantification becomes possible 

by the use of software that compares the peak intensity of reporter group ions in the 

fragmentation spectra. The relative abundance of these reporter ions provides relative 

quantification or absolute quantification if one of the ions is properly quantified before 

analysis. This labelling method offers several advantages: first, all peptides (in theory) are 

labelled, allowing multiple peptides from the same protein to be quantified and increasing 

confidence in protein quantification; second, because the tags are isobaric, the signal from 

up to four samples is summed in MS mode, providing an increase in sensitivity; and third, 

because peptides are isobaric, the MS spectra complexity is not multiplied by the number of 

different tags used, as is the case of the other methods (Unwin, R. D. et al., 2006). 

 

1.1.5 - Bioinformatics 

Large scale analysis of proteome changes requires the use of software, in order to align, 

group, and transform data to understand its biological significance. Besides software 

packages used to control equipment, proteomics data have to be processed, changed 

according to standards, subjected to database comparison, and evaluated, so that a protein 

can be identified and, in some cases, quantified. When this process is concluded, there is 

still the need of data interpretation, ranging from biomarker discovery to interpretation of 

biological pathways. This is accomplished by using some of the analysis tools available, but 

this is not yet standardized, as is the case of protein identification by using different 

databases as UniProtKB/Swiss-Prot or NCBI. Although a given protein is the result of a gene 

being translated, it will receive different (but similar) names, depending on the database 

used, and distinct accession numbers, depending on the final protein translated (full length 

protein, precursor, truncated,…). Accession numbers and gene names are very useful at this 

stage because they also allow gathering information from multiple databases. The original 
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concept of one gene-one protein is now obsolete, and Swiss-Prot annotates cellular 

mechanisms leading to an amino acid sequence different from the one expected by standard 

translation of the nucleotide sequence. Various native proteins, including structural proteins, 

hormones, neuropeptides and secreted enzymes, are cleaved to achieve their mature form, 

hence receiving a different accession number (Boeckmann, B. et al., 2005). 

The publication of large proteomic datasets, as the ones coming from LC-MS/MS 

experiments of complex samples, poses new and significant challenges for authors, 

reviewers, and readers, as universally accepted and widely available computational tools for 

validation of the published results are not yet available (Carr, S. et al., 2004). There is the 

need of data validation in order to identify possible false positives. Incorrect matches result 

mainly from the use of low-quality MS and/or peptide MS/MS data to search the databases. 

However, even high-quality data can produce invalid identifications if, for example, a given 

peptide sequence is not in the database being searched. Many different algorithms are 

carefully used for peptide and protein assignment (e.g. MSTag, Mascot, SEQUEST, 

SpectrumMill, Sonar, etc.), and each has unique rules for scoring, to move the most probable 

peptide assignment to the top of the “hit” list. In addition, new filtering criteria are being 

developed that, when layered onto the results from the above algorithms, help to eliminate a 

certain additional percentage of false positives (Carr, S. et al., 2004). Finally, a new database 

independent scoring method (S-score) was designed, that is based on the maximum length 

of the peptide sequence tag provided by MS/MS data (Savitski, M. M. et al., 2005). Besides 

these, other proteomic related algorithms are under development, as is the case of 2D-gel 

analysis software, including spot detection and matching (Kaczmarek, K. et al., 2004). 

Two of the largest databases used for protein identification are the NCBI and the 

UniProtKB/Swiss-Prot databases. The first database has more entries, since some of them 

are redundant and there is no correlation between a given protein entry and other databases, 

as occurs with the UniProtKB/Swiss-Prot database. In the latter database, once a protein is 

identified, it retrieves an accession number, which can easily be used across other European 

databases to obtain additional information, such as retrieving gene ontology information from 

EBI (European Bioinformatics Institute), and information from several databases using 

Bioinformatics Harvester (http://harvester.embl.de). Even though UniProtKB/Swiss-Prot 

entries generally correspond to a gene rather than a protein, it stores information regarding 

protein variety and functional diversity (Boeckmann, B. et al., 2005).  

Harvester is an interesting “bioinformatic meta search engine for genes and protein-

associated information”. It works for human, mouse and rat proteins, crosslinking 16 popular 
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bioinformatic resources and allowing cross-searches (Liebel, U. et al., 2005). Another 

project, the Biomolecular Interaction Network Database (BIND) (http://bind.ca), archives 

information regarding biomolecular interaction, reactions, complexes formed and pathway 

information. The aim of this project is to curate the details about molecular interactions that 

arise from published experimental research and to provide this information, as well as tools 

to enable data analysis, freely to researchers worldwide. BIND has developed methods for 

visualization by amplification of the annotations of genes and proteins, thereby facilitating the 

study of molecular interaction networks (Bader, G. D. et al., 2003; Alfarano, C. et al., 2005). 

Another database, GeneNote (Gene Normal Tissue Expression), collects the results of the 

hybridization intensity of two replicates processed and analyzed to yield the complete 

transcriptome for twelve human tissues. This information was gathered using the Affymetrix 

GeneChip HG-U95 set, which includes 62,839 probe-sets, and it was produced to portrait 

complete gene expression profiles in healthy human tissues (Shmueli, O. et al., 2003). 

The functional interpretation of the results obtained in studies leading to the identification 

and quantification of the proteome in a large scale represents a time consuming and 

challenging task, with the most interesting proteins being usually presented in long lists with 

no biological meaning (Busold, C. H. et al., 2005). Combining protein expression levels with 

information regarding their molecular function, cellular component and biological processes 

in which they are involved, results in protein grouping according to their probable biological 

meaning (Andersen, J. S. et al., 2005). This grouping is made possible by using information 

from the Gene Ontology (GO) project (http://www.geneontology.org/), which provides 

structured and controlled vocabularies and classifications covering several domains of 

molecular and cellular biology, and are freely available for community use in the annotation 

of genes, gene products and sequences. This project is a collaborative effort to address two 

aspects of information integration: to provide consistent descriptors for gene products 

retrieved from different databases and to standardize classifications for sequences and 

sequence features (Gene Ontology Consortium, 2004). The GO project has three major 

goals: (i) to develop a set of controlled, structured vocabularies - known as ontologies - to 

describe key domains of molecular biology, including gene product attributes and biological 

sequences; (ii) to apply GO terms in the annotation of sequences, genes or gene products in 

biological databases; and (iii) to provide a centralized public resource allowing universal 

access to the ontologies, annotation data sets and software tools developed for use with GO 

data. Ontologies provide conceptualizations of domains of knowledge, and facilitate both the 

communication between researchers and the use of domain knowledge by computers for 



 

 

In
tr

od
uc

tio
n 

 

17

multiple purposes. The three main categories are (i) Molecular Function, which describes 

activities, such as catalytic or binding activities, at the molecular level (e.g. “receptor 

signalling protein activity”), (ii) Biological Process, which describes biological goals 

accomplished by one or more ordered assemblies of molecular functions (e.g. “cell death”), 

(iii) Cellular Component, which describes locations, at the levels of subcellular structures and 

macromolecular complexes (e.g. “nuclear inner membrane”). Every annotation is related to a 

source, which may be a literature reference, another database or a computational analysis. 

Furthermore, the annotation indicates the type of evidence the cited source provides to 

support the association between the gene product and the GO term (Gene Ontology 

Consortium, 2004). GoMiner is a software package that organizes lists of genes of interest 

(e.g. under- and overexpressed genes) for biological interpretation in the context of the gene 

ontology, providing quantitative and statistical data (Zeeberg, B. R. et al., 2003). Therefore, 

GOMiner allows the processing of data in a large scale, combining gene ontology and 

differential gene expression. 
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1.2 - Neurotrophins and neurotrophins receptors 

Neurotrophins are a family of highly conserved proteins that play important roles in the 

regulation of axonal and dendritic growth and guidance, synaptic structure and connections, 

short- and long-term changes in synaptic activity, and in neuronal survival and 

neuroprotection (Poo, M. M., 2001; Huang, E. J. and Reichardt, L. F., 2003; Lu, B. et al., 

2005). Furthermore, neurotrophins contribute to glial cell development and survival (Althaus, 

H. H. and Richter-Landsberg, C., 2000; Syroid, D. E. et al., 2000; Chan, J. R. et al., 2004; 

Husson, I. et al., 2005; Yamauchi, J. et al., 2005). This group of low-molecular weight 

proteins includes nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and 

neurotrophins-3 and -4/5 (NT-3 and NT-4/5). The cellular effects of neurotrophins are 

mediated by activation of two classes of receptors: the Trk (tropomyosin-related kinase) 

family, which includes the TrkA, TrkB and TrkC receptors, endowed with tyrosine kinase 

activity, and the p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor 

(TNF) receptor family (Chao, M. V., 2003; Huang, E. J. and Reichardt, L. F., 2003; Barker, P. 

A., 2004; Teng, K. K. and Hempstead, B. L., 2004). The diversity of the Trk receptors is 

further enhanced by the existence of TrkB and TrkC receptors lacking the tyrosine kinase 

domain or containing inserts in the intracellular domain that affect the signalling properties of 

the receptors (Huang, E. J. and Reichardt, L. F., 2003). NGF binds to TrkA receptors, BDNF 

and NT-4/5 to TrkB receptors, and NT-3 to TrkC (which may also target TrkB receptors). In 

contrast with the specificity displayed by the Trk family of receptors, the p75NTR binds both 

the mature form of the neurotrophins and their uncleaved (precursor) forms 

(proneurotrophins) (Lee, R. et al., 2001). The Trk receptors and the p75NTR may be 

expressed by the same cell, where they coordinate and modulate the neuronal response to 

neurotrophins. While the former receptors tend to mediate signals leading to cell survival and 

growth, the p75NTR may provide a trophic effect or cause cell death (Friedman, W. J. and 

Greene, L. A., 1999). 

 

1.2.1 - BDNF 

Brain-derived neurotrophic factor (BDNF) is one of the most extensively studied 

neurotrophins, playing important roles in neurogenesis, development of the nervous system, 

regulation of synaptic transmission, learning and memory formation and in several disorders 

of the nervous system (Binder, D. K. and Scharfman, H. E., 2004). BDNF is the most 
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abundant neurotrophin in the brain (Tardito, D. et al., 2006) with its mRNA being widely 

distributed in the CNS (Binder, D. K. et al., 2001), not only in neurons but also in glial cells. In 

the mouse hippocampus, BDNF mRNA and its protein are expressed from embryonic stage 

until adulthood. A stepwise increase in BDNF protein levels is observed in the mouse 

hippocampus from embryonic stage to postnatal day 7 (P7), and the protein levels are 

maintained throughout the adult lifetime (Ivanova, T. and Beyer, C., 2001). 

The BDNF gene is located on the reverse strand of chromosome 11p13 and encodes a 

precursor peptide (pro-BDNF) that is proteolytically cleaved to form the mature protein 

(Craddock, N. et al., 2005). The structure of the rat BDNF gene is relatively complex, with 

four 5' noncoding exons linked to separate promoters and one 3' exon encoding the entire 

open reading frame of the biologically active protein (Timmusk, T. et al., 1995; Mellstrom, B. 

et al., 2004). The relative importance of the various regulatory regions of the BDNF gene on 

its expression in vivo was investigated using transgenic mice with six different promoter 

constructs of the BDNF gene fused to the chloramphenicol acetyl transferase reporter gene. 

Expression analysis revealed that regulation of BDNF expression is differentially controlled 

by the various regions in vivo (Figure 1.2), with specific regions of the central and peripheral 

nervous system regulating differently the expression of the heterologous genes (Timmusk, T. 

et al., 1995). BDNF gene expression can be regulated by several promoters, with promoters 

I and III or IV playing a key role in the response to neuronal activation in the brain. The influx 

of Ca2+ through voltage-sensitive calcium channels upregulates preferentially BDNFIII 

transcripts in cultured cerebrocortical neurons. Ca2+ entry through synaptic NMDA receptors 

or throught L-type Ca2+ channels also regulates BDNF gene expression in cortical neurons 

(Mellstrom, B. et al., 2004), through CREB (CRE Binding protein) phosphorylation 

(Mellstrom, B. et al., 2004; Hajszan, T. and MacLusky, N., 2006). In contrast, the influx of 

Ca2+ through extrasynaptic NMDA receptors opposes the increase in CREB phosphorylation 

induced by activation of synaptic NMDA receptors (Fig. 1.2) (Mellstrom, B. et al., 2004). The 

expression of the BDNF gene in the hippocampus is also regulated by oestrogen, which 

induces striking changes in BDNF synthesis with every ovarian cycle (Hajszan, T. and 

MacLusky, N., 2006). 

The BDNF gene shows a common polymorphism, leading to a substitution of a valine (Val) to 

methionine (Met) at position 66 in the prodomain (BDNFMet) (Chen, Z. Y. et al., 2004). 

Heterozygous humans for the polymorphism show increased susceptibility to neurological 

disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), bipolar disorder 

(BD), depression, eating disorder, obsessive compulsive disorder (Hall, D. et al., 2003), and 
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juvenile bipolar disorder (JBD) (Althoff, R. R. et al., 2005). Furthermore, heterozygous 

humans for this polymorphism suffer from memory impairment, resulting from a reduction in 

activity-dependent secretion of BDNFMet. This polymorphism represents the first correlation 

between a change in BDNF and clinical dysfunction. Further studies concluded that BDNF 

polymorphism affects the trafficking of the neurotrophin in neuronal cells. Thus, when 

expressed together in the same cell, BDNFMet dimerises with BDNFVal changing its trafficking 

and decreasing its sorting to the regulated secretory pathway (Chen, Z. Y. et al., 2004). 

BDNF is a 27kDa basic protein of noncovalently linked 13.5kDa subunits (Rosenthal, A. et 

al., 1991). The most common structure of BDNF (Fig. 1.3 A-B) comprises eight β-strands 

that contribute to four antiparallel pairs of twisted β-strands, locked by a cystine knot formed 

by three disulfide bonds. BDNF shares a high sequence and structure homology with the 

other neurotrophins, NT3, NT4 and NGF (Fig. 1.3 C) (Robinson, R. C. et al., 1999). 

Specific stimuli that raise the [Ca2+]i induce the transcription of the BDNF mRNA, which upon 

translation gives rise to the precursor form of the neurotrophin (pro-neurotrophin) (Fig. 

1.4A). Pro-neurotrophins are cleaved to their mature form by intracellular (Fig. 1.4C) or 

extracellular proteases (Fig. 1.4D). Some of these intracellular proteases belong to the 

subtilisin/kexin-like convertase family of proteases, and include furin, PACE4, PC1 and PC5 

(Seidah, N. G. et al., 1996). Extracellular proteases involved in proneurotrophin cleavage 

include plasmin (Lee, R. et al., 2001; Pang, P. T. et al., 2004), formed from plasminogen by 

 

 
 
Figure 1.2 – BDNF gene structure. BDNF gene comprises five exons (boxes) and four regulatory 
regions (circles). The coding region (black area) is located in the 5’ end of exon V, preceding two 
alternative polyadenylation sites (arrows). Transcription factors (red text) operate at each promoter 
regulating gene expression. Putative regulatory sites located in the 5′ flanking regions of exon III 
control its expression: calcium responsive sequence (CRS-1), cAMP responsive element (CRE), 
downstream regulatory element (DRE), and CpG islands (Mellstrom, B. et al., 2004). 
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the action of tissue plasminogen activator (tPA) (Lu, B. et al., 2005), and metalloproteinases 

(Lee, R. et al., 2001). 

BDNF is sorted into the regulated pathway, while other neurotrophins are mainly sorted into 

the constitutive pathway (Brigadski, T. et al., 2005; Vaynman, S. and Gomez-Pinilla, F., 

2005). This differential sorting has been attributed to the selective binding of pro-BDNF to 

sortilin in the trans-Golgi network, allowing the proper folding and interaction of pro-BDNF 

with carboxypeptidase E (CPE) (Fig. 1.4B). This process allows the sorting of pro-BDNF into 

the regulated secretory pathway (Chen, Z. Y. et al., 2005; Lou, H. et al., 2005) and 

interestingly, co-expression of BDNF with NT-3 deviates NT-3 from the constitutive secretory 

pathway to the regulated secretory pathway (Farhadi, H. F. et al., 2000). BDNF-containing 

vesicles are transported either to dendritic spines or to varicosities, in axons, by anterograde 

transport (Fawcett, J. P. et al., 1997; Kohara, K. et al., 2001; Adachi, N. et al., 2005). In the 

majority of BDNF expressing neurons the neurotrophin shows a distal dendritic targeting, and 

is stored within secretory granules; these vesicles exist in distinct prerelease states, differing 

in the intragranular pH, and this heterogeneity is responsible for the differential release of 

BDNF (Brigadski, T. et al., 2005). 

 
 
Figure 1.3 – BDNF/NT-3 heterodimer. (A-B) Different views showing the main structure of the 
heterodimer, and its main secondary conformations (β-strands) (Robinson, R. C. et al., 1999). (C) 
Neurotrophin structure homology showing mouse NGF (light blue), and human BDNF (red), NT3 
(yellow) and NT4 (dark blue), in the same orientation (Robinson, R. C. et al., 1999). 
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Figure 1.4 – BDNF trafficking: from the gene to the regulated secretion. (A) BDNF expression 
can be upregulated following cell stimulation and [Ca2+]i increase. mRNA for BDNF is then translated 
in the rough endoplasmic reticulum (ER). BDNF containing vesicles are translocated from the ER to 
the cis-Golgi complex. (B) In the trans-Golgi membrane complex, pro-BDNF interacts with sortilin 
through its pro-domain. This binding allows the proper conformation change that results in the 
interaction of the BDNF acidic residues glutamate-18 and aspartic acid-106 with the basic residues 
arginine-255 and lysine-260 of carboxipeptidase E (CPE). CPE allows the recruitment of pro-BDNF 
to the regulatory secretory pathway. (C, D) Neurotrophins can be processed to their mature form 
through the action of furin or PC1, but BDNF is mainly cleaved by the extracellular protease plasmin 
(Pang, P. T. et al., 2004); metalloproteinases (MMP) are also able to cleave pro-BDNF (Lee, R. et al., 
2001). Once released to the synaptic cleft, mature BDNF homodimers bind to their cognate receptor 
TrkB (See also Movie 1). 
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1.2.2 - Neurotrophin Receptors 

Neurotrophins bind to tropomyosin-related kinase (Trk) receptors, with the receptor cognate 

of BDNF (TrkB) having its mRNA located throughout the brain (Binder, D. K. et al., 2001), 

including glial cells (Ivanova, T. and Beyer, C., 2001). The receptor is expressed abundantly 

all over the CNS with the hippocampus being particularly enriched in TrkB and BDNF gene 

products (Vaynman, S. and Gomez-Pinilla, F., 2005). Immunostaining of spinal cord sections 

against full length TrkB (TrkBFL) and NeuN, a neuron specific marker, demonstrated for the 

first time that numerous TrkBFL-positive cells of various sizes coexpressed NeuN (Skup, M. et 

al., 2002), indicating that TrkBFL is located in neuronal cells. TrkB receptors share a high 

degree of homology with the other tyrosine kinase receptors, with three leucine rich 24-

residue motifs flanked by two cysteine clusters (Fig. 1.5). Two immunoglobulin-like domains 

precede the single transmembrane domain and the tyrosine kinase intracellular domain. The 

cytoplasmic portion of the receptor contains several tyrosines that can be phosphorylated, 

regulating tyrosine kinase domain activity. Binding of BDNF to TrkB receptors leads to their 

transphosphorylation on tyrosine residues, followed by recruitment and phosphorylation of 

adaptor/signalling proteins, which initiate different signalling cascades (Huang, E. J. and 

Reichardt, L. F., 2003). 

The human TrkBFL has 822 amino acids and 91,999 Da (Gasteiger, E. et al., 2003), whereas 

the truncated TrkB (tTrkB) has a similar structure but lacks the cytoplasmic tyrosine kinase 

domain (Alderson, R. F. et al., 2000; Huang, E. J. and Reichardt, L. F., 2003). Different 

isoforms of tTrkB are produced by alternative splicing (T1 and T2 in rat; T1 and T-shc in 

humans) (Nagappan, G. and Lu, B., 2005). The T1 isoform contains 477 amino acids, 

53,051Da, while the T-shc isoform contains 537 amino acids, corresponding to 59,166Da 

(Gasteiger, E. et al., 2003). T1 is mainly expressed in the brain and can form heterodimers 

with TrkBFL, acting as a dominant negative and inhibiting BDNF signalling. Therefore, T1 

isoforms control the synaptic signalling mechanisms induced by BDNF (Nagappan, G. and 

Lu, B., 2005). Compared to the remaining life stages of the rat, in the prenatal state there is 

an increase in the levels of tTrkB all over the brain, particularly in the hippocampus, with 

TrkB levels remaining almost unchanged. Embryonic rat hippocampal glial cells maintained 

in vitro also express tTrkB mRNA, while microglial cells are not endowed with this transcript. 

In astrocytes, TrkBFL mRNA was not detected, but tTrkB mRNA was identified by in situ 

hybridization, in the adult nervous system, in cells lining the third ventricle, cells of the 

choroids plexus, and in Schwann cell of the sciatic nerve (Alderson, R. F. et al., 2000). 
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Although high levels of TrkB mRNA have been observed in rat brain cultures devoided of 

neuronal cells, most TrkB transcripts present in these cells code for the truncated form, 

explaining in part why northern blot analysis of TrkBFL was unable to detect the transcript in 

these cultures (Condorelli, D. F. et al., 1994). 

The complex formed by the neurotrophin BDNF bound to the tTrkB receptors is endocytosed 

and accumulated in the intracellular pool of rat hippocampal astrocytes and Schwann cells 

(Alderson, R. F. et al., 2000). These trapped neurotrophins were stable for more than 48h 

and could be released back to the incubation medium in a time and temperature dependent 

manner. This revealed a different mechanism for the regulation of intracellular and 

extracellular concentrations of neurotrophins (Biffo, S. et al., 1995; Alderson, R. F. et al., 

2000). tTrkB seems to also play a role in the availability and diffusion of BDNF, capturing the 

neurotrophin that diffuses out of the synaptic cleft and concentrating BDNF to sites of 

release, probably explaining its high levels during development (Biffo, S. et al., 1995; 

Bramham, C. R. and Messaoudi, E., 2005). BDNF can also be internalized through TrkBFL, in 

hippocampal neurons, and released upon high-frequency stimulation (HFS) (Santi, S. et al., 

2006). 

 
 
Figure 1.5 – Neurotrophin receptors. Trk receptors contain several distinct extracellular domains: 
cysteine clusters (C), leucine-rich repeats (LRR) and immunoglobulin-like domains (Ig). The Insert 
domain refers to the alternative splice region responsible for the ligand-binding specificity. Trk 
receptors possess a single transmembrane domain and a single cytoplasmic tyrosine kinase 
domain. Ig2 is the major ligand-binding interface in TrkB receptors. The truncated form of the 
receptor, lacking its intracellular kinase domain, is represented on the right. p75NTR structure is also 
represented on the left. The extracellular domain of this receptor contains four cysteine-repeat 
domains (CR), with CR2 and CR3 implicated in neurotrophin-binding. p75NTR also contains a single 
transmembrane domain and a single intracellular domain, called “death domain” (DD), similar to 
the DD of the tumour necrosis factor (TNF) receptors (Huang, E. J. and Reichardt, L. F., 2003). 
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TrkBFL expression is regulated by calcium entry through L-type voltage-gated Ca2+ channels, 

leading to activation of Ca2+-response elements (CREs) in promoter 1 and 2 (P1 and P2), in 

an NMDA receptor independent manner. The regulation of TrkB expression by Ca2+ was 

confirmed in neurons transiently transfected with TrkB promoter–luciferase constructs, and 

the results showed that Ca2+ activates P2 but inhibits the upstream P1 (Kingsbury, T. J. et 

al., 2003). 

Neuronal activity also promotes the translocation of TrkB mRNA into dendrites, both in vitro 

and in vivo. In resting cultured hippocampal neurons, labelled TrkB mRNA covered ~30% of 

total dendritic length, but the dendritic labelling was increased to ~70% following mild 

depolarization (10mM KCl for 3h). Trafficking of TrkB mRNA into dendrites suggests local 

translation of a transmembrane protein in these terminals, disregarding the idea of 

membrane-associated proteins being synthesized only in the cell body (Nagappan, G. and 

Lu, B., 2005). 

TrkB protein synthesis and the surface expression of the receptors are also regulated by 

neuronal activity (Fig. 1.6A). Thus, depolarization with a high KCl concentration increased 

the levels of TrkB on the surface of retinal ganglion cells and spinal neurons (Nagappan, G. 

and Lu, B., 2005), and similar results were obtained in retinal ganglion cells stimulated with 

glutamate receptor agonists (NMDA, kainate and quisqualate) and cAMP (Meyer-Franke, A. 

et al., 1998). Field tetanic stimulation also increased both biotinylated TrkB and surface 

bound labelled BDNF, indicating that electrical stimulation facilitates the translocation of TrkB 

from the intracellular pool to the cell surface, particularly in dendrites, thereby facilitating 

receptor activation by BDNF. The activity-induced translocation of TrkB receptors to the 

membrane is a rapid event (~30min), dependent on calcium influx and activation of 

Ca2+/calmodulin-dependent kinase II (CaMKII), but does not require protein synthesis (Du, J. 

et al., 2000). Inhibition of the excitatory synaptic transmission abrogates the effect of electric 

stimulation on TrkB surface expression, suggesting that insertion of TrkB is facilitated at 

synapses with active synaptic transmission. The role of synaptic activity in TrkB activation 

was also shown in studies where electrical stimulation increased TrkB phosphorylation in the 

presence of saturating concentration of BDNF (Haapasalo, A. et al., 2002; Du, J. et al., 2003; 

Nagappan, G. and Lu, B., 2005). The effects of synaptic activity may be due, at least in part, 

to the release of BDNF, which regulates the TrkB expression (Haapasalo, A. et al., 2002; 

Nagappan, G. and Lu, B., 2005). Accordingly, exposure of hippocampal neurons to BDNF 

rapidly increased TrkB surface levels (<15s), but longer stimuli (3h) decreased surface TrkB 

protein levels through proteasome-mediated degradation (Haapasalo, A. et al., 2002).  
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When released into the synaptic cleft BDNF induces a lateral movement of TrkB from non-

raft extrasynaptic sites into synaptic lipid rafts - cholesterol and sphingolipid-rich 

microdomains (Fig. 1.6B). Lipid rafts compartmentalize signalling molecules on the plasma 

membrane, allowing BDNF activated TrkB receptors to interact with proteins only located in 

the rafts (Nagappan, G. and Lu, B., 2005). Taken together, the available evidences indicate 

that neuronal activity modulates TrkB transcription, translation and endocytosis. 

In addition to the effects on BDNF expression and release, neuronal activity also increases 

the intracellular cAMP concentration (Meyer-Franke, A. et al., 1998). cAMP was proposed to 

act as a ‘gate’ that enables BDNF to achieve its synaptic effects, and the evidences for this 

assumption are the following: 1) BDNF-TrkB signalling was enhanced in active neurons or 

synapses with elevated [cAMP]i, 2) cAMP facilitated the translocation of TrkB into the 

postsynaptic density of hippocampal neurons and; 3) TrkB and the postsynaptic density 

protein 95 (PSD-95) physically interact and colocalize in the dendritic spines after treatment  

(15min) with activators of the cAMP–PKA pathway. The cAMP signalling pathway might 

selectively recruit TrkB into synapses containing PSD-95 and facilitate the association with a 

complex containing PSD-95 (Fig. 1.6C) (Nagappan, G. and Lu, B., 2005). This signalling 

mechanism also regulates neurotrophin and TrkB expression in cultured astroglial cells, 

which may be relevant during normal neuronal activity or after injury (Condorelli, D. F. et al., 

1994). 
 

1.2.3 - Signalling pathways 

The early events in intracellular signalling induced by BDNF are similar to those of NGF. The 

BDNF dimers induce TrkB dimerisation and trigger transphosphorylation of tyrosine residues 

in their intracellular domain, in a dose-dependent manner (Yuen, E. C. and Mobley, W. C., 

1999). This process leads to activation of one or more of the following three major signalling 

pathways: mitogen-activated protein kinase (MAPK), also termed extracellular signal-

regulated protein kinase (ERK), phosphatidylinositol 3-kinase (PI3-K) and phospholipase C-

gamma (PLC-γ) [Manadas, B. J. et al., 2007 (in press)] (described in more detail ahead). 

Other proteins have been identified as either binding to the activated TrkB receptor, or being 

present in some of the pathways translating the signal initiated by the receptors (Easton, J. 

B. et al., 2006). 

TrkB activation is reversible (with a half-life of 1–2h) and spatially restricted, taking place only 

at active synapses (Nagappan, G. and Lu, B., 2005), as described above. The majority of the 
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signalling induced by growth factors terminates with their receptor endocytosis (Sorkin, A. 

and Waters, C. M., 1993). The activity of TrkB receptors constitutes an exception to this 

general rule, since endocytosis is still an important step in neurotrophin signalling. The 

complex formed by BDNF and TrkB is internalized either through clathrin-mediated 

endocytosis, through clathrin-independent endocytosis, or pincher-mediated 

macropinocytosis with membrane ruffles. The complex formed by the receptor and the 

neurotrophin is then driven to the “signalling endosome”, a specialized vesicular 

compartment (Nagappan, G. and Lu, B., 2005). Receptor internalization has been observed 

in BDNF-/- hippocampal neurons subjected to electric stimulation, in the presence of 

exogenous BDNF. Following calcium entry through NDMA receptors and voltage-gated 

 
 
Figure 1.6. Regulation of TrkB trafficking by neuronal and/or synaptic activity. (a) Insertion of 
TrkB into the plasma membrane by an activity-dependent and BDNF-independent mechanism. 
Calcium influx through NMDA receptors leads to activation of calcium-calmodulin dependent 
protein kinase II (CaMKII) resulting in the fusion of TrkB containing vesicles with the plasma 
membrane. (b) BDNF-induced recruitment of TrkB into lipid rafts. BDNF binding to TrkB receptors 
induces their activation and lateral movement from non-raft to raft regions of plasma membrane. (c) 
cAMP-induced translocation of TrkB into the postsynaptic density and gating of TrkB signalling by 
cAMP. The increase in [cAMP]i can contribute to synaptic modulation in two ways: (i) inducing 
translocation of TrkB into dendritic spines or (ii) gating TrkB signal from either inside or outside 
synapses. (d) Activity-dependent endocytosis of the BDNF–TrkB complex. Local synaptic activity 
can enhance calcium entry through NMDA receptors and voltage-gated calcium channels 
facilitating endocytosis of BDNF activated TrkB receptors, which form the signalling endosome and 
initiates different pathways (e.g.ERK, PI3-K and PLCγ pathways) (Nagappan, G. and Lu, B., 2005). 
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calcium channels, TrkB kinase activity increased and induced receptor internalization. 

Inhibition of the tyrosine kinase activity prevents receptor internalization, suggesting a critical 

role for the receptor kinase activity in the activity-dependent receptor endocytosis. Therefore, 

TrkB kinase activity and internalization is modulated not only by neurotrophin binding but 

also by neuronal activity and calcium entry (Du, J. et al., 2003). A higher response to BDNF 

in active synapses can be achieved by facilitation of the endocytosis of neurotrophin bound 

TrkB receptors. (Figure 1.6b) (Nagappan, G. and Lu, B., 2005). The TrkB kinase activity is 

maintained in the internalized receptors, keeping their signalling activity.  

 

1.2.3.1 - Ras-ERK pathway 

Although most studies concerning the activation of this signalling pathway have been made 

in TrkA-expressing PC12 cells stimulated with NGF, evidences point to a similar mechanism 

for TrkB receptors. After the initial steps of TrkB activation, Shc binds to one of the 

phosphorylated tyrosines in the receptor, through a phosphotyrosine binding (PTB) domain. 

Shc is itself phosphorylated, allowing the interaction with Grb2 through a SH2 domain. This 

interaction brings the complex Grb2-SOS closer to the plasma membrane. SOS has a GEF 

(Guanine-nucleotide Exchange Factors) activity, activating the low molecular weight G-

protein Ras, which is anchored to the membrane (Roy, S. et al., 2005). Thus, SOS activates 

Ras by exchanging its bound GDP with the more abundant GTP [Manadas, B. J. et al., 2007 

(in press)]. Ras is an important mediator in signalling pathways regulating cell growth in all 

eukaryotic cells, and plays important roles in neuroprotection, tumour development (mutant), 

and synaptic plasticity, among others (Vojtek, A. B. and Der, C. J., 1998; Reichardt, L. F., 

2006). Ras is the bottleneck of several signalling pathways (e.g. calcium influx, NMDA 

stimulation, cAMP and neurotrophin signalling) and an initiator of others (ERK pathway, PI3-

K pathway) from a variety of stimuli (Iida, N. et al., 2001). Ras-GTP and protein phosphatase 

2A (PP2A) are responsible for the initial steps of Raf activation, with Ras-GTP playing a role 

in the recruitment of Raf to the membrane vicinity. PP2A contributes to Raf activation by 

dephosphorylating amino acid residues important for the interaction of the kinase with the 14-

3-3 protein. Once activated by multiple phosphorylations, Raf can phosphorylate MEK1 

present in the MEK1-ERK1-MP1 complex. MEK1 phosphorylates ERK1 releasing the latter 

kinase from the complex, and allowing phospho-ERK1 dimerisation. This active ERK1 dimer 

phosphorylates RSK, and both active kinases may be translocated to the nucleus, where 

other proteins are regulated, including transcription factors (Movie 2, Figure 1.7 ) [Manadas, 
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B. J. et al., 2007 (in press)]. Alternative mechanisms have also been proposed involving new 

players, such as KSR and β-Arrestin (Anderson, D. H., 2006). 

The kinase ERK5 is also activated by BDNF stimulation, through phosphorylation by MEK5. 

ERK5 is a mediator in a signalling cascade distinct from the Ras/ERK pathway, and has 

different targets. Furthermore, activation of ERK5 by neurotrophins is not affected by cAMP 

or neuronal activity (Cavanaugh, J. E. et al., 2001).  
 

1.2.3.2 - PI3-K/Akt 

Similarly to the Ras/ERK pathway, the PI3-K/Akt pathway requires the initial binding of Shc 

to the receptor and its phosphorylation, followed by recruitment of the Grb2-SOS complex. 

This pathway diverges from the Ras/ERK pathway at the point where GAB1 binds to the 

Grb2, which may be important for Gab1 phosphorylation on tyrosine [Manadas, B. J. et al., 

2007 (in press)], followed by interaction of the adaptor protein with the p85 subunit of PI3-K 

(Chan, T. O. et al., 1999). Once bound to GAB1, p85 no longer inhibits the p110 subunit, 

allowing it to phosphorylate the phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 

phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). PI3-K belongs to a family of 

enzymes that phosphorylate the D3 hydroxyl group of phosphoinositides producing also 

PtdIns3P, PtdIns(3,4)P2, and PtdIns(3,5)P2. These lipids are recognized by proteins 

containing a Pleckstrin homology (PH) domain, a 100-120 amino acid motif that was first 

recognized in pleckstrin, the major phosphorylation substrate for PKC in platelets. These 

domains comprise seven antiparallel β-sheets forming a hydrophobic pocket that is capped 

by a carboxy-terminal amphipathic helix. They are mainly lipid-binding modules, although 

they are also involved in mediating protein-protein interactions. PH domains are present in 

several proteins, including Akt (also termed protein kinase B - PKB), PDK-1 

(phosphoinositide-dependent protein kinase 1), GRP-1 (general receptor for 

phosphoinositides), Btk (Bruton's tyrosine kinase), and PIP3BP (phosphatidylinositol 3,4,5-

trisphosphate-binding protein) which bind specifically PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3 

(Chan, T. O. et al., 1999). 

PI3-K can be activated in a Ras-dependent or independent-manner, and has been described 

as a key regulator of many cellular processes, including apoptosis, cellular proliferation, 

vesicular trafficking, cytoskeletal structure and cellular morphology, glucose utilization, 

protein biosynthesis, and lipid metabolism (Chan, T. O. et al., 1999). The roles played by 

PI3-K are cell-type and stimulus dependent, and included the regulation of G1 progression 
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during the cell cycle, control of cell survival, and control of invasion and metastasis. Other 

known targets of PI3-K, like the small GTPases Rho, Rac and cdc42, play important roles in 

the modulation of the actin cytoskeleton (e.g. formation of membrane ruffles/lamellipodia, 

filopodia and actin stress fibers and actin contractility). In the late 80s, viral studies showed 

that PI3-K has a role in the oncogenic transformation of eukaryotic cells, being involved in 

several aspects of tumours’ pathogenesis, including cell-cycle progression, adhesion, 

motility, metastasis, cell survival and angiogenesis (Roymans, D. and Slegers, H., 2001). 

The increase in plasma membrane PtdIns(3,4,5)P3 leads to Akt recruitment to its vicinity and 

 
Figure 1.7 - Intracellular signalling mechanisms activated by Trk neurotrophin receptors. 
Neurotrophin binding to Trk receptors induces transphosphorylation of intracellular tyrosine 
residues of the receptor, which constitute binding sites for adaptor proteins, such as Shc, and 
signalling enzymes (PLCγ). Phosphorylation of Shc leads to the activation of PI3-K and ERK (see 
text for further details), whereas PLCγ is activated directly by tyrosine phosphorylation. The latter 
signalling pathway is involved in the regulation of synaptic transmission. The PI3-K pathway plays 
a major role in neurotrophin-induced cell survival, and these effects are mediated through the 
regulation of the activity of various enzymes by Akt phosphorylation [phosphorylation may increase 
(green) or decrease (red) enzyme activity]. Activity of the Ras/ERK pathway accounts for the 
effects of neurotrophins on cell differentiation and also contributes to cell survival under conditions 
of neuronal injury or toxicity [Manadas, B. J. et al., 2007 (in press)].
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phosphorylation of the kinase by PDK2 at a serine residue (Ser473) localized in the 

hydrophobic domain. The kinase domain is then exposed to PDK1, which phosphorylates Akt 

at Thr308. The activity of Akt is also regulated by phosphorylation of additional sites (Tyr315 

and Tyr326) (Chen, R. et al., 2001), and the active kinase regulates several proteins, many of 

them involved in the control of cell survival (Fig. 1.7 and Movie 3) [Manadas, B. J. et al., 2007 

(in press)]. Akt was initially identified as an oncogene, isolated from acute transforming 

retrovirus (Akt-8) (Chan, T. O. et al., 1999). It encodes a serine-threonine protein kinase, 

composed of a carboxy-terminal kinase domain very similar to that of PKC and PKA, and an 

amino terminal PH domain (Bellacosa, A. et al., 1991). Stimulation of the NMDA receptors 

also activates Akt, but the kinetics is slower than that observed for BDNF-induced Akt 

activation. Interestingly, the NMDA-induced Akt activation was partially blocked by the TrkB 

inhibitor K252a in cerebellar granule neurons, indicating that the neurotrophin receptors are 

required for full activation of the kinase upon activation of the glutamate receptors (Zhu, D. et 

al., 2002). Neurotrophins play a role in neuroprotection by activating proteins that are also 

actively present in some tumours. Therefore, the survival mechanisms induced by 

neurotrophins also depend on the precise equilibrium between the effect of tumour 

associated proteins and the control of cellular proliferation (Nakagawara, A. et al., 1994). 

 

1.2.3.3 - PLCγ 

The third effector system activated following TrkB receptor stimulation is PLCγ, which binds 

directly to the phosphorylated TrkB receptor through an SH2 domain. PLCγ becomes 

activated through tyrosine phosphorylation, and hydrolyses PtdIns (4,5)P2 to generate 

inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] and diacylglycerol (DAG) [Manadas, B. J. et al., 

2007 (in press)]. Ins(1,4,5)P3 releases Ca2+ stored in intracellular compartments, such as the 

endoplasmic reticulum, raising the [Ca2+]i. The change in the concentration of this relevant 

second messenger leads to a differential activation/inhibition of Ca2+-dependent effector 

systems, including CaMKII as well as protein kinase C (PKC). On the other hand, DAG 

stimulates DAG-regulated PKC isoforms. PLCγ plays an important role in BDNF-induced 

synaptic plasticity modulation (Fig. 1.7) (Minichiello, L. et al., 2002). 
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1.2.3.4 - p75NTR 

The p75NTR is activated by pro-neurotrophins, including pro-BDNF and pro-NGF (Lee, R. et 

al., 2001; Volosin, M. et al., 2006) (Fig. 1.5), leading to apoptotic cell death in basal 

forebrain neurons in culture. The intracellular pathways activated upon binding of pro-

neurotrophins to p75NTR receptors are different from those activated upon stimulation of Trk 

receptors, and include phosphorylation of JNK and cleavage of caspase-6 and -3. In those 

cells expressing simultaneously p75NTR and Trk receptors, the stimulation of Akt and ERK 

signalling pathways by the Trk receptors prevent the induction of apoptosis by pro-

neurotrophins (Volosin, M. et al., 2006). 

The proapoptotic pathways activated by p75NTR include the Jun N-terminal kinase (JNK) 

signalling cascade, increase in sphingolipid turnover and interaction of the receptor with 

several protein adaptors that directly promote cell cycle arrest and apoptosis (Nykjaer, A. et 

al., 2005; Schor, N. F., 2005). G proteins like Rac (a known activator of JNK) and RhoA are 

also involved (Harrington, A. W. et al., 2004). The cytosolic proteins that interact with p75NTR 

present in a certain cell determine, to some extent, the type of response observed. The effect 

p75NTR on sphingolipid turnover is antagonized by active Trk receptors, which prevent the 

action of the former receptors on cell survival and differentiation induced by neurotrophins 

(Dobrowsky, R. T. et al., 1995). The ceramide produced by the activated sphingomyelinase 

has been shown to promote apoptosis and mitogenic responses, depending on the 

experimental settings, through the control of various signalling pathways, including ERK, PI3-

K and atypical PKC isoforms (Muller, G. et al., 1998; Zhou, H. et al., 1998). The Trk 

receptors suppress the activation of acidic sphingomyelinase by p75NTR through association 

of PI3-K with acidic sphingomyelinase in caveoli-related domains (Dobrowsky, R. T. et al., 

1995; Bilderback, T. R. et al., 2001).  

The p75NTR may also be activated by mature neurotrophins, including BDNF, as shown in 

PC12 cells (MacPhee, I. J. and Barker, P. A., 1997) and in cultured hippocampal neurons at 

DIV5 (Brann, A. B. et al., 2002). In the latter model, where p75NTR are higly expressed 

(Brann, A. B. et al., 2002), the activation of the receptor by BDNF promotes cell death (Troy, 

C. M. et al., 2002). In contrast, activation of p75NTR was shown to promote the survival of 

neocortical subplate neurons through stimulation of sphingolipid signalling pathways, 

possibly with TrkB acting as a coreceptor for p75NTR (DeFreitas, M. F. et al., 2001). 
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1.2.4 - Effects of BDNF signalling 

The activation of neurotrophin receptors and of downstream signalling events induces 

changes in the conformation, activity, and location of several proteins, which ultimately end in 

the development/initiation of a major cellular response or even phenotype changes. The 

activation of Trk receptors by BDNF induces rapid changes in signalling activity, including 

activation of PI3-K, Ras, Akt, MEK and/or ERK (see above), followed by long-term 

alterations, resulting from changes in protein expression. Thus, BDNF may have rapid effects 

in synaptic transmission, mediated by activation of protein kinases, followed by delayed and 

more sustained responses, including effects on neurite outgrowth and synaptogenesis, which 

have been associated with learning and memory. The manifold effects of BDNF on neuronal 

modifications is partially mediated by genomic and/or proteomic changes (Ring, R. H. et al., 

2006), with two of the targets identified and involved in this issue comprising the eukaryote 

initiation factor (eIF) 4E and its binding protein (eIF4E-binding protein-1). The activation of 

eIF4E-binding protein-1 is mediated through phosphorylation by the mammalian target of 

rapamycin (mTOR). These evidences, among others, link BDNF signalling and initiation of 

translation in neurons (Takei, N. et al., 2001). Transcription is also modulated downstream of 

the activation of Trk receptors, with several transcription factors involved, including CREB 

(phosphorylated by an ERK-dependent mechanism) (Ying, S. W. et al., 2002), FKHRL1 (via 

Trk receptors and PI3-K/Akt kinase in neuronal and non-neuronal cells) (Zheng, W. H. et al., 

2002), the mammalian achaete-schute homolog 1 (Mash1) and the helix-loop-helix protein 

mATH-1 (atonal homolog 1), also known as Math1. This transcription factor was shown to 

facilitate differentiation of cultured neuronal stem cells into neurons (Ito, H. et al., 2003). 

Dendrites have been shown to possess all the components necessary for translation, 

including ribosomes (Steward, O. and Levy, W. B., 1982), mRNAs (Job, C. and Eberwine, J., 

2001) and translation factors (Gardiol, A. et al., 1999; Inamura, N. et al., 2003), and protein 

synthesis has been observed in dendrites (Steward, O. and Schuman, E. M., 2001). It has 

been hypothesized that neural activity enhances local protein synthesis in dendrites, which in 

turn induces or maintains long-term synaptic plasticity (Takei, N. et al., 2004; Shiina, N. et 

al., 2005; Schratt, G. M. et al., 2006). Accordingly, rapamycin and protein synthesis inhibitors 

(cyclohexamide or anisomycin) have been shown to affect synaptic plasticity, and LTP is also 

affected in mice deficient in BDNF (Korte, M. et al., 1995). Inhibition of synaptic plasticity by 

rapamycin implicates mTOR as a mediator of synaptic plasticity induced by BDNF, by 

regulating local translation in neuronal dendrites (Takei, N. et al., 2004). Recently, BDNF was 
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shown to regulate protein synthesis by releasing a translational repressor from RNA granules 

in dendrites of hippocampal neurons. RNA granules contain mRNA and several proteins, 

including RNG105 (RNA granule protein 105), which keeps these structures arrested in their 

basal conditions. BDNF releases the RNG105 translational repressor, allowing mRNAs to be 

translated (Shiina, N. et al., 2005; Schratt, G. M. et al., 2006). 

BDNF and its cognate receptor TrkB have been associated with neurogenesis, the birth of 

new neuronal cells. Thus, TrkB activation plays an important role in the regulation of the 

basal level of neurogenesis in dentate gyrus of adult mice, and enhances neurogenesis 

under conditions of dietary restriction (DR), by promoting survival of newly generated 

neurons. BDNF is also a key regulator in the signalling pathways leading to proliferation of 

stem cells in vivo, as determined with bromodeoxyuridine (BrdU). The newly generated 

neurons in the hippocampal dendate gyrus already contain BDNF (Lee, J. et al., 2002). 

During development, it is estimated that half of the neurons die during pre- and post-natal 

development in certain regions of the nervous system (Copani, A. et al., 1995). In order to 

survive, neurons compete for limiting amounts of neurotrophins released by peripheral 

targets (Levi-Montalcini, R., 1987; Oppenheim, R. W., 1991), with neurotrophins playing a 

major role in neuronal survival and development, in both peripheral and central nervous 

systems (Korsching, S., 1993; Davies, A. M., 1994; Snider, W. D., 1994). Neurons also 

struggle to establish pathways of communication between different organs, tissues or cells, 

so they can become functional, as is the case of respiratory control, where BDNF is required 

for the development of specific subsets of primary sensory and brainstem neurons, and the 

preBotzinger complex (pBC - a critical site for respiratory rhythm generation and control 

during the development of normal breathing after birth). The importance of BDNF in the 

development of the respiratory system was also confirmed when mutations in pathways 

dependent on this neurotrophin resulted in human developmental disorders of breathing 

(Katz, D. M., 2005). 

BDNF knockout mice represent an interesting model to study the physiological roles of 

BDNF. BDNF+/- mice showed hyperphagia, obesity, elevated strial dopamine levels, loss of 

mechanosensitivity, loss of neurons of the peripheral nervous system and an impairment in 

LTP. This last phenotype indicates that the availability of BDNF is important for synaptic 

plasticity leading to LTP (Chao, M. V., 2003). In other studies, a close correlation was found 

between BDNF, glucose control, insulin levels, and body weight. BDNF knockout mice were 

hypoglycaemic, and obese. Interestingly, exogenous administration of BDNF in diabetic 

rodents resulted in a reduction of body weight, normalization of glucose levels and increase 
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in insulin sensitivity (Vaynman, S. and Gomez-Pinilla, F., 2005). 

BDNF/TrkB plays a pivotal role in neuroprotection against several types of toxic injury to 

neurons, such as excitotoxicity and serum withdrawal, in the peripheral and central nervous 

systems (e.g. Korsching, S., 1993; Davies, A. M., 1994; Snider, W. D., 1994). 

Neuroprotection by TrkB receptors was also observed following activation of adenosine A2A 

receptors. The neurotrophic effects of adenosine are mainly mediated through activation of a 

population of intracellular Trk receptors associated with Golgi membranes, and this may be 

exploited in the development of new agents for the treatment of neurodegenerative diseases 

(Lee, F. S. and Chao, M. V., 2001; Rajagopal, R. et al., 2004). BDNF reduces the infarct 

volume following focal cerebral ischemia, primarily in the cortex, when administered 

intracerebroventricularly. It also protects neurons against glutamate-induced toxicity and the 

subsequently increase in intracellular calcium concentration (Popp, E. and Bottiger, B. W., 

2006). Some of the neuroprotective mechanisms induced by BDNF depend on the ERK 

pathway, and may involve (1) posttranslational modifications (inactivation of components of 

the death machinery or activation of components of the survival machinery), and (2) increase 

in the transcription of pro-survival genes (Bonni, A. et al., 1999). BDNF protected 

cerebrocortical neurons from camptothecin through activation of ERK, while PI3-K played a 

major role in neuroprotection under conditions of serum deprivation, suggesting that different 

signalling pathways mediate neuroprotection from different stimuli and may be cell-type 

specific (Hetman, M. et al., 1999). Despite numerous in vitro studies showing neuroprotective 

effects of BDNF (e.g. Almeida, R. D. et al., 2005), subcutaneous or intravenous application of 

BDNF results in limited effect in the brain because of the poor penetration of BDNF across 

the blood-brain barrier (BBB), and because the peptide has a plasma half-life of less than 10 

minutes. A combined conjugate, designated BDNF-PEG2000-biotin/OX26-SA, showed an 

improved plasma pharmacokinetics and BBB permeability when compared to unconjugated 

BDNF. This BDNF chimeric peptide showed neuroprotective effects in rats subjected to 

transient forebrain ischemia, permanent focal ischemia, or transient focal ischemia, with an 

effective time window of 1-2h after the insult. Rats subjected to permanent middle cerebral 

artery occlusion (MCAO), and treated with the BDNF chimeric peptide via intravenous 

injection immediately after the lesion, showed a dose-dependent neuroprotection, with a 

reduction of the infarct volume of up to 65% (Wu, D., 2005). 

Some patients infected with human immunodeficiency virus type 1 (HIV-1) develop HIV-1 

associated dementia (HAD), a disorder characterized by motor and cognitive dysfunction. In 

vitro and in vivo experiments showed that viral envelope glycoprotein 120 (gp120) toxicity 
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could be reduced by BDNF in cortical neurons and cerebellar granule cells (Nosheny, R. L. 

et al., 2005). 

Besides these beneficial actions of BDNF/TrkB, the TrkB receptors also play an unwanted 

role in tumour growth, contributing to the aggressive behaviour of a substantial percentage of 

human tumours (Desmet, C. J. and Peeper, D. S., 2006).  

 

1.2.5 - Synaptic plasticity, Memory, Learning and Exercise 

BDNF gene expression may be controlled at the transcription level, by multiple promoters, 

and by changing mRNA stability, and the neurotrophin protein levels may be regulated at the 

translation level. Furthermore, the subcellular distribution of BDNF is also subjected to 

regulation, thereby fulfilling the different functions of the neurotrophin. The expression of 

BDNF mRNA is enhanced when the non-NMDA-type glutamate receptor is activated and 

suppressed when GABAA receptor is activated (Lu, B., 2003). 

Activity-dependent modification of synapses, or synaptic plasticity, is a powerful 

mechanism resulting in the formation of neuronal circuits during development, and controls 

cognitive functions and complex behaviours in the adult (Nagappan, G. and Lu, B., 2005). 

This experience-dependent change in synaptic strength (Bliss, T. V. and Collingridge, G. L., 

1993) is input-specific or synapse-specific, occurring only at synapses that experience 

changes in their activity, as is the case in LTP (Nagappan, G. and Lu, B., 2005), with BDNF 

emerging as a key regulator of synaptic transmission and plasticity (Bramham, C. R. and 

Messaoudi, E., 2005). The local and synapse-specific modulation by neurotrophins, together 

with the preference for active neurons/synapses, suggests that neurotrophins must 

preferentially regulate active synapses with little or no effect on nearby, less active, 

synapses. Although the selection process is not fully understood, several hypotheses have 

been raised. First, the transcription of BDNF can be regulated by neuronal activity, as this 

phenomenon has been repeatedly observed in the many different populations of neurons in 

the CNS, with activity-dependent dendritic targeting of BDNF mRNA and its local translation. 

BDNF has been shown to induce dendritic targeting of BDNF mRNA, and although the 

mechanisms are not fully understood it was proposed that the BDNF mRNA is transported to 

dendritic spines in a non-selective manner before being trapped by synapses that undergo 

high-frequency stimulation. This implies that the secretion of BDNF should not only be 

regulated, but also be local and controlled by specific patterns of neuronal activity. BDNF is 

found in large dense-core vesicles of sensory neurons and in brain synaptosomes, and the 
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BDNF–GFP (green fluorescence protein) fusion protein is packaged into secretory vesicles 

that are transported to somatodendritic compartments and, to some extent, to axons. The 

BDNF-GFP fusion protein is secreted postsynaptically upon high-frequency presynaptic 

stimulation, and the release is dependent on activation of postsynaptic glutamate receptors. 

Second, activity-dependent secretion of BDNF can occur locally at the site of active 

synapses, and mechanisms are available to limit its diffusion. In favour of this hypothesis is 

the fact that BDNF is a sticky molecule with limited diffusion capacity, and truncated TrkB 

molecules are highly expressed in the cell surface of mature CNS neurons, limiting BDNF 

diffusion. Third, active neurons/synapses may respond better to BDNF compared to inactive 

ones (Lu, B., 2003), with BDNF acting together with glutamate at some excitatory synapses 

(Bramham, C. R. and Messaoudi, E., 2005). This may be due to an activity-dependent 

control of the number of TrkB receptors on the cell surface, and also to the increased 

availability of the remaining proteins required for signalling (Lu, B., 2003). Mild depolarization 

and sustained neuronal firing also upregulates TrkB mRNA in dendrites of cultured 

hippocampal neurons, with increased local dendritic translation of TrkB mRNA and local 

insertion of the receptor (Lu, B., 2003; Nagappan, G. and Lu, B., 2005). Finally, neuronal 

activity can also facilitate the internalization of the BDNF-receptor complex, which is a key 

signalling event mediating many of the BDNF functions (Lu, B., 2003). 

The regulation of synaptic strength through dendritic protein synthesis depends on the 

accessibility of the message for translation, the positioning of the translational apparatus, and 

the biochemical regulation of translation factors, with BDNF essentially involved in all of 

these steps. There are two main hypotheses to explain the BDNF induced synaptic plasticity: 

the synaptic tagging and the synaptic consolidation hypothesis. According to the first 

model, BDNF upregulates translation activity and/or induces the synthesis of mRNA and its 

tagging to the synaptic terminal. The synaptic consolidation hypothesis proposes that the 

effect of BDNF is mediated through TrkB-dependent phosphorylation of eIF4E, and the 

enhanced translational states tag the synapse. The latter mechanism may serve to facilitate 

translation and capture of mRNA released from local storage granules as well as new mRNA 

coming into the dendrites (Bramham, C. R. and Messaoudi, E., 2005). At the protein level, 

using synaptoneurosomes and KCl depolarization, it was shown that BDNF increases the 

synthesis of a particular set of proteins without affecting the overall protein synthesis. One of 

these proteins is Arc (activity-regulated cytoskeletal), which expression is inhibited by TrkB 

and NMDA receptor inhibitors. Interestingly, inhibition of Arc synthesis blocks long-term 

potentiation (LTP) stabilization and results in spatial learning deficits (Yin, Y. et al., 2002). 
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Changes in the synaptic strength are important in information storage during the process of 

learning and memory formation (Morris, R. G., 2003; Whitlock, J. R. et al., 2006). The 

increase in synaptic activity induced by HFS raises the intracellular calcium concentration in 

postsynaptic dendritic spines, mainly due to Ca2+ influx through the NMDA receptor 

channels, affecting TrkB signalling (see above). The early events leading to long-term 

synaptic potentiation and possibly to memory formation are triggered by the [Ca2+]i increase, 

and require covalent modification of existing proteins, in addition to protein trafficking at 

synapses. The development of late LTP, like long-term memory, depends on de novo 

transcription and protein synthesis (Bramham, C. R. and Messaoudi, E., 2005). Experiments 

performed in organotypic cultures of hippocampal slices showed that long-term 

administration of BDNF increased the number of docked synaptic vesicles, but did not affect 

the reserve pool at CA1 excitatory synapses. The neurotrophin also upregulates several 

synaptic vesicle proteins, including synaptophysin, synaptobrevin, and synaptotagmin, but no 

effect of BDNF was found on the presynaptic membrane proteins syntaxin and SNAP-25 in 

hippocampal neurons (Tartaglia, N. et al., 2001). BDNF also increased the phosphorylation 

state of synapsin I in cerebrocortical synaptosomes. Synapsins keep small synaptic vesicles 

attached to the actin cytoskeleton in a phosphorylation-dependent manner, regulating the 

amount of vesicles available for release, including the glutamate containing synaptic 

vesicles. Accordingly, BDNF increased the depolarization-evoked glutamate release and 

induced the phosphorylation of synapsin I in isolated cerebrocortical synaptosomes, and the 

neurotrophin had no effect on glutamate release in nerve terminals isolated from synapsin I-/-, 

synapsin II-/-, and synapsin I-/- and II-/- mice (Jovanovic, J. N. et al., 2000). Inhibition of 

synapsin I (with antibodies against the protein) disrupted the synaptic vesicle reserve pool 

and decreased neurotransmitter release (Hilfiker, S. et al., 1999), suggesting a role for 

synapsins I and II in LTP.  

The effect of BDNF on synaptic plasticity may also occur post-synaptically, and may be due 

to modulation of NMDA receptors. Accordingly, BDNF restored the activity of NMDA 

receptors previously decreased by cAMP in hippocampal neurons (Sun, J. et al., 2001). 

These effects may be modulated by the non-receptor tyrosine kinase Fyn, which 

phosphorylates the NMDA receptors, particularly the NR2B subunit. Accordingly, Fyn 

coimmunoprecipitated with TrkB and NR2B in the hippocampus, particularly in well-trained 

rats. Phosphorylation of NMDA receptors by Fyn also plays an important role in spatial 

memory formation in a radial arm maze (Mizuno, M. et al., 2003). 

Taken together, the available evidences suggest that BDNF plays a major role in three 
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mechanisms associated with LTP: permissive (increases vesicle docking), acute instructive 

(modulation of calcium influx), and late instructive (Arc-dependent consolidation) (Bramham, 

C. R. and Messaoudi, E., 2005). In addition to the effects in LTP, BDNF was also shown to 

contribute to long-term depression (LTD), certain forms of short-term synaptic plasticity, as 

well as homeostatic regulation of intrinsic neuronal excitability (Bramham, C. R. and 

Messaoudi, E., 2005; Vaynman, S. and Gomez-Pinilla, F., 2005).  

Blocking BDNF signalling in the hippocampus impairs spatial learning and memory in rats 

subjected to water maze training, and reduces LTP. A key role for BDNF in LTP is further 

suggested by the results showing the highest BDNF expression in the animals with the 

highest memory recalls, and CREB also had the highest expression levels in the same group 

of animals. Other studies, using alternative hippocampal-dependent learning paradigms, 

have also shown increases in hippocampal BDNF mRNA levels in response to contextual 

fear conditioning. It was also found that animals which learned the fastest, and had the best 

recall, also had the highest levels of BDNF in their hippocampi, suggesting that hippocampal 

BDNF levels are related to learning efficiency. During aging, the decrease in BDNF signalling 

in the brain, specially in hippocampal pyramidal and dentate granule cells, as shown in 

studies conducted in monkeys (Vaynman, S. and Gomez-Pinilla, F., 2005), is closely related 

to a decrease in learning and memory. 

LTP is part of a learning and memory process resulting in activity-driven neuronal and 

synaptic plasticity (Morris, R. G., 2003; Whitlock, J. R. et al., 2006). Numerous studies have 

shown that BDNF plays a key role in both the early- and late phase LTP (E-LTP and L-LTP) 

in the hippocampus. Furthermore, BDNF was shown to potentiate “preferentially” or 

“selectively” active synapses, when applied with weak presynaptic stimulation. The TrkB 

receptor is also significantly increased by LTP-induced tetanic stimulation, with almost no 

effect on other Trk receptors (Nagappan, G. and Lu, B., 2005). The role of BDNF on LTP 

was also demonstrated when deletion of the BDNF gene (BDNF+/- and BDNF-/- mice) 

selectively impaired LTP in the hippocampus (Korte, M. et al., 1995) and deletion of one copy 

of the BDNF gene (BDNF+/- mice) impaired LTP on the layer IV–III pathway in the cortex, 

although there was no change in ocular dominance plasticity (Bartoletti, A. et al., 2002). 

Exercise has also been shown to up-regulate BDNF mRNA and protein levels in the 

hippocampus, cerebral cortex, cerebellum (Vaynman, S. and Gomez-Pinilla, F., 2005), and in 

the spinal cord (Skup, M. et al., 2002; Vaynman, S. and Gomez-Pinilla, F., 2005). 

Furthermore, it was shown that BDNF mRNA levels are increased in the hippocampi of rats 

that have undergone 3 or 6 days of Morris water maze training, with growing evidence for the 
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association between BDNF and plasticity in the effects of exercise in the brain, especially in 

the hippocampus, an area vital for supporting learning and memory processes (Kesslak, J. P. 

et al., 1998). This led to the use of motor training in the healing plan of transplanted tissue in 

stroke and Parkinsonian models, to enhance the survival and integration of cell grafts into the 

existing circuitry. 

 

1.2.6 - Disorders associated with neurotrophins 

Deregulation of BDNF protein levels, either downregulation or upregulation, has been 

associated with a large number of disorders. Some of the major disorders are briefly 

mentioned in this section. Although in some cases there is a close relationship between the 

disease phenotype and a deregulation in BDNF or TrkB receptors, in other cases it remains 

to be determined whether the changes observed represent a cause or a consequence of the 

disorder. 

 

BDNF is upregulated in areas implicated in epileptogenesis, such as hippocampus and 

entorhinal cortex. Epilepsy is a disorder of the brain characterized by the periodic and 

unpredictable occurrence of seizures. The increased neuronal activity in epileptic seizures 

upregulates both BDNF and TrkB mRNA and protein levels and this is expected to further 

potentiate neuronal excitability. The hippocampus and closely related structures are 

particularly important in the pro-epileptogenic effect of BDNF. It has been shown that 

inhibitors of BDNF signalling mechanisms decrease the development of the epileptic state in 

vivo (Binder, D. K. et al., 2001), further suggesting that the neurotrophin plays an important 

role in this disorder. 

 
Huntington’s disease (HD) is a neurodegenerative disorder dominantly inherited, resulting 

from a genetic defect consisting in a CAG repeat expansion in the huntingtin (htt) gene. This 

genetic modification results in a mutant protein with a polyglutamine expansion and abnormal 

conformation, resulting in toxic activity of the mutant and loss of function of normal huntingtin 

(Zuccato, C. et al., 2005). The disorder is characterized by neuronal degeneration in the 

striatum and cerebral cortex, and leads to chorea (abnormal involuntary movements), 

dementia and death 15 to 20 years after the onset (Reiner, A. et al., 1988). htt keeps the 

neuron restrictive silencer factor (NRSF) in the cytoplasm, away from its target (nuclear 

restrictive silencer element - NRSE), a consensus sequence found in genes such as the 
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BDNF gene (Borrell-Pages, M. et al., 2006), thereby increasing BDNF gene transcription (del 

Toro, D. et al., 2006).  

Mutant huntingtin (mhtt) regulates BDNF at different levels (i) reduces BDNF expression by 

not restricting NRSF movements (Zuccato, C. et al., 2005), (ii) impairs post-Golgi trafficking 

of BDNFVal containing vesicles that follow the regulated secretory pathway, without affecting 

BDNFMet containing vesicles, (iii) impairs the transport of BDNF-containing vesicles along the 

microtubules, promoted by htt, and (iv) consequently reduces KCl-evoked release of BDNF, 

affecting the pro-survival action of BDNF on striatal neurons. Reports also show that HD 

patients heterozygous for the BDNF polymorphism (containing BDNFVal and BDNFMet) have a 

later age of onset of the disease when compared with homozygous BDNFVal patients (del 

Toro, D. et al., 2006). TrkB levels were also reduced in transgenic exon-1 and full-length 

knock-in HD mice, and continuous expression of mhtt was required for TrkB downregulation 

(Gines, S. et al., 2006), although it is not clear whether this effect is directly mediated by mhtt 

or by reduced levels of BDNF. Interestingly, a candidate drug for HD, cysteamine, increased 

BDNF levels in the brain, and induced neuroprotection in HD mouse models (Borrell-Pages, 

M. et al., 2006). Neuronal stem cells transplanted into a rat model of PD revealed BDNF 

expression and secretion, with the protective effects observed from grafted cells possibly 

being mediated by BDNF (Ryu, J. K. et al., 2004). 

 
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder, which progression is 

associated with neuronal degeneration and progressive development of dementia. 

Pathologically, the disease is characterized by the formation of senile plaques and 

neurofibrillary tangles, loss of synaptic contacts, degeneration of cholinergic neurons of the 

forebrain with consequent reduction in acetylcholine, and progressive but inexorable clinically 

observed cognitive deterioration. The origin of the disease is still in debate, with many 

factors, including neurotrophic factors, being suggested as playing a major role in its origin 

and/or development (Fumagalli, F. et al., 2006a). Post mortem analysis of AD brains, 

revealed a decrease in BDNF and TrkB receptor in the hippocampus (Vaynman, S. and 

Gomez-Pinilla, F., 2005; Fumagalli, F. et al., 2006a), but it is still not known if this 

phenomenon is either the cause or a consequence of the disease. Deficits of BDNF 

synthesis might be involved in the deterioration of cellular homeostasis that leads to AD, as 

observed when AD patients were compared to age matched controls for three human BDNF 

mRNA transcripts. In terms of disease treatment, it is interesting to notice that drugs clinically 

used to fight AD and therapeutic interventions (including physiotherapy) mimic some of the 
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effects of BDNF modulation in brain regions involved in the pathophysiology of the disease. 

Besides the induction of survival and differentiation of basal forebrain cholinergic neurons, 

BDNF also stimulates the release of acetylcholine, the neurotransmitter defective in AD 

patients (Fumagalli, F. et al., 2006a). 

 

Parkinson disease (PD) is a progressive degenerative disorder characterized by selective 

loss of nigral dopaminergic neurons, resulting in a pronounced depletion of striatal dopamine, 

and leading to motor dysfunctions. The disease development is accompanied by a decline in 

the cognitive processes, suggesting that other brain regions are affected besides the 

nigrostriatal network. BDNF has been pointed as having a major role in the etiology of the 

disease based on several evidences. Dopamine transporter knockout mice showed a marked 

decrease in BDNF expression in the frontal cortex, creating threatening situations to other 

structures, such as the striatum, where BDNF is anterogradely transported. In PD patients 

nigrostriatal dopaminergic neurons showed a decrease in BDNF and TrkB levels, suggesting 

a critical role of the neurotrophin in the well being of the neurons during senescence 

(Fernandez-Espejo, E., 2004; Fumagalli, F. et al., 2006b). 

 

Another neurological disorder that has been associated with BDNF is depression. The 

neurotrophin is pointed as being involved not only in the pathophysiology of affective 

disorders (Hajszan, T. and MacLusky, N., 2006) but also in the mechanisms of action of 

antidepressant drugs (Tardito, D. et al., 2006). The continuous study of the mechanisms 

associated with the activity of antidepressant drugs indicate that they work, at least in part, 

through their effects not only on BDNF synthesis and neurogenesis in the hippocampus, but 

also by enhancing the expression of BDNF and TrkB receptor in the hippocampus of both 

intact and stressed laboratory animals (Hajszan, T. and MacLusky, N., 2006). Several 

antidepressant drugs (e.g.: TCP, sertraline, DMI, and mianserin) significantly increased 

BDNF mRNA in the hippocampus, and all but mianserin increased TrkB mRNA. BDNF also 

increases the serotonergic activity within the brain, when injected in the hippocampal dentate 

gyrus (DG) and in the midbrain, producing an antidepressant effect (Tardito, D. et al., 2006). 

It also appears that BDNF expression is sufficient for antidepressant efficacy (Hajszan, T. 

and MacLusky, N., 2006).  

 

Patients with allergic asthma have shown increased blood and bronchoalveolar fluid BDNF 

levels. This increase was also observed after allergen stimulation. When comparing T cells 
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isolated either from the inflamed lungs or from the spleen, the former had higher levels of 

BDNF gene products while the latter had no detectable BDNF, suggesting that either 

different populations behave in a different way or that T cells were pre-activated in the lungs, 

where local inflammation occurs. Although BDNF is widely expressed in visceral epithelial 

cells of virtually all organs, in the case of asthma it has an increased expression in airway 

epithelia, contributing to neuronal hyperresponsiveness. During inflammatory diseases, 

BDNF elicits angiogenesis and survival of endothelial cells, playing an important role in blood 

vessel formation. During allergic inflammation, cells of the monocyte/macrophage lineage 

were identified as strong producers of NGF and BDNF in humans and other mammalian 

species, showing a strong upregulation of neurotrophin expression. The inflammatory 

cytokines IL-6 and TNF-α, released during monocyte/macrophage activation, also increase 

BDNF secretion (Nockher, W. A. and Renz, H., 2006). 

 

Besides these disorders, BDNF has been pointed as playing important roles in many other 

diseases, including multiple sclerosis (Stadelmann, C. et al., 2002), Rett syndrome (Sun, Y. 

E. and Wu, H., 2006), bipolar disorder (Nakata, K. et al., 2003; Hayden, E. P. and 

Nurnberger, J. I., Jr., 2006), schizophrenia (Prathikanti, S. and Weinberger, D. R., 2005), and 

mood disorders (Prathikanti, S. and Weinberger, D. R., 2005; Tardito, D. et al., 2006). The 

list of disorders discussed in this section was selected in order to provide examples 

concerning the mechanisms that can regulate BDNF/TrkB expression or illustrate 

pathologies where interfering with BDNF signalling may contribute to a successful therapy. 
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1.3 - Objectives of the study 

BDNF plays important roles in neurogenesis, development of the nervous system, regulation 

of synaptic transmission, and in several disorders of the nervous system, as previously 

mentioned. In the hippocampus BDNF has been shown to contribute to synaptogenesis 

(Ring, R. H. et al., 2006), development (Binder, D. K. et al., 2001), synaptic plasticity (Du, J. 

et al., 2000), particularly to long-term potentiation of synaptic transmission, learning and 

memory formation (Levine, E. S. et al., 1995; Kesslak, J. P. et al., 1998; Mizuno, M. et al., 

2003; Binder, D. K. and Scharfman, H. E., 2004; Whitlock, J. R. et al., 2006), and to 

neuroprotection under ischemia (Kokaia, Z. et al., 1996). The effects of BDNF are, at least in 

part, mediated by the induction of protein synthesis, through activation of transcription and/or 

by regulation of the translation machinery (Tartaglia, N. et al., 2001; Minichiello, L. et al., 

2002; Ying, S. W. et al., 2002).  

The aim of this thesis was to provide a comprehensive description of the BDNF-induced 

changes in the proteome of cultured hippocampal neurons, which will contribute to the 

understanding of the physiological roles of this neurotrophin. Furthermore, a systematic 

study of the effect of BDNF on the proteome may contribute to elucidate some of the roles of 

this neurotrophin in diseases of the nervous system, and allow predicting some of the 

beneficts that may arise from its use under disease conditions. 

Proteomics based approaches using two-dimensional gel electrophoresis and MALDI-TOF 

mass spectrometry have been successfully employed in the characterization of the protein 

content of simple organisms (mainly bacteria). Most of the proteome of these organisms can 

be resolved in one broad range (pH 3-10) 2D-gel. However, the complexity of mammalian 

organisms makes difficult the use of this technique, since only highly expressed proteins can 

be resolved in one single gel (without specific enrichment of the sample). The limit of 1200-

1500 spots resolved in one gel is an obstacle for the complete examination of the proteome 

of a given organism. The technique also presents some limitations due to difficulties in 

solubilization and reproducibility of the results obtained for membrane proteins, membrane 

associated proteins, and other proteins with a stable and/or strong 3D structure that is not 

disrupted using 2D-SDS-PAGE compatible reagents. Therefore, in order to benefict the most 

from the use of proteomics to characterize the effect of BDNF in the proteome of 

hippocampal neurons, several technical improvements in solubilization of proteins and 

resolving power of 2D-gels were performed, including fractionation, sonication and use of 

“zoom” IPG strips (Chapter 3). 
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The technical improvements achieved in the first part of the work were then used in a 

comprehensive study of the BDNF-induced changes in the proteome of cultured 

hippocampal neurons. Since BDNF regulates transcription and translation, this study was 

focused on the newly synthesized proteins (Chapter 4), which provides a better indication of 

the physiological response to the neurotrophin than the analysis of the changes in the gene 

expression at the mRNA level. After protein identification and quantification, the accession 

numbers and the gene names of the proteins were used to gather information from different 

databases for each protein, allowing off-line data analysis and integration (for instance, 

metabolic and signalling pathways affected). Furthermore, proteins which expression levels 

achieved our established requirements for further analysis were clustered according to their 

ontologies, in order to perform a functional analysis. 

Given the difficulties in analyzing membrane proteins using gel-based approaches, a 

complementary study was performed using a liquid-based proteomic approach (Chapter 

4.2.6) to characterize a fraction containing mainly membrane proteins from cultured 

hippocampal neurons. This approach, 2D-LC-MS/MS, allows the identification and 

quantification of the total protein content in one step, and overcomes the low solubility of 

membrane proteins by handling peptides instead of proteins. 
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Chapter 2 

 
 

Materials and methods   
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2.1 - Preparation of protein samples from rat hippocampus 

Adult Wistar rats were sacrificed and the hippocampi were removed. The hippocampi were 

then sonicated (Chan, L. L. et al., 2002; Chemale, G. et al., 2003) in 50mM Tris-HCl pH 7.3, 

1mM DTT, chymostatin (1μg/mL), leupeptin (1μg/mL), antipain (1μg/mL), pepstatin A 

(1μg/mL), and 0.1mM PMSF (Sigma), and the resulting suspension was divided into two 

equal samples. In each case soluble proteins were isolated in the supernatant resulting from 

ultracentrifugation at 126,000×gav (Chan, L. L. et al., 2002), for 1 hour at 4ºC. Proteins in the 

pellets (S126) were resuspended in 10% (w/v) TCA (Merk) whereas soluble proteins were 

precipitated by adding 100% (w/v) TCA, to a final concentration of 10% (w/v) (Chan, L. L. et 

al., 2002; Chemale, G. et al., 2003; Nandakumar, M. P. et al., 2003). TCA-precipitated 

fractions were frozen and thawed, in order to improve precipitation, and centrifuged at 

14,000×gmax, for 15min at 4ºC (Nandakumar, M. P. et al., 2003). Pellets were washed with 

ice-cold acetone, maintained at 4ºC, vortexed during 1min every 20min, for 1h, and 

centrifuged at 14,000×gmax, for 15min at 4ºC (Chan, L. L. et al., 2002; Chemale, G. et al., 

2003; Nandakumar, M. P. et al., 2003). Proteins were solubilized for 2 hours in 2D-sample 

buffer [6M urea (Amersham Biosciences), 1.5M thiourea (Sigma), 3% CHAPS (Amersham 

Biosciences USB Chemicals), and 60mM DTT (Amersham Biosciences USB Chemicals)], 

and sonicated (except for non-sonicated samples). Non-sonicated samples were vortexed for 

2min after disruption of the pellet with a pipette tip. Protein quantification was performed 

using the 2D-Quant kit (Amersham Biosciences). IPG Buffer (1.5%, pH 4.5–5.5, pH 5.0-6.0, 

pH 5.5–6.7 or pH 6-9) was added to the samples prior to IEF (Amersham Biosciences). 

 

2.2 - Hippocampal cultures 

E18 hippocampal neurons were cultured as previously described (Almeida, R. D. et al., 

2005). Briefly, pregnant female rats were sacrificed by cervical displacement and the E18-

E19 Wistar rat embryos were removed (Fig. 2.1A). Embryos were decapitated (Fig. 2.1B) 

and their brains (Fig. 2.1C) placed under the dissection microscope for further dissection. 

The hemispheres were separated (Fig. 2.1D) and the hippocampi were dissected after 

removing the meninges (Fig. 2.1E). The hippocampi were then treated with trypsin 

(0.5mg/mL, 15min, 37ºC), in Ca2+ and Mg2+-free Hank’s balanced salt solution (HBSS: 

137mM NaCl, 5.36mM KCl, 0.44mM KH2PO4, 0.34mM Na2HPO4.2H2O, 4.16mM NaHCO3, 
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5mM glucose, supplemented with 0.001% phenol red, 1mM sodium pyruvate and 10mM 

HEPES, pH 7.4). Trypsin activity was stopped by washing the hippocampi in HBSS 

supplemented with 10% (v/v) FCS, and the cells were then mechanically dissociated in 

Neurobasal medium. Hippocampal cultures (Fig. 2.1F) were maintained in serum-free 

Neurobasal medium (Gibco), supplemented with B27 supplement (Gibco), glutamate (25μM), 

glutamine (0.5mM) and gentamicin (0.12mg/mL). The cells were kept at 37ºC in an 

humidified incubator of 5% CO2/95% air, for 7 days (Fig. 2.1G), the time required for 

maturation of hippocampal neurons. The glial content of hippocampal cultures maintained in 

Neurobasal medium, supplemented with B27 supplement, was estimated to be about 5% of 

the total cell population (Brewer, G. J. et al., 1993). Cells were cultured at a population 

density of 90,000 cells/cm2, in 6-well microplates (MW6), or 65,000 cells/cm2, in 12-well 

microplates (MW12).  

 

 

 
 
Figure 2.1 – Cultured hippocampal neurons preparation. See text for details. 
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2.3 - Radiolabelling experiments 

2.3.1 - Amino acid incorporation into proteins 

Hippocampal neurons cultured for 7 days (DIV7) in MW12 (65,000 cell/cm2) were starved 

from methionine and cysteine, for 30min, by replacing the culture medium with methionine- 

and cysteine-free Dulbecco's modified Eagle's medium (DMEM - Sigma). The incubation 

medium was then replaced by DMEM with [35S]cysteine and [35S]methionine (Redivue Pro-

mix, 7.5μCi/mL, Amersham Biosciences), with or without BDNF (100ng/mL). After the 

indicated incubation period, cells were washed with 1mL of Na+ medium (140mM NaCl, 5mM 

KCl, 1mM CaCl2, 1mM MgCl2, 5.5mM glucose, 20mM HEPES and 1mM NaH2PO4, pH 7.4), 

and 0.5mL of 0.5mg/mL BSA together with 0.5mL of 20% (w/v) TCA was then added to each 

well. Due to the low amount of protein present in each well, BSA was added in order to 

improve protein precipitation. Cells were scrapped and the suspension was centrifuged, at 

14,000×g, for 15min at 4ºC, and the resulting pellet was collected to a vial and resuspendend 

in 1mL of 10% (w/v) TCA. This suspension was centrifuged as before and the pellet was 

solubilized in 1M NaOH. The radioactivity was measured using a Packard 2,000 scintillation 

counter and the Universol scintillation cocktail (ICN, USA) (Huh, K. H. and Wenthold, R. J., 

1999; Takei, N. et al., 2001). For each experimental set, two wells of MW12 plates (65,000 

cells/cm2) were used for each time point. Each experiment was performed in duplicates and 

the results are the average ± SEM of 3 different experiments performed in independent 

preparations. 

 

2.3.2 - 2D gels 

After 7 days in culture, cells were starved from methionine and cysteine for 30min in 

methionine- and cysteine-free DMEM, and 35S-radiolabeled amino acids (Redivue Pro-mix, 

7.5μCi/mL) were then added, in DMEM, with or without BDNF (100ng/mL). After 12h of 

incubation the cells were washed with PBS (137mM NaCl, 2.7mM KCl, 1.8mM KH2PO4, 

10mM Na2HPO4.2H2O, pH 7.4), scrapped, and sonicated in 50mM Tris-HCl pH 7.3, 1mM 

DTT, chymostatin (1μg/mL), leupeptin (1μg/mL), antipain (1μg/ mL), pepstatin A (1μg/mL), 

and 0.1mM PMSF. Soluble proteins were separated from the remaining protein fraction as 

described in Section 2.1. 
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2.4 - Sonication procedure 

Sonication was performed as previously described (Chan, L. L. et al., 2002) with slight 

modifications. Briefly, samples were kept on ice and sonicated, using a 3mm stepped 

microtip (#630-0422) with a Vibra Cell system (Sonics & Materials), in six cycles of 10s, each 

consisting of 5s sonication followed by a 5s break (to keep the samples at low temperature). 

Each sonication was performed with increasing amplitude, starting from zero, and the 

amplitude was maintained below 40. Special care was taken to avoid foaming. 

 

2.5 - 2D-SDS-PAGE 

Two hundred and fifty micrograms of protein were actively rehydrated for 12h at 50V. IEF 

was performed according to the manufacturer instructions, with slight modifications: 500V 

[500V.h step and hold (SH)], 1,000V (1,000V.h SH), 10,000V (15,000V.h with linear 

increase), and final focusing at 10,000V during 14h (SH), using a Protean IEF cell (BioRad). 

For the pH 6-9 range, strips were rehydrated overnight (12-16h) in 2D buffer [with 15% (v/v) 

2-propanol, 5% (v/v) glycerol and 1.2% (v/v) DeStreak – Amersham Biosciences] and 250μg 

of protein were applied by cup loading in the anode end of the IPG strip (Pennington, K. et 

al., 2004). Strips were then equilibrated to SDS [50mM Tris-HCl pH 8.8, 30% (v/v) glycerol, 

2% (w/v) SDS, and trace amount of bromophenol blue] for 20min, in the presence of 

10mg/mL DTT, followed by another 20min step in the presence of 25mg/mL iodoacetamide. 

The second dimension was performed in a Protean Plus Dodeca Cell (BioRad), at 3W/gel for 

30min, followed by 200V for 5h30m, using 10% (w/v) acrylamide gels, except where 

otherwise stated. All steps were performed at 20ºC.  

 

2.6 - Protein spot visualization and image adquisition 

2.6.1 - Silver staining 

Gels were silver stained as previously described (O'Connell, K. L. and Stults, J. T., 1997), 

dried, digitalized (using an office scanner), and analyzed using PDQuestTM (Bio-Rad). The 

staining protocol included (500mL in all steps): 30min in 25% (v/v) methanol and 5% (v/v) 

acetic acid, 10min in 50% (v/v) ethanol, 10min in 30% (v/v) ethanol, 1min in 0.2g/L sodium 

thiosulfate, two times 5min in water, and 20min in 2.0g/L silver nitrate (Sigma) followed by 
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development in 0.7mL/L formaldehyde (37%) (Sigma), 30g/L sodium carbonate anhydrous 

(Fluka), and 10mg/L sodium thiosulfate (Sigma). Once the desired staining was achieved, 

development was stopped by addition of 50g/L Tris-Base (Calbiochem) in 2.5% (v/v) acetic 

acid for 1min. Gels were maintained in water with sodium azide until further processing. 

 

2.6.2 - Radiolabelling 

Gels from radiolabelled samples were dried and placed in contact with a phosphor screen 

(Amersham Biosciences) for a period of 7-10 days, and the images were subsequently 

acquired with a laser scanner (StormTM - Amersham Biosciences). 

 

2.6.3 - Ruthenium staining 

Gel staining with ruthenium was performed as described (Rabilloud, T. et al., 2001; 

Lamanda, A. et al., 2004). The gels were fixed overnight in 30% (v/v) ethanol and 10% (v/v) 

acetic acid, and were then rinsed 4×30min in 20% (v/v) ethanol, in order to remove acetic 

acid which strongly quenches the fluorescence of the chelate. The gels were then stained for 

6h in 20% (v/v) ethanol containing 200nM ruthenium chelate (see protocol of preparation in 

the footnote). Finally, the gels were reequilibrated in water (2×10min) prior to colloidal 

Coomassie staining. 

 

2.6.4 - Colloidal Coomassie staining 

Colloidal Coomassie staining was performed as previously described (Candiano, G. et al., 

2004), with slight modifications. Gels were allowed to stain overnight. Whenever necessary, 

more Coomassie powder was added or the staining solution was replaced. Once the desired 

staining was achieved, gels were washed with water and maintained in water with sodium 

 

The ruthenium solution was prepared as previously described (Rabilloud, T. et al., 2001): 0.2g of 
potassium pentachloro aquo ruthenate (K2Cl5Ru.H2O) (26.9% Ru) (Alfa Aesar) were dissolved in 
20mL boiling water and kept under reflux, resulting in the formation of a deep red-brown solution. 
Three molar equivalents of bathophenanthroline disulfonate (disodium salt, Sigma), i.e. 0.9g of the 
anhydrous compound, were then added and the refluxing continued for 20min. The solution turned to 
a deep greenish brown. Meanwhile, a 500mM sodium ascorbate solution (Sigma) was prepared (10–
15mL). Five mL of this solution were then added to the refluxing mixture and refluxing was continued 
for another 20min. The solution turned rapidly to a deep orange-brown. After cooling, the pH was 
adjusted to 7 with sodium hydroxide and the volume was adjusted to 26mL with water.  
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azide until further analysis (see protocol of preparation in the footnote). 

 

2.7 - Gel analysis 

Spot intensity in silver-stained gels and autoradiography images was normalized to the total 

intensity in valid spots, using PDQuest. This normalization procedure is useful when 

comparing different gels, wherever possible sources of sample variation cannot be predicted 

and there is no major difference in total spot number. For autoradiography images of 

sonication experiments (section 3.2.2), the results were normalized to the total intensity in 

the gel image. This normalization is recommended when there are significant differences 

between images. Decisions concerning the normalization procedure were taken based on 

the recommendations of the PDQuest software manual. 

 

2.8 - Protein identification 

For protein ID 500μg of protein were applied to IPG gels for in-gel rehydration, followed by 

500μg by cup-loading. IEF and second dimension were performed as described in Section 

2.5. Gels were double stained, first with Ruthenium II bathophenanthroline disulfonate 

(Rabilloud, T. et al., 2001) and then with home-made colloidal Coomassie (Candiano, G. et 

al., 2004). Spots were picked with the Bruker Spot Picker system, using a spot cutter with 

1.5mm diameter. Spots were destained [50mM ammonium bicarbonate, 30% (v/v) ACN], 

washed with water, dehydrated using a speedvac, and incubated overnight with 3μL trypsin 

[Roche, proteomics grade (10mg/mL in 10mM ammonium bicarbonate)]. Peptides were then 

extracted using 10mL of 50% (v/v) ACN and 0.1% (v/v) TFA. Peptide containing solutions 

were applied on a 384 steel MALDI target (Bruker) followed by 1μL matrix containing 

standards [50% (v/v) ACN, 0.1% (v/v) TFA, 0.3% (w/v) cyano-4-hydroxycinnamic acid, 

10pmol/mL bradykinin fragment 1–8 (m/z 904.4861) and 40pmol/mL adrenocorticotropic 

 

Colloidal coomassie staining solution: to prepare 1L of the staining solution, 117mL of 85% 
solution phosphoric acid was added to 200mL of water [final concentration 10% (v/v)], 100g 
ammonium sulfate powder mixed with the previous solution (final concentration 10%) and water 
was added to a final volume of 800mL. Once the ammonium sulfate was solubilized, 200mL of 
methanol were added just previous to the staining procedure. This staining solution was placed on 
top of each gel (500mL/per gel) and up to 0.2% (1g) (w/v) of Coomassie Brilliant Blue G (Alfa 
Aesar) was added to the solution with a filter to prevent clotting of the dye and allow development 
of colloidal particles.  
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hormone fragment 18–39 (m/z 2465.1983)]. MALDI Ultraflex (Bruker Daltonics) was used for 

spectra acquisition, with the software controller Bruker Daltonics FlexControl (Version 2.2) 

The instrument, operating in Reflector Mode, was calibrated using 400 laser shots 

accumulated from external standards. Spectra were acquired using a laser power range of 

45–65% and a detection range of m/z 900–3500. A total of 8×50-laser shots were 

accumulated for each spot. The accumulation of spectra was performed after automatic 

spectra evaluation, and all spectra analyzed had a resolution higher than 6500 in the range 

m/z 1200–2700. For spectra processing the Bruker Daltonics FlexAnalysis (Version 2.2) was 

used, with SNAP algorithm for detection, Centroid algorithm for editing, and Savitzky Golay 

algorithm for smoothing. The S/N ratio in the spectra analyzed was at least 2.5, and a quality 

factor threshold of 50 was selected. Background peak removal was performed based on the 

contaminant peak list provided by Bruker Daltonics, containing tryptic autodigest peaks and 

common keratin fragment peaks. A local MASCOT Server (Version 2.0) was used for protein 

identification. Several identification cycles were performed and the most stringent parameters 

used were the following: Swiss-Prot/TrEMBL databases, Rattus norvegicus, trypsin with zero 

missed cleavages, carbamidomethylation and methionine oxidation as fixed and variable 

modifications, respectively, and 25ppm error tolerance. Identified proteins had at least four 

peptides below 10ppm. GO annotations were automatically acquired and manually 

processed from EBI (http://www.ebi.ac.uk/EGO). 
 

2.9 - iTRAQ and 2D-LC-MS/MS 

2.9.1 - iTRAQ labelling 

The samples were kept in 10% (w/v) TCA and centrifuged immediately before analysis. They 

were then solubilized and boiled in 2% (w/v) SDS solution, 100mM DTE, 0.7% (w/v) Tris/HCl 

pH 7.3. After protein quantification, SDS was removed by using 5,000 cut-off filters 

(Millipore). For each sample, 100μg of protein content were diluted in 3 volumes of 25mM 

HEPES, and the samples were centrifuged at 4ºC. Once the sample volume was reduced to 

50-100μl, it was diluted with 3 volumes of 25mM HEPES and centrifuged, and this washing 

step was repeated once. The resulting solution was taken to a clean tube and the filter was 

washed with 3 steps of increasing ACN concentration [30, 50 and 70% (v/v)]. The samples 

were pulled, subjected to speedvac until dryness, and were then treated according to the 

iTRAQ manufacturer’s instructions. Once digested with trypsin and labelled with the iTRAQ 
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reagents, samples were combined and peptides were fractionated and identified by off-line 

2D-LC-MS/MS.        
 

2.9.2 - Strong cation exchange (SCX) High Performance Liquid Chromatography (HPLC) 

Samples were diluted 4 times in mobile phase [25% (v/v) ACN in 10mM KH2PO4, pH 3], 

filtered using 0.22μm PVDF filters (Millex-GV 13mm) and applied to a PolySULFOETHYL 

ATM column 200×4.6mm, 5μm, 1000Å (The Nest Group). Peptides were eluted using 25% 

(v/v) ACN in 10mM KH2PO4, pH 3, and 1M KCl, with a gradient from 0 to 75%, in 30 minutes, 

with a flow of 1mL/min (Dionex), and then from 75% to 100%, in 5 minutes. One minute 

(1mL) fractions were collected into separate tubes. 
 

2.9.3 - Trap-RP 

Samples were subjected to speedvac until complete dryness and resuspended in mobile 

phase for reverse phase liquid chromatography (RPLC) [mobile phase A: 2% ACN (v/v), 

0.1% (v/v) FA]. After filtration, as for SCX, samples were applied to a cartridge C18 Trap 

column in order to remove salts. Peptides were eluted using a step to 100% mobile phase B 

[98% (v/v) ACN, 0.1% (v/v) FA] with a 1mL/min flow. The peaks containing the peptides were 

collected, filtered and subject to speedvac before being used in LC-MS/MS. 
 

2.9.4 - LC-MS/MS 

Peptides were eluted into the MS system with a binary gradient (300nL/min) (model 1100, 

Agilent) from 100% mobile phase A [2% (v/v) ACN, 0.5% (v/v) FA] to 70% mobile phase B 

[98% (v/v) ACN, 0.5% (v/v) FA], over 110min, followed by 70–100% mobile phase B in 

20min, and finally, held at mobile phase B for an additional 10min. The QSTAR XL 

[quadrupole time-of-flight (QqTOF) tandem mass spectrometer] was operated in an 

information-dependent acquisition (IDA) mode. Proteins were identified using the Interrogator 

algorithm (Applied Biosystems) and the Rat fasta file from UniProtKB/Swiss-Prot database. 
 

2.10 - Data analysis 

The following software packages were used for data analysis, handling and visualization: 

GraphPad Prism, PDQuest, Excel, VBA, Image Quant, Melanie, ProteinScape, Biotools, 

Analyst, Protein Pilot, GOminer, PowerPoint, and GIMP.           
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Chapter 3 

 
 

Optimization of 2D-SDS-PAGE   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data presented in this chapter was partially published in:  

Manadas, B.J., Vougas, K., Fountoulakis, M., and Duarte, 

C.B. 2006. Sample sonication after trichloroacetic acid 

precipitation increases protein recovery from cultured 

hippocampal neurons, and improves resolution and 

reproducibility in two-dimensional gel electrophoresis. 

Electrophoresis 27:1825-1831. 
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3.1 - Introduction 

The mammalian proteome comprises several million different proteins (Wooley, J. C., 2002). 

Their resolution in 2D-SDS-PAGE is a great effort requiring fractionation (Fountoulakis, M., 

2004) and building of cybergels from “zoom” IEF gels (Oguri, T. et al., 2002). Although no 

attempt has been made to resolve the proteome of cultured hippocampal neurons, 469 

individual proteins were identified in the adult hippocampus using 2D-gels (Pollak, D. D. et 

al., 2006). The use of various approaches also allowed to characterize, to some extent, the 

protein content of the hippocampal plasma membranes: 345 proteins were identified using 

1D-SDS-PAGE and ESI-Q-TOF, 452 proteins were found using LC-ESI-ion trap MS/MS of 

tryptic digest, and 335 proteins with biotin purification of membrane proteins followed by 1D-

SDS-PAGE and ESI-Q-TOF MS/MS of gel bands (Chen, P. et al., 2006). Among the 

hippocampal plasma membrane proteins identified a significant fraction was detected using 

only one of the approaches. These findings clearly show that there is no optimum approach 

for a large scale proteomic analysis and profiling, and show the need of multiple approaches 

in order to cover as many proteins as possible (Chen, P. et al., 2006). 

Although an improved protein spot resolution is achieved with “zoom” gels, a higher degree 

of reproducibility is also required (Challapalli, K. K. et al., 2004) in order to allow a quick 

matching of the gels by the algorithms available (Church, S., 2004), and to speed up the 

analysis. Protein samples to be analyzed by 2-DE should be free from salts and other 

compounds that interfere mainly with IEF, such as nucleic acids and lipids (Nandakumar, M. 

P. et al., 2003). This may be achieved by various means, including TCA precipitation 

followed by acetone washing, which was identified as one of the best protocols (Jiang, L. et 

al., 2004). The main problem associated with TCA precipitation is the solubilization of the 

pellet. A chemical approach was previously used to solubilize TCA-precipitated proteins 

(Nandakumar, M. P. et al., 2003). In SDS-PAGE, proteins are solubilized using a 

combination of chemical (SDS and DTT) and physical (sample heating) methods. However, 

samples used in 2D-SDS-PAGE cannot be heated in order to avoid protein modifications 

induced by urea. The aim of this task was to design experimental conditions in order to (i) 

increase the number of resolved spots in 2D-gels (section 3.2.1), and (ii) increase the 

resolution and reproducibility between gels prepared from hippocampal samples (section 

3.2.2). 
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3.2 – Results and discussion 

3.2.1 – “Zoom” gels and extract fractionation increase the number of visualized spots 

The first approach used to resolve the proteome of cultured hippocampal neurons consisted 

in the application of cell extracts to commonly used IPG strips pH 3-10. Fig. 3.1 shows the 

overall protein content (silver staining; top panel) and newly synthesized proteins 

(radiolabelled; bottom panel), resolved with these strips. Clearly, this pH range does not 

allow the visualization of more than 1000-1300 spots, barely scratching the proteome of 

hippocampal neurons. In order to dig deeper inside the proteome, we tested “zoom” gels 

using IPG strips with one resolving pH unit (pH 5.5-6.7, Fig. 3.2B). Comparing with the 

 
 
Figure 3.1 – 2D-PAGE of cultured hippocampal neurons. Images represent silver (top panel) 
and radiolabelled (bottom panel) gels obtained from DIV7 hippocampal neurons. For radiolabelling 
experiments, cells were cultured in the presence of [35S]-cysteine and [35S]-methionine for 12h. In 
both cases 250μg of protein were loaded into IEF strips pH 3-10, and the second dimension was 
performed in 10% acrylamide gels. 
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corresponding range in a pH 3-10 strip (Fig. 3.2A), more spots could be resolved when the 

pH 5.5-6.7 IPG strip was used (376 spots detected in Fig. 3.2A and 1396 spots detected in 

Fig. 3.2B), although high values of electric current during IEF indicated the presence of 

contaminants (salt, nucleic acids, and/or lipids). In order to clean the samples, two 

approaches were used: (i) ultracentrifugation, to separate soluble from membrane 

fractions, and (ii) TCA precipitation followed by acetone washing, to remove salts and lipids. 

Fractionation of the extracts before 2D-PAGE was performed by ultracentrifugation, giving 

rise to a soluble fraction (supernatant; Fig. 3.2C), which is clean and easy to use, and a 

pellet containing membrane proteins, membrane associated proteins and high dense core 

proteins (S126 fraction; Fig. 3.2D). Besides reducing sample complexity, fractionation also 

increases the relative abundance of low abundant proteins, allowing their visualization and 

thereby increasing the total amount of spots quantified and identified. Fractionation reduced 

 
 
Figure 3.2 – Increase in spot number and resolution by sample fractionation and using 
“zoom” gels. Images represent 2D gels from DIV7 cultured rat hippocampal neurons using total 
extracts in broad range IPG strips pH 3-10 (A) and narrow range IPG strips pH 5.5-6.7 (B). In the 
former case only the range corresponding to approximately pH 5.5-6.7 is shown. Total extracts 
were fractionated in soluble fraction (C) and S126 pellet (D) and applied in narrow range IPG strips 
pH 5.5-6.7. Red circles highlight major differences between images. Second dimension was 
performed in 10% acrylamide (A) or using a linear gradient 8%-12% acrylamide (B-D). The spots 
were detected using PDQuestTM. 
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gel complexity, and the total number of spots detected increased (Fig. 3.2C with 1212 spots; 

Fig. 3.2D with 805 spots) when compared with the number of spots found in the non-

fractionated sample (Fig. 3.2B with 1396 spots). 

High molecular weight proteins have some difficulty in migrating, not only inside a gel matrix 

but also passing from a relatively large matrix (as is the case of IPG gel, which is made of 

4% acrylamide) to a smaller gel matrix (which is the case of second dimension gel, made of 

10% acrylamide). This problem led us to test the usage of gradient gels in the second 

dimension, aiming at facilitating the entry of large protein into the gel and improving the 

resolving power to higher molecular weigh proteins. Proteins were either resolved by using a 

10% acrylamide gel (Fig. 3.2A) or gradient gels ranging from 8% (top of the gel and near to 

the strip) to 12% acrylamide (bottom of the gel, Fig. 3.2B-D). This process was expected to 

increase the entry of high molecular weight proteins into the gel, allowing the visualization of 

more spots. However, the results show that there was no significant increase in the number 

of spots corresponding to high molecular weight proteins. Furthermore, there was a decrease 

in spot resolution in the range 50-150kDa, with the upper part of the gel being depleted of 

spots. Therefore, all other experiments were performed using 10% acrylamide gels in the 

second dimension. 

 

3.2.2 - Increase in resolution and reproducibility by sample sonication 

2D-gels have proven to be the best way to resolve thousands of proteins in a single gel 

(Gorg, A. et al., 2000; Wooley, J. C., 2002). The technique has been improved over the last 

decades allowing a broad range comparison of different proteomes in different experimental 

conditions (Gorg, A. et al., 2000; Molloy, M. P., 2000; Oguri, T. et al., 2002; Wooley, J. C., 

2002). Isoelectric focusing is very sensitive to the non-protein content of the samples and 

requires a clean solution with as little contaminants as possible (Celis, J. E. and Gromov, P., 

1999; Gorg, A. et al., 2000; Molloy, M. P., 2000; Nandakumar, M. P. et al., 2003). The 

increasing number of steps used to prepare these clean samples has resulted in a decrease 

in protein recovery from consecutive steps. This is the case of TCA precipitation, where 

solubilization of the pellet represents a critical step. Centrifugation after sample solubilization 

is a common procedure to remove insoluble material (Gorg, A. et al., 2000; Chemale, G. et 

al., 2003; Nandakumar, M. P. et al., 2003). However, in our experiments we noticed a 

significant variability in the size of the pellets resulting from the solubilization of proteins 

precipitated with TCA, even in samples prepared from the same amount of original tissue. 
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This led us to question the solubilization and reproducibility capacity of the buffers generally 

used in this type of protocol, consisting in 6-8M urea, 1-2M thiourea, 2-4% (v/v) CHAPS, 50-

100mM DTT and 0.5-2% (v/v) IPG buffer (Herbert, B., 1999; Santoni, V. et al., 1999; Gorg, A. 

et al., 2000; Molloy, M. P., 2000; Zhou, S. et al., 2005). Protein solubilization in SDS-PAGE is 

increased by heating the samples in the presence of SDS. However, in 2D-PAGE the 

samples have to be kept at a temperature below 30ºC, in order to avoid protein modifications 

(Gerstner, A. et al., 2000; Henningsen, R. et al., 2002). Therefore, in this case, increased 

solubilization of the samples has been achieved by extending the incubation period at room 

temperature and by vortexing (Nandakumar, M. P. et al., 2003). 

In order to improve protein recovery and to decrease the amount of proteins trapped in the 

insoluble fraction after TCA precipitation, we have tested the effect of sonication after elution 

of proteins in sample buffer. After precipitation with TCA, the protein pellets obtained from 

 

 
 
Figure 3.3 - Increase in protein recovery by sonication. Proteins from adult rat hippocampi were 
separated in soluble and S126 protein fractions by ultracentrifugation. Proteins were solubilized in 
2D sample buffer and either sonicated or vortexed for 2min. (Top) Pellets obtained after 
centrifugation to remove non-soluble material. (Bottom) Protein recovery after quantification using 
the Amersham’s 2D Quant Kit. Samples (n = 4) were analyzed using two-tailed Student’s t-test with 
99% confidence with P<0.05 (*) (GraphPad Prism, San Diego, CA). 



 

 

 
R

es
ul

ts
 

64 

the hippocampal soluble or S126 (ultracentrifugation pellet) fractions were sonicated or not in 

sample buffer. Sonication decreased the size of the pellets comprising insoluble material 

(Fig. 3.3), particularly in the S126 fraction. Quantification of the total protein content in 

sonicated and non-sonicated S126 fractions showed that this physical treatment increases 

total protein recovery by 140%, starting with the same amount of sample. Although 

sonication was not so important to increase protein recovery in the soluble fraction it also 

reduced protein trapping in the pellet and increased the reproducibility of the gels (data not 

shown).  

The effect of sonication on 2D-PAGE was investigated in experiments where the same 

amount of protein, from sonicated and non-sonicated hippocampal S126 fractions, was 

subjected to IEF and SDS-PAGE (Fig. 3.4). Although the pattern of both gels was similar, 

gels from sonicated samples showed several new spots and a different focusing pattern of 

some spots (e.g. zoomed area in Fig. 3.4). PDQuestTM analysis of the gels (Table I) showed 

not only an increase in the number of spots in gels obtained from sonicated samples but also 

an increase in the relative intensity of several spots present in both gels. The increased 

diversity of spots detected in sonicated samples was associated with a decrease in relative 

 

 
 
Figure 3.4 - Sonication increases protein solubility and spot resolution. 2-DE of sonicated 
and non-sonicated S126 fractions prepared from the rat hippocampus. IEF was performed in 24cm 
pH 4.5–5.5 strips (Amersham Biosciences) and the second dimension was performed in 10% SDS-
PAGE. Circles represent new spots in sonicated samples.
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intensity of some abundant proteins, remaining the total amount of protein constant in the 

two conditions. The magnitude of several spots was increased by more than three fold, 

clearly showing an increase in the solubility of these proteins when samples are sonicated. 

In order to determine the effect of sonication in the reproducibility of the gels we used 

extracts prepared from cultured hippocampal neurons incubated with 35S-radiolabelled amino 

acids for 12h. Protein spots separated by 2D-SDS-PAGE were detected by autoradiography, 

which has a much higher sensitivity than colorimetric or fluorescent methods of protein 

staining (McCarthy, J. et al., 2003). Radiolabelling experiments allow the visualization of low 

abundant protein spots and use of low amounts of protein, thereby decreasing spot 

streaking. Three replicate gels from non-sonicated and sonicated S126 fractions 

radiolabelled with 35S-amino acids (Fig. 3.5), were analysed with PDQuestTM. After spot 

detection, gels were automatically matched without manual editing, and the matching ratio 

was calculated (Table II). The results show that when gels prepared from non-sonicated 

samples were used as master the matching ratio with the other gels prepared from non-

sonicated samples varied between 24 and 36%. Similar matching ratios were calculated in 

comparison to the gels from sonicated samples (22-28%). In contrast, much higher matching 

ratios were obtained (61-73%) when gels from sonicated samples were compared with each 

other. Interestingly, comparison of these gels with those prepared using non-sonicated 

samples still gave matching ratios between 28 and 43%. The boxed areas in Fig. 3.5 clearly 

show a higher reproducibility in the spots found in gels from sonicated samples than in those 

from non-sonicated samples. Taken together, the results show that sonication increases 

reproducibility between gels, thereby decreasing time spent in manual editing.  

Table I. 2D gel analysis of the membrane fraction from sonicated and nonsonicated samples. Gels 
from Fig. 3.4 were analyzed using PDQuest. 
 



 

 

 
R

es
ul

ts
 

66 

Some spots which intensity changed by more than 75% in the gels prepared from sonicated 

and non-sonicated samples were identified (numbered spots in Fig. 3.5 and Table III; see 

also Fig. 3.6). The new spots identified in sonicated samples (Fig. 3.5; see also Fig. 3.6) 

migrated as predicted based on the molecular mass of the protein, indicating that protein 

degradation does not account for the differences observed. However, some of the new spots 

represent low abundant proteins that could not be identified or even seen with the double 

staining method used.  

 
 

 
 
Figure 3.5 - Sonication increases reproducibility and matching ratio. 2-DE of sonicated and 
non-sonicated S126 fractions prepared from rat cultured hippocampal neurons, labelled with [35S]-
amino acids. IEF was performed in 24cm pH 5.5–6.7 IPG strips (Amersham Biosciences) and the 
second dimension was performed in 10% SDS-PAGE. Three replicate “zoom” gels (pH 5.6–6.6; 
MW<100kDa) are shown for each condition. Top panel: non-sonicated fraction; bottom panel: 
sonicated samples. Comparison between different gels is shown in Tab. II and protein ID in Tab. III. 
 

Table II. Matching ratios between gels prepared from non-sonicated and sonicated samples. Gels 
analyzed (A–F) are those shown in Fig. 3.5. Each row presents an analysis set (PDQuest) with the 
score 100 corresponding to the gel used as master. (A-C, non-sonicated; D-E, sonicated) 
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3.3 – Conclusion 

In conclusion, the results obtained in this part of the work show an increase in the number 

of spots being resolved using sample fractionation and “zoom” gels. It is also shown an 

increase in resolved spots and in protein recovery from TCA precipitated proteins, using 

sonication as a physical approach for protein solubilization. These, in combination with the 

increase in reproducibility from different gels in different runs, allow better and faster software 

analysis. Sample sonication increases the rate of matching, decreases the variability of 

relative spot intensity between replicate gels, increases the confidence of statistically applied 

tests, and decreases time spent in software manual editing (Manadas, B. J. et al., 2006). 

 

 

 

 
 
Figure 3.6 - Increase in protein solubility and reproducibility with sonication. PDQuest 
analysis of the spots contained within the box limited in black in Fig. 3.5. Bars represent relative 
intensity of the spots indicated in the replicate gels (A–C, three bars on the left; D–F, three bars on 
the right). 
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Chapter 4 

 

 

BDNF-induced changes in the 
proteome of hippocampal neurons 
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4.1 – Introduction 
 

The hippocampus plays an important role in memory formation and storage. These 

processes are thought to require long-term changes in the synaptic activity and de novo 

protein synthesis. BDNF is a key mediator of activity-induced long-term changes in synaptic 

strength in the hippocampus, through modulation of gene transcription and translation 

(Steward, O. and Schuman, E. M., 2001; Takei, N. et al., 2004; Santi, S. et al., 2006; Schratt, 

G. M. et al., 2006). Therefore, the characterization of the changes in the proteome of 

hippocampal neurons induced by BDNF will contribute to understand the mechanisms 

whereby the neurotrophin contributes to synaptic plasticity.  

The hippocampus is also severely affected in stroke and after global forebrain ischemia 

(Kokaia, Z. et al., 1996; Larsson, E. et al., 1999). Addition of BDNF to cultured neurons had a 

protective effect against excitotoxicity induced by glutamate (Almeida, R. D. et al., 2005), and 

endogenous BDNF was markedly increased in rats subjected to global forebrain ischemia 

(Kokaia, Z. et al., 1996), protecting hippocampal neurons from cell death mechanisms 

(Larsson, E. et al., 1999). Under the excitotoxic conditions, the neuroprotection by BDNF is 

conferred in a protein synthesis dependent manner, with protein synthesis inhibitors 

abrogating the protective effect induced by BDNF (Almeida, R. D. et al., 2005). Furthermore, 

BDNF has been intimately related to Alzheimer, Parkinson, and mainly Huntington’s disease 

mechanisms, thereby increasing the interest in the identification of target genes also 

responsible for the neuroprotection mechanisms. 

The objective of this study was to characterize the BDNF-induced changes in the proteome 

of cultured hippocampal neurons. This proteomic study was performed using mainly two-

dimensional gel electrophoresis of extracts prepared from cultured hippocampal neurons 

stimulated or not with BDNF. Since the use of standard 2D-gels resulteds in a limited 

coverage of the hippocampal proteome, sample fractionation was performed and “zoom” gels 

were used to increase the number of spots in quantification and identification analysis. In 

order to monitor only newly synthesized proteins, the stimulation was performed in the 

presence of radiolabelled amino acids, and the BDNF induced changes in the proteome were 

quantified from autoradiogram gel images using appropriate software. After spot 

identification, the characterization of the proteins was performed based on information 

retrieved from different databases, and a selected group of proteins was used for clustering 

analysis, based on Gene Ontology. In order to further increase the coverage of the cultured 

hippocampal neurons proteome and the differential protein expression induced by BDNF, the 

fraction enriched in membrane proteins was analysed using a liquid-based approach.  
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4.2 – Results 

4.2.1 - Radiolabelling of proteins in cultured hippocampal neurons 

Radiolabelling of proteins offers several advantages in studies aiming at the identification of 

stimuli-induced changes in the proteome: (i) possibility of monitoring exclusively newly 

synthesized proteins, thereby decreasing gel complexity and increasing gel analysis speed; 

radiolabelling not only facilitated analysis in the first automated steps, but also on manual 

verification and analysis, (ii) high sensitivity, (iii) large dynamic range, particularly when 

compared to staining methods as Coomassie, colloidal Coomassie, and silver staining, and 

(iv) low cost, when compared with commercially available fluorescent staining. Therefore, 

preliminary studies were performed to characterize the time-course of [35S]-cysteine and 

[35S]-methionine uptake by cultured hippocampal neurons (Fig. 4.1). Neurons were starved 

from the sulphur containing amino acids, methionine and cysteine, for 30 minutes, by 

replacing the standard culture medium with methionine- and cysteine-free DMEM. This 

incubation period allowed the incorporation of the remaining cold methionine and cysteine 

into proteins. The cells were then incubated in the presence of [35S]-methionine and [35S]-

cysteine for different periods of time, and amino acid uptake was monitored. The results 

 

 
 
Figure 4.1 – [35S]-amino acid uptake by hippocampal neurons. After DIV7, cells were starved 
from methionine and cysteine, for 30min, and were then incubated with [35S]-cysteine and [35S]-
methionine for the indicated time periods. Uptake of radiolabelled amino acids was then measured 
after washing the cells with sodium medium. The results are the average±SEM of 3 experiments, 
preformed from independent preparations. 
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show a time-dependent accumulation of [35S]-amino acids, with maximal uptake observed at 

12h.  

The incorporation of radiolabelled amino acids into newly synthesized proteins was 

determined after different incubation periods followed by protein precipitation with TCA and 

radioactivity counting (Fig. 4.2A). Due to the low amount of protein content present in the 

cells used in each experiment, BSA was added, in order to improve protein precipitation. The 

results show a time-dependent increase in radiolabelled amino acid incorporation into newly 

synthesized proteins, with a maximum at 24h (for the time points monitored). This indicates 

that neurons incorporate radiolabelled amino acids into newly synthesised proteins, and the 

process reaches a steady state after 24h. Longer incubation periods are expected to cause 

amino acids and sulphur metabolism, and are probably not appropriate for protein labelling. 

In order to confirm that the observed radiolabelling of proteins was due to translation activity, 

 

 
 
Figure 4.2 – Incorporation of radiolabelled amino acids into proteins. (A) Radiolabelled amino 
acids are incorporated into newly synthesized proteins. After radiolabelling with [35S]-cysteine and 
[35S]-methionine the cells were washed and the proteins precipitated with 10% (v/v) TCA and 0.5% 
(w/v) BSA. The samples were centrifuged and the precipitated proteins were washed before 
measuring the radiolabelled amino acids incorporated into proteins. (B) Anisomycin prevents [35S]-
amino acid incorporation into proteins in cultured hippocampal neurons. Cells were starved of 
methionine and cysteine, for 30min, and anisomycin was then added or not (control), at the 
concentrations indicated, 15min after the beginning of the starvation period. The cells were then 
incubated with [35S]-cysteine and [35S]-methionine for 6h. Incorporation of radiolabelled amino 
acids into newly synthesized proteins was then measured. The results are means±SEM of 3 (A) 
and 2 (B) experiments, performed in independent preparations.
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we tested the effect of the protein synthesis inhibitor anisomycin. In the presence of 

anisomycin only trace amounts of radiolabelled proteins were detected (Fig. 5.2B). The 

amount of radioactivity detected under these conditions may be due to contamination of the 

samples with radiolabelled amino acids present in the culture medium. 

4.2.2 - Incorporation of radiolabelled amino acids in the presence of BDNF 

In order to determine whether BDNF affects the overall protein synthesis in cultured 

hippocampal neurons, the accumulation of [35S]-cysteine and [35S]-methionine in newly 

synthesized proteins was determined in the absence and in the presence of BDNF, using 

different incubation periods with the neurotrophin (Fig. 4.3). 

BDNF did not change significantly total protein synthesis in cultured hippocampal neurons, 

for the time points evaluated. These results suggested that BDNF does not have an overall 

effect in total protein synthesis in cultured hippocampal neurons, but may instead control the 

synthesis of specific proteins. 

 

 
 
Figure 4.3 –Total protein synthesis in hippocampal neurons is not significantly changed 
with BDNF. Cells were treated as indicated in the caption of Fig. 4.2A. Briefly, cells were starved 
from methionine and cysteine for 30min, and [35S]-radiolabelled amino acids were then added, with 
or without BDNF (100ng/mL), for the indicated periods of time. Cells were then lysed and proteins 
precipitated using 10% TCA and 0.5% BSA. Results show radiolabelled amino acid incorporation 
into newly synthesized proteins and are means of three experiments performed in independent 
preparations. Statistical analysis was performed using the Student’s t-test (GraphPad Prism, San 
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4.2.3 - Proteomic changes induced by BDNF – Gel based approach 

In order to determine the changes in the proteome of cultured hippocampal neurons induced 

by BDNF, 2D-PAGE was performed using extracts prepared from cells incubated with 

radiolabelled [35S]-methionine and [35S]-cysteine for 12h, in the presence or in the absence of 

BDNF. In order to increase the number of spots detected, the samples were fractionated in 

two, the soluble fraction and the pellet resulting from the ultracentrifugation at 126,000×gav 

(S126 fraction). The proteins were resolved in the first dimension using IPG strips of the 

following pH ranges: 4.5-5.5, 5.0-6.0, 5.5-6.7 and 6.0-9.0. Representative gels obtained 

using the soluble fraction and the S126 fraction are shown in Fig. 4.4 and Fig. 4.5, 

respectively. All gels shown in both figures, as well as in all other figures on this section, are 

oriented with the anode (acidic) to the left and catode (basic) to the right, and the second 

dimension was performed in 10% acrylamide. 

 

 
 
Figure 4.4 - Two dimensional gel electrophoresis of soluble proteins. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h, as indicated in the caption of Fig. 
4.3. Samples were then processed as indicated in the caption of Fig. 3.5 (sonicated). Proteins were 
focused using IPG strips pH 4.5-5.5, 5.0-6.0, 5.5-6.7 and 6.0-9.0. After running the second 
dimension, the gels were dried and placed in contact with a phosphor screen. Images were 
acquired using a STORM laser scanner. 
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4.2.3.1 – General workflow 

The methodology used in the analysis of each gel is illustrated in this section, using as an 

example the experiments with the soluble fraction applied to IPG strips with a pH range of 

5.5-6.7. The same approach was used for the other pH ranges as well as for the S126 

fraction, using control extracts and samples prepared from hippocampal neurons incubated 

with BDNF (100ng/mL) for 12h. The work included the analysis of radiolabelled gels, their 

mapping, matching between radiolabelled and stained gels, differential expression analysis, 

correlation between protein ID acquired from mapping with differential expression, gathering 

gene information from different databases, and cluster and functional analysis (Section 

4.2.5). Figure 4.6 shows a representative gel prepared from a soluble fraction containing 

radiolabelled proteins focused using IPG strips pH 5.5-6.7 and 10% acrylamide in the second 

dimension. The image was acquired with a laser scanner from an exposed phosphor screen. 

Analysis of the gel with PDQuest shows more than 700 spots which have been matched with 

at least other five gels. Six different experiments were performed for control and BDNF 

stimulated cells and the most reproducible set of images was chosen for software analysis. 

The criteria for gel images inclusion or exclusion on the analysis set consisted in the 

 
 
Figure 4.5 - Two dimensional gel electrophoresis of the S126 fraction. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h, as indicated in the caption of Fig. 
4.3. Samples were then processed as indicated in the caption of Fig. 3.5 (sonicated). Proteins were 
focused using IPG strips pH 4.5-5.5, 5.0-6.0, 5.5-6.7 and 6.0-9.0. After running the second 
dimension, the gels were dried and placed in contact with a phosphor screen. Images were 
acquired using a STORM laser scanner.
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elimination of gels which general pattern was markedly different from the mean distribution 

pattern of protein spots across the gel image. Gel images were imported to PDQuestTM, and 

the spots were detected and then matched throughout the entire matchset (Fig. 4.7). After 

automated matching, according to the parameters choosen, manual spot detection and 

matching was performed in order to confirm or to correct results from software automated 

functions. Each spot was considered a valid spot if it was present in more then 50% of the 

gels from a given condition (control or BDNF). In terms of matching, spots not automatically 

matched by the software were considered as being the same spot if surrounding spots 

presented the same distortion pattern. The same approach was applied for validating 

 

 
 
Figure 4.6 - Two dimensional gel electrophoresis of proteins from a soluble fraction isolated 
from cultured hippocampal neurons. Radiolabelled amino acids were incorporated into newly 
synthesized proteins for 12h and samples were processed as indicated in the caption of Fig. 4.4. 
Proteins were focused using IPG strips pH 5.5-6.7. After the second dimension, gels were dried 
and placed in contact with a phosphor screen. Images were acquired using a STORM laser 
scanner. 
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automated matching. After matching, gel images were normalized using the “total intensity in 

valid spots” algorithm. This is used when there are no major differences across gel images 

and when a significant change in the majority of the spots is not expected (according to the 

software manual). After this step, replicate groups were created in PDQuest, and statistical 

and quantitative analysis was performed, as well as Boolean analysis, which consisted in the 

combination of the statistical and quantitative analysis previously performed. Due to the 

variability observed in the results from different batches of experiments, data analysis may 

be facilitated with the use of statistical methods that allow paring data sets. Since this is not 

available in the PDQuest software, the normalized data were exported to Excel in order to 

expand the possibilities of data analysis. 

The analysis consisted in the following aspects (Table IV): (1) calculating, for each given 

spot, the ratio between the spot intensity determined in extracts prepared from BDNF 

stimulated cells and control cells, in each independent experiment, and then retrieve the 

mean value of the ratios, (2) perform statistical analysis using the unpaired Student’s t test to 

determine the statistical significance of the difference between the calculated means 

(unpaired analysis), and between the results from the same batch of experiments 

(normalized to the control), (3) indicate ratios outside of the range 1/1.5 to 1×1.5, (4) select 

and combine results of the previous calculations (1 through 3; e.g. spots showing statistically 

 

 
Figure 4.7 – Software analysis of gel images. Gels prepared using extracts of control or BDNF-
stimulated hippocampal neurons were scanned by autoradiography, and the best gel images were 
chosen for differential expression analysis. The gels were prepared as indicated in the caption of 
Fig. 4.6. Image shows master gel image (top left corner), followed by 4 gels of BDNF stimulated 
cells (bs) and 3 gels of control condition (cs).
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significant differences, retrieved from step 2, and outside the range, defined in step 3). The 

selection of the ratios outside the range 1/1.5 to 1×1.5 is distinct from the most common 

range presented in the literature, which is a “decrease to half or an increase to more than 

twice” (?/2 to ?×2) from one condition to the other. However, given the fact that the objective 

of this study was to identify newly synthesized proteins, and considering that the response to 

BDNF regulates amplification pathways, it was decided to shorten the range from a factor of 

2 to a factor of 1.5 (?/1.5 to ?×1.5). Because a cluster analysis was performed as the last 

step, we also took into consideration spots that showed a consistent but not statistically 

significant changes in abundance following stimulation with BDNF, within the range 1/1.5 

to1×1.5.  

 

 

 

Legend of Table IV 

Results obtained from PDQuest (Fig. 4.7) were exported to Excel which is more versatile for 

calculations and interpretation of the results. Rows in Table IV contain information from a specific 

spot indicated in the first column (SSP – single spot number). Columns B-E indicate the results of 

spot quantification by the PDQuest software in the soluble fraction isolated from BDNF stimulated 

hippocampal neurons, in five experiments performed in independent prepartions (BSiii; BSiv; BSv; 

BSvi). Columns F-H indicate values given by the PDQuest software for the indicated spot in control 

conditions in five different independent experiments (CSiv; CSv; CSvi). Columns K-M show ratios 

(BDNF/Control – normalization to control) for each experiment. Column N indicates the number of 

validated ratios obtained. Column O shows the calculated ratios’ mean. Column P indicates whether 

an obtained ratio mean is outside the range (1/1.5-1×1.5), and if the mean is above (UP) or below 

(DOWN) this range. Column Q calls the users attention to values outside the range and with at least 

3 ratios calculated. Column S shows the results of the unpaired Student’s t test analysis for raw 

values, indicating whether the comparison between the two experimental conditions (control vs. 

BDNF treated cells) shows statistically significant differences. Column T calls the user attention to p 

values below 0.05, for Student’s t test applied to raw values. Column U shows the results of the 

unpaired Student’s t test analysis of data normalized to the control (ratios), indicating whether there 

are statistically significant differences between the two experimental conditions (control vs. BDNF 

treated cells). Column V calls the user attention for p values below 0.05, when the statistical analysis 

is performed using the unpaired Student’s t test and data normalized to the control. Column AL calls 

the user attention for ratio values consistent in all batches, either increasing or decreasing (“trend”), 

even when the results obtained do not reach statistical significance. 
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After data analsys with Excel, the spots of interest were gathered and imported to PDQuest, 

in order to depict them on the gel (Fig. 4.8). These included statistically different spots, spots 

which intensity changed by a magnitude outside the range of interest, and spots which 

intensity changed in a consistent manner but did not show a statistically significant variation 

(“trend”). 

After the differential expression analysis, the next step consisted in the identification of the 

proteins present in the spots of interest. The strategy used involved the analysis of all (or the 

majority) protein spots since different protein isoforms can be found in distinct spots after 

separation in 2D-gels. From the functional point of view it is relevant to determine whether 

BDNF selectively affects certain isoforms of a given protein. Therefore, it was decided to 

perform a full mapping of working gels, followed by the combination of these results with data 

from protein expression levels (Fig. 4.8). 

Full mapping of the protein spots in 2D-gels was performed under conditions similar to those 

 

 
 
Figure 4.8 – Differential expression analysis.  Image shows gel image used to create master gel 
from Fig. 4.7 of soluble fraction resolved using IPG strips pH 5.5-6.7. Red circles represent spots 
whose levels differ from control to BDNF stimulated condition (Table IV).
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used in the autoradiography experiments. However, the amount of total protein used in the 

autoradiography experiments (250μg), which provided a good resolving power, was not 

enough for protein identification of most spots by MALDI-TOF MS. The increase in protein 

loading of IPG strips, up to 1mg, without compromising the gel resolution, was performed by 

using in-gel rehydration followed by cup loading. Thus, 500μg of total protein content were 

applied in each step, increasing the number of spots detected after staining with ruthenium 

followed by colloidal Coomassie (data not shown). The gels were then picked, digested and 

the proteins were identified by using MALDI-TOF or MALDI-TOF-TOF MS. The spectra 

obtained were subjected to peptide mass fingerprint database search, as a first approach. 

Whenever there was no positive ID, and if mass spectra returned peaks which quality met 

the requirement for TOF-TOF analysis, this method was used for further analysis using the 4 

 

 
 
Figure 4.9 – Gel mapping. Proteins from the soluble fraction were treated and identified as stated 
in Fig. 3.5. The image shows a colloidal Coomassie stained gel of proteins focused in pH 5.5-6.7 
IPG strips, and the accession numbers of identified spots. 
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peptides with best quality. Once the proteins were identified, their accession numbers were 

matched to their corresponding spots (Fig. 4.9). 

The comparison of the autoradiograms obtained upon separation of radiolabelled proteins 

with the protein spot pattern detected after staining with colloidal Coomassie showed that 

although the general pattern was similar, not all spots matched (Fig. 4.8 and Fig. 4.9). 

Therefore, a gel prepared with radiolabelled proteins was silver stained and manual matching 

 

 
 
Figure 4.10 – Differences between the spot pattern in autoradiograms (radiolabelled 
proteins) and silver stained gels (total protein content). Radiolabelled proteins were treated as 
indicated in the caption of Fig. 4.6 (soluble fraction, pH 5.5-6.7) except that the gel was silver 
stained before being dried, and was then exposed to a phosphor screen. The same gel was 
scanned in an office scanner for silver staining (left), and in a laser scanner for radiolabelling 
(right). The zoomed images (bottom panel) show spot patterns in both images that are either 
conserved (red ellipses) or not (yellow ellipses). 
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was performed together with software analysis, showing that several spots were detected 

only in one of the two gel images, either silver stained or autoradiography. A double gel 

labelling allows a better analysis and matching between protein ID and differential expression 

analysis.  

Given the differences between the spot pattern in the autoradiograms and the stained gels, 

the gel image containing differential expression analysis of autoradiograms shown in Fig. 4.8 

was matched with the gel mapping image obtained from protein ID by MALDI-TOF MS 

shown in Fig. 4.9 (Fig 4.11). 

The interpretation of the data obtained from the 2D-gels depends on its integration into a 

biologically meaningful structure (not fragmented). Therefore, the results were gathered in 

two formats: Excel spreadsheet (containing information regarding differential expression of 

all spots, protein ID, calculations, annotations, etc) and PowerPoint files (containing 

information gathered from different databases and presenting one by one relevant biological 

information) (Figs. 4.12 through 4.14). The information gathered in PowerPoint files 

comprised, in a first step, the visualization of matching between protein ID and differential 

expression in the presence of BDNF (Fig. 4.12). The protein accession number, protein 

name, gene name, and information regarding differential expression are presented in a 

simplified manner (supplementary information in CD). An algorithm was developed to 

automatically retrieve into Excel spreadsheets all gene names corresponding to the 

accession numbers obtained (not shown).  

 

 
Figure 4.11 – Correlation between spot quantification and ID. Left image shows full mapping of 
soluble protein in the pH range 5.5-6.7 (Fig. 4.9). Right image highlights spots which expression 
changed in the soluble fraction from BDNF treated cells (Fig. 4.8). These images were used for 
manual correlation of spot ID and quantification. 
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Once the protein spots were identified, and the corresponding accession numbers obtained, 

additional information was retrieved from several different databases. This is made easier 

because the hyperlinks are identical, differing only in the accession number or gene name 

inside the hyperlink (e.g. gene name ENO1 in the hyperlink http://discover. 

nci.nih.gov/textmining/cgi-bin/entry-preresults-post.cgi?datetype=2&relentrezdatefrom=2001 

/2&relentrezdateto=2006/4&text1=ENO1; or accession number P04764 in the hyperlink 

http://www.expasy.org/uniprot/p04764). In addition to the information obtained from 

databases such as UniProtKB/Swiss-Prot (Fig. 4.13A), another relevant source of 

information about the proteins of interest is the MedMiner database, which searches and 

organizes the PubMed literature on genes and drugs (Fig. 4.13B). This filter retrieves articles 

 
 
Figure 4.12 – Manual correlation of spot quantification and ID. The image containing full 
mapping (left, Fig. 4.9) was manually correlated with the image containing quantification 
information (right, Fig. 4.8). The figure shows one example of protein ID and quantification 
matching. The protein P04764 (left) was identified in seven different spots which were quantified 
(right). Below gel images is some of the information retrieved about this protein: accession number, 
protein name, gene name and synonym, spot numbers, ratio (BDNF/Control) and information 
regarding statistical analysis using the Student’s t test.
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published in the last 5 years, extracting and organizing relevant sentences in the literature 

based on a gene, gene-gene or gene-drug query. The information obtained from these filters 

has to be manually validated because other abbreviations may be used with a complete 

different meaning for a given gene name (Fig. 4.13B).  

Additional information about the protein of interest was retrieved from several different 

databases (Fig. 4.14). GeneCards contains information on signalling and/or metabolic 

pathways where a given gene is involved, in addition to the interaction with other 

proteins/genes, and the gene location in chromosome. The GeneCards is an integrated 

database of human genes that includes automatically-mined genomic, proteomic and 

transcriptomic information, as well as orthologies, disease relationships, SNPs, gene 

expression, gene function, and service links for ordering assays and antibodies. Information 

was also retrieved from GeneNote (Gene Normal Tissue Expression), a portrait of complete 

gene expression profiles in healthy human tissues using the Affymetrix GeneChip HG-U95 

set (includes 62 839 probe-sets). The hybridization intensities of two replicates were 

 
Figure 4.13 – Protein/Gene information gathered from databases (I). (A) Protein information 
collected from UniProtKB/Swiss-Prot database. (B) MedMiner database search result.  
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processed and analyzed to yield the complete transcriptome for twelve human tissues 

(Shmueli, O. et al., 2003).  

Signalling and/or metabolic pathways obtained from the CGAP (Cancer Genome Anatomy 

Project) web site were retrieved directly from BioCarta (http://www.biocarta.com) and from 

KEGG (Kyoto Encyclopedia of Genes and Genomes - http://www.genome.ad.jp/kegg/). 

Information regarding the interaction of the proteins of interest with other proteins/genes was 

retrieved from STRING, a database of known and predicted protein-protein interactions. 

These interactions may be direct (physical) or indirect (functional), and the information 

retrieved is derived from four sources: genomic context, high-throughput experiments, 

conserved coexpression, and previous knowledge (e.g. PubMed). Databases used for this 

purpose are dynamic sources of information and therefore the displayed information may 

vary depending on available information in databases by the time searches were performed. 

 

The same approach was used for the other pH ranges analysed (4.5-5.5, 5.0-6.0 and 6.0-

9.0) and also to the S126 fraction isolated from cultured hippocampal neurons (see Appendix 

- Supplementary data).  
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Figure 4.14 – Protein/Gene information gathered from databases (II). (A) Information from 
GeneCards (http://thr.cit.nih.gov/cards/index.shtml) for the ENO1 gene (http://thr.cit.nih.gov/cgi-
bin/cards/carddisp.pl?gene=ENO1&search=ENO1&suff=txt). (B, C) Signalling and/or metabolic 
pathways containing the gene of interest (http://cgap.nci.nih.gov/Pathways/PathwayGenes?PATH_ 
GENE=ENO1). (D) Interaction with other proteins/genes (http://string.embl.de/) using a search tool 
that gathers information from several databases (Harvester - http://rat.embl.de/rat/ 
P047/P04764.htm). (E) Gene location in chromosome (highlighted in red) retrieved from 
GeneCards.  
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4.2.4 - Protein identification 

Table V shows a compilation of the protein spots identified in the 2D-gels prepared from 

cultured hippocampal neurons of both fractions, soluble and S126, resolved in IPG strips pH 

4.5-5.5, 5.0-6.0, 5.5-6.7 and 6.0-9.0. 

 
Table V – Spots identified from protein extracts of culture hippocampal neurons. Spots from 
Figures 4.9, 4.17, 4.20, 4.23, 4.26, 4.29, 4.32, and 4.35 were identified by MALDI-TOF and MALDI-
TOF-TOF mass spectrometry. 
 

Accession 
number Protein name Gel(s) Gene 

name: 
Gene 

synonyms: 

O08557 NG,NG-dimethylarginine dimethylaminohydrolase 1 (EC 3.5.3.18) 
(Dimethylargininase 1) 5.0-6.0 S Ddah1 Ddah 

O08587 Nucleoporin 50 kDa (Nuclear pore-associated protein 60 kDa-like) 5.5-6.7 S Nup50 Npap60 

O08651 D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) (3-PGDH) 5.5-6.7 S Phgdh   

5.5-6.7 S 
O08701 Arginase II, mitochondrial precursor (EC 3.5.3.1) (Non-hepatic 

arginase) (Kidney-type arginase) 5.5-6.7 M 
Arg2   

O08749 Dihydrolipoyl dehydrogenase, mitochondrial precursor (EC 1.8.1.4) 
(Dihydrolipoamide dehydrogenase) 5.5-6.7 M Dld   

4.5-5.5 S 
5.5-6.7 M O35244 Peroxiredoxin 6 (EC 1.11.1.15) (Antioxidant protein 2) (1-Cys 

peroxiredoxin) (1-Cys PRX) 
5.5-6.7 S 

Prdx6 Aipla2, 
Aop2, Tsa 

5.5-6.7 S 
O35263 

Platelet-activating factor acetylhydrolase IB gamma subunit (EC 
3.1.1.47) (PAF acetylhydrolase 29 kDa subunit) (PAF-AH 29 kDa 
subunit) (PAF-AH gamma subunit) (PAFAH gamma subunit) 5.5-6.7 M 

Pafah1b3 Pafahg 

O35331 Pyridoxal kinase (EC 2.7.1.35) (Pyridoxine kinase) 5.5-6.7 S Pdxk Pkh 
5.5-6.7 S 

O35593 26S proteasome non-ATPase regulatory subunit 14 (26S 
proteasome regulatory subunit rpn11) (MAD1) 5.5-6.7 M 

Psmd14 Pad1 

4.5-5.5 S 
5.0-6.0 S O35737 Heterogeneous nuclear ribonucleoprotein H (hnRNP H) 

5.5-6.7 M 

Hnrph1 Hnrph 

5.5-6.7 S 
O35760 Isopentenyl-diphosphate delta-isomerase 1 (EC 5.3.3.2) (IPP 

isomerase 1) 5.0-6.0 S 
Idi1   

5.5-6.7 S 
O35814 Stress-induced-phosphoprotein 1 (STI1) (Hsc70/Hsp90-organizing 

protein) (Hop) 5.5-6.7 M 
Stip1 Hop 

O35864 
COP9 signalosome complex subunit 5 (EC 3.4.-.-) (Signalosome 
subunit 5) (SGN5) (Jun activation domain-binding protein 1) (Kip1 C-
terminus interacting protein 2) 

5.5-6.7 S Cops5 Csn5, Jab1, 
Kic2 

O35987 NSFL1 cofactor p47 4.5-5.5 S Nsfl1c   
4.5-5.5 S 

O54984 
Arsenical pump-driving ATPase (EC 3.6.3.16) (Arsenite-translocating 
ATPase) (Arsenical resistance ATPase) (Arsenite-transporting 
ATPase) (ARSA) 4.5-5.5 M 

Asna1   

O55096 Dipeptidyl-peptidase 3 4.5-5.5 S Dpp3   

O55171 
Acyl coenzyme A thioester hydrolase, mitochondrial precursor (EC 
3.1.2.2) (Very-long-chain acyl-CoA thioesterase) (MTE-I) 
(ARTISt/p43) 

5.5-6.7 M Acot2 Mte1 

O70351 3-hydroxyacyl-CoA dehydrogenase type II (EC 1.1.1.35) (Type II 
HADH) 6.0-9.0 M Hadh2 Erab, 

Hsd17b10 
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O70593 Small glutamine-rich tetratricopeptide repeat-containing protein A 4.5-5.5 S Sgta Sgt, Stg 

O88342 WD-repeat protein 1 (Actin interacting protein 1) (AIP1) 5.5-6.7 M Wdr1   

O88569 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / 
hnRNP B1) 4.5-5.5 M Hnrpa2b1   

O88637 
Ethanolamine-phosphate cytidylyltransferase (EC 2.7.7.14) 
(Phosphorylethanolamine transferase) (CTP:phosphoethanolamine 
cytidylyltransferase) 

5.5-6.7 S Pcyt2   

5.5-6.7 S 
O88767 DJ-1 protein (Contraception-associated protein 1) (CAP1 protein) 

(Fertility protein SP22) 5.0-6.0 S 
Park7 Cap1 

O89079 Coatomer epsilon subunit (Epsilon-coat protein) (Epsilon-COP) 4.5-5.5 M Cope Cope1 

P00173 Cytochrome b5 4.5-5.5 M Cyb5   
P00787 Cathepsin B [Precursor] 4.5-5.5 S Ctsb   
P02544 Vimentin 4.5-5.5 S VIM   
P02793 Ferritin light chain (Ferritin L subunit) 5.5-6.7 S Ftl1 Ftl 

5.5-6.7 S 
P04182 Ornithine aminotransferase, mitochondrial precursor (EC 2.6.1.13) 

(Ornithine--oxo-acid aminotransferase) 5.5-6.7 M 
Oat   

4.5-5.5 M 
6.0-9.0 M P04256 Heterogeneous nuclear ribonucleoprotein A1 (Helix-destabilizing 

protein) 
5.0-6.0 M 

Hnrpa1   

5.5-6.7 S 
P04636 Malate dehydrogenase, mitochondrial precursor (EC 1.1.1.37) 

6.0-9.0 M 
Mdh2 Mor1 

P04642 L-lactate dehydrogenase A chain (EC 1.1.1.27) (LDH-A) (LDH 
muscle subunit) (LDH-M) 5.5-6.7 S Ldha Ldh-1, Ldh1 

5.5-6.7 S 
P04691 Tubulin beta chain (T beta-15) 

5.5-6.7 M 
    

5.0-6.0 S 
P04757 Neuronal acetylcholine receptor protein, alpha-3 subunit precursor 

5.0-6.0 S 
Chrna3 Acra3 

P04762 Catalase (EC 1.11.1.6) 5.5-6.7 M Cat Cas1 
5.5-6.7 S 
5.0-6.0 S P04764 Alpha enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) 

(Non-neural enolase) (NNE) 
5.5-6.7 M 

Eno1 Eno-1 

4.5-5.5 S 
P04785 Protein disulfide-isomerase precursor (EC 5.3.4.1) (PDI) (Prolyl 4-

hydroxylase beta subunit) (Cellular thyroid hormone binding protein) 4.5-5.5 M 
P4hb Pdia1 

5.5-6.7 S 
P04797 Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 

(GAPDH) 6.0-9.0 S 
Gapdh Gapd 

5.5-6.7 S 
P04905 Glutathione S-transferase Mu 1 (EC 2.5.1.18) (GSTM1-1) 

(Glutathione S-transferase Yb-1) 6.0-9.0 S 
Gstm1   

5.5-6.7 S 
6.0-9.0 S P04906 Glutathione S-transferase P (EC 2.5.1.18) (GST 7-7) (Chain 7) (GST 

class-pi) 
5.0-6.0 S 

Gstp1   

5.5-6.7 S 
P05065 Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Muscle-type 

aldolase) 6.0-9.0 S 
Aldoa   

P05197 Elongation factor 2 (EF-2) 5.5-6.7 S Eef2   
5.5-6.7 S 
5.0-6.0 S P05370 Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) (G6PD) 

5.5-6.7 M 

G6pdx G6pd 

P05708 Hexokinase-1 5.5-6.7 S Hk1   
P06761 78 kDa glucose-regulated protein precursor (GRP 78) 4.5-5.5 S Hspa5 Grp78 

Administrator
Rectangle
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4.5-5.5 M 
4.5-5.5 S 

P07323 Gamma enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) 
(Neural enolase) (Neuron-specific enolase) (NSE) (Enolase 2) 4.5-5.5 M 

Eno2 Eno-2 

4.5-5.5 S 
5.5-6.7 S 
5.0-6.0 S 

P07335 Creatine kinase B-type (EC 2.7.3.2) (Creatine kinase, B chain) (B-
CK) 

4.5-5.5 M 

Ckb Ckbb 

P07632 Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) 5.5-6.7 S Sod1   

P07943 Aldose reductase (EC 1.1.1.21) (AR) (Aldehyde reductase) 5.5-6.7 S Akr1b1 Akr1b4, 
Aldr1 

P08113 Endoplasmin [Precursor] 4.5-5.5 S Hsp90b1 Tra-1, Tra1 
5.5-6.7 S 
6.0-9.0 S P09117 Fructose-bisphosphate aldolase C (EC 4.1.2.13) (Brain-type 

aldolase) 
5.0-6.0 S 

Aldoc   

P09330 Ribose-phosphate pyrophosphokinase II (EC 2.7.6.1) 
(Phosphoribosyl pyrophosphate synthetase II) (PRS-II) 5.5-6.7 S Prps2   

P09456 cAMP-dependent protein kinase type I-alpha regulatory subunit 4.5-5.5 S Prkar1a   

P09495 Tropomyosin alpha-4 chain 4.5-5.5 S Tpm4   
5.5-6.7 S 

P09606 Glutamine synthetase (EC 6.3.1.2) (Glutamate--ammonia ligase) 
(GS) 5.5-6.7 M 

Glul Glns 

P10111 Peptidyl-prolyl cis-trans isomerase A (EC 5.2.1.8) (PPIase) 
(Rotamase) (Cyclophilin A) 5.0-6.0 S Ppia   

4.5-5.5 S 
5.5-6.7 M 
5.0-6.0 M 
5.0-6.0 S 

P10719 ATP synthase beta chain, mitochondrial precursor (EC 3.6.3.14) 

4.5-5.5 M 

Atp5b   

P10760 Adenosylhomocysteinase (EC 3.3.1.1) (S-adenosyl-L-homocysteine 
hydrolase) (AdoHcyase) 5.5-6.7 S Ahcy   

5.5-6.7 S 
P10860 Glutamate dehydrogenase 1, mitochondrial precursor (EC 1.4.1.3) 

(GDH) (Memory-related protein 2) 5.5-6.7 M 
Glud1 Glud 

P10868 Guanidinoacetate N-methyltransferase (EC 2.1.1.2) 5.5-6.7 S Gamt   

P11499 Heat shock protein HSP 90-beta 4.5-5.5 S Hsp90ab1 
Hsp84, 

Hsp84-1, 
Hspcb 

5.5-6.7 S 
5.0-6.0 S P11598 Protein disulfide-isomerase A3 precursor (EC 5.3.4.1) (Disulfide 

isomerase ER-60) (ERp60) 
5.5-6.7 M 

Pdia3 Erp60, 
Grp58 

5.5-6.7 S 
P11884 Aldehyde dehydrogenase, mitochondrial precursor (EC 1.2.1.3) 

(ALDH class 2) (ALDH1) (ALDH-E2) 5.5-6.7 M 
Aldh2   

P11960 

2-oxoisovalerate dehydrogenase alpha subunit, mitochondrial 
precursor (EC 1.2.4.4) (Branched-chain alpha-keto acid 
dehydrogenase E1 component alpha chain) (BCKDH E1-alpha) 
(Fragment) 

5.5-6.7 M Bckdha   

5.5-6.7 S 
P11980 Pyruvate kinase, isozymes M1/M2 (EC 2.7.1.40) (Pyruvate kinase 

muscle isozyme) 5.5-6.7 M 
Pkm2 Pykm 

5.5-6.7 S 
P12007 Isovaleryl-CoA dehydrogenase, mitochondrial precursor (EC 

1.3.99.10) (IVD) 5.5-6.7 M 
Ivd   

P12369 cAMP-dependent protein kinase type II-beta regulatory subunit 4.5-5.5 S Prkar2b   
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P12815 Programmed cell death protein 6 (Probable calcium-binding protein 
ALG-2) (PMP41) (ALG-257) 4.5-5.5 M Pdcd6 Alg2 

P13084 Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Numatrin) 
(Nucleolar protein NO38) 4.5-5.5 M Npm1   

P13264 Glutaminase, kidney isoform, mitochondrial precursor (EC 3.5.1.2) 
(GLS) (L-glutamine amidohydrolase) (K-glutaminase) 5.5-6.7 S Gls   

P13668 
Stathmin (Phosphoprotein p19) (pp19) (Oncoprotein 18) (Op18) 
(Leukemia-associated phosphoprotein p18) (pp17) (Prosolin) 
(Metablastin) (Pr22 protein) 

4.5-5.5 S Stmn1 Lap18 

P13697 NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) (Malic 
enzyme 1) 5.5-6.7 S Me1 Mod-1, Mod1 

P14152 Malate dehydrogenase, cytoplasmic (EC 1.1.1.37) 5.5-6.7 M Mdh1 Mor2 
5.5-6.7 S 

P14604 Enoyl-CoA hydratase, mitochondrial precursor (EC 4.2.1.17) (Short 
chain enoyl-CoA hydratase) (SCEH) (Enoyl-CoA hydratase 1) 5.5-6.7 M 

Echs1   

P14668 Annexin A5 4.5-5.5 S Anxa5 Anx5 

P14882 
Propionyl-CoA carboxylase alpha chain, mitochondrial precursor (EC 
6.4.1.3) (PCCase alpha subunit) (Propanoyl-CoA:carbon dioxide 
ligase alpha subunit) (Fragment) 

5.5-6.7 M Pcca   

P14942 Glutathione S-transferase 8 (EC 2.5.1.18) (GST 8-8) (Chain 8) (GST 
class-alpha) 5.5-6.7 S Gsta4   

5.5-6.7 S 
P15178 Aspartyl-tRNA synthetase (EC 6.1.1.12) (Aspartate--tRNA ligase) 

(AspRS) 5.5-6.7 M 
Dars Drs1 

P15650 Acyl-CoA dehydrogenase, long-chain specific, mitochondrial 
precursor (EC 1.3.99.13) (LCAD) 5.5-6.7 M Acadl   

4.5-5.5 M 
5.0-6.0 S 
6.0-9.0 M 
5.0-6.0 M 

P15999 ATP synthase alpha chain, mitochondrial precursor (EC 3.6.3.14) 

5.5-6.7 M 

Atp5a1   

P16446 Phosphatidylinositol transfer protein alpha isoform (PtdIns transfer 
protein alpha) ( PtdInsTP) 5.5-6.7 S Pitpna Pitpn 

P16612 Vascular endothelial growth factor A precursor (VEGF-A) (Vascular 
permeability factor) 5.0-6.0 M Vegf Vegfa 

P16617 Phosphoglycerate kinase 1 (EC 2.7.2.3) 6.0-9.0 S Pgk1 Pgk-1 

P16858 Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 
(GAPDH) 5.5-6.7 S Gapdh Gapd 

5.5-6.7 S 
6.0-9.0 M P17220 Proteasome subunit alpha type 2 (EC 3.4.25.1) (Proteasome 

component C3) 
5.5-6.7 M 

Psma2   

P17425 Hydroxymethylglutaryl-CoA synthase, cytoplasmic (EC 2.3.3.10) 
(HMG-CoA synthase) 5.0-6.0 S Hmgcs1 Hmgcs 

P18298 S-adenosylmethionine synthetase gamma form (EC 2.5.1.6) 
(Methionine adenosyltransferase) (AdoMet synthetase) (MAT-II) 5.5-6.7 S Mat2a Ams2 

P18395 UNR protein 5.5-6.7 S Csde1 Unr 
P18418 Calreticulin [Precursor] 4.5-5.5 S Calr   

5.5-6.7 S 
P18420 

Proteasome subunit alpha type 1 (EC 3.4.25.1) (Proteasome 
component C2) (Macropain subunit C2) (Multicatalytic 
endopeptidase complex subunit C2) (Proteasome nu chain) 5.5-6.7 M 

Psma1   

4.5-5.5 S 
P18422 

Proteasome subunit alpha type 3 (EC 3.4.25.1) (Proteasome 
component C8) (Macropain subunit C8) (Multicatalytic 
endopeptidase complex subunit C8) (Proteasome subunit K) 4.5-5.5 M 

Psma3   
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P18666 Myosin regulatory light chain 2-B, smooth muscle isoform 4.5-5.5 S Rlc-b   

P18687 60 kDa heat shock protein, mitochondrial precursor (Hsp60) (60 kDa 
chaperonin) (CPN60) 5.0-6.0 S HSPD1 HSP60 

P18708 
Vesicle-fusing ATPase (EC 3.6.4.6) (Vesicular-fusion protein NSF) 
(N-ethylmaleimide sensitive fusion protein) (NEM-sensitive fusion 
protein) 

5.5-6.7 M NSF   

P19234 NADH-ubiquinone oxidoreductase 24 kDa subunit, mitochondrial 
precursor (EC 1.6.5.3) (EC 1.6.99.3) (Fragment) 4.5-5.5 M Ndufv2   

4.5-5.5 S 
P19378 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) 

5.5-6.7 S 
HSPA8 HSC70 

P19527 Neurofilament triplet L protein (68 kDa neurofilament protein) 
(Neurofilament light polypeptide) (NF-L) 4.5-5.5 M Nefl Nf68, Nfl 

5.5-6.7 S 
6.0-9.0 S P19804 Nucleoside diphosphate kinase B (EC 2.7.4.6) (NDK B) (NDP kinase 

B) (P18) 
5.0-6.0 S 

Nme2   

5.5-6.7 M 
P19945 60S acidic ribosomal protein P0 (L10E) 

5.0-6.0 M 
Rplp0   

P20108 Thioredoxin-dependent peroxide reductase, mitochondrial 
[Precursor] 5.5-6.7 S Prdx3 Aop1, Mer5 

P20650 Protein phosphatase 2C isoform alpha 4.5-5.5 S Ppm1a Pp2c1, 
Pppm1a 

P21107 Tropomyosin alpha-3 chain 4.5-5.5 S Tpm3 Tpm-5, 
Tpm5 

P21708 

Mitogen-activated protein kinase 3 (EC 2.7.1.37) (Extracellular 
signal-regulated kinase 1) (ERK-1) (Insulin-stimulated MAP2 kinase) 
(MAP kinase 1) (MAPK 1) (p44-ERK1) (ERT2) (p44-MAPK) 
(Microtubule-associated protein-2 kinase) (MNK1) 

5.5-6.7 S Mapk3 Erk1, Prkm3 

P23492 Purine nucleoside phosphorylase (EC 2.4.2.1) (Inosine 
phosphorylase) (PNP) 5.5-6.7 S Np Pnp 

4.5-5.5 S 
5.0-6.0 S P23565 Alpha-internexin (Alpha-Inx) 

4.5-5.5 M 

Ina Inexa 

P24155 
Thimet oligopeptidase (EC 3.4.24.15) (Endo-oligopeptidase A) 
(Endopeptidase 24.15) (PZ-peptidase) (Soluble metallo-
endopeptidase) 

5.5-6.7 S Thop1   

P24268 Cathepsin D precursor (EC 3.4.23.5) [Contains: Cathepsin D 12 kDa 
light chain; Cathepsin D 5.0-6.0 S Ctsd   

P26040 Ezrin (p81) (Cytovillin) (Villin 2) 5.5-6.7 M Vil2   

P26443 Glutamate dehydrogenase 1, mitochondrial precursor (EC 1.4.1.3) 
(GDH) 5.5-6.7 M Glud1 Glud 

5.5-6.7 S 
P26516 

26S proteasome non-ATPase regulatory subunit 7 (26S proteasome 
regulatory subunit rpn8) (26S proteasome regulatory subunit S12) 
(Proteasome subunit p40) (Mov34 protein) 5.5-6.7 M 

Psmd7 Mov-34, 
Mov34 

P27605 Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) 
(HGPRT) (HGPRTase) 5.5-6.7 S Hprt1 Hprt 

4.5-5.5 S 
P28073 

Proteasome subunit beta type 6 precursor (EC 3.4.25.1) 
(Proteasome delta chain) (Macropain delta chain) (Multicatalytic 
endopeptidase complex delta chain) (Proteasome subunit Y) 
(Proteasome chain 5) (Fragment) 

4.5-5.5 M 
Psmb6 Psmb6l 

5.5-6.7 S 
P28480 T-complex protein 1, alpha subunit (TCP-1-alpha) (CCT-alpha) 

5.5-6.7 M 
Cct1 Ccta, Tcp1 

4.5-5.5 S 
P28663 

Beta-soluble NSF attachment protein (SNAP-beta) (N-
ethylmaleimide-sensitive factor attachment protein, beta) (Brain 
protein I47) 4.5-5.5 M 

Napb Snapb 
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P29391 Ferritin light chain 1 (Ferritin L subunit 1) 5.5-6.7 M Ftl1 Ftl, Ftl-1 

P30337 N-chimaerin (NC) (N-chimerin) (Alpha chimerin) (A-chimaerin) (Rho-
GTPase-activating protein 2) 5.5-6.7 S Chn1 Arhgap2, 

Chn 

P30349 Leukotriene A-4 hydrolase (EC 3.3.2.6) (LTA-4 hydrolase) 
(Leukotriene A(4) hydrolase) 5.5-6.7 S Lta4h   

4.5-5.5 S 
5.0-6.0 M P31000 Vimentin 

4.5-5.5 M 

Vim   

4.5-5.5 S 
P31044 Phosphatidylethanolamine-binding protein (PEBP) (HCNPpp) (23 

kDa morphine-binding protein) 5.0-6.0 S 
Pebp1 Pbp, Pebp 

P31399 ATP synthase D chain, mitochondrial (EC 3.6.3.14) 5.5-6.7 M Atp5h Atp5jd 

P32921 Tryptophanyl-tRNA synthetase (EC 6.1.1.2) (Tryptophan--tRNA 
ligase) (TrpRS) 5.5-6.7 S Wars Wrs 

P34022 Ran-specific GTPase-activating protein 4.5-5.5 S Ranbp1 Htf9-a, Htf9a 
4.5-5.5 S 

P34058 Heat shock protein HSP 90-beta (HSP 84) 
5.0-6.0 S 

Hsp90ab1 Hsp84, 
Hspcb 

4.5-5.5 S 
P34064 

Proteasome subunit alpha type 5 (EC 3.4.25.1) (Proteasome zeta 
chain) (Macropain zeta chain) (Multicatalytic endopeptidase complex 
zeta chain) 4.5-5.5 M 

Psma5   

4.5-5.5 S 
P35213 14-3-3 protein beta/alpha (Protein kinase C inhibitor protein-1) 

(KCIP-1) (Prepronerve growth factor RNH-1) 4.5-5.5 M 
Ywhab   

P35426 Cell division protein kinase 4 (EC 2.7.1.37) (Cyclin-dependent kinase 
4) (PSK-J3) 5.5-6.7 S Cdk4   

5.5-6.7 S 
P35486 Pyruvate dehydrogenase E1 component alpha subunit, somatic form, 

mitochondrial precursor (EC 1.2.4.1) (PDHE1-A type I) 5.5-6.7 M 
Pdha1 Pdha-1 

P35559 Insulin-degrading enzyme 5.5-6.7 S Ide   

P35571 Glycerol-3-phosphate dehydrogenase, mitochondrial precursor (EC 
1.1.99.5) (GPD-M) (GPDH-M) 5.5-6.7 M Gpd2   

4.5-5.5 S 
5.0-6.0 S P35704 Peroxiredoxin 2 (EC 1.11.1.15) (Thioredoxin peroxidase 1) 

4.5-5.5 M 

Prdx2 Tdpx1 

P36876 

Serine/threonine protein phosphatase 2A, 55 kDa regulatory subunit 
B, alpha isoform (PP2A, subunit B, B-alpha isoform) (PP2A, subunit 
B, B55-alpha isoform) (PP2A, subunit B, PR55-alpha isoform) 
(PP2A, subunit B, R2-alpha isoform) 

5.5-6.7 S Ppp2r2a   

5.5-6.7 S 
P36972 Adenine phosphoribosyltransferase (EC 2.4.2.7) (APRT) 

5.0-6.0 S 
Aprt   

P37397 Calponin-3 (Calponin, acidic isoform) (Calponin, non-muscle isoform) 5.0-6.0 S Cnn3   

P37805 Transgelin-3 (Neuronal protein NP25) 5.5-6.7 S Tagln3 Np25 

P38650 Dynein heavy chain, cytosolic (DYHC) (Cytoplasmic dynein heavy 
chain) (MAP 1C) 5.0-6.0 S Dync1h1 

Dnch1, 
Dnchc1, 
Dnec1, 
Map1c 

P38652 Phosphoglucomutase (EC 5.4.2.2) (Glucose phosphomutase) (PGM) 5.5-6.7 S Pgm1   

4.5-5.5 S 
P38983 40S ribosomal protein SA (p40) (34/67 kDa laminin receptor) 

4.5-5.5 M 
Rpsa Lamr1 

P39069 Adenylate kinase isoenzyme 1 (EC 2.7.4.3) (ATP-AMP 
transphosphorylase) (AK1) (Myokinase) 6.0-9.0 S Ak1   

5.5-6.7 S 
P40112 Proteasome subunit beta type 3 (EC 3.4.25.1) (Proteasome theta 

chain) (Proteasome chain 13) (Proteasome component C10-II) 5.5-6.7 M 
Psmb3   
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P40307 
Proteasome subunit beta type 2 (EC 3.4.25.1) (Proteasome 
component C7-I) (Macropain subunit C7-I) (Multicatalytic 
endopeptidase complex subunit C7-I) 

5.5-6.7 M Psmb2   

P41498 Low molecular weight phosphotyrosine protein phosphatase (EC 
3.1.3.48) (LMW-PTP) 5.0-6.0 S Acp1   

5.5-6.7 S 
6.0-9.0 S P41562 Isocitrate dehydrogenase [NADP] cytoplasmic (EC 1.1.1.42) 

(Oxalosuccinate decarboxylase) 
5.5-6.7 M 

Idh1   

P42123 L-lactate dehydrogenase B chain (EC 1.1.1.27) (LDH-B) (LDH heart 
subunit) (LDH-H) 5.0-6.0 S Ldhb Ldh-2, Ldh2 

P42669 Transcriptional activator protein PUR-alpha (Purine-rich single-
stranded DNA-binding protein alpha) 5.5-6.7 M Pura   

5.5-6.7 S 
P45592 Cofilin-1 (Cofilin, non-muscle isoform) 

5.0-6.0 S 
Cfl1   

4.5-5.5 S 
5.0-6.0 S P46462 Transitional endoplasmic reticulum ATPase (TER ATPase) (15S 

Mg(2+)-ATPase p97 subunit) 
4.5-5.5 M 

Vcp   

P46467 SKD1 protein (Vacuolar sorting protein 4b) 5.5-6.7 S Vps4b Skd1 
P46471 26S protease regulatory subunit 7 (MSS1 protein) 5.0-6.0 S Psmc2 Mss1 

P46664 Adenylosuccinate synthetase, non-muscle isozyme (EC 6.3.4.4) 
(IMP--aspartate ligase 2) (AdSS 2) (AMPSase 2) 5.5-6.7 S Adss Adss2 

P46844 Biliverdin reductase A precursor (EC 1.3.1.24) (Biliverdin-IX alpha-
reductase) (BVR A) 5.5-6.7 S Blvra Blvr 

P47728 Calretinin 4.5-5.5 S Calb2   
4.5-5.5 S 

P47753 F-actin capping protein alpha-1 subunit (CapZ alpha-1) 
5.0-6.0 S 

Capza1 Cappa1 

P47754 F-actin capping protein alpha-2 subunit (CapZ alpha-2) 5.0-6.0 S Capza2 Cappa2 
4.5-5.5 S 
5.0-6.0 S P47819 Glial fibrillary acidic protein, astrocyte (GFAP) 

4.5-5.5 M 

Gfap   

4.5-5.5 S 
5.5-6.7 M 
5.0-6.0 S 

P47942 Dihydropyrimidinase-related protein 2 (DRP-2) (Turned on after 
division, 64 kDa protein) 

5.5-6.7 S 

Dpysl2   

P48500 Triosephosphate isomerase (EC 5.3.1.1) (TIM) (Triose-phosphate 
isomerase) 5.5-6.7 S Tpi1   

P48670 Vimentin (Fragment) 4.5-5.5 S VIM   
4.5-5.5 M 
5.0-6.0 M P48721 Stress-70 protein, mitochondrial precursor (75 kDa glucose regulated 

protein) (GRP 75) 
5.0-6.0 S 

Hspa9 Grp75 

4.5-5.5 S 
P49432 Pyruvate dehydrogenase E1 component beta subunit, mitochondrial 

precursor (EC 1.2.4.1) (PDHE1-B) 4.5-5.5 M 
Pdhb   

P49722 
Proteasome subunit alpha type 2 (EC 3.4.25.1) (Proteasome 
component C3) (Macropain subunit C3) (Multicatalytic 
endopeptidase complex subunit C3) 

5.5-6.7 M Psma2 Lmpc3 

4.5-5.5 S 
5.0-6.0 S P50398 Rab GDP dissociation inhibitor alpha (Rab GDI alpha) (GDI-1) 

4.5-5.5 M 

Gdi1 Rabgdia 

5.5-6.7 S 
P50399 Rab GDP dissociation inhibitor beta-2 (Rab GDI beta-2) (GDI-3) 

5.0-6.0 S 
Gdi2 Gdi3 
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P50442 Glycine amidinotransferase, mitochondrial precursor (EC 2.1.4.1) (L-
arginine:glycine amidinotransferase) (Transamidinase) (AT) 5.5-6.7 M Gatm Agat 

P50443 Sulfate transporter 5.5-6.7 S SLC26A2 DTD, 
DTDST 

P50503 Hsc70-interacting protein 4.5-5.5 S St13 Fam10a1, 
Hip 

4.5-5.5 S 
P50516 Vacuolar ATP synthase catalytic subunit A, ubiquitous isoform (EC 

3.6.3.14) 5.0-6.0 S 
Atp6v1a 

Atp6a1, 
Atp6a2, 

Atp6v1a1 

P50580 Proliferation-associated protein 2G4 (Proliferation-associated protein 
1) (Protein p38-2G4) 5.5-6.7 M Pa2g4 Ebp1, Plfap 

P51146 Ras-related protein Rab-4B 5.0-6.0 S Rab4b   

P51635 Alcohol dehydrogenase [NADP] (EC 1.1.1.2) (Aldehyde reductase) 
(Aldo-keto reductase family 1 member A1) (3-DG-reducing enzyme) 5.5-6.7 S Akr1a1 Alr 

P51650 Succinate semialdehyde dehydrogenase (EC 1.2.1.24) (NAD()-
dependent succinic semialdehyde dehydrogenase) 5.5-6.7 S Aldh5a1 Ssadh 

5.5-6.7 S 
P52555 Endoplasmic reticulum protein ERp29 precursor (ERp31) 

5.5-6.7 M 
Erp29   

5.5-6.7 S 
P52873 Pyruvate carboxylase, mitochondrial precursor (EC 6.4.1.1) (Pyruvic 

carboxylase) (PCB) 5.5-6.7 M 
Pc   

P53534 Glycogen phosphorylase, brain form (EC 2.4.1.1) (Fragment) 5.5-6.7 S Pygb   

P53812 Phosphatidylinositol transfer protein beta isoform (PtdIns transfer 
protein beta) (PtdInsTP) (PI-TP-beta) 5.5-6.7 S Pitpnb   

P54311 Guanine nucleotide-binding protein G(I)/G(S)/G(T) beta subunit 1 
(Transducin beta chain 1) 4.5-5.5 M Gnb1   

P54728 UV excision repair protein RAD23 homolog B 4.5-5.5 S Rad23b Mhr23b 
4.5-5.5 S 

P54921 Alpha-soluble NSF attachment protein (SNAP-alpha) (N-
ethylmaleimide-sensitive factor attachment protein, alpha) 4.5-5.5 M 

Napa Snap, Snapa 

P55051 Fatty acid-binding protein, brain (B-FABP) (Brain lipid-binding 
protein) (BLBP) 5.0-6.0 S Fabp7 Blbp 

P55053 Fatty acid-binding protein, epidermal (E-FABP) (Cutaneous fatty 
acid-binding protein) (C-FABP) (DA11) 5.5-6.7 S Fabp5   

P55213 
Caspase-3 precursor (EC 3.4.22.-) (CASP-3) (Apopain) (Cysteine 
protease CPP32) (Yama protein) (CPP-32) (SREBP cleavage activity 
1) (SCA-1) (LICE) (IRP) 

5.5-6.7 S Casp3 Cpp32 

P56399 Ubiquitin carboxyl-terminal hydrolase 5 4.5-5.5 S Usp5 Isot 

P58389 Protein phosphatase 2A, regulatory subunit B' (PP2A, subunit B', 
PR53 isoform) (Phosphotyrosyl phosphatase activator) (PTPA) 5.5-6.7 S Ppp2r4 Ptpa 

P59215 Guanine nucleotide-binding protein G(o), alpha subunit 1 4.5-5.5 M Gnao1 Gna0, Gnao 

P60123 
RuvB-like 1 (EC 3.6.1.-) (49-kDa TATA box-binding protein-
interacting protein) (49 kDa TBP-interacting protein) (TIP49a) (Pontin 
52) (DNA helicase p50) 

5.5-6.7 S Ruvbl1 Tip49, 
Tip49a 

5.5-6.7 S 
P60335 Poly(rC)-binding protein 1 (Alpha-CP1) (hnRNP-E1) 

5.5-6.7 M 
Pcbp1   

P60711 Actin, cytoplasmic 1 (Beta-actin) 5.5-6.7 M Actb   
5.5-6.7 S 

P60892 Ribose-phosphate pyrophosphokinase I (EC 2.7.6.1) 
(Phosphoribosyl pyrophosphate synthetase I) (PRS-I) 5.5-6.7 M 

Prps1   

5.5-6.7 S 
P60901 

Proteasome subunit alpha type 6 (EC 3.4.25.1) (Proteasome iota 
chain) (Macropain iota chain) (Multicatalytic endopeptidase complex 
iota chain) 5.5-6.7 M 

Psma6   
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P61023 Calcium-binding protein p22 (Calcium-binding protein CHP) 
(Calcineurin homologous protein) 4.5-5.5 M Chp   

P61087 Ubiquitin-conjugating enzyme E2-25 kDa (EC 6.3.2.19) (Ubiquitin-
protein ligase) 4.5-5.5 S Hip2   

5.5-6.7 S 
P61164 Alpha-centractin (Centractin) (Centrosome-associated actin 

homolog) (Actin-RPV) (ARP1) 5.5-6.7 M 
Actr1a Ctrn1 

P61963 WD repeat protein 68 4.5-5.5 S Wdr68 Han11 
4.5-5.5 S 
5.0-6.0 S P61980 Heterogeneous nuclear ribonucleoprotein K (dC stretch-binding 

protein) (CSBP) 
4.5-5.5 M 

Hnrpk Hnrnpk 

4.5-5.5 S 
P61983 14-3-3 protein gamma 

4.5-5.5 M 
Ywhag   

P62083 40S ribosomal protein S7 (S8) 4.5-5.5 M Rps7   
5.5-6.7 S 
5.0-6.0 S P62138 Serine/threonine protein phosphatase PP1-alpha catalytic subunit 

(EC 3.1.3.16) (PP-1A) 
5.5-6.7 M 

Ppp1ca Ppp1a 

5.5-6.7 S 
5.0-6.0 S P62142 Serine/threonine protein phosphatase PP1-beta catalytic subunit (EC 

3.1.3.16) (PP-1B) 
5.5-6.7 M 

Ppp1cb   

P62198 26S protease regulatory subunit 8 (Proteasome subunit p45) 
(p45/SUG) 6.0-9.0 M Psmc5 Sug1 

4.5-5.5 S 
P62260 14-3-3 protein epsilon (14-3-3E) (Mitochondrial import stimulation 

factor L subunit) (MSF L) 4.5-5.5 M 
Ywhae   

P62630 Elongation factor 1-alpha 1 (EF-1-alpha-1) (Elongation factor 1 A-1) 
(eEF1A-1) (Elongation factor Tu) (EF-Tu) 5.5-6.7 S Eef1a1 Eef1a 

P62703 40S ribosomal protein S4, X isoform 5.5-6.7 M Rps4x Rps4 
4.5-5.5 S 

P62716 Serine/threonine protein phosphatase 2A, catalytic subunit, beta 
isoform (EC 3.1.3.16) (PP2A-beta) 4.5-5.5 M 

Ppp2cb   

P62804 Histone H4 5.5-6.7 S Hist1h4b 
Hist4, 

Hist1h4m, 
Hist4h4, H4ft 

P62815 Vacuolar ATP synthase subunit B, brain isoform (EC 3.6.3.14) (V-
ATPase B2 subunit) 5.0-6.0 S Atp6v1b2 Atp6b2, Vat2 

P62828 GTP-binding nuclear protein Ran (GTPase Ran) (Ras-like protein 
TC4) 6.0-9.0 S Ran   

P62909 40S ribosomal protein S3 4.5-5.5 M Rps3   
5.5-6.7 S 

P62989 Ubiquitin 
6.0-9.0 S 

Rps27a 

Uba80, 
Ubcep1, 
Uba52, 

Ubcep2, Ubb 
P62993 Growth factor receptor-bound protein 2 5.5-6.7 M GRB2 ASH 

5.5-6.7 S 
P62994 Growth factor receptor-bound protein 2 (GRB2 adapter protein) 

(SH2/SH3 adapter GRB2) 5.0-6.0 S 
Grb2 Ash 

4.5-5.5 S 
5.5-6.7 S 
5.0-6.0 S 
5.5-6.7 M 

P63018 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) 

4.5-5.5 M 

Hspa8 Hsc70, 
Hsc73 

4.5-5.5 S 
P63029 Translationally controlled tumor protein (TCTP) (Lens epithelial 

protein) 4.5-5.5 M 
Tpt1 Trt 

P63039 60 kDa heat shock protein, mitochondrial precursor (Hsp60) (60 kDa 4.5-5.5 S Hspd1 Hsp60 
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5.0-6.0 M chaperonin) (CPN60) 

4.5-5.5 M 

P63085 Mitogen-activated protein kinase 1 5.5-6.7 S Mapk1 Erk2, Mapk, 
Prkm1 

P63086 
Mitogen-activated protein kinase 1 (EC 2.7.1.37) (Extracellular 
signal-regulated kinase 2) (ERK-2) (Mitogen-activated protein kinase 
2) (MAP kinase 2) (MAPK 2) (p42-MAPK) (ERT1) 

5.5-6.7 M Mapk1 Erk2, Mapk, 
Prkm1 

P63102 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-
1) 4.5-5.5 S Ywhaz Msfs1 

P63159 High mobility group protein 1 (HMG-1) (Amphoterin) (Heparin-binding 
protein p30) 5.5-6.7 S Hmgb1 Hmg-1, 

Hmg1 

P63242 Eukaryotic translation initiation factor 5A-1 4.5-5.5 S Eif5a   
P63259 Actin, cytoplasmic 2 (Gamma-actin) 5.5-6.7 S Actg1 Actg 
P63326 40S ribosomal protein S10 4.5-5.5 M Rps10   

4.5-5.5 S 
5.0-6.0 S P63331 Serine/threonine protein phosphatase 2A, catalytic subunit, alpha 

isoform (EC 3.1.3.16) 
5.5-6.7 S 

Ppp2ca   

P67779 Prohibitin 4.5-5.5 M Phb   
4.5-5.5 S 

P68101 
Eukaryotic translation initiation factor 2 subunit 1 (Eukaryotic 
translation initiation factor 2 alpha subunit) (eIF-2-alpha) (EIF-2alpha) 
(EIF-2A) 4.5-5.5 M 

Eif2s1 Eif2a 

P68255 14-3-3 protein theta 4.5-5.5 S Ywhaq   
P68370 Tubulin alpha-1 chain (Alpha-tubulin 1) 5.5-6.7 M Tuba1   

P68373 Tubulin alpha-6 chain (Alpha-tubulin 6) (Alpha-tubulin isotype M-
alpha-6) 5.5-6.7 M Tuba6   

4.5-5.5 S 
P68511 14-3-3 protein eta 

4.5-5.5 M 
Ywhah   

5.5-6.7 S 
P69897 Tubulin beta-5 chain 

5.5-6.7 M 
Tubb5   

P70297 Signal transducing adapter molecule 1 4.5-5.5 S Stam Stam1 
5.5-6.7 M 

P70333 Heterogeneous nuclear ribonucleoprotein H' (hnRNP H') 
5.0-6.0 S 

Hnrph2   

P70349 
Histidine triad nucleotide-binding protein 1 (Adenosine 5'-
monophosphoramidase) (Protein kinase C inhibitor 1) (Protein kinase 
C-interacting protein 1) (PKCI-1) 

5.5-6.7 S Hint1 
Hint, Pkci, 

Pkci1, 
Prkcnh1 

P70362 Ubiquitin fusion degradation protein 1 homolog (UB fusion protein 1) 5.5-6.7 M Ufd1l   

P70541 Translation initiation factor eIF-2B gamma subunit (eIF-2B GDP-GTP 
exchange factor) 5.5-6.7 S Eif2b3 Eif2bg 

4.5-5.5 S 
P70566 Tropomodulin-2 (Neuronal tropomodulin) (N-Tmod) 

5.0-6.0 S 
Tmod2 Ntmod 

P70584 

Acyl-CoA dehydrogenase, short/branched chain specific, 
mitochondrial precursor (EC 1.3.99.-) (SBCAD) (2-methyl branched 
chain acyl-CoA dehydrogenase) (2-MEBCAD) (2-methylbutyryl-
coenzyme A dehydrogenase) 

5.5-6.7 M Acadsb   

4.5-5.5 S 
P70615 Lamin B1 

4.5-5.5 M 
Lmnb1   

P70697 Uroporphyrinogen decarboxylase (EC 4.1.1.37) (URO-D) (UPD) 5.5-6.7 S Urod   

P80254 D-dopachrome tautomerase (EC 5.3.3.-) 5.5-6.7 S Ddt   
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P80314 T-complex protein 1, beta subunit (TCP-1-beta) (CCT-beta) 5.5-6.7 M Cct2 Cctb 

P80316 T-complex protein 1, epsilon subunit (TCP-1-epsilon) (CCT-epsilon) 4.5-5.5 M Cct5 Ccte 

5.5-6.7 S 
P80317 T-complex protein 1, zeta subunit (TCP-1-zeta) (CCT-zeta) (CCT-

zeta-1) 5.5-6.7 M 
Cct6a Cct6, Cctz, 

Cctz1 

P80318 T-complex protein 1, gamma subunit (TCP-1-gamma) (CCT-gamma) 
(Matricin) 5.5-6.7 M Cct3 Cctg 

P83888 Tubulin gamma-1 chain (Gamma-1 tubulin) (Gamma-tubulin complex 
component 1) (GCP-1) 5.5-6.7 M Tubg1 Tubg 

P83916 Chromobox protein homolog 1 4.5-5.5 S CBX1 CBX 
P97355 Spermine synthase 4.5-5.5 S Sms   

P97379 Ras-GTPase-activating protein binding protein 2 (GAP SH3-domain 
binding protein 2) (G3BP-2) 5.5-6.7 M G3bp2   

5.5-6.7 S 
P97427 Dihydropyrimidinase related protein-1 (DRP-1) (Collapsin response 

mediator protein 1) (CRMP-1) (ULIP3 protein) 5.5-6.7 M 
Crmp1 Dpysl1, Ulip3 

5.5-6.7 S 
5.0-6.0 S P97532 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) (MST) 

5.5-6.7 M 

Mpst   

5.5-6.7 S 
P97576 GrpE protein homolog 1, mitochondrial precursor (Mt-GrpE#1) 

5.5-6.7 M 
Grpel1 Grepel1 

P97697 Inositol monophosphatase 4.5-5.5 S Impa1 Imp 
P97726 Tropomyosin 5 4.5-5.5 S     
Q00715 Histone H2B 4.5-5.5 M     

4.5-5.5 S 
5.0-6.0 S 
6.0-9.0 S 

Q00981 Ubiquitin carboxyl-terminal hydrolase isozyme L1 (EC 3.4.19.12) 

4.5-5.5 M 

Uchl1   

Q01713 
Transcription factor BTEB1 (Basic transcription element binding 
protein 1) (BTE-binding protein 1) (GC box binding protein 1) 
(Krueppel-like factor 9) 

5.5-6.7 S Klf9 Bteb, Bteb1 

4.5-5.5 S 
Q02053 Ubiquitin-activating enzyme E1 1 

5.0-6.0 S 
Ube1x Uba1, Ube1 

5.5-6.7 S 
Q05982 Nucleoside diphosphate kinase A (EC 2.7.4.6) (NDK A) (NDP kinase 

A) 5.0-6.0 S 
Nme1   

Q06138 Calcium binding protein 39 (Mo25 protein) 5.5-6.7 S Cab39 Mo25 

Q06647 ATP synthase oligomycin sensitivity conferral protein, mitochondrial 
precursor (EC 3.6.3.14) (OSCP) 4.5-5.5 M Atp5o   

Q08122 Transducin-like enhancer protein 3 (ESG) (Grg-3) 5.0-6.0 S Tle3 Esg 
Q32KG8 TPA: pol protein [Mus musculus] 5.0-6.0 M     
Q32PW9 Psmc6 protein [Fragment] 6.0-9.0 M Psmc6   
Q3MHS9 Chaperonin subunit 6a (Zeta) 6.0-9.0 M Cct6a   

Q3UY23 
Adult male olfactory brain cDNA, RIKEN full-length enriched library, 
clone:6430547E06 product:hypothetical Ferredoxin-fold anticodon 
binding domain containing protein, full insert sequence 

5.5-6.7 M D630004A
14Rik   

Q5BK98 Peptidylprolyl isomerase A 6.0-9.0 S Ppia   

Q5BM23 Histone H4 variant H4-v.1 (Germinal histone H4 gene) 5.0-6.0 M Hist1h4b 
Hist4, 

Hist1h4m, 
Hist4h4, H4ft 
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Q5FVM2 Proteaseome (Prosome, macropain) 28 subunit, 3 (Predicted) 5.0-6.0 S Psme3   

Q5HZV9 Protein phosphatase 1 regulatory subunit 7 4.5-5.5 S Ppp1r7 Sds22 
Q5I0C3 Methylcrotonoyl-Coenzyme A carboxylase 1 (Alpha) 5.5-6.7 M Mccc1   

Q5I0D5 Similar to phospholysine phosphohistidine inorganic pyrophosphate 
phosphata 4.5-5.5 S MGC 

95092   

Q5I0G4 Gars protein (Fragment) 5.5-6.7 S Gars   
Q5M7U6 Actin-related protein 2 5.5-6.7 S Actr2 Arp2 

4.5-5.5 S 
Q5M819 Phosphoserine phosphatase (EC 3.1.3.3) (PSP) (O-phosphoserine 

phosphohydrolase) (PSPase) 5.0-6.0 S 
Psph   

Q5PPH0 E-1 enzyme 4.5-5.5 S RGD 
1309016   

Q5PPJ4 Deoxyhypusine hydroxylase 4.5-5.5 S Dohh   
Q5PPN7 Coiled-coil domain containing 51 5.5-6.7 M Ccdc51   
Q5PQN0 Neurocalcin delta 4.5-5.5 S Ncald   
Q5RJK6 Inositol polyphosphate-1-phosphatase 4.5-5.5 S Inpp1   
Q5RJR2 Similar to PTK9 protein tyrosine kinase 9 5.5-6.7 S Ptk9   
Q5RKH2 Galactokinase 1 4.5-5.5 S Galk1   
Q5RKI0 WD repeat protein 1 5.5-6.7 S Wdr1 WDR1 
Q5RKI1 Eukaryotic translation initiation factor 4A2 4.5-5.5 S Eif4a2   
Q5SGE0 Leucine rich protein 157 5.5-6.7 S Lrpprc   

Q5SXJ1 Novel zinc finger domain-containing protein 5.5-6.7 M 

ORFName
s: RP23-
210M6.9-

001 

  

Q5U1Y5 Heterogeneous nuclear ribonucleoprotein L 6.0-9.0 M Hnrpl   

Q5U211 LOC684097 protein 6.0-9.0 S LOC 
684097   

Q5U2Q5 Ribonucleotide reductase M1 5.5-6.7 S Rrm1_ 
mapped   

Q5U2U2 Similar to Crk-like protein 5.5-6.7 S Crkl   

Q5U300 Similar to ubiquitin-protein ligase (EC 6.3.2.19) E1-mouse 4.5-5.5 S LOC 
314432   

Q5U344 Txnrd1 protein 5.5-6.7 S Txnrd1   
Q5U347 G elongation factor 5.5-6.7 M Gfm   
Q5U3Z7 Serine hydroxymethyl transferase 2 (Mitochondrial) 6.0-9.0 M Shmt2   
Q5VLR5 BWK4 4.5-5.5 M     
Q5WQV4 Ezrin 5.5-6.7 S Vil2   
Q5WQV5 Radixin 5.5-6.7 M     

5.5-6.7 S 
Q5XHZ0 Tumor necrosis factor type 1 receptor associated protein 

5.5-6.7 M 
Trap1   

5.5-6.7 S 
Q5XI22 Similar to acetyl CoA transferase-like 

5.5-6.7 M 
Acat2   

Q5XI32 F-actin capping protein beta subunit 5.0-6.0 S Capzb   

Q5XI34 Alpha isoform of regulatory subunit A, protein phosphatase 2 4.5-5.5 S Ppp2r1a   

4.5-5.5 S 
5.0-6.0 S Q5XI73 Rho GDP dissociation inhibitor (GDI) alpha 

4.5-5.5 M 

Arhgdia   

Q5XIM9 Chaperonin containing TCP1, subunit 2 (Beta) 5.5-6.7 S Cct2   
Q60123 Carboxylesterase 5.5-6.7 M estA estA 
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Q60445 Coatomer subunit epsilon 4.5-5.5 S COPE   

Q60597 2-oxoglutarate dehydrogenase E1 component, mitochondrial 
precursor (EC 1.2.4.2) (Alpha-ketoglutarate dehydrogenase) 5.5-6.7 M Ogdh   

Q60930 Voltage-dependent anion-selective channel protein 2 5.5-6.7 M Vdac2 Vdac6 

Q60967 Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 5.5-6.7 S Papss1 
Asapk, 
Atpsk1, 
Papss 

4.5-5.5 S 
Q60972 

Chromatin assembly factor 1 subunit C (CAF-1 subunit C) 
(Chromatin assembly factor I p48 subunit) (CAF-I 48 kDa subunit) 
(CAF-Ip48) (Retinoblastoma binding protein p48) (Retinoblastoma-
binding protein 4) (RBBP-4) 

4.5-5.5 M 
Rbbp4 Rbap48 

Q60973 Histone-binding protein RBBP7 4.5-5.5 S Rbbp7 Rbap46 
Q61167 Microtubule-associated protein RP/EB family member 3 4.5-5.5 S Mapre3   
Q61316 Heat shock 70 kDa protein 4 4.5-5.5 S Hspa4 Hsp110 
Q61553 Fascin (Singed-like protein) 5.5-6.7 S Fscn1 Fan1, Snl 

Q61699 Heat-shock protein 105 kDa 4.5-5.5 S Hsph1 
Hsp105, 
Hsp110, 
Kiaa0201 

Q61MX7 Hypothetical protein CBG08292 4.5-5.5 S CBG 
08292   

Q62167 
DEAD-box protein 3, X-chromosomal (DEAD-box RNA helicase 
DEAD3) (mDEAD3) (Embryonic RNA helicase) (D1PAS1 related 
sequence 2) 

5.5-6.7 M Ddx3x 
D1Pas1-rs2, 

Ddx3, 
Dead3, Erh 

4.5-5.5 M 
Q62188 Dihydropyrimidinase-related protein 3 (DRP-3) (Unc-33-like 

phosphoprotein) (ULIP protein) 5.5-6.7 M 
Dpysl3 Drp3, Ulip 

Q62188 Dihydropyrimidinase-related protein 3 (DRP-3) (Unc-33-like 
phosphoprotein) (ULIP protein) 5.5-6.7 S Dpysl3 Drp3, Ulip 

Q62433 NDRG1 protein (N-myc downstream regulated gene 1 protein) 
(Protein Ndr1) 5.5-6.7 M Ndrg1 Ndr1, Ndrl, 

Tdd5 

Q62658 FK506-binding protein 1A (EC 5.2.1.8) (Peptidyl-prolyl cis-trans 
isomerase) (PPIase) 6.0-9.0 S Fkbp1a Fkbp1 

Q62785 28 kDa heat- and acid-stable phosphoprotein (PDGF-associated 
protein) 5.0-6.0 S Pdap1 Haspp28 

Q62818 Translation initiation factor eIF-2B beta subunit (eIF-2B GDP-GTP 
exchange factor) 5.5-6.7 S Eif2b2 Eif2bb 

Q62848 ADP-ribosylation factor GTPase activating protein 1 (ADP-
ribosylation factor 1 GTPase activating protein) 5.0-6.0 M Arfgap1 Arf1gap 

Q62871 Cytoplasmic dynein 1 intermediate chain 2 4.5-5.5 S Dync1i2 Dnci2, 
Dncic2 

4.5-5.5 S 
Q62950 Dihydropyrimidinase related protein-1 (DRP-1) (Collapsin response 

mediator protein 1) (CRMP-1) 5.5-6.7 S 
Crmp1 Dpysl1 

4.5-5.5 S 
Q62951 

Dihydropyrimidinase related protein-4 (DRP-4) (Collapsin response 
mediator protein 3) (CRMP-3) (UNC33-like phosphoprotein 4) (ULIP4 
protein) (Fragment) 5.5-6.7 S 

Dpysl4 Crmp3, Ulip4 

4.5-5.5 S 
Q62952 Dihydropyrimidinase-related protein 3 (DRP-3) (Collapsin response 

mediator protein 4) 5.0-6.0 S 
Dpysl3 Crmp4 

4.5-5.5 S 
Q63081 

Protein disulfide-isomerase A6 precursor (EC 5.3.4.1) (Protein 
disulfide isomerase P5) (Calcium-binding protein 1) (CaBP1) 
(Fragment) 4.5-5.5 M 

Pdia6 Cabp1, 
Txndc7 

Q63083 Nucleobindin-1 [Precursor] 4.5-5.5 S Nucb1 Nuc 
4.5-5.5 S 

Q63228 Glia maturation factor beta (GMF-beta) 
5.0-6.0 S 

Gmfb   

5.5-6.7 S 
Q63347 26S protease regulatory subunit 7 (MSS1 protein) 

5.5-6.7 M 
Psmc2 Mss1 
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Q63468 

Phosphoribosyl pyrophosphate synthetase-associated protein 1 
(PRPP synthetase-associated protein 1) (39 kDa 
phosphoribosypyrophosphate synthetase-associated protein) 
(PAP39) 

5.5-6.7 S Prpsap1   

4.5-5.5 S 
Q63525 Nuclear migration protein nudC (Nuclear distribution protein C 

homolog) (c15) 5.0-6.0 S 
Nudc   

4.5-5.5 S 
Q63569 

26S protease regulatory subunit 6A (TAT-binding protein 1) (TBP-1) 
(Spermatogenic cell/sperm-associated TAT-binding protein homolog 
SATA) 4.5-5.5 M 

Psmc3 Tbp1 

4.5-5.5 S 
Q63570 26S protease regulatory subunit 6B (TAT-binding protein-7) (TBP-7) 

4.5-5.5 M 
Psmc4 Tbp7 

Q63600 Tropomyosin 4.5-5.5 S Tpm3 TPM-gamma 
Q63617 150 kDa oxygen-regulated protein [Precursor] 4.5-5.5 S Hyou1 Orp150 

Q63622 Channel associated protein of synapse-110 (Chapsyn-110) (Discs, 
large homolog 2) (Synaptic density protein PSD-93) 5.5-6.7 S Dlg2 Dlgh2 

5.5-6.7 S 
Q63716 Peroxiredoxin 1 (EC 1.11.1.15) (Thioredoxin peroxidase 2) 

6.0-9.0 S 
Prdx1 Tdpx2 

Q63768 Proto-oncogene C-crk (P38) (Adapter molecule crk) 4.5-5.5 S Crk Crko 

Q63797 Proteasome activator complex subunit 1 (Proteasome activator 28-
alpha subunit) (PA28alpha) 5.0-6.0 S Psme1   

Q63798 Proteasome activator complex subunit 2 (Proteasome activator 28-
beta subunit) (PA28beta) ( 5.0-6.0 S Psme2   

Q64057 Aldehyde dehydrogenase family 7 member A1 (EC 1.2.1.3) 
(Antiquitin 1) (Fragment) 5.5-6.7 S Aldh7a1 Ald7a1 

Q641Z6 EH-domain containing 1 5.5-6.7 M Ehd1   
Q642E5 Mevalonate (Diphospho) decarboxylase 5.5-6.7 S Mvd   
Q642G1 Adenosine kinase 5.5-6.7 S Adk   

Q64361 Latexin (Endogenous carboxypeptidase inhibitor) (ECI) (Tissue 
carboxypeptidase inhibitor) 5.0-6.0 S Lxn   

Q64538 Phosphoprotein phosphatase (Fragment) 5.5-6.7 S     

Q64559 
Cytosolic acyl coenzyme A thioester hydrolase (EC 3.1.2.2) (Long 
chain acyl-CoA thioester hydrolase) (CTE-II) (CTE-IIa) (Brain acyl-
CoA hydrolase) (ACT) (CTE-IIb) (LACH1) (MTE-II) (ACH1) 

5.5-6.7 S Acot7 Bach 

Q64640 Adenosine kinase (EC 2.7.1.20) (AK) (Adenosine 5'-
phosphotransferase) 5.5-6.7 S Adk   

4.5-5.5 S 
Q64674 Spermidine synthase (EC 2.5.1.16) (Putrescine 

aminopropyltransferase) (SPDSY) 5.0-6.0 S 
Srm   

Q66H55 Heat shock 90kDa protein 1, beta 4.5-5.5 S Hspcb   
Q66H80 Archain 5.5-6.7 S Arcn1 Copd 
Q66H97 Ezrin 5.5-6.7 S Vil2   

Q66HA8 Heat-shock protein 105 kDa 4.5-5.5 S Hsph1 Hsp105, 
Hsp110 

Q66HF1 NADH dehydrogenase (Ubiquinone) Fe-S protein 1, 75kDa 4.5-5.5 S Ndufs1   

5.5-6.7 S 
Q66HF8 Aldehyde dehydrogenase 1 family, member B1 

5.5-6.7 M 
Aldh1b1   

4.5-5.5 S 
5.0-6.0 S Q66HR2 Microtubule-associated protein RP/EB family member 1 (APC-

binding protein EB1) 
4.5-5.5 M 

Mapre1   

Q66JZ6 Gmps protein (Fragment) 5.5-6.7 S Gmps   
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5.5-6.7 M 
5.5-6.7 S 

Q68FR6 Elongation factor 1-gamma (EF-1-gamma) (eEF-1B gamma) 
5.5-6.7 M 

Eef1g   

4.5-5.5 S 
Q68FR9 Eukaryotic translation elongation factor 1 delta 

4.5-5.5 M 
Eef1d   

Q68FY0 Ubiquinol-cytochrome c reductase core protein I 4.5-5.5 M Uqcrc1   
Q68FZ8 Propionyl Coenzyme A carboxylase, beta polypeptide 5.5-6.7 M Pccb   
Q68G33 Golgi reassembly stacking protein 2 4.5-5.5 S Gorasp2   
Q68GV5 Heat shock protein 90 4.5-5.5 S Hsp90   
Q6AXQ0 Ubiquitin-like 1 (Sentrin) activating enzyme E1A 4.5-5.5 S Uble1a   

5.5-6.7 S 
Q6AY09 Similar to Murine homolog of human ftp-3 

5.5-6.7 M 
LOC30865

0   

Q6AY53 Deoxyhypusine synthase 4.5-5.5 S Dhps   
Q6AY84 Secernin 1 4.5-5.5 S Scrn1   
Q6AYD3 Proliferation-associated 2G4, 38kDa 5.5-6.7 S Pa2g4   
Q6AYG5 Enoyl Coenzyme A hydratase domain containing 1 5.5-6.7 S Echdc1   
Q6AYK6 Similar to calcyclin binding protein 5.5-6.7 S Cacybp   

Q6AYN4 Phytanoyl-CoA hydroxylase interacting protein-like 5.5-6.7 S Phyhipl   

Q6AYP7 Similar to C330027I04Rik protein 5.5-6.7 S Nt5c3l   
Q6AYS7 Acy1 protein 5.5-6.7 S Acy1   
Q6AYU2 Pcbp2 protein 5.5-6.7 M Pcbp2   
Q6AZ40 Prpsap2 protein 5.5-6.7 S Prpsap2   
Q6DGG0 Peptidylprolyl isomerase D 5.5-6.7 S Ppid   
Q6IFV6 Type I hair keratin KA30 4.5-5.5 S Ka30   
Q6IFW6 Type I keratin KA10 4.5-5.5 S Ka10   

Q6IN16 5-aminoimidazole-4-carboxamide ribonucleotide 
formyltransferase/IMP cyclohydrolase 5.5-6.7 S Atic   

Q6JE36 N-myc downstream regulated 1 5.5-6.7 S Ndr1 Ndrg1 
Q6JHG6 Fusion protein [Fragment] 4.5-5.5 S     

Q6NXY2 2610208M17Rik protein (Fragment) 5.5-6.7 M 2610208M
17 Rik   

5.5-6.7 S 
Q6P0K6 Pgam1 protein 

5.5-6.7 M 
Pgam1   

Q6P139 Hypothetical protein (Fragment) 5.5-6.7 S     

Q6P3A8 Branched chain ketoacid dehydrogenase E1, beta polypeptide 4.5-5.5 S Bckdhb   

Q6P3D0 2310041H06Rik protein 5.5-6.7 S Nudt16   
4.5-5.5 S 

Q6P3V8 Eukaryotic translation initiation factor 4A, isoform 1 
5.0-6.0 S 

Eif4a1   

4.5-5.5 S 
Q6P4Z9 COP9 signalosome complex subunit 8 (Signalosome subunit 8) 

(SGN8) (JAB1-containing signalosome subunit 8) (COP9 homolog) 4.5-5.5 M 
Cops8 Csn8 

Q6P502 Chaperonin containing TCP1, subunit 3 (Gamma) 5.5-6.7 S Cct3   
5.5-6.7 S 

Q6P6R2 
Dihydrolipoamide dehydrogenase (E3 component of pyruvate 
dehydrogenase complex, 2-oxo-glutarate complex, branched chain 
keto acid dehydrogenase complex) 5.5-6.7 M 

Dld   

5.5-6.7 S 
Q6P797 GDP dissociation inhibitor 2 

5.5-6.7 M 
Gdi2   

5.5-6.7 S 
Q6P799 Seryl-aminoacyl-tRNA synthetase 

5.5-6.7 M 
Sars1   



 

 

 
R

es
ul

ts
 

104 

Q6P7B0 Wars protein 5.5-6.7 S Wars   
Q6P7Q4 Lactoylglutathione lyase 4.5-5.5 S Glo1   
Q6P9U3 COMM domain containing protein 3 4.5-5.5 M Commd3   
Q6P9V6 Proteasome (Prosome, macropain) subunit, alpha type 5 4.5-5.5 S Psma5   
Q6P9V8 Ubiquitin carboxyl-terminal hydrolase isozyme L1 4.5-5.5 S Uchl1   
Q6P9X8 Tubb5 protein 5.5-6.7 S     
Q6PCU2 ATPase, H+ transporting, V1 subunit E isoform 1 6.0-9.0 S Atp6v1e1   
Q6PCV1 Transaldolase 1 5.5-6.7 S Taldo1   
Q6PCV2 Malate dehydrogenase 1, NAD (Soluble) 5.5-6.7 S Mdh1 Mdh 
Q6PED0 Ribosomal protein S27a 5.5-6.7 S Rps27a   
Q6QI16 LRRGT00192 5.5-6.7 M     
Q6TUG0 LRRGT00084 5.5-6.7 S Dnajb11   
Q6TXG7 LRRGT00032 5.5-6.7 S     
Q6WVG3 BTB/POZ domain-containing protein KCTD12 4.5-5.5 S Kctd12 Pfet1 

Q6ZWM5 

Mus musculus 2 days neonate thymus thymic cells cDNA, RIKEN 
full-length enriched library, clone:E430019K17 product:budding 
uninhibited by benzimidazoles 3 homolog (S. cerevisiae), full insert 
sequence 

5.5-6.7 S Bub3   

4.5-5.5 S 
Q71RR7 Guanylate kinase (EC 2.7.4.8) 

5.0-6.0 S 
    

4.5-5.5 S 
Q76MZ3 

Serine/threonine protein phosphatase 2A, 65 kDa regulatory subunit 
A, alpha isoform (PP2A, subunit A, PR65-alpha isoform) (PP2A, 
subunit A, R1-alpha isoform) 4.5-5.5 M 

Ppp2r1a   

Q78NR3 eukaryotic initiation factor 5A isoform I variant CD [Mus musculus] 5.0-6.0 S Eif5a   

Q794E4 Heterogeneous nuclear ribonucleoprotein F 4.5-5.5 S Hnrpf   

Q7TMK9 

Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) (hnRNP-Q) 
(Synaptotagmin binding, cytoplasmic RNA interacting protein) 
(Glycine-and tyrosine-rich RNA binding protein) (GRY-RBP) (NS1-
associated protein 1) (pp68) 

5.5-6.7 M Syncrip 
Hnrpq, 
Nsap1, 
Nsap1l 

5.5-6.7 S 
Q7TNT7 Sept3 protein 

5.5-6.7 M 
Sep-03   

Q7TP11 Cc2-27 5.5-6.7 S     
Q7TP27 Ba1-651 5.5-6.7 S     
Q7TQI3 Ubiquitin thioesterase protein OTUB1 4.5-5.5 S Otub1   
Q80V75 Fscn1 protein (Fragment) 5.5-6.7 S Fscn1   

Q80WE0 NADH dehydrogenase 1 alpha subcomplex 10-like protein 5.5-6.7 M Ndufa10   

Q80Z07 ATP-binding cassette protein 5 5.5-6.7 S Abca5   
5.5-6.7 S 

Q8BFR5 

Mus musculus adult male tongue cDNA, RIKEN full-length enriched 
library, clone:2300002G02 product:ELONGATION FACTOR TU, 
MITOCHONDRIAL (P43) homolog (Mus musculus 13 days embryo 
heart cDNA, RIKEN full-length enriched library, clone:D) 

5.5-6.7 M 
Tufm   

5.5-6.7 S 
Q8BG32 

26S proteasome non-ATPase regulatory subunit 11 (26S 
proteasome regulatory subunit S9) (26S proteasome regulatory 
subunit p44.5) 5.5-6.7 M 

Psmd11   

Q8BK64 Activator of 90 kDa heat shock protein ATPase homolog 1 (AHA1) 4.5-5.5 S Ahsa1   

Q8BL86 

Mus musculus adult male corpora quadrigemina cDNA, RIKEN full-
length enriched library, clone:B230336L16 product:hypothetical 
Metallo-beta-lactamase superfamily containing protein, full insert 
sequence 

5.5-6.7 M 290002 
4O10Rik   
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Q8BNU0 

Mus musculus 10 days neonate cortex cDNA, RIKEN full-length 
enriched library, clone:A830021H22 product:hypothetical Armadillo 
repeat/Armadillo/plakoglobin ARM repeat profile containing protein, 
full insert sequence (Armc6 protein) 

5.5-6.7 S Armc6   

Q8BP48 Methionine aminopeptidase 1 (EC 3.4.11.18) (MetAP 1) (MAP 1) 
(Peptidase M 1) 5.5-6.7 M Metap1   

Q8BTZ7 

Mus musculus 2 days neonate thymus thymic cells cDNA, RIKEN 
full-length enriched library, clone:E430010H19 product:GDP-
MANNOSE PYROPHOSPHORYLASE B homolog (Gmppb-pending 
protein) 

5.5-6.7 S Gmppb   

Q8BWN3 NudC domain-containing protein 3 4.5-5.5 S Nudcd3 Kiaa1068 
5.5-6.7 S 

Q8C1B7 Septin 11 
5.5-6.7 M 

Sep-11 D5Ertd606e 

Q8C4F6 0 day neonate cerebellum cDNA, RIKEN full-length enriched library, 
clone:C230035J02 product:hypothetical protein, full insert sequence 4.5-5.5 S 4930506 

M07Rik   

Q8C4P5 

Mus musculus 16 days embryo head cDNA, RIKEN full-length 
enriched library, clone:C130039E20 product:hypothetical Armadillo 
repeat/Armadillo/plakoglobin ARM repeat profile containing protein, 
full insert sequence 

5.5-6.7 S Armc6   

Q8C5H8 
Mus musculus adult male olfactory brain cDNA, RIKEN full-length 
enriched library, clone:6430595H05 product:hypothetical protein, full 
insert sequence. (Fragment) 

5.5-6.7 S 1110020 
G09Rik   

Q8C845 16 days embryo head cDNA, RIKEN full-length enriched library, 
clone:C130064C02 product:SWIPROSIN 1, full insert sequence 4.5-5.5 S Efhd2   

Q8C8A1 
Mus musculus 16 days embryo head cDNA, RIKEN full-length 
enriched library, clone:C130023E09 product:unclassifiable, full insert 
sequence 

5.5-6.7 M Idh3a   

Q8CAQ8 Mitochondrial inner membrane protein (Mitofilin) 4.5-5.5 M Immt   
Q8CFE0 BC010843 protein (Fragment) 4.5-5.5 S Tmprss13 Msp 
Q8CG45 Aflatoxin B1 aldehyde reductase member 2 5.5-6.7 S Akr7a2 Afar2, Aiar 
Q8CG72 Ecto ADP-ribosylhydrolase [Precursor] 4.5-5.5 S Adprhl2 arh3 
Q8CI05 Cytosolic 5'-nucleotidase III 4.5-5.5 S Nt5c3   

Q8CIG8 Protein arginine N-methyltransferase 5 (EC 2.1.1.-) (Shk1 kinase-
binding protein 1 homolog) (SKB1 Homolog) (Jak-binding protein 1) 5.5-6.7 S Prmt5 Jbp1, Skb1 

Q8CIN7 Inositol monophosphatase 2 (EC 3.1.3.25) (IMPase 2) (IMP 2) 5.0-6.0 S Impa2   

Q8CIV8 Tubulin-folding protein TBCE (Tubulin-specific chaperone e) 5.5-6.7 S Tbce   

Q8K0U4 Heat shock 70 kDa protein 12A 5.5-6.7 S Hspa12a   
5.5-6.7 S 

Q8K1J6 

tRNA-nucleotidyltransferase 1, mitochondrial precursor (EC 2.7.7.25) 
(mitochondrial tRNA nucleotidyl transferase, CCA-adding) (mt tRNA 
adenylyltransferase) (mt tRNA CCA-pyrophosphorylase) (mt tRNA 
CCA-diphosphorylase) 

5.5-6.7 M 
Trnt1   

Q8K2B3 
Succinate dehydrogenase [ubiquinone] flavoprotein subunit, 
mitochondrial precursor (EC 1.3.5.1) (Fp) (Flavoprotein subunit of 
complex II) 

5.5-6.7 M Sdha   

Q8K310 Matrin 3 5.5-6.7 M Matr3   
Q8K4F7 Histidine triad protein member 5 5.5-6.7 S Dcps Dcs1, Hint5 
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Q8K4H3 TUC-4b 5.5-6.7 S Dpysl3 Crmp4 
Q8R081 Heterogeneous nuclear ribonucleoprotein L (hnRNP L) 5.5-6.7 M Hnrpl   
Q8R0Z4 Snx6 protein 5.5-6.7 S Snx6   
Q8R2F7 CDCrel-1AI 5.5-6.7 S Sep-05 Pnutl1 

Q8R2W9 Pantothenate kinase 3 (EC 2.7.1.33) (Pantothenic acid kinase 3) 
(mPanK3) 5.0-6.0 S Pank3   

Q8R317 Ubiquilin-1 4.5-5.5 S Ubqln1 Plic1 

Q8R424 AMSH (Associated molecule with the SH3 domain of STAM) 5.5-6.7 S Stambp Amsh 

Q8R5C5 Beta-centractin (Actin-related protein 1B) (ARP1B) 5.5-6.7 S Actr1b   
Q8VBV1 SH3 domain protein 2A 4.5-5.5 S Sh3gl2 Sh3d2a 
Q8VCW5 Ina protein 5.5-6.7 M Ina   

Q8VD52 Pyridoxal phosphate phosphatase 4.5-5.5 S Pdxp Plp, Plpp, 
Rbp1 

Q8VED9 RIKEN cDNA 1110067D22 4.5-5.5 S 1110067 
D22Rik 

RP23-
455B19.1 

Q8VHK3 EZRIN (Fragment) 5.5-6.7 M Vil2   
Q8VHK7 Hepatoma-derived growth factor 4.5-5.5 S Hdgf   
Q8VHV7 Ratsg1 5.5-6.7 S Hnrnph1   

Q8VHX0 Voltage-dependent calcium channel gamma-3 subunit (Neuronal 
voltage-gated calcium channel gamma-3 subunit) 5.0-6.0 S Cacng3   

Q8VIM9 FKSG27 4.5-5.5 S Irgq 
AF322649, 
FKSG27, 

Irgq1 
5.5-6.7 S 

Q91VC3 Probable ATP-dependent helicase DDX48 (DEAD-box protein 48) 
5.5-6.7 M 

Ddx48   

Q91VD9 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 
precursor (EC 1.6.5.3) (EC 1.6.99.3) (Complex I-75Kd) (CI-75Kd) 4.5-5.5 M Ndufs1   

Q91WD5 NADH-ubiquinone oxidoreductase 49 kDa subunit, mitochondrial 
precursor (EC 1.6.5.3) (EC 1.6.99.3) (Complex I-49KD) (CI-49KD) 5.5-6.7 M Ndufs2   

Q91WK2 Eukaryotic translation initiation factor 3 subunit 3 (eIF-3 gamma) 
(eIF3 p40 subunit) (eIF3h) 5.5-6.7 M Eif3s3   

Q91WQ3 Tyrosyl-tRNA synthetase, cytoplasmic (EC 6.1.1.1) (Tyrosyl--tRNA 
ligase) (TyrRS) 5.5-6.7 S Yars   

Q91XM8 Collapsin response mediator protein 4 5.5-6.7 S Dpysl3 Crmp4 
Q91XW0 Heat shock protein 86 4.5-5.5 S hsp86 Hspca 
Q91Y78 Ubiquitin carboxyl-terminal hydrolase isozyme L3 4.5-5.5 S Uchl3   

5.5-6.7 S 
Q91Y81 Vascular endothelial cell specific protein 11 (Septin 2) 

5.5-6.7 M 
Sep-02 VESP11 

Q91YN5 UDP-N-acteylglucosamine pyrophosphorylase 1 homolog 5.5-6.7 S Uap1   
Q91YR1 Twinfilin 1 (A6 protein) (Protein tyrosine kinase 9) 5.5-6.7 M Ptk9   

Q91ZN1 CORO1A protein (Tryptophane aspartate-containing coat protein) 
(Coronin, actin binding protein 1A) 5.5-6.7 S Coro1a Taco 

4.5-5.5 S 
Q920J4 PREDICTED: similar to thioredoxin family Trp26 [Rattus norvegicus] 

5.0-6.0 S 
Txnl1 Trp 

Q920L2 
Succinate dehydrogenase [ubiquinone] flavoprotein subunit, 
mitochondrial precursor (EC 1.3.5.1) (Fp) (Flavoprotein subunit of 
complex II) 

5.5-6.7 M Sdha   

Q921F2 TAR DNA-binding protein-43 (TDP-43) 5.5-6.7 M Tardbp Tdp43 
Q921M7 Protein FAM49B 5.5-6.7 S Fam49b   
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Q922Y1 UBA/UBX 33.3 kDa protein 5.0-6.0 S D19Er 
td721e   

Q923D2 Blvrb protein (Biliverdin reductase B) (Flavin reductase (NADPH)) 5.5-6.7 S Blvrb   

Q923M1 Peptide methionine sulfoxide reductase (EC 1.8.4.6) (Protein-
methionine-S-oxide reductase) (PMSR) (Peptide Met(O) reductase) 5.5-6.7 S Msra   

Q924S5 Lon 5.5-6.7 M Prss15 Lon 
Q925D6 Mitogen-activated protein kinase kinase 6 5.0-6.0 S Map2k6 Mkk6 

Q99068 

Alpha-2-macroglobulin receptor-associated protein precursor (Alpha-
2-MRAP) (Low density lipoprotein receptor-related protein-
associated protein 1) (RAP) (GP330-binding 45 kDa protein) 
(Fragment) 

5.5-6.7 S Lrpap1   

Q99JB2 Stomatin-like protein 2 (SLP-2) 5.5-6.7 M Stoml2 Slp2 

Q99KE1 NAD-dependent malic enzyme, mitochondrial precursor (EC 
1.1.1.38) (NAD-ME) (Malic enzyme 2) 5.5-6.7 S Me2   

4.5-5.5 S 
5.5-6.7 M Q99KE2 Hnrpc protein 

4.5-5.5 M 

Hnrpc Hnrnpc 

4.5-5.5 S 
Q99KJ8 

Dynactin complex 50 kDa subunit (50 kDa dynein-associated 
polypeptide) (p50 dynamitin) (DCTN-50) (Dynactin 2) (Growth cone 
membrane protein 23-48K) (GMP23-48K) 4.5-5.5 M 

Dctn2   

Q99KP6 PRP19/PSO4 homolog (Nuclear matrix protein 200) (Nuclear matrix 
protein SNEV) 5.5-6.7 M Prpf19 Prp19, Snev 

Q99KR3 
Lactamase, beta 2 (Mus musculus 2 days neonate thymus thymic 
cells cDNA, RIKEN full-length enriched library, clone:E430032H21 
product:similar to hypothetical protein CGI-83) 

5.5-6.7 S Lactb2   

Q99KV1 DnaJ homolog subfamily B member 11 precursor 5.5-6.7 M Dnajb11   

Q99LC5 Electron transfer flavoprotein alpha-subunit, mitochondrial precursor 
(Alpha-ETF) 5.5-6.7 M Etfa   

Q99MB4 COBW domain-containing protein 1 4.5-5.5 S Cbwd1   
Q99MI5 Spermidine synthase 4.5-5.5 S Srm   
Q99MZ8 LIM and SH3 domain protein 1 (LASP-1) 5.5-6.7 S Lasp1   
Q99NA5 NAD+-specific isocitrate dehydrogenase a-subunit 5.5-6.7 S Idh3a   

5.5-6.7 S 
Q99PF5 

Far upstream element binding protein 2 (FUSE binding protein 2) 
(KH type splicing regulatory protein) (KSRP) (MAP2 RNA trans-
acting protein 1) (MARTA1) 5.5-6.7 M 

Khsrp Fubp2 

5.5-6.7 S 
Q9CPY7 

Cytosol aminopeptidase (EC 3.4.11.1) (Leucine aminopeptidase) 
(LAP) (Leucyl aminopeptidase) (Proline aminopeptidase) (EC 
3.4.11.5) (Prolyl aminopeptidase) 5.5-6.7 M 

Lap3 Lapep 

4.5-5.5 S 
Q9CQ60 6-phosphogluconolactonase (EC 3.1.1.31) (6PGL) 

5.0-6.0 S 
Pgls   

Q9CQ65 
S-methyl-5-thioadenosine phosphorylase (EC 2.4.2.28) (5'-
methylthioadenosine phosphorylase) (MTA phosphorylase) 
(MTAPase) 

5.5-6.7 S Mtap   

Q9CQU0 Thioredoxin domain-containing protein 12 [Precursor] 4.5-5.5 S Txndc12 Tlp19 

Q9CRB9 

Mus musculus 18-day embryo whole body cDNA, RIKEN full-length 
enriched library, clone:1110007B06 product:hypothetical protein, full 
insert sequence (Mus musculus adult male kidney cDNA, RIKEN full-
length enriched library, clone:0610) 

5.5-6.7 M Chchd3   

Q9CS42 Ribose-phosphate pyrophosphokinase II (EC 2.7.6.1) 
(Phosphoribosyl pyrophosphate synthetase II) (PRS-II) 5.5-6.7 M Prps2   
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Q9CUB4 
Mus musculus adult male testis cDNA, RIKEN full-length enriched 
library, clone:4933430B08 product:hypothetical protein, full insert 
sequence. (Fragment) 

5.5-6.7 M 1110020 
G09Rik   

5.5-6.7 S 
Q9CVB6 

Mus musculus adult male stomach cDNA, RIKEN full-length enriched 
library, clone:2210023N03 product:actin related protein 2/3 complex, 
subunit 2 (34 kDa), full insert sequence. (Fragment) 5.5-6.7 M 

Arpc2   

4.5-5.5 S 
Q9CX34 Suppressor of G2 allele of SKP1 homolog 

4.5-5.5 M 
Sugt1   

Q9CX56 26S proteasome non-ATPase regulatory subunit 8 (26S proteasome 
regulatory subunit S14) 5.5-6.7 S Psmd8   

Q9CXW2 Mitochondrial 28S ribosomal protein S22 (S22mt) (MRP-S22) 5.5-6.7 M Mrps22 Rpms22 

Q9CYH1 
Mus musculus 8 days embryo whole body cDNA, RIKEN full-length 
enriched library, clone:5730470C09 product:PARASPECKLE 
PROTEIN 1 ALPHA ISOFORM homolog 

5.5-6.7 M Pspc1   

4.5-5.5 S 
Q9CZC8 Secernin 1 

4.5-5.5 M 
Scrn1 Kiaa0193 

5.5-6.7 S 
Q9CZD3 Glycyl-tRNA synthetase (EC 6.1.1.14) (Glycine--tRNA ligase) 

(GlyRS) 5.5-6.7 M 
Gars   

Q9CZP1 WD repeat protein 61 4.5-5.5 S Wdr61   
5.5-6.7 S 

Q9D0K2 
Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, mitochondrial 
precursor (EC 2.8.3.5) (Somatic-type succinyl CoA:3-oxoacid CoA-
transferase) (Scot-S) 5.5-6.7 M 

Oxct1 Oxct, Scot 

Q9D1E6 Tubulin-specific chaperone B 4.5-5.5 S Ckap1   
Q9D1J3 Nuclear protein Hcc-1 5.5-6.7 M Hcc1   

Q9D1L1 
Mus musculus 18-day embryo whole body cDNA, RIKEN full-length 
enriched library, clone:1110003P10 product:unclassifiable, full insert 
sequence (Idh3a protein) 

5.5-6.7 M Idh3a   

Q9D1M0 SEC13-related protein 4.5-5.5 S Sec13l1   

Q9D1Q6 Thioredoxin domain-containing protein 4 [Precursor] 4.5-5.5 S Txndc4 Erp44, 
Kiaa0573 

Q9D819 Inorganic pyrophosphatase 4.5-5.5 S Ppa1 Pp, Pyp 

Q9D880 Import inner membrane translocase subunit TIM50, mitochondrial 
[Precursor] 5.5-6.7 M Timm50 Tim50 

Q9D892 Inosine triphosphate pyrophosphatase 4.5-5.5 S Itpa   
Q9D8Y0 EF-hand domain-containing protein 2 4.5-5.5 S Efhd2 Sws1 

Q9DAK9 14 kDa phosphohistidine phosphatase (EC 3.1.3.-) (Phosphohistidine 
phosphatase 1) 5.0-6.0 S Phpt1 Php14 

5.5-6.7 S 
Q9DBP5 UMP-CMP kinase (EC 2.7.4.14) (Cytidylate kinase) (Deoxycytidylate 

kinase) (Cytidine monoph 5.0-6.0 S 
Cmpk Cmk, Uck, 

Umk, Umpk 

4.5-5.5 S 
Q9DCH4 Eukaryotic translation initiation factor 3 subunit 5 (eIF-3 epsilon) 

(eIF3 p47 subunit) (eIF3f) 4.5-5.5 M 
Eif3s5   

Q9DCT2 NADH-ubiquinone oxidoreductase 30 kDa subunit, mitochondrial 
precursor (EC 1.6.5.3) (EC 1.6.99.3) (Complex I-30KD) (CI-30KD) 5.5-6.7 M Ndufs3   

Q9EPC6 Profilin-2 (Profilin II) 5.5-6.7 S Pfn2   
Q9EQS0 Transaldolase (EC 2.2.1.2) 5.5-6.7 S Taldo1   

5.5-6.7 S 
Q9EQX9 Bendless protein (Ubiquitin-conjugating enzyme E2N) (Homologous 

to yeast UBC13) 5.0-6.0 S 
Ube2n   

Q9ER23 RP59 protein 6.0-9.0 M Hemgn Rp59 
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Q9ER34 Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) (Citrate 
hydro-lyase) 5.5-6.7 M Aco2   

Q9ER34 Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) (Citrate 
hydro-lyase) 6.0-9.0 M Aco2   

Q9ERS2 NADH-ubiquinone oxidoreductase B16.6 subunit (EC 1.6.5.3) (EC 
1.6.99.3) (Complex I-B16.6) 5.0-6.0 S Ndufa13 Grim19 

Q9ES53 UFD1 5.5-6.7 S Ufd1l   

Q9ES56 Trafficking protein particle complex subunit 4 (Synbindin) (TRS23 
homolog) 5.5-6.7 M Trappc4 Sbdn 

Q9JHB5 Trax (Translin-associated factor X) 5.5-6.7 S Tsnax Trax 
Q9JHL4 Drebrin-like protein 4.5-5.5 S Dbnl Sh3p7 

5.5-6.7 S 
6.0-9.0 S 
6.0-9.0 M 
6.0-9.0 S 

Q9JHU0 Dihydropyrimidinase-related protein 5 (DRP-5) (ULIP6 protein) 

5.5-6.7 M 

Dpysl5 Ulip6 

Q9JHU5 Arfaptin 1 5.5-6.7 M Arfip1   
5.5-6.7 S 

Q9JHW0 
Proteasome subunit beta type 7 precursor (EC 3.4.25.1) 
(Proteasome subunit Z) (Macropain chain Z) (Multicatalytic 
endopeptidase complex chain Z) 5.5-6.7 M 

Psmb7   

Q9JHW2 
Nit protein 2 (Mus musculus 18-day embryo whole body cDNA, 
RIKEN full-length enriched library, clone:1190017B19 product:NIT 
PROTEIN 2 (CUA002) homolog) 

5.5-6.7 S Nit2 D16Ertd502e 

Q9JHZ3 GRIP1-associated protein 1 4.5-5.5 S Gripap1 Grasp1 

Q9JIY5 
Serine protease HTRA2, mitochondrial precursor (EC 3.4.21.-) (High 
temperature requirement protein A2) (HtrA2) (Omi stress-regulated 
endoprotease) (Serine proteinase OMI) 

5.5-6.7 M Htra2 Omi, Prss25 

5.5-6.7 S 
Q9JJ54 Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich 

element RNA-binding protein 1) 5.5-6.7 M 
Hnrpd Auf1 

Q9JKB3 RNA binding protein MSY4 5.5-6.7 M Csda Msy4, Ybx3 

Q9JLJ3 4-trimethylaminobutyraldehyde dehydrogenase (EC 1.2.1.47) 
(TMABADH) (Aldehyde dehydrogenase 9A1) (EC 1.2.1.3) 5.5-6.7 S Aldh9a1   

Q9JLP1 Sam68-like protein SLM-2 6.0-9.0 M Khdrbs3 Slm2 

Q9JLZ1 Thioredoxin-like 2 protein (PKC-interacting cousin of thioredoxin) 5.0-6.0 S Txnl2 Picot 

Q9JMA1 Ubiquitin carboxyl-terminal hydrolase 14 4.5-5.5 S Usp14   
Q9JMB5 Adhesion-regulating molecule 1 [Precursor] 4.5-5.5 S Adrm1 Gp110 

Q9JMJ4 PRP19/PSO4 homolog (Neuronal differentiation-related gene 
protein) 5.5-6.7 S Prpf19 Prp19 

Q9QUL6 N-ethylmaleimide sensitive factor 5.5-6.7 M Nsf ERG1, NSF 

Q9QUM9 
Proteasome subunit alpha type 6 (EC 3.4.25.1) (Proteasome iota 
chain) (Macropain iota chain) (Multicatalytic endopeptidase complex 
iota chain) 

5.5-6.7 M Psma6   

Q9QXT0 MIR-interacting saposin-like protein [Precursor] 4.5-5.5 S Tmem4 Msap, Zsig9 
Q9QYB1 Chloride intracellular channel protein 4 (mc3s5/mtCLIC) 5.0-6.0 S Clic4   
Q9QYF9 Protein NDRG3 4.5-5.5 S Ndrg3 Ndr3 

4.5-5.5 S 
5.0-6.0 S Q9QYU4 Mu-crystallin homolog (CDK108) 

4.5-5.5 M 

Crym   
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4.5-5.5 S 
Q9QZ06 Toll-interacting protein 

4.5-5.5 M 
Tollip   

5.5-6.7 S 
Q9QZ88 Vacuolar protein sorting 29 (Vesicle protein sorting 29) 

5.5-6.7 M 
Vps29   

Q9QZD9 Eukaryotic translation initiation factor 3 subunit 2 (eIF-3 beta) (eIF3 
p36) (eIF3i) (TGF-beta receptor interacting protein 1) (TRIP-1) 4.5-5.5 M Eif3s2 Trip1 

Q9R063 Peroxiredoxin 5, mitochondrial precursor (EC 1.11.1.15) (Prx-V) 
(Peroxisomal antioxidant enzyme) 6.0-9.0 S Prdx5   

Q9R1T4 Septin 6 5.5-6.7 M Sep-06   

Q9WTV5 26S proteasome non-ATPase regulatory subunit 9 (26S proteasome 
regulatory subunit p27) (Transactivating protein Bridge-1) 5.5-6.7 S Psmd9   

Q9WVK4 EH-domain containing protein 1 (mPAST1) 5.5-6.7 S Ehd1 Past1 
Q9Z0P5 Twinfilin-2 5.5-6.7 S Ptk9l   

Q9Z0T0 Thiopurine S-methyltransferase (EC 2.1.1.67) (Thiopurine 
methyltransferase) 5.5-6.7 S Tpmt   

5.5-6.7 S 
Q9Z0V5 PRx IV (Peroxiredoxin 4) 

5.5-6.7 M 
Prdx4 PRx IV 

Q9Z0V6 PRx III 5.5-6.7 M Prdx3 PRx III 
Q9Z130 JKTBP (Heterogeneous nuclear ribonucleoprotein D-like) 5.5-6.7 M Hnrpdl   
Q9Z1B2 Glutathione s-transferase M5 (EC 2.5.1.18) 5.5-6.7 S Gstm5   
Q9Z1F9 Ubiquitin-like 1-activating enzyme E1B 4.5-5.5 S Uble1b Sae2, Uba2 

Q9Z1N4 
3'(2'),5'-bisphosphate nucleotidase 1 (EC 3.1.3.7) (Bisphosphate 3'-
nucleotidase 1) (PAP-inositol-1,4-phosphatase) (PIP) (scHAL2 
analogous 3) 

5.5-6.7 S Bpnt1 Sal3 

Q9Z1Z2 Serine-threonine kinase receptor-associated protein (UNR-
interacting protein) 4.5-5.5 M Strap Unrip 

Q9Z1Z6 Protein phosphatase 2C 5.5-6.7 S Ilkap   

Q9Z204 Heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1 / 
hnRNP C2) 4.5-5.5 M Hnrpc Hnrnpc 

5.5-6.7 S 
Q9Z254 

RGS19-interacting protein 1 (GAIP C-terminus interacting protein 
GIPC) (RGS-GAIP interacting protein) (GLUT1 C-terminal binding 
protein) (GLUT1CBP) 5.5-6.7 M 

Gipc1 Gipc, 
Rgs19ip1 

Q9Z2F5 
C-terminal binding protein 1 (EC 1.1.1.-) (CtBP1) (C-terminal binding 
protein 3) (CtBP3) (50 kDa BFA-dependent ADP-ribosylation 
substrate) (BARS-50) 

5.5-6.7 S Ctbp1 Bars, Ctbp3 

Q9Z2I8 

Succinyl-CoA ligase [GDP-forming] beta-chain, mitochondrial 
precursor (EC 6.2.1.4) (Succinyl-CoA synthetase, betaG chain) 
(SCS-betaG) (GTP-specific succinyl-CoA synthetase beta subunit) 
(Fragment) 

5.5-6.7 M Suclg2   

5.5-6.7 M 
5.0-6.0 M Q9Z2L0 Voltage-dependent anion-selective channel protein 1 (VDAC-1) 

(rVDAC1) ( Outer mitochondrial membrane protein porin 1) 
5.0-6.0 S 

Vdac1   

Q9Z2Q6 Septin 5 (Peanut-like protein 1) (Cell division control related protein 
1) (CDCREL-1) (Fragment) 5.5-6.7 M Sep-05 Pnutl1 

Q9Z2X1 Heterogeneous nuclear ribonucleoprotein F 4.5-5.5 S Hnrpf   

Q9Z339 Glutathione transferase omega 1 (EC 2.5.1.18) (GSTO 1-1) 
(Glutathione-dependent dehydroascorbate reductase) 5.5-6.7 S Gsto1   

 

Accession number, corresponding to Swiss-Prot/Uniprot database entry; Protein name, Gene Name 
and Gene Synonym were automatically retrieved from Swiss-Prot/Uniprot database; Gel(s) column 
indicates IPG strips used (4.5-5.5; 5.0-6.0; 5.5-6.7; or 6.0-9.0) and the protein fraction where the spot 
was found (S, soluble fraction from ultracentrifugation; M, pellet from ultracentrifugation – S126) 
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4.2.5 - Clustering analysis of proteomic changes induced by BDNF 

Large scale protein identifications and differential expression data obtained from proteomic 

studies return large amounts of information with no functional interpretation. The excessive 

focusing on highly regulated genes may lead to the rejection of possibly relevant changes 

occuring in other proteins showing subtle abundance changes (Andersen, J. S. et al., 2005; 

Busold, C. H. et al., 2005). The functional clustering of the latter groups of proteins with other 

proteins showing higher expression changes contributes to functional interpretation of the 

results, highlighting groups of proteins, such as pathways, that represent challenging points 

for further analysis. Therefore, GOMiner “a tool for biological interpretation of 'omic' data” 

was used to cluster the genes of interest according to their ontologies. 

After spot quantification and correlation with the data from spot identification, the results were 

organized in a format compatible with GOMiner. This software imports lists of genes and the 

information regarding their expression: downregulated (-1), up-regulated (1), or unchanged 

(0). This step required the manual analysis of each gene, mainly because some proteins 

were found in more than one spot, and the effect of BDNF was not always conserved in the 

various spots containing the same protein. Table VI shows data manually processed and 

imported into GOMiner, and contains protein name, gene name (automatically retrieved 

from Swiss/Prot using the accession number), spot number (SSP), and the pH range where 

the spot was detected. The fold change in the protein levels induced by BDNF when 

compared to the control condition, the statistical analysis of the results (using unpaired 

Student’s t test; p<0.05) and whether the observed changes are statistically significant (Yes, 

No, or showing a “trend”, as in Table IV) are also shown in Table VI. When a given protein 

was present in more than one spot and data were not consistent (with some spots showing 

an upregulation and other(s) showing a downregulation) the effect of BDNF on protein 

expression was decided considering the following importance order: statistically different 

(Yes) > trend (T) > not statistically different (NO). After importing this information into 

GOMiner, the software imports a database from the internet containing gene ontology and 

classifications, and clusters the genes according to their ontologies (Fig. 4.15 and Fig. 4.16). 
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Table VI – Data gathered from gel analysis (differential expression and protein ID) used for 
clustering analysis by GOMiner 
 
Gene Name Protein name SSP Ratio Stat. dif? Spot  

Up, down 
Protein 

Up, down pH range Accession 
number 

5408 1.11 T 1 5.5-6.7 
Actr1a Alpha-centractin (ARP1) 

6402 1.08 NO 1 
1 

5.5-6.7 
P61164 

Actr2 Actin-related protein 2 6307 1.39 T 1 1 5.5-6.7 Q5M7U6 

Aldh1b1 Aldehyde dehydrogenase 
1 family, member B1 6507 1.41 YES 1 1 5.5-6.7 Q66HF8 

4501 1.85 NO 1 5.5-6.7 
Aldh2 

Aldehyde 
dehydrogenase, 
mitochondrial precursor 4503 1.21 NO 1 

1 
5.5-6.7 

P11884 

Arcn1 Archain 4708 1.57 T 1 1 5.5-6.7 Q66H80 
4107 1.07 YES 1 4.5-5.5 
4108 2.71 NO 1 4.5-5.5 Arhgdia Rho GDP dissociation 

inhibitor (GDI) alpha 
3220 0.55 YES -1 

0 
4.5-5.5 

Q5XI73 

Atp6v1a 
Vacuolar ATP synthase 
catalytic subunit A, 
ubiquitous isoform 

8701 0.85 T -1 -1 4.5-5.5 P50516 

2103 0.76 YES -1 5.5-6.7 
Blvra Biliverdin reductase A 

precursor 4102 0.68 YES -1 
-1 

5.5-6.7 
P46844 

Cab39 Calcium binding protein 
39 (Mo25) 8203 1.89 NO 1 1 5.5-6.7 Q06138 

4504 1.18 YES 1 5.5-6.7 
Cct2 T-complex protein 1, beta 

subunit (TCP-1-beta) 3504 1.40 NO 1 
1 

5.5-6.7 
P80314 

Cct3 
Chaperonin containing 
TCP1, subunit 3 
(Gamma) 

5709 1.44 YES 1 1 5.5-6.7 Q6P502 

Cdk4 
Cell division protein 
kinase 4 (Cyclin-
dependent kinase 4) 

4107 0.88 T -1 -1 5.5-6.7 P35426 

3204 1.01 NO 0 5.5-6.7 
Crkl Similar to Crk-like protein 

5208 0.79 T -1 
-1 

5.5-6.7 
Q5U2U2 

6805 1.76 YES 1 5.5-6.7 
7803 1.11 NO 1 5.5-6.7 
7609 1.17 YES 1 5.5-6.7 
7604 1.39 NO 1 5.5-6.7 

Crmp1 Dihydropyrimidinase 
related protein-1 (DRP-1) 

8609 1.55 NO 1 

1 

5.5-6.7 

Q62950 

6310 0.87 YES -1 4.5-5.5 
Crym Mu-crystallin homolog 

5309 1.34 NO 1 
-1 

4.5-5.5 
Q9QYU4 

Ddt D-dopachrome 
tautomerase 5008 0.62 T -1 -1 5.5-6.7 P80254 

6302 0.61 YES -1 5.5-6.7 
Dlg2 

Channel associated 
protein of synapse-110 
(Chapsyn-110) (Synaptic 
density protein PSD-93) 

7201 0.83 NO -1 
-1 

5.5-6.7 
Q63622 

Dnajb11 LRRGT00084 5302 1.52 YES 1 1 5.5-6.7 Q6TUG0 
2713 0.98 NO 0 5.5-6.7 
2708 0.74 YES -1 5.5-6.7 
3703 1.35 NO 1 5.5-6.7 
3707

? 1.17 NO 1 5.5-6.7 

3708
? 0.93 NO 0 5.5-6.7 

3710 1.36 NO 1 5.5-6.7 
3713

? 1.53 NO 1 5.5-6.7 

3714 1.34 T 1 5.5-6.7 
3716 1.39 NO 1 5.5-6.7 

Dpysl2 Dihydropyrimidinase 
related protein-2  
(DRP-2) 

3906 1.73 YES 1 

1 

5.5-6.7 

P47942 

Administrator
Rectangle
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4702 0.95 NO 0 5.5-6.7 
4705 1.39 YES 1 5.5-6.7 
5602 1.38 T 1 5.5-6.7 
5704 1.36 NO 1 5.5-6.7 
2606 0.89 NO -1 5.5-6.7 
3602 0.96 NO 0 5.5-6.7 
3605 1.02 NO 0 5.5-6.7 
4601 0.88 NO -1 5.5-6.7 
5601 1.33 T 1 5.5-6.7 

Dpysl3 Collapsin response 
mediator protein 4 

5606 1.62 T 1 

1 

5.5-6.7 

Q91XM8 

4709 2.2 T 1 4.5-5.5 
Dync1i2 Dynein intermediate 

chain 2 5726 1 NO 0 
1 

4.5-5.5 
Q62871 

6403 1.62 NO 1 5.5-6.7 
Eef1g Elongation factor 1-

gamma (EF-1-gamma) 6404 1.52 NO 1 
1 

5.5-6.7 
Q68FR6 

Eef2 Elongation factor 2  
(EF-2) 8804 5.60 NO 1 1 5.5-6.7 P05197 

Eif2b2 

Translation initiation 
factor eIF-2B beta 
subunit (eIF-2B GDP-
GTP exchange factor) 

3305 0.86 T -1 -1 5.5-6.7 Q62818 

Eif3s5 
Eukaryotic translation 
initiation factor 3 subunit 
5 (eIF-3 epsilon) 

5512 1.66 YES 1 1 4.5-5.5 Q9DCH4 

3406 0.88 NO -1 5.5-6.7 
3511 0.86 NO -1 5.5-6.7 
3512 0.94 NO -1 5.5-6.7 
4410 1.22 YES 1 5.5-6.7 
4507 1.11 T 1 5.5-6.7 
5502 1.38 NO 1 5.5-6.7 

Eno1 Alpha enolase  
(Enolase 1) 

6402 1.02 NO 1 

1 

5.5-6.7 

P04764 

4502 3.53 NO 1 4.5-5.5 
3514 1 NO 0 4.5-5.5 Eno2 Gamma enolase  

(Neural enolase) 
3505 2.01 NO 1 

1 
4.5-5.5 

P07323 

Erp29 
Endoplasmic reticulum 
protein ERp29 precursor 
(ERp31) 

4106 0.88 T -1 -1 5.5-6.7 P52555 

5507 1.42 T 1 5.5-6.7 
Fscn1 Fascin  

(Singed-like protein) 7501 1.99 YES 1 
1 

5.5-6.7 
Q61553 

Ftl1 Ferritin light chain 
(Ferritin L subunit) 4004 0.77 YES -1 -1 5.5-6.7 P02793 

Gamt Guanidinoacetate N-
methyltransferase 2102 0.66 T -1 -1 5.5-6.7 P10868 

2710 1.18 YES 1 5.5-6.7 
2715 1.54 T 1 5.5-6.7 Gars Gars protein  

(Fragment) 
3702 1.14 NO 1 

1 
5.5-6.7 

Q5I0G4 

Gatm 

Glycine 
amidinotransferase, 
mitochondrial precursor 
(Transamidinase) 

6405 1.34 T 1 1 5.5-6.7 P50442 

Glul Glutamine synthetase 7312 0.88 T -1 -1 5.5-6.7 P09606 

Gmppb 
GDP-Mannose 
pyrophosphorylase b 
homolog - RIKEN 

7302 2.31 T 1 1 5.5-6.7 Q8BTZ7 

5701 1.53 YES 1 5.5-6.7 
5708 1.23 T 1 5.5-6.7 Gmps Gmps protein  

(Fragment) 
6703 1.47 YES 1 

1 
5.5-6.7 

Q66JZ6 

Gphn Gephyrin 5811 2.99 T 1 1 4.5-5.5 Q03555 

Grb2 
Growth factor receptor-
bound protein 2 (GRB2 
adapter protein) 

2005 0.84 YES -1 -1 5.5-6.7 P62994 
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Gsta4 Glutathione S-transferase 
8 8003 0.80 YES -1 -1 5.5-6.7 P14942 

2304 1.12 YES 1 4.5-5.5 
Hnrpc Hnrpc protein 

3303 1.09 T 1 
1 

4.5-5.5 
Q99KE2 

3207 2.33 YES 1 5.5-6.7 
Hnrpdl 

JKTBP (Heterogeneous 
nuclear ribonucleoprotein 
D-like) 5201 1.10 T 1 

1 
5.5-6.7 

Q9Z130 

2406 1.42 T 1 5.5-6.7 Hnrph1 
 

Heterogeneous nuclear 
ribonucleoprotein H 
(hnRNP H) 2403 1.17 T 1 

1 
5.5-6.7 

O35737 

2506 0.82 T -1 5.5-6.7 
2405 1.71 T 1 5.5-6.7 Hnrph2 Heterogeneous nuclear 

ribonucleoprotein H2 
3401 1.00 NO 0 

1 
5.5-6.7 

Q6AY09 

4701 2.4 YES 1 4.5-5.5 
5704 1.94 YES 1 4.5-5.5 
5708 0.96 NO -1 4.5-5.5 
5710 1.04 NO 1 4.5-5.5 
5725 0.99 NO -1 4.5-5.5 
7702 2.08 YES 1 4.5-5.5 

Hnrpk Heterogeneous nuclear 
ribonucleoprotein K 

7709 1.8 NO 1 

1 

4.5-5.5 

P61980 

8603 0.79 T -1 5.5-6.7 
Hnrpl 

Heterogeneous nuclear 
ribonucleoprotein L 
(hnRNP L) 8606 0.71 T -1 

-1 
5.5-6.7 

Q8R081 

Hsp105 Heat shock protein 105 7802 1.51 NO 1 1 4.5-5.5 Q66HA8 
5813 0.75 YES -1 4.5-5.5 

Hspa4 Heat shock 70 kDa 
protein 4 5805 0.94 NO -1 

-1 
4.5-5.5 

Q61316 

7605 1.1 YES 1 4.5-5.5 
7614 1.17 NO 1 4.5-5.5 Hspd1 

60 kDa heat shock 
protein, mitochondrial 
precursor (Hsp60) 7606 0.77 T -1 

1 
4.5-5.5 

P63039 

Ide Insulin-degrading 
enzyme 3907 2.00 YES 1 1 5.5-6.7 P35559 

Idh3a Idh3a protein RIKEN 2201 1.15 YES 1 1 5.5-6.7 Q9D1L1 

Itpa Inosine triphosphate 
pyrophosphatase 7005 0.88 T -1 -1 4.5-5.5 Q9D892 

Khsrp 

Far upstream element 
binding protein 2 (FUSE 
binding protein 2) 
(MARTA1) 

8707 0.64 NO -1 -1 5.5-6.7 Q99PF5 

Lactb2 Lactamase, beta 2 - 
RIKEN 3209 2.02 NO 1 1 5.5-6.7 Q99KR3 

Lrpap1 

Alpha-2-macroglobulin 
receptor-associated 
protein precursor 
(Alpha-2-MRAP) 

8308 0.69 YES -1 -1 5.5-6.7 Q99068 

Lrpprc Leucine rich protein 157 3908 3.13 T 1 1 5.5-6.7 Q5SGE0 
6212 0.74 T -1 4.5-5.5 

Mapre1 
Microtubule-associated 
protein RP/EB family 
member 1 6201 1.02 NO 0 

-1 
4.5-5.5 

Q66HR2 

Mat2a 
S-adenosylmethionine 
synthetase gamma form 
(MAT-II) 

4407 1.42 YES 1 1 5.5-6.7 P18298 

Mpst 3-mercaptopyruvate 
sulfurtransferase 3109 0.83 T -1 -1 5.5-6.7 P97532 

Napb 
Beta-soluble NSF 
attachment protein 
(SNAP-beta) 

6309 0.69 YES -1 -1 4.5-5.5 P28663 

Nme2 Nucleoside diphosphate 
kinase B 7003 0.74 YES -1 -1 5.5-6.7 P19804 

6111 0.82 NO -1 5.5-6.7 
Np Purine nucleoside 

phosphorylase 6106 1.33 YES 1 
1 

5.5-6.7 
P23492 

Nt5c3l 5'-nucleotidase, cytosolic 
III-like 3107 0.80 T -1 -1 5.5-6.7 Q6AYP7 
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3409 0.35 T -1 5.5-6.7 

Oat 
Ornithine 
aminotransferase, 
mitochondrial precursor 4406 1.18 YES 1 

1 
5.5-6.7 

P04182 

Oxct1 

Succinyl-CoA:3-ketoacid-
coenzyme A transferase 
1, mitochondrial 
precursor 

8508 0.77 T -1 -1 5.5-6.7 Q9D0K2 

Park7 
DJ-1 protein 
(Contraception-
associated protein 1) 

4003 0.85 T -1 -1 5.5-6.7 O88767 

Pc Pyruvate carboxylase, 
mitochondrial precursor 6901 1.54 T 1 1 5.5-6.7 P52873 

6303 0.88 YES -1 5.5-6.7 
Pcbp1 Poly(rC)-binding protein 1 

7302 2.31 T 1 
-1 

5.5-6.7 
P60335 

Pcbp2 Pcbp2 protein 6302 2.00 NO 1 1 5.5-6.7 Q6AYU2 

Pdia3 Protein disulfide-
isomerase A3 precursor 2301 1.13 NO 1 1 5.5-6.7 P11598 

4505 1.7 T 1 4.5-5.5 
Pdia6 

Protein disulfide-
isomerase A6 precursor 
(Calcium-binding protein 
1) (CaBP1) (Fragment) 

4512 1.12 NO 1 
1 

4.5-5.5 
Q63081 

Pdxk Pyridoxal kinase 6102 1.18 T 1 1 5.5-6.7 O35331 

Pdxp Pyridoxal phosphate 
phosphatase 7210 0.66 YES -1 -1 4.5-5.5 Q8VD52 

Pgd 6-phosphogluconate 
dehydrogenase 8403 4.99 T 1 1 5.5-6.7 Q7TP11 

Pgm1 Phosphoglucomutase 5703 1.23 T 1 1 5.5-6.7 P38652 
5504 1.18 NO 1 5.5-6.7 

Phgdh D-3-phosphoglycerate 
dehydrogenase 6505 1.89 T 1 

1 
5.5-6.7 

O08651 

3105 0.80 T -1 5.5-6.7 
Pitpna 

Phosphatidylinositol 
transfer protein alpha 
isoform (PtdInsTP) 4109 1.06 NO 0 

-1 
5.5-6.7 

P16446 

Ppm1a Protein phosphatase 2C 
isoform alpha 5514 0.65 T -1 -1 4.5-5.5 P20650 

Ppp2r2a 

Serine/threonine protein 
phosphatase 2A, 55 kDa 
regulatory subunit B, 
alpha isoform 

3403 1.43 YES 1 1 5.5-6.7 P36876 

Ppp2r4 Protein phosphatase 2A, 
regulatory subunit B' 3201 1.21 YES 1 1 5.5-6.7 P58389 

Prdx2 Peroxiredoxin 2 5407 1.59 YES 1 1 4.5-5.5 P35704 
7119 0.42 YES -1 4.5-5.5 
2002 0.79 YES -1 5.5-6.7 Prdx6 Peroxiredoxin 6 
2002 0.86 T -1 

-1 
5.5-6.7 

O35244 

Psma2 Proteasome subunit 
alpha type 2 8003 2.08 NO 1 1 5.5-6.7 P49722 

         

Psmb3 Proteasome subunit beta 
type 3 4112 0.83 T -1 -1 5.5-6.7 P40112 

Psmb7 Proteasome subunit beta 
type 7 precursor 3106 0.78 T -1 -1 5.5-6.7 Q9JHW0 

Psmc2 26S protease regulatory 
subunit 7 (MSS1 protein) 2401 1.17 T 1 1 5.5-6.7 Q63347 

Psmc3 26S protease regulatory 
subunit 6A 5506 1.52 T 1 1 4.5-5.5 Q63569 

Psmd14 
26S proteasome non-
ATPase regulatory 
subunit 14 

3111 0.50 YES -1 -1 5.5-6.7 O35593 
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Gene Names were automatically retrieved from the Swiss-Prot/Expasy database, based on the 
Accession Numbers identified by mass spectrometry; Protein name retrieved from SwissProt; spot 
number from gel analysis (SSP); Ratio (BDNF/control); statistical significance (Yes, P<0.05; No, 
P>0.05, T, “Trend”); GOMiner imported value indicating Protein upregulation (1) downregulation (-1) or 
unchanged (0). 
*unnamed gene, not imported into GOMiner 

7205 3.72 YES 1 5.5-6.7 

Psmd7 
26S proteasome non-
ATPase regulatory 
subunit 7 8217 2.15 YES 1 

1 
5.5-6.7 

P26516 

Psmd8 

26S proteasome non-
ATPase regulatory 
subunit 8 (26S 
proteasome regulatory 
subunit S14) 

2104 0.47 YES -1 -1 5.5-6.7 Q9CX56 

6804 1.99 YES 1 5.5-6.7 
6811 1.45 YES 1 5.5-6.7 Pygb Glycogen phosphorylase, 

brain form (Fragment) 
7801 1.64 NO 1 

1 
5.5-6.7 

P53534 

Rplp0 60S acidic ribosomal 
protein P0 (L10E) 1209 1.36 T 1 1 5.5-6.7 P19945 

4506 1.37 YES 1 5.5-6.7 
Ruvbl1 RuvB-like 1 (DNA 

helicase p50) 5508 1.09 NO 1 
1 

5.5-6.7 
P60123 

Sars1 Seryl-aminoacyl-tRNA 
synthetase 3607 1.26 YES 1 1 5.5-6.7 Q6P799 

6701 1.32 NO 1 5.5-6.7 
6704 1.02 NO 1 5.5-6.7 Stip1 Stress-induced-

phosphoprotein 1 (STI1) 
7704 1.33 T 1 

1 
5.5-6.7 

O35814 

Tbce Tubulin-folding protein 
TBCE 2504 1.61 NO 1 1 5.5-6.7 Q8CIV8 

Thop1 Thimet oligopeptidase 1809 1.25 T 1 1 5.5-6.7 P24155 
Tmod2 Tropomodulin-2 7403 0.73 YES -1 -1 4.5-5.5 P70566 

4701 2.35 T 1 5.5-6.7 
Trap1 

Tumor necrosis factor 
type 1 receptor 
associated protein 4706 3.43 T 1 

1 
5.5-6.7 

Q5XHZ0 

Trappc4 
Trafficking protein 
particle complex subunit 
4 (Synbindin) 

3002 0.91 YES -1 -1 5.5-6.7 Q9ES56 

7401 1.56 T 1 5.5-6.7 
Tufm Elongation factor Tu, 

Mitochondrial [percursor] 6409 1.58 YES 1 
1 

5.5-6.7 
Q8BFR5 

Txndc12 
Thioredoxin domain-
containing protein 12 
[Precursor]. 

7012 1.35 NO 1 1 4.5-5.5 Q9CQU0 

7801 1.73 NO 1 4.5-5.5 
6824 0.76 NO -1 4.5-5.5 Ube1x Ubiquitin-activating 

enzyme E1 1 
6801 0.9 NO -1 

0 
4.5-5.5 

Q02053 

4104 0.74 YES -1 4.5-5.5 
5110 0.95 NO -1 4.5-5.5 Uchl1 

Ubiquitin carboxyl-
terminal hydrolase 
isozyme L1 6112 0.82 NO -1 

-1 
4.5-5.5 

Q00981 

Usp14 Ubiquitin carboxyl-
terminal hydrolase 14 5613 2.32 NO 1 1 4.5-5.5 Q9JMA1 

Vcp 

Transitional endoplasmic 
reticulum ATPase 
(Valosin-containing 
protein) (VCP) 

5809 1.46 T 1 1 4.5-5.5 P46462 

Ezrin (Fragment) 2708 0.83 T -1  5.5-6.7 Q8VHK3 
3811 1.50 T 1 5.5-6.7 Vil2 

Ezrin 
3808 1.43 YES 1 

1 
5.5-6.7 

Q66H97 

Wdr1 WD repeat protein 1 6705 1.81 YES 1 1 5.5-6.7 Q5RKI0 

 
Phosphoprotein 
phosphatase (Fragment)* 2608 1.52 NO 1 1 5.5-6.7 Q64538 
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Figure 4.15 – Clustering software overview (I). (A) GOMiner overview showing on the left side 
the genes imported into the software, with information regarding the effect of BDNF on protein 
expression [upregulation ( ) or downregulation ( )], and on the right side (selected gene view) the 
gene ontologies attributed to the specific gene. (B) On the right side, the software clusters genes 
according to their GO, and shows clusters for each ontology. For each ontology the software 
provides the following information: first, the number of genes comprised on that ontology, followed 
by the relative enrichement of underexpressed genes (green) and their Fisher’s exact p-value; 
finally, it is shown the relative enrichement of overexpressed genes (red), their Fisher’s exact p-
value, and the false discovery rate (FDR) (Zeeberg, B. R. et al., 2003). 
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a) Gene names are underlined and preceded or followed by the protein name 

Once the data was imported into the GOMiner software, clustering analysis was performed 

for BDNF-induced changes in protein expression in cultured hippocampal neurons. The list of 

clusters formed shows that BDNF regulates the expression of proteins belonging to different 

functional groups, including “carbohydrate metabolism”, “cell proliferation”, “apoptosis”, 

“protein metabolism”, and “nucleobase, nucleoside, nucleotide and nucleic acid metabolism”. 

Figures 4.17 through 4.23 show these clusters, grouping proteins which expression was 

regulated by BDNF. The clusters show not only those proteins which expression changed in 

a statistically significant manner, but also those that showed less consistent variations, that 

did not reach statistical significance (refered as “NO” and “Trend” in Table VI). 

Considering that the differential expression analysis of the effect of BDNF on the 

hippocampal proteome was performed by monitoring the incorporation of radiolabelled amino 

acids into newly sinthesized proteins, the effect of the neurotrophin on protein levels is likely 

to reflect induction or repression of gene expression. Furthermore, considering the regular 

turnover of the proteins analysed, a change in the abundance of a given protein spot may be 

due to the induction or repression of protein degradation. Post-translational modifications of 

the proteins may also contribute to the observed changes. 

The results shown in Fig. 4.17 indicate that BDNF induced an overall increase in proteins 

involved in the “carbohydrate metabolism”, with ALDH1B1a) (Aldehyde dehydrogenase 1 

family member B1), IDH3A (Idh3a protein), PYGB (Glycogen phosphorylase, brain form), 

and ENO1 (Alpha enolase - Enolase 1) being significantly upregulated in the presence of the 

neurotrophin (Fig. 4.17A). These proteins play key roles in glycolysis, citrate cycle, and in the 

carbohydrate, starch and sucrose metabolism. Other proteins that were also upregulated, 

although the results did not reach statistical significance, included ALDH2 (Aldehyde 

dehydrogenase, mitochondrial precursor), ENO2 (Gamma enolase - Neural enolase), PC 

(Pyruvate carboxylase, mitochondrial precursor), PGD (6-phosphogluconate dehydrogenase) 

and PGM1 (Phosphoglucomutase) (Fig. 4.17B). These are known to be expressed in the 

brain, according to GeneCards, and are involved in glycolysis, citrate cycle, pentose 

phosphate pathway, and in the galactose, starch and sucrose metabolism.  

Several proteins belonging to the gene ontology “cell proliferation” were also regulated by 

BDNF in hippocampal neurons (Fig. 4.18). These include Fscn1 (Fscn1 protein - fragment) 

and NP (Purine nucleoside phosphorylase), which were upregulated, and LRPAP1 (Alpha-2-

macroglobulin receptor-associated protein precursor), UCHL1 (Ubiquitin carboxyl-terminal 
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hydrolase isozyme L1) and NME2 (Nucleoside diphosphate kinase B), which were 

significantly downregulated in the presence of BDNF (Fig. 4.18A). Other proteins of the same 

group were also downregulated by BDNF stimulation, including those translated from the 

genes CDK4 (Cell division protein kinase 4), MAPRE1 (Microtubule-associated protein 

RP/EB family member 1), and PARK7 (DJ-1 protein) (Fig. 4.18B), but these effects were not 

statistically significant. 

Apoptosis related genes, such as HSPD1 (60 kDa heat shock protein, mitochondrial 

precursor) and PRDX2 (Peroxiredoxin 2) were significantly upregulated by BDNF (Fig. 

4.19A). Other upregulated proteins belonging to this ontology included the products of VCP 

(Transitional endoplasmic reticulum ATPase), TRAP1 (Tumor necrosis factor type 1 receptor 

 
 
Fig. 4.17 – Cluster analysis of the BDNF-induced gene products involved in the 
carbohydrate metabolism. Genes which expression is significantly different in the presence of 
BDNF (A), and selected genes (B) based on the results shown in Table VI (“NO” and “Trend”). 
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associated protein), PDIA3 (Protein disulfide-isomerase A3 precursor), and CCT3 (T-

complex protein 1, gamma subunit) (Fig. 4.19B). 

Another important set of proteins regulated by BDNF in cultured hippocampal neurons are 

those involved in “protein metabolism”, including the ontologies “protein biosynthesis” and 

“translation” (Figures 4.20 and 4.21). These gene products include EIF3S5 (Eukaryotic 

translation initiation factor 3 subunit 5), GARS (Gars protein), SARS (Seryl-aminoacyl-tRNA 

synthetase), TUFM (Elongation factor Tu Mitochondrial), which were significantly upregulated 

by BDNF. In contrast TRAPPC4 (Trafficking protein particle complex subunit 4) was 

significantly downregulated by the neurotrophin (Figures 4.20). Other upregulated proteins 

belonging to this ontology included the products of the EEF1G (Elongation factor 1-gamma), 

EEF2 (Elongation factor 2) and RPLP0 (60S acidic ribosomal protein P0) genes, both 

upregulated by BDNF, and EIF2B2 (Translation initiation factor eIF-2B beta subunit) and 

KHSRP (Far upstream element binding protein 2), which were downregulated (Figures 4.21). 

These results show the upregulation of proteins involved in the protein synthesis 

mechanisms, including “translation” (arrow in Fig. 4.20, see section “4.3 – Discussion” for 

 
 
Fig. 4.18 – Cluster analysis of gene products regulated by BDNF - cell proliferation ontology. 
Genes which expression is significantly changed in the presence of BDNF (A), and selected genes 
(B) based on the results shown in Table VI (“NO” and “Trend”).
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further details). In contrast, proteins participating in the “ubiquitin-dependent protein 

catabolism” were up- or downregulated, showing a complex pattern of regulation of this type 

of activity in the cell. The PSMD7 (26S proteasome non-ATPase regulatory subunit 7) gene 

product was upregulated, whereas the PSMD14 (26S proteasome non-ATPase regulatory 

subunit 14) and UCHL1 (Ubiquitin carboxyl-terminal hydrolase isozyme L1) gene products 

were downregulated (Fig. 4.20).  

In addition to the control of protein levels through regulation of the biosynthesis mechanism, 

BDNF may also affect protein expression at the level of nucleic acids (Fig. 4.22 and 4.23), 

with several proteins involved in DNA, RNA, and tRNA metabolism being regulated in the 

presence of the neurotrophin. These include the gene products of HNRPDL (Heterogeneous 

nuclear ribonucleoprotein D-like), HNRPK (Heterogeneous nuclear ribonucleoprotein K), 

 
 
Fig. 4.19 – Cluster analysis of gene products regulated by BDNF - apoptosis ontology. 
Genes which expression is significantly different in the presence of BDNF (A) and seleted genes 
(B) based on the results shown in Table VI (“NO” and “Trend”).
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HNRPC (Heterogeneous nuclear ribonucleoprotein C) and SARS1 (Seryl-aminoacyl-tRNA 

synthetase), which were significantly upregulated by BDNF, and PCBP1 (Poly(rC)-binding 

protein 1), which was significantly downregulated by the neurotrophin (Fig. 4.22). Other 

proteins were also regulated by BDNF, although the results did not reached statistical 

significance, and included the HNRPH1 (Heterogeneous nuclear ribonucleoprotein H), 

PCBP2 (Pcbp2 protein) and EEF2 (Elongation factor 2) gene products, which were 

upregulated, in addition to the HNRPL (Heterogeneous nuclear ribonucleoprotein L) and 

KHSRP (Far upstream element binding protein 2), which were downregulated (see section 

“4.3 – Discussion” for further details).  
 

 
 
 
 
 
 

 
 
Fig. 4.20 – Cluster analysis of gene products regulated by BDNF - protein metabolism 
ontology. Image shows gene products which expression was significantly different in the presence 
of BDNF, with those involved in translation indicated by the arrow. The analysis was performed 
based on the data shown in Table VI. 
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Fig. 4.21 – Cluster analysis of gene products regulated by BDNF - protein metabolism 
ontology. Image shows gene products which expression was significantly different in the presence 
of BDNF (as in the previous figure), as well as other selected genes based on the results shown in 
Table VI (“NO” and “Trend”). Gene products involved in translation are indicated by the arrow. 
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Fig. 4.22 – Cluster analysis of gene products regulated by BDNF - nucleobase, nucleoside, 
nucleotide and nucleic acid metabolism ontology. Image shows gene products which 
expression was significantly different in the presence of BDNF. The clustering was performed 
based on the results shown in Table VI. 
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Fig. 4.23 – Cluster analysis of gene products regulated by BDNF - nucleobase, nucleoside, 
nucleotide and nucleic acid metabolism ontology. Image shows gene products which 
expression was significantly different (as in the previous figure), and also selected genes which 
expression changed in the presence of BDNF as indicated in Table VI (“NO” and “Trend”). 
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4.2.6 - Proteomic changes induced by BDNF in the S126 fraction – Gel-based and gel-free 

approaches 

Despite the achievements in reproducibility and sample solubilization accomplished in the 

gels analysed by autoradiography (Chapter 3.2.2), a higher amount of protein had to be 

applied to IPG strips for protein ID by MALDI-TOF MS (Fig. 4.9). The increase in protein 

loading of the strips causes inter-protein interactions, thereby decreasing their solubility. The 

S126 fraction contained membrane, membrane-associated proteins and other proteins 

insoluble in 50mM Tris/HCl that were also difficult to resolve in 2D-gels. Therefore, in order to 

further extend the analysis of the proteome of hippocampal neurons we used a different, high 

throughput, proteomics approach for protein ID and quantification of the S126 fraction, the 

2D-LC-MS/MS. This technique overcomes most of the problems associated with protein 

solubility issues, because instead of proteins, peptides are being resolved, which are more 

stable, consistent and highly reproducible between different experiments. 

 
Figure 4.24 – Proteomics workflow for the analysis of the S126 fraction. Cultured hippocampal 
neurons were treated as indicated in the caption of Fig. 4.5. The S126 fraction was analysed either 
using 2D-SDS-PAGE, as in Fig. 4.5, followed by trypsin digestion and MALDI-TOF-TOF analysis, 
or by using 2D-LC-MS/MS of digested peptides (non-radiolabelled). Data was gathered in Microsoft 
Excel Spreadsheets, processed and analysed. Results were grouped using GOminer. 



 

 

 
R

es
ul

ts
 

128 

The signal intensity of the peptides retrieved from the MALDI-TOF analysis is not typically 

used to derive the quantity of the protein. Therefore, the intensity of the spot measured in the 

radiolabelled gels was correlated with the mass spectrometric protein ID, as a final step (see 

section 4.2.3.1 – General workflow). In the liquid based approach shown in this section, 

quantification and identification are performed in the same step. The results of protein 

quantification with the two approaches cannot be fully compared because in the gel-based 

approach only radiolabelled spots (newly synthesized proteins) were quantified, while in the 

liquid-based approach all proteins are quantified (as discussed ahead). Although the 

workflow for these two approaches is totally different (Fig. 4.24) – 2D-LC handles and 

resolves peptides whereas 2D-gels were used for intact proteins – data from both methods 

were collected, gathered and analysed by using GOminer. In the liquid based approach, the 

quantification was performed using the iTRAQ labelling reagents, and the ProQuant software 

package. Although a free version of iTRAQ quantification software is available (Shadforth, I. 

P. et al., 2005), data integration was faster using distinct packages of the same company. A 

stable isotope label was introduced into each of the four samples that were to be quantified 

relatively to each other. Samples were then mixed, analysed by 2D-LC-MS/MS, and proteins 

identified and quantified (ratio between peptides with each isotopic label) (Andersen, J. S. 

and Mann, M., 2000).  

 
Figure 4.25 – Two-dimensional gel electrophoresis of the S126 fraction. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h, as indicated in Fig.4.5. Samples 
were then processed as in Fig. 3.5 (sonicated). Proteins were focused using IPG strips pH 4.5-5.5, 
5.0-6.0, 5.5-6.7 and 6.0-9.0. After the second dimension, gels were dried and placed in contact 
with a phosphor screen. Images were acquired using a STORM laser scanner. Quantification was 
performed using PDQuest (Bio-Rad).
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Using the 2D-gel approach, the proteins of the S126 fraction of cultured hippocampal 

neurons were resolved with IPG strips of pH 4.5-5.5, 5.0-6.0, 5.5-6.7 and 6.0-9.0 (Fig. 4.25, 

see also “Appendix – Supplementary data”). The workflow for the analysis of the S126 

fraction using 2D-LC-MS/MS consisted briefly in the following: samples were digested with 

trypsin, labelled with iTRAQ labelling kit, fractionated with strong cation-exchange HPLC, 

 

 
Figure 4.26 – Off-line 2D-LC-MS/MS of S126 fractions prepared from rat cultured 
hippocampal neurons. Figure shows strong cation exchange chromatogram (SCX) of the S126 
fraction, after trypsin digestion and iTRAQ labelling, using a PolySULFOETHYL ATM column 
(200×4.6mm, 5μm, 1000Å). Mobile phase: 25% ACN, 10mM KH2PO4 pH 3. Gradient: linear 
increase to 75% of mobile phase B (25% ACN, 10mM KH2PO4 pH 3 and 1M KCl) from 5min to 
35min at 1mL/min. Fractions containing 1mL were cleaned using RP (“trap”) chromatography 
(mobile phase A: 2% ACN, 0.1% formic acid (FA) and mobile phase B: 98% ACN, 0.1% FA at 
1mL/min). Peptides were eluted into the MS system with a binary gradient (300nL/min) from 100% 
mobile phase A (2% ACN, 0.5% FA ) to 70% mobile phase B (98% ACN, 0.5% formic acid) over 
110min, then 70 – 100% mobile phase B in 20min and held at mobile phase B for an additional 
10min. The QSTAR XL was operated in an information-dependent acquisition (IDA) mode. Proteins 
were identified using Interrogator algorithm (Applied Biosystems) and Rat fasta UniProtKB/Swiss-
Prot database. 
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resolved with reverse phase nano-HPLC and identified by tandem mass spectrometry (ESI-

Qq-TOF). After peptide labelling, the samples from four different experiments (two controls 

and two BDNF stimulated extracts) were pulled and fractionated. Fig. 4.26 represents the 

chromatogram obtained from strong cation exchange HPLC. A total of 17 fractions were 

collected (boxes). The first fraction contained the first 10 minutes of elutes (sample that did 

not interact with the column). Then, 14 samples were individually collected, one for each 

minute (1mL), and a final fraction of 11mL was pulled together (comprising peptides with 

higher affinity for the column). Each fraction was subjected to a desalting step (to preserve 

the reverse phase column used before the MS), which consisted on using a trap column 

(C18 column, with low resolving capacity). Once bound to the column, peptides were 

desalted with mobile phase for 5min and eluted by switching from 0% mobile phase B to 

100% mobile phase B (98% ACN, 0.5% formic acid) in a single step. The resulting elutions 

were dried under vacuum, and used in RP-LC-MS/MS. Proteins were identified using the 

UniProtKB/Swiss-Prot Rat FASTA file and Applied Biosystems software packages (Analyst, 

BioAnalyst, and Proquant). Table VII shows the gene products found in the S126 fraction 

isolated from hippocampal neurons, using 2D-LC-MS/MS or 2D-SDS-PAGE (Gene names 

are presented, instead of accession numbers, for direct use of the table with GOMiner, which 

accepts gene names as entry data). 

In order to better visualize the complementary information retrieved from both methods, data 

from Table VII was imported into GOMiner (as described in chapter 4.2.5). Figure 4.27 

shows two major clusters of proteins identified either by 2D-SDS-PAGE (green boxes) or by 

2D-LC-MS/MS (red boxes), namely membrane and nuclear proteins. The results show that 

the liquid based approach increases the identification of membrane and membrane 

associated proteins, as well as nuclear proteins, although the gel based approach should not 

be ignored for this purpose, as some proteins were identified only by 2D-SDS-PAGE. 
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Table VII – Protein identification from the S126 fraction isolated from cultured hippocampal 
neurons. Combination of protein ID obtained from the gel based approach (2D-SDS-PAGE) using 
MALDI-TOF and MALDI-TOF-TOF mass spectrometry, and liquid based approach (2D-LC-MS/MS) 
using ESI-Qq-TOF mass spectrometry. 
 

Gene name Protein Name Method 

Acadl Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC 1.3.99.13) 
(LCAD) 2D-SDS-PAGE 

Acot2 Acyl coenzyme A thioester hydrolase, mitochondrial precursor (EC 3.1.2.2)  
(Very-long-chain acyl-CoA thioesterase) (MTE-I) (ARTISt/p43) 2D-SDS-PAGE 

2D-LC-MS/MS 
Acta1 Actin, alpha skeletal muscle 

2D-SDS-PAGE 
Acta2 Actin, aortic smooth muscle 2D-LC-MS/MS 

2D-LC-MS/MS 
Actb Actin, cytoplasmic 1 (Beta-actin) 

2D-SDS-PAGE 
2D-LC-MS/MS 

Actc Actin, alpha cardiac 
2D-SDS-PAGE 
2D-LC-MS/MS 

Actg1 Actin, cytoplasmic 2 (Gamma-actin) 
2D-SDS-PAGE 

Actg2 Actin, gamma-enteric smooth muscle 2D-LC-MS/MS 

ACTR1A Alpha-centractin (Centractin) (Centrosome-associated actin homolog) (Actin-RPV) (ARP1) 2D-SDS-PAGE 

Agrn Agrin [Precursor] 2D-LC-MS/MS 
Akap6 A-kinase anchor protein 6 2D-LC-MS/MS 

Aldh2 Aldehyde dehydrogenase, mitochondrial precursor (EC 1.2.1.3) (ALDH class 2) (ALDH1) 
(ALDH-E2) 2D-SDS-PAGE 

Ap1b1 AP-1 complex subunit beta-1 2D-LC-MS/MS 
Arg2 Arginase-2, mitochondrial precursor 2D-SDS-PAGE 

Asna1 Arsenical pump-driving ATPase (EC 3.6.3.16) (Arsenite-translocating ATPase)  
(Arsenical resistance ATPase) (Arsenite-transporting ATPase) (ARSA) 2D-SDS-PAGE 

2D-LC-MS/MS 
Atp5a1 ATP synthase alpha chain, mitochondrial precursor (EC 3.6.3.14) 

2D-SDS-PAGE 

2D-LC-MS/MS 
Atp5b ATP synthase beta chain, mitochondrial precursor (EC 3.6.3.14) 

2D-SDS-PAGE 

Atp5h ATP synthase D chain, mitochondrial (EC 3.6.3.14) 2D-SDS-PAGE 

Bckdha 
2-oxoisovalerate dehydrogenase alpha subunit, mitochondrial precursor (EC 1.2.4.4) 
(Branched-chain alpha-keto acid dehydrogenase E1 component alpha chain)  
(BCKDH E1-alpha) (Fragment) 

2D-SDS-PAGE 

BicD2 Bicaudal D protein 2D-LC-MS/MS 
Brdt Brdt protein 2D-LC-MS/MS 

Cacna1d Voltage-dependent L-type calcium channel alpha-1D subunit 2D-LC-MS/MS 
Cat Catalase (EC 1.11.1.6) 2D-SDS-PAGE 
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Cct1 T-complex protein 1, alpha subunit (TCP-1-alpha) (CCT-alpha) 2D-SDS-PAGE 
Chad Chondroadherin [Precursor] 2D-LC-MS/MS 

Chp Calcium-binding protein p22 (Calcium-binding protein CHP)  
(Calcineurin homologous protein) 2D-SDS-PAGE 

Ckb Creatine kinase B-type (EC 2.7.3.2) (Creatine kinase, B chain) (B-CK) 2D-SDS-PAGE 

Cope Coatomer epsilon subunit (Epsilon-coat protein) (Epsilon-COP) 2D-SDS-PAGE 

Cops8 COP9 signalosome complex subunit 8 (Signalosome subunit 8) (SGN8)  
(JAB1-containing signalosome subunit 8) (COP9 homolog) 2D-LC-MS/MS 

Cyb5 Cytochrome b5 2D-SDS-PAGE 

Dars Aspartyl-tRNA synthetase (EC 6.1.1.12) (Aspartate--tRNA ligase) (AspRS) 2D-SDS-PAGE 

Dld Dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex,  
2-oxo-glutarate complex, branched chain keto acid dehydrogenase complex) 2D-SDS-PAGE 

Dpysl2 Dihydropyrimidinase-related protein 2 (DRP-2) (Turned on after division, 64 kDa protein) 2D-SDS-PAGE 

Echs1 Enoyl-CoA hydratase, mitochondrial precursor (EC 4.2.1.17)  
(Short chain enoyl-CoA hydratase) (SCEH) (Enoyl-CoA hydratase 1) 2D-SDS-PAGE 

Eif2s1 Eukaryotic translation initiation factor 2 subunit 1 
(Eukaryotic translation initiation factor 2 alpha subunit) (eIF-2-alpha) (EIF-2alpha) (EIF-2A) 2D-SDS-PAGE 

Eno1 Alpha enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase)  
(Non-neural enolase) (NNE) 2D-SDS-PAGE 

Eno2 Gamma enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Neural enolase) 
(Neuron-specific enolase) (NSE) (Enolase 2) 2D-SDS-PAGE 

Enpep Glutamyl aminopeptidase 2D-LC-MS/MS 
Epha3 Ephrin type-A receptor 3 [Precursor] 2D-LC-MS/MS 
Erp29 Endoplasmic reticulum protein ERp29 precursor (ERp31) 2D-SDS-PAGE 
Fgf18 Fibroblast growth factor 18 [Precursor] 2D-LC-MS/MS 
Fmo5 Dimethylaniline monooxygenase [N-oxide-forming] 5 2D-LC-MS/MS 
Ftl1 Ferritin light chain 1 (Ferritin L subunit 1) 2D-SDS-PAGE 

G6pdx Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) (G6PD) 2D-SDS-PAGE 

Gatm Glycine amidinotransferase, mitochondrial precursor (EC 2.1.4.1)  
(L-arginine:glycine amidinotransferase) (Transamidinase) (AT) 2D-SDS-PAGE 

Gdi1 Rab GDP dissociation inhibitor alpha (Rab GDI alpha) (GDI-1) 2D-SDS-PAGE 
Gfap Glial fibrillary acidic protein, astrocyte (GFAP) 2D-SDS-PAGE 

Glud1 Glutamate dehydrogenase 1, mitochondrial precursor (EC 1.4.1.3)  
(GDH) (Memory-related protein 2) 2D-SDS-PAGE 

Glul Glutamine synthetase (EC 6.3.1.2) (Glutamate--ammonia ligase) (GS) 2D-SDS-PAGE 

Gnal Guanine nucleotide-binding protein G(olf), alpha subunit 2D-LC-MS/MS 
2D-SDS-PAGE 

Gnao1 Guanine nucleotide-binding protein G(o), alpha subunit 1 
2D-SDS-PAGE 
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Gnb1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) beta subunit 1  
(Transducin beta chain 1) 2D-SDS-PAGE 

Gpd2 Glycerol-3-phosphate dehydrogenase, mitochondrial precursor (EC 1.1.99.5) (GPD-M) 
(GPDH-M) 2D-SDS-PAGE 

Grb2 Growth factor receptor-bound protein 2 2D-SDS-PAGE 
Grip1 Glutamate receptor-interacting protein 1 2D-LC-MS/MS 

Hist1h1c Histone H1.2 2D-LC-MS/MS 
Hist1h1t Histone H1t 2D-LC-MS/MS 

HIST1H2AC Histone H2A type 4 2D-LC-MS/MS 
Hist1h2af Histone H2A type 1-F 2D-LC-MS/MS 

HIST1H2AG Histone H2A type 1 2D-LC-MS/MS 
Hist1h2ba Histone H2B, testis 2D-LC-MS/MS 

HIST1H2BC Histone H2B 2D-LC-MS/MS 
HIST1H2BD Histone H2B type 1-D 2D-SDS-PAGE 
Hist1h2bm Histone H2B type 1-M  2D-SDS-PAGE 
Hist1h4b Histone H4 2D-LC-MS/MS 
Hist3h2a Histone H2a 2D-LC-MS/MS 
Hnrpa1 Heterogeneous nuclear ribonucleoprotein A1 2D-SDS-PAGE 

Hnrpa2b1 Heterogeneous nuclear ribonucleoprotein A2 B1 2D-SDS-PAGE 
Hnrpc Hnrpc protein 2D-LC-MS/MS 
Hnrpdl JKTBP (Heterogeneous nuclear ribonucleoprotein D-like) 2D-LC-MS/MS 
Hnrph1 Hnrph1 heterogeneous nuclear ribonucleoprotein H1 2D-SDS-PAGE 

Hnrpk Heterogeneous nuclear ribonucleoprotein K (dC stretch-binding protein) (CSBP) 2D-SDS-PAGE 

Hspa5 78 kDa glucose-regulated protein precursor 2D-SDS-PAGE 

Hspa8 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) 2D-LC-MS/MS 

HSPA8 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) 2D-SDS-PAGE 

Hspa9 Stress-70 protein, mitochondrial precursor (75 kDa glucose regulated protein) (GRP 75) 2D-SDS-PAGE 

Hspd1 60 kDa heat shock protein, mitochondrial precursor (Hsp60) (60 kDa chaperonin) (CPN60) 2D-SDS-PAGE 

Idh1 Isocitrate dehydrogenase [NADP] cytoplasmic (EC 1.1.1.42)  
(Oxalosuccinate decarboxylase) 2D-SDS-PAGE 

Idi1 Isopentenyl-diphosphate Delta-isomerase 1 2D-LC-MS/MS 
Ina Alpha-internexin (Alpha-Inx) 2D-SDS-PAGE 

Ivd Isovaleryl-CoA dehydrogenase, mitochondrial precursor (EC 1.3.99.10) (IVD) 2D-SDS-PAGE 

Klhl10 Kelch-like protein 10 2D-LC-MS/MS 
Llgl1 Lethal(2) giant larvae protein homolog 1 2D-LC-MS/MS 

Mageb18 Hypothetical protein 2D-LC-MS/MS 
Mamdc1 MAM domain-containing protein 1 [Precursor] 2D-LC-MS/MS 
Mapk1 Mitogen-activated protein kinase 1 2D-SDS-PAGE 
Mdh1 Malate dehydrogenase, cytoplasmic (EC 1.1.1.37) 2D-SDS-PAGE 
Mecr Trans-2-enoyl-CoA reductase, mitochondrial [Precursor] 2D-LC-MS/MS 

MTERFD3 mTERF domain-containing protein 3, mitochondrial precursor 2D-LC-MS/MS 
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Napa Alpha-soluble NSF attachment protein (SNAP-alpha)  
(N-ethylmaleimide-sensitive factor attachment protein, alpha) 2D-SDS-PAGE 

Napb Beta-soluble NSF attachment protein (SNAP-beta)  
(N-ethylmaleimide-sensitive factor attachment protein, beta) (Brain protein I47) 2D-SDS-PAGE 

Ncam1 Neural cell adhesion molecule 1, 140 kDa isoform [Precursor] 2D-LC-MS/MS 
Ndrg3 Protein NDRG3 2D-LC-MS/MS 

Ndst1 Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1 2D-LC-MS/MS 

Ndufv2 NADH-ubiquinone oxidoreductase 24 kDa subunit, mitochondrial precursor (EC 1.6.5.3) 
(EC 1.6.99.3) (Fragment) 2D-SDS-PAGE 

Nedd8 NEDD8  Ubiquitin-like protein NEDD8 2D-LC-MS/MS 

Nefl Neurofilament triplet L protein (68 kDa neurofilament protein)  
(Neurofilament light polypeptide) (NF-L) 2D-SDS-PAGE 

Nfatc2ip Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 interacting protein 2D-LC-MS/MS 

Npm1 Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Numatrin)  
(Nucleolar protein NO38) 2D-SDS-PAGE 

Npr2 Atrial natriuretic peptide receptor B [Precursor] 2D-LC-MS/MS 
Nrxn1 Neurexin-1-beta [Precursor] 2D-LC-MS/MS 
Oat Ornithine aminotransferase, mitochondrial precursor 2D-SDS-PAGE 

P4hb Protein disulfide-isomerase precursor 2D-SDS-PAGE 

Pa2g4 Proliferation-associated protein 2G4 (Proliferation-associated protein 1) (Protein p38-2G4) 2D-SDS-PAGE 

Pafah1b3 Platelet-activating factor acetylhydrolase IB alpha subunit 2D-SDS-PAGE 

Pc Pyruvate carboxylase, mitochondrial precursor (EC 6.4.1.1) (Pyruvic carboxylase) (PCB) 2D-SDS-PAGE 

Pcbp1 Poly(rC)-binding protein 1 (Alpha-CP1) (hnRNP-E1) 2D-SDS-PAGE 

Pcca Propionyl-CoA carboxylase alpha chain, mitochondrial precursor (EC 6.4.1.3) (PCCase 
alpha subunit) (Propanoyl-CoA:carbon dioxide ligase alpha subunit) (Fragment) 2D-SDS-PAGE 

Pdcd6 Programmed cell death 6-interacting protein 2D-SDS-PAGE 

Pdha1 Pyruvate dehydrogenase E1 component alpha subunit, somatic form, mitochondrial 
precursor (EC 1.2.4.1) (PDHE1-A type I) 2D-SDS-PAGE 

Pdia3 Protein disulfide-isomerase A3 precursor 2D-SDS-PAGE 
2D-SDS-PAGE 

Phb Prohibitin 
2D-SDS-PAGE 

Pkm2 Pkm2 protein 2D-SDS-PAGE 
Plekhb1 Plekhb1 protein 2D-LC-MS/MS 

PLEKHH3 Pleckstrin homology domain containing, family H (With MyTH4 domain) member 3 2D-LC-MS/MS 

Pmm1 Phosphomannomutase 1 2D-LC-MS/MS 
Ppfia4 Liprin-alpha-4 [Fragment] 2D-LC-MS/MS 

Ppp1ca Serine/threonine protein phosphatase PP1-alpha catalytic subunit (EC 3.1.3.16) (PP-1A) 2D-SDS-PAGE 

Ppp2ca Serine/threonine protein phosphatase 2A, catalytic subunit, alpha isoform (EC 3.1.3.16) 2D-SDS-PAGE 
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Ppp2r1b Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform 2D-LC-MS/MS 

Prdx2 Peroxiredoxin 2 (EC 1.11.1.15) (Thioredoxin peroxidase 1) 2D-SDS-PAGE 
Prdx6 Peroxiredoxin 6 2D-SDS-PAGE 
Prmt7 Protein arginine N-methyltransferase 7 2D-LC-MS/MS 

Prps1 Ribose-phosphate pyrophosphokinase I (EC 2.7.6.1)  
(Phosphoribosyl pyrophosphate synthetase I) (PRS-I) 2D-SDS-PAGE 

Psma1 Proteasome subunit alpha type 1 (EC 3.4.25.1) (Proteasome component C2) (Macropain 
subunit C2) (Multicatalytic endopeptidase complex subunit C2) (Proteasome nu chain) 2D-SDS-PAGE 

Psma3 Proteasome subunit alpha type 3 (EC 3.4.25.1) (Proteasome component C8) (Macropain 
subunit C8) (Multicatalytic endopeptidase complex subunit C8) (Proteasome subunit K) 2D-SDS-PAGE 

Psma5 Proteasome subunit alpha type 5 (EC 3.4.25.1) (Proteasome zeta chain)  
(Macropain zeta chain) (Multicatalytic endopeptidase complex zeta chain) 2D-SDS-PAGE 

Psma6 Proteasome subunit alpha type 6 (EC 3.4.25.1) (Proteasome iota chain)  
(Macropain iota chain) (Multicatalytic endopeptidase complex iota chain) 2D-SDS-PAGE 

Psmb2 Proteasome subunit beta type 2 (EC 3.4.25.1) (Proteasome component C7-I)  
(Macropain subunit C7-I) (Multicatalytic endopeptidase complex subunit C7-I) 2D-SDS-PAGE 

Psmb3 Proteasome subunit beta type 3 (EC 3.4.25.1) (Proteasome theta chain)  
(Proteasome chain 13) (Proteasome component C10-II) 2D-SDS-PAGE 

Psmb6 
Proteasome subunit beta type 6 precursor (EC 3.4.25.1) (Proteasome delta chain) 
(Macropain delta chain) (Multicatalytic endopeptidase complex delta chain)  
(Proteasome subunit Y) (Proteasome chain 5) (Fragment) 

2D-SDS-PAGE 

Psmd14 26S proteasome non-ATPase regulatory subunit 14 2D-SDS-PAGE 

Psmd7 26S proteasome non-ATPase regulatory subunit 7 (26S proteasome regulatory subunit 
rpn8) (26S proteasome regulatory subunit S12) (Proteasome subunit p40) (Mov34 protein) 2D-SDS-PAGE 

Ptpru Receptor type protein tyrosine phosphatase psi [Fragment] 2D-LC-MS/MS 

Pura Transcriptional activator protein PUR-alpha (Purine-rich single-stranded DNA-binding 
protein alpha) 2D-SDS-PAGE 

Rad17 RAD17 homolog 2D-LC-MS/MS 
Rom1 Rod outer segment membrane protein 1 2D-LC-MS/MS 
Rpl6 60S ribosomal protein L6 2D-LC-MS/MS 
Rpl8 60S ribosomal protein L8 2D-LC-MS/MS 

Rplp0 60S acidic ribosomal protein P0 (L10E) 2D-SDS-PAGE 
Rplp2 60S acidic ribosomal protein P2 2D-LC-MS/MS 
Rps10 40S ribosomal protein S10 2D-SDS-PAGE 
Rps3 40S ribosomal protein S3 2D-SDS-PAGE 
Rps4x 40S ribosomal protein S4, X isoform 2D-SDS-PAGE 
Rps7 40S ribosomal protein S7 (S8) 2D-SDS-PAGE 
Rps9 40S ribosomal protein S9 2D-LC-MS/MS 
Rpsa 40S ribosomal protein SA (p40) (34/67 kDa laminin receptor) 2D-SDS-PAGE 
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Rsn CLIP-170 2D-LC-MS/MS 

Ruvbl1 RuvB-like 1 (EC 3.6.1.-) (49-kDa TATA box-binding protein-interacting protein)  
(49 kDa TBP-interacting protein) (TIP49a) (Pontin 52) (DNA helicase p50) 2D-SDS-PAGE 

Sfn Vacuolar protein sorting-associated protein 26A 2D-LC-MS/MS 
Slc4a7 Sodium bicarbonate cotransporter 3 2D-LC-MS/MS 
Stip1 Stress-induced-phosphoprotein 1 2D-SDS-PAGE 
Taar1 Trace amine-associated receptor 1 2D-LC-MS/MS 
Tceb1 Transcription elongation factor B polypeptide 1 2D-LC-MS/MS 

Tmem24 Transmembrane protein 24 2D-LC-MS/MS 

Tpt1 Translationally controlled tumor protein (TCTP) (Lens epithelial protein) 2D-SDS-PAGE 

Tuba3 Tubulin alpha-3 chain 2D-SDS-PAGE 
Tuba7 Tubulin alpha-3/alpha-7 chain 2D-SDS-PAGE 
TUBB1 Tubulin beta chain 2D-LC-MS/MS 
Uxs1 UDP-glucuronic acid decarboxylase 1 2D-LC-MS/MS 

Vcp Transitional endoplasmic reticulum ATPase (TER ATPase)  
(15S Mg2+-ATPase p97 subunit) 2D-SDS-PAGE 

Vil2 Ezrin 2D-SDS-PAGE 
Wfdc2 WAP four-disulfide core domain protein 2 [Precursor] 2D-LC-MS/MS 

2D-LC-MS/MS 
Ywhab 14-3-3 protein beta/alpha (Protein kinase C inhibitor protein-1) (KCIP-1)  

(Prepronerve growth factor RNH-1) 
2D-SDS-PAGE 

Ywhae 14-3-3 protein epsilon (14-3-3E) (Mitochondrial import stimulation factor L subunit)  
(MSF L) 2D-LC-MS/MS 

YWHAE 14-3-3 protein epsilon (14-3-3E) (Mitochondrial import stimulation factor L subunit)  
(MSF L) 2D-SDS-PAGE 

2D-LC-MS/MS 
Ywhag 14-3-3 protein gamma 

2D-SDS-PAGE 
Ywhah 14-3-3 protein eta 2D-LC-MS/MS 
Ywhaq 14-3-3 protein theta 2D-LC-MS/MS 

Ywhaz 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) 2D-LC-MS/MS 

Zfp111 Cys2/His2 zinc finger protein 2D-LC-MS/MS 
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Figure 4.27 – Complementary information about the proteome of the S126 fraction of 
cultured hippocampal neurons, obtained from 2D-SDS-PAGE and 2D-LC-MS/MS. Protein ID 
obtained from the 2D gels approach (Fig 4.25) and the 2D-LC approach (Fig. 4.26) was gathered in 
Excel, analyzed, and the gene names were retrieved from the Swiss-Prot web site. Genes were 
clustered and analyzed in GOminer. Green squares indicate genes identified by 2D-PAGE and red 
squares represent genes identified by 2D-LC-MS/MS. Results show complementary information 
from both techniques for membrane (A) and nuclear (B) proteins. 
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Figure 4.28 - Differential gene expression induced by BDNF in cultured hippocampal 
neurons. Protein ID from the previous figure was combined with differential expression levels 
observed from gels (PDQuest) and from LC-MS/MS (Proquant). Red arrows ( ) indicate gene 
products with increased expression upon BDNF stimulation; green arrows ( ) represent gene 
products with decreased protein expression. A and B show membrane and nuclear proteins, 
respectively. Hnrpdl is an example of a gene which expression was found to be upregulated by 
BDNF using both techniques. 
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4.3 - Discussion 

The hippocampus is a brain region associated with memory formation and storage, 

ultimately contributing to what a human being is: what it reminds of. Therefore, there is a 

strong interest in the study of hippocampus, its development, functions and preservation. 

However, the number of publications on the rat hippocampal proteome is reduced, and 

allowed the identification of a reduced number of proteins. In one publication on the rat brain 

hippocampus proteome, using eight months old animals, 148 different gene products were 

identified, including enzymes, structural proteins and heat shock proteins (Fountoulakis, M. 

et al., 2005). Other authors have tried to map the proteome of the hippocampus of human 

subjects, and identified 165 proteins by applying 1mg of protein to pH 3-10 IPG strips (Yang, 

J. W. et al., 2004). Additional studies have evaluated the changes in the hippocampal 

proteome induced by various stimuli and drugs, such as chronic treatment with 

antidepressants, using 2D-PAGE. However, in these cases the analysis of the proteome was 

limited to the spots that showed variation between experimental conditions (Khawaja, X. et 

al., 2004). Given the main objective of this study, i.e. to characterize the BDNF-induced 

changes in the proteome of hippocampal neurons, a more extensive characterization of the 

protein content of the cells was performed. Furthermore, protein radiolabelling facilitated the 

analysis of the BDNF-induced de novo protein synthesis. For this purpose, radiolabelled 

amino acids were added to the culture media and once taken up by cultured hippocampal 

neurons (Fig. 4.1) were incorporated into newly synthesized proteins (Fig. 4.2). The 2D-

PAGE approach used in this work shows that BDNF selectively affected the abundance of 

several protein spots, which were up- or downregulated. These results contrast with the lack 

of effect of the neurotrophin on the total protein labelling with [35S]-methionine and [35S]-

cysteine for incubation periods with BDNF of 3-24h (Fig. 4.3). In cultured cerebrocortical 

neurons BDNF was shown to specifically enhance total protein synthesis for a stimulation 

period of 30min (Takei, N. et al., 2001). The differences between these results and our 

findings in cultured hippocampal neurons may be due to the pulse-chase labelling method 

used in the cerebrocortical study, which contrasts with the longer incubation periods with the 

radiolabelled amino acids and with the neurotrophin used in the present work. Another 

important difference concerns the cells used, and the results may suggest that BDNF 

modulates the expression of specific proteins in hippocampal neurons, and has a broader 

effect on protein synthesis in cerebrocortical neurons.  
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This extensive proteomics study was conducted aiming at identifying the BDNF-induced 

changes in the protein content of cultured hippocampal neurons. In order to obtain a good 

resolution of the effects of the neurotrophin, de novo protein synthesis was followed using 

radiolabelled amino acids, which allows subtracting the background protein content of the 

cells. The first approach used consisted in resolving total protein extracts from cultured 

hippocampal neurons in a 2D-gel using pH 3-10 IPG strips (Fig. 3.1). The results clearly 

indicated that this approach could only allow monitoring 1000-1300 spots, which is much 

lower then the expected total protein content of the cells. The number of spots resolved was 

increased by using “zoom” gels, resolving proteins in one pH unit IPG strips (Fig. 3.2), while 

maintaining the resolving power per gel (1000-1300 spots). The low reproducibility of gels 

obtained with samples prepared using standard methodologies lead us to a series of 

improvements consisting in the removal of contaminants (using TCA precipitation followed 

by acetone washing), increase in protein solubilization (using sonication in 2D buffer), and 

sample fractionation (using ultracentrifugation). Fractionation decreases gel complexity and 

results in the relative enrichment of low abundant proteins, bringing them into the detection 

levels of the techniques used (Righetti, P. G. et al., 2003). The results obtained showed an 

increase in the number of spots available for quantification, from 376 spots in the pH range of 

5.5-6.7 using pH 3-10 IPG strip, to more then 2000 spots in the same range, using pH 5.5-

6.7 IPG strips and sample fractionation (Figs. 3.2 through 3.6 and Tables I, II and III). An 

additional enrichment method was tested, consisting in nuclei isolation and separation of 

nuclear proteins (not shown), but the amount of raw material required did not allow 

proceeding with this approach. The interest in the study of the effect of BDNF on the nuclear 

proteome arises from the putative effects on the novo protein synthesis and also from the 

translocation of proteins into or away from the nuclear compartment [e.g. Manadas, B. J. et 

al., 2007 (in press)].  

 

The analysis of the hippocampal proteome was initially focused on the soluble fraction of 

cultured hippocampal neurons, stimulated or not with BDNF, and incubated with 

radiolabelled amino acids, and the proteome was resolved in 2D-gels using IPG strips pH 

5.5-6.7 (Fig. 4.6). This allowed spot detection by autoradiography, which is more sensitive 

than other staining methods, besides allowing the quantification of newly synthesized 

proteins (Manadas, B. J. et al., 2006). However, gels used for autoradiography are usually 

not processed for protein identification as radiolabelled spots are not visible in the gel. Also, 

there are some differences in the gel image obtained from an autoradiogram and from a 
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silver stained gel (Fig. 4.10). Furthermore, radiolabelled amino acids increase the isotopic 

mass of peptides which decreases protein identification. Therefore, the identification of the 

protein spots was performed using mass spectrometry of digested peptides obtained from 

non-radioactive gels, e.g stained with colloidal coomassie.  

The quantification of the autoradiograms displaying the newly synthesized proteins, in control 

hippocampal neurons and in cells stimulated with BDNF, showed that some spots were 

significantly different (up- or downregulated) in the two experimental conditions. In addition to 

these protein spots, the analysis of the data also included spots showing consistent 

differences that did not achieve statistical significance, and other spots that showed 

variations lower than 1/1.5 or greater than 1×1.5. The list of selected spots based on these 

calculations was imported into PDQuest in order to highlight their location on gel images (Fig. 

4.8). A crude analysis of the results showed that the same protein could be found in more 

than one spot, and these various spots were in some cases differentially affected by BDNF 

stimulation. Accordingly, the stress-induced-phosphoprotein 1 (Stip1) was identified in three 

neighbour spots, with slight differences in their quantification. These observations highlight 

the importance of full mapping of the gels with extensive identification of the spots and 

quantification of the changes in expression induced by each given stimuli, as performed in 

this study (Fig. 4.9 through 4.12). It should also be emphasized that some faint spots in the 

stained gels were identified while other strong spots were not, revealing that protein ID is not 

only dependent on the intensity of the spot but may also depend on the proteolytic cleavage, 

peptide recovery and ionization efficiency. Although spot identification was based on the 

gene product and not in the protein isoform, or in the protein form resulting from post-

translational modifications, the quantification was performed based on newly synthesized 

proteins (autoradiograms). Therefore, a BDNF-induced change in spot location for a given 

protein may indicate that a distinct isoform is expressed and/or a different post-translational 

modification of the protein is induced. 

A careful examination of the autoradiogram quantification and of the gel mapping data 

(Appendix) showed some similarities in the spot distribution in the soluble and S126 

fractions, for each given pH range analysed. The analysis of the spots present in both 

fractions and possessing the same pI and MW range showed that they correspond to the 

same protein. In fact, several spots are present in both fractions, indicating that the S126 

fraction is “contaminated” with proteins from the soluble fraction. However, the main 

purpose of the ultracentrifugation step used was to remove interfering substances (lipids, 

nucleic acids, and even membrane proteins) in order to apply clean and reproducible 
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samples to IPG strips, and this was clearly achieved in this work. When the same protein 

was found in gels prepared from the soluble and S126 fractions, a similar effect of BDNF was 

observed in both cases. For example, Peroxiredoxin 6 (Prdx6, accession number Q35244) 

was found in gels prepared from the soluble (Fig. 4.9, bottom left) and S126 (Fig. A.10, 

bottom left) fractions. In the former case, the spot showed a significant decrease to 0.79, 

whereas in the latter case the spot showed a decrease to 0.86 (p>0.05, Table VI). This 

indicates that although there is a contamination of the S126 fraction with proteins from the 

soluble fraction, this does not affect the results observed. 

Although the overall spot distribution was similar in the autoradiogram gel images and after 

colloidal Coomassie gel staining for protein identification, some differences could be 

detected. Fig 4.10 clearly shows differences in gel images obtained for the same gel, silver 

stained and autoradiography (Fig. 4.10 left and right, respectively). Furthermore, the relative 

intensity of the spots also differed when the total protein content was compared with the 

protein labelling after 12h of incubation period with radiolabelled amino acids. This is caused 

by differences in the protein synthesis and turn-over rates, and may also be due to the 

relative content on methionine and cysteine residues (the radiolabelled amino acids added to 

cell culture) of each protein. This small divergence on spot pattern between the two 

approaches increased the time required for positive correlation of a given spot intensity and 

its identification. 

 
Protein identification was performed by peptide mass fingerprint, using database search of 

obtained mass spectra from spots proteolitically digested with trypsin. In some cases, when 

PMF positive identification could not be obtained, peptide fragmentation was induced for 

MS/MS database search. The database used for these queries was the UniProtKB/Swiss-

Prot database, a non-redundant database. This database was chosen taking into account the 

relation between obtained accession numbers and the access to other databases (Fig. 4.13 

and Fig. 4.14). At this point, it was also important to gather as much relevant information as 

possible using different databases, which could allow further analysis based on the 

knowledge of involved signalling pathways, metabolic pathways, protein interaction (Fig. 

4.14) and textmining on published papers (Fig. 4.13). The information obtained allows an 

easy, quick and off-line access to relevant information, mainly when combined with gene 

clustering.  

After combining the results from spot identification and quantification, selected proteins were 

correlated with their expression levels, and gene names were automatically retrieved from 
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the UniProtKB/Swiss-Prot database (Table VI), using VBA programming and web queries in 

Microsoft Excel. In several cases, the same gene product was present in different spots with 

different expression levels, in control and BDNF stimulated cultured hippocampal neurons 

(e.g. Dpysl2, Table VI). When expression levels of the same gene were not consistent (one 

spot upregulated and other downregulated) upregulation or downregulation of a given gene 

product was decided considering spots with statistically different fold change. 

 

In order to retrieve biologically meaningful information from the data obtained, we took 

advantage of several software packages used for data clustering, most of them designed for 

microarrays. The majority of the algorithms available lead to “heat clustering”, where genes 

are grouped according to their fold changes between different experimental conditions. Other 

algorithms group genes according to their functions, but include relatively few categories. 

GOMiner uses all gene ontologies of selected and imported genes, and clusters genes 

according to their ontologies, leading to more detailed information on the grouping. For 

exemple, ENO1 belongs to the “carbohydrate catabolism”, “glycolysis” and “carbohydrate 

metabolism” ontologies (Fig. 4.17A). Because “glycolysis” is a sub-category of the 

“carbohydrate metabolism” ontology, introducing ENO1 in “glycolysis” retrieves more 

information about the gene product then a higher level ontology as “carbohydrate 

metabolism”, and groups ENO1 with ENO2 in a more specific and detailed ontology (Fig. 

4.17B, “glycolysis”). 

As mentioned before BDNF plays an important role in the in vivo protection from transient 

brain ischemia, particularly in the hippocampus (Kokaia, Z. et al., 1996; Larsson, E. et al., 

1999). Furthermore, BDNF was shown to protect hippocampal neurons from excitotoxic cell 

death, by a mechanism dependent on protein synthesis (Almeida, R. D. et al., 2005). The 

effect of BDNF on proteins of the carbohydrate metabolism (Fig. 4.17) may contribute to the 

development of more effective mechanisms of energy production, which is relevant during 

the period of recovery after the ischemia insult. The observed upregulation of Peroxiredoxin 

2 (PRDX2, involved in redox regulation of the cell) and 60 kDa heat shock protein (HSPD1, 

implicated in mitochondrial protein import and macromolecular assembly, and may facilitate 

the correct folding of imported proteins) (Fig. 4.19) (Boeckmann, B. et al., 2005) may further 

contribute to neuroprotection by BDNF in the hippocampus. 

BDNF also plays important roles in synaptogenesis and in synaptic plasticity (Ring, R. H. et 

al., 2006). The observed upregulation of Fascin (Fscn1) (Fig. 4.18) by BDNF may be relevant 

in this context, since Fascin organizes filamentous actin into bundles, and is probably 
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involved in the assembly of actin filament bundles present in microspikes, membrane ruffles 

and stress fibers (Boeckmann, B. et al., 2005). Fascin is highly expressed in the brain and 

according to the STRIGS database it interacts with protein kinase C. Although Fascin also 

belongs to the cell proliferation gene ontology (Fig. 4.18), other members of this ontology are 

downregulated, such as Cell division protein kinase 4 (CDK4), which promotes S phase and 

has been associated with melanomas, and Microtubule-associated protein RP/EB family 

member 1 (MAPRE1), which during mitosis is associated with the centrosomes and spindle 

microtubules, and is upregulated in children medulloblastoma (Boeckmann, B. et al., 2005). 

Taken together these results indicate that although BDNF can increase the activity of some 

proteins which are closely related to cancer mechanisms (such as Akt, PI3-K, and mutated 

Ras and Raf) (Bos, J. L., 1989; Chan, T. O. et al., 1999; Schreck, R. and Rapp, U. R., 2006), 

it also regulates cell proliferation by downregulating proteins involved in this process.  

Other clusters of proteins regulated by BDNF include those involved in “protein metabolism” 

and “nucleobase, nucleoside, nucleotide and nucleic acid metabolism” (Figs. 4.20 through 

4.23). These clusters include 20 and 14 gene products, respectively, which were significantly 

regulated by BDNF, and 23 and 13 other gene products were also regulated but the effects 

were not statistically significant.  

The group of proteins involved in “Protein biosynthesis” contains gene products such as 

Eukaryotic translation initiation factor 3 subunit 5 (EIF3S5; possesses Translation initiation 

factor activity), Gars protein (GARS; catalizes the reaction ATP + glycine + tRNA[Gly] = AMP 

+ diphosphate + glycyl-tRNA[Gly]), Seryl-aminoacyl-tRNA synthetase (SARS; catalizes the 

reaction ATP + L-serine + tRNA[Ser] = AMP + diphosphate + L-seryl-tRNA[Ser]), 

Mitochondrial Elongation factor Tu (TUFM; promotes the GTP-dependent binding of 

aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis) and Trafficking 

protein particle complex subunit 4 (TRAPPC4; may play a role in vesicular transport from 

endoplasmic reticulum to Golgi and in dendrite postsynaptic membrane trafficking). Other 

gene products clustered in this ontology, but showing effects that did not achieve statistical 

significance, include Elongation factor 1-gamma (EEF1G; may play a role in anchoring the 

complex to other cellular components), Elongation factor 2 (EEF2; promotes the GTP-

dependent translocation of the nascent protein chain from the A-site to the P-site of the 

ribosome), Translation initiation factor eIF-2B beta subunit (EIF2B2; catalyzes the exchange 

of eukaryotic initiation factor 2-bound GDP for GTP), 60S acidic ribosomal protein P0 

(RPLP0, which forms a pentameric complex by interaction with dimers of P1 and P2 in 

ribosomes), and Far upstream element binding protein 2 (KHSRP; leads to degradation of 
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inherently unstable mRNAs that contain AU-rich elements, among other functions) 

(Boeckmann, B. et al., 2005). All these gene products were upregulated in the presence of 

BDNF in cultured hippocampal neurons after an incubation period of 12h, except KHSRP, 

TRAPPC4 and EIF2B2, which were downregulated. 

In the “RNA processing” ontology, the Heterogeneous nuclear ribonucleoprotein D-like 

(HNRPDL; involved in mRNA nucleocytoplasmic shuttling), Heterogeneous nuclear 

ribonucleoprotein K (HNRPK; one of the major pre-mRNA-binding proteins), Heterogeneous 

nuclear ribonucleoprotein C (HNRPC; binds pre-mRNA and nucleates the assembly of 40S 

hnRNP particles), and Seryl-aminoacyl-tRNA synthetase (SARS1; catalizes the reaction ATP 

+ L-serine + tRNA[Ser] = AMP + diphosphate + L-seryl-tRNA[Ser]) were upregulated by 

BDNF, while the Poly(rC)-binding protein 1 (PCBP1; single-stranded nucleic acid binding 

protein that binds preferentially to oligo dC) was downregulated by BDNF. Other gene 

products upregulated by the neurotrophin include Heterogeneous nuclear ribonucleoprotein 

H (HNRPH1; component of the heterogenous nuclear ribonucleoprotein [hnRNP] complexes 

which provides the substrate for the processing events that pre-mRNAs undergo before 

becoming functional, translatable mRNAs in the cytoplasm), Pcbp2 protein (PCBP2; single-

stranded nucleic acid binding protein that binds preferentially to oligo dC) and Elongation 

factor 2 (EEF2; promotes the GTP-dependent translocation of the nascent protein chain from 

the A-site to the P-site of the ribosome), but the effects did not achieve statistical 

significance. On the other hand, downregulated gene products belonging to this category 

include Heterogeneous nuclear ribonucleoprotein L (HNRPL; component of the 

heterogenous nuclear ribonucleoprotein [hnRNP] complexes that provide the substrate for 

the processing events that pre-mRNAs undergo before becoming functional and translatable 

mRNAs in the cytoplasm) and Far upstream element binding protein 2 (KHSRP; leads to 

degradation of inherently unstable mRNAs that contain AU-rich elements, among other 

functions) (Boeckmann, B. et al., 2005).  

An increase of the hybridization signal intensity of heterogeneous nuclear ribonucleoprotein 

H (HNRPH1) was also observed after traumatic brain injury (Kobori, N. et al., 2002), which 

may be secondary to the upregulation of BDNF following the excitotoxic injury (Shetty, A. K. 

et al., 2004) 

Taken together the results show that BDNF plays an important role in the control of the 

transcription and translation mechanisms. In addition to these effects, BDNF may induce 

rapid changes in the activity of transcription factors [Manadas, B. J. et al., 2007 (in press)] 

and in the protein synthesis machinery. The latter effect is mediated by phosphorylation of 
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eIF4E, which can be translocated to the synapse, increasing the total protein synthesis 

(Takei, N. et al., 2001). One of the proteins that can be produced at the dendrites is response 

to BDNF stimulation was Arc (Yin, Y. et al., 2002), but is was not found in the present study. 

eIF4E may serve to facilitate translation and capture of mRNA released from local storage 

granules as well as new mRNA coming into the dendrites (Bramham, C. R. and Messaoudi, 

E., 2005). The BDNF-induced upregulation of glycolysis proteins (Fig. 4.17) may lead to a 

rapid production of energy, facilitating the additional synthesis of proteins (Caraglia, M. et al., 

2000).  

 

The effects of BDNF on the proteome of the SY5Y-TrkB cell line (human neuroblastoma 

SY5Y cell line stably transfected with TrkB cDNA) was recently characterized, using different 

periods of stimulation with BDNF. In this study, samples from treated and non-treated cells 

were labelled with different DIGE (Diference Gel Electrophoresis) labels, pulled, the proteins 

were resolved using tube gels for IEF and protein ID was performed on selected spots by 

MALDI-TOF (Sitek, B. et al., 2005). In this study two Dynein intermediate chain proteins were 

identified, with one being upregulated and the other downregulated in the presence of BDNF. 

In cultured hippocampal neurons one spot corresponding to the dynein light chain 2 

(Dync1i2) was found to be upregulated 2.2 times, although this effect was not statistically 

significant. Taken together, the two studies suggest that BDNF regulates dynein, a motor 

protein responsible for retrograde transport (Pfister, K. K. et al., 1996). Heterogeneous 

nuclear ribonucleoprotein K (HnRNPK or Hnrpk) was also identified in two spots in SY5Y-

TrkB cells, with one having no differential expression and the other showing a rapid 

upregulation upon the stimulation with BDNF (0.5 to 1h after neurotrophin addition). In 

cultured hippocampal neurons, seven spots were identified as expressing this protein, with 

three showing a significant increase by 2.4, 1.94 and 2.08 in BDNF stimulated cultured 

hippocampal neurons when compared to the control (Table VI). hnRNPK and Hu specifically 

bind to CU-rich sequences in p21 mRNA 3'-UTR, thereby controlling in an opposite manner 

the timing of the switch from proliferation to neuronal differentiation (Yano, M. et al., 2005). 

This highlights the effect of the neurotrophin in the balance between neuronal proliferation 

and differentiation, as supported by other evidences [e.g. Davies, A. M., 1994; Dobrowsky, 

R. T. et al., 1995] 

Another protein identified and quantified in our work and in SY5Y-TrkB cells was the Rho 

GDP dissociation inhibitor (GDI) alpha (Arhgdia - regulates the GDP/GTP exchange reaction 

of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent 
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binding of GTP to them) (Boeckmann, B. et al., 2005). While in the cell line model the protein 

showed a delayed downregulation following exposure to BDNF (6 and 24 hours after 

neurotrophin stimulation), in hippocampal neurons three spots were identified and quantified, 

with one spot presenting a statistically significant increase to 1.07, the second showing a 

statistically significant decrease to 0.55 and the third spot had a 2.71 fold increase, although 

not statistically significant, in the presence of BDNF. Since some of the effects of 

neurotrophins are mediated by inhibition of Rho activity [e.g. neurotrophin-induced neurite 

outgrowth (Yamashita, T. and Tohyama, M., 2003)] the regulation of Rho GDI alpha protein 

protein levels by BDNF may provide a secondary mechanism to control long-term effects of 

BDNF. 

The diversity of effects of BDNF on protein spots corresponds to the Rho GTP dissociation 

inhibitor (GDI) alpha shows the importance of covering as many spots as possible in the gels 

in order to have a better overview of possible heterogeneities in the response to a given 

stimulus. The diversity of effects that can be obtained for different spots corresponding to the 

same protein is also well illustrated by the results obtained concerning the effect of BDNF in 

Dihydropyrimidinase related protein-2 (Dpysl2) in cultured hippocampal neurons. In the 

present work this protein was identified in at least 11 spots, with two of them presenting a 

statistically significant increase of 1.39 and 1.73, and a third spot showing a statistically 

significant decrease of 0.74, in the presence of BDNF. Although Dihydropyrimidinase related 

protein-2 was shown to regulate axonal outgrowth (Carter, C. J., 2007), it remains to be 

determined its role in BDNF-induced axonal elongation. 

Although the effects of BDNF in the proteome of SY5Y-TrB cells and hippocampal neurons 

were similar, to some extent, some of the gene products showed different results. It is 

noteworthy to mention that two major differences exist, the cells used and the quantification 

method applied. Cultured hippocampal neurons represent a physiological model of cells 

expressing their normal gene products and subjected to the exposure of BDNF, a 

neurotrophin usually expressed and released by these neurons (Farhadi, H. F. et al., 2000). 

On the other hand, SY5Y-cells do not express the TrkB receptor and possess a different 

basal proteome from hippocampal neurons, which can lead to different responses to the 

same stimuli. The other major difference between the two studies concerns the quantification 

methods used; while in the SY5Y-cell study the staining method used was DIGE, allowing 

the visualization and quantification of the overall protein content, in the cultured hippocampal 

study only newly synthesized proteins were monitored, using autoradiography. 
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In the present work we further analysed the proteome of the S126 fraction using a liquid-

based approach (Table VI and Fig. 4.24), in order to overcome some of the difficulties in the 

study of membrane fractions using the gel based approaches. The comparison of the results 

obtained using the two approaches show that the combination of both methods leads to an 

increase of the proteome coverage and they provide complementary information (Fig. 4.29). 

Furthermore, the results indicate that each method alone is not sufficient for proteome 

coverage, with several proteins being identified by only one of the approaches (Fig. 4.29). 

The following proteins were identified by both methods: three actin isoforms, ATP synthase 

alpha and beta, Guanine nucleotide-binding protein Go alpha subunit 1, Heat shock cognate 

71 kDa protein, Prohibitin, 40S ribosomal protein S7, and three isoforms of the 14-3-3 

protein. The low number of proteins identified using the liquid-based approach may be 

explained by two main reasons: (i) one is the collision energy applied at the CAD cell of the 

Qq-TOF mass spectrometer, which should have been higher in order to increase peptide 

fragmentation, as the iTRAQ labelling increases peptide stability; this technical limitation may 

have contributed to a decrease in protein identification and in the confidence in 

quantification, (ii) protein digestion may have also contributed to the low protein identification. 

Although proteins were denatured with SDS, trypsin digestion was performed after SDS 

removal. In the absence of detergents, highly hydrophobic domains of membrane proteins 

 
 
Figure 4.29 – Complementary proteome coverage from 2D-SDS-PAGE and 2D-LC-MS/MS. 
Both methods allowed the identifications of several proteins: 105 proteins identified by 2D-gels 
approach, 77 proteins identified by 2D-LC-MS/MS, and 13 of these were identified using both 
methods. 
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can interact and lead to the formation of complexes that reduce trypsin access to lysines and 

arginines. Therefore, a chemical cleavage approach, like cyanogen bromide (CNBr) or acidic 

cleavage, should be considered as an alternative or a complementary approach for the 

analysis of protein fractions enriched in hydrophobic domains (Quach, T. T. et al., 2003; Han, 

J. and Schey, K. L., 2004). Nonetheless, Fig. 4.27 clearly shows the complementary 

information and proteome coverage of membrane and membrane associated proteins, as 

well as nuclear proteins. The complementary information obtained from both approaches is 

also important at the quantification level, since in the gel-based approach only newly 

synthesized proteins were quantified, in contrast with the liquid-based approach where all 

peptides are labelled, resulting in total protein quantification.  
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Chapter 5 

 

Conclusions   
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BDNF is one of the most studied neurotrophins, playing important roles in development, 

memory formation and storage, synaptic plasticity, neuroprotection, depression and in 

regeneration, among others. The main objective of this work was to perform a 

comprehensive proteome profiling of the effects of BDNF in primary cultures of hippocampal 

neurons, which will contribute to elucidate some of the physiological roles of the 

neurotrophin. 

The methodologies available for the analysis of the proteome were improved to some extent, 

using cultured hippocampal neurons and rat brain tissue as a model, and allowed to increase 

the reproducibility of the results obtained using two-dimensional gel electrophoresis. 

Fractionation of the samples and the use of “zoom” gels increased the number of spots 

resolved. The protocol used also improved the reproducibility of protein solubilization and 

recovery after TCA precipitation, with an increase in the number of visualized spots. The 

optimization of sample preparation and focusing conditions resulted in an increase in 

reproducibility of gel images, allowing better and faster software analysis, with an increase in 

the ratio of automatic matching of gel spots across the gel image. 

The present work focused on the proteome coverage of cultured hippocampal neurons and 

the changes in the proteome induced by BDNF. The use of sample fractionation and of 

“zoom” gels allowed to increase the proteome coverage when compared to previous studies. 

BDNF was found to change the abundance of proteins belonging to several distinct 

ontologies, including proteins involved in the “carbohydrate metabolism”, “protein 

metabolism” (with major focus on “protein biosynthesis”) and “nucleobase, nucleoside, 

nucleotide and nucleic acid metabolism” (with focus on “RNA processing”). The massive 

upregulation of proteins belonging to the last two ontologies account, at least in part, for the 

role of protein synthesis in many of the biological effects of BDNF, including its role in 

synaptic plasticity and in neuroprotection. The diversity of proteins which expression is 

affected by BDNF may also explain the multiplicity of effects of this neurotrophin in the 

nervous system. 

The identification of the target genes and the grouping of differentially expressed proteins 

according to their ontologies represent important starting points for further analysis of the 

effects of BDNF in hippocampal neurons, and other neuronal systems, and might elucidate 

mechanisms, pathways, and physiological and phenotypic changes induced by the 

neurotrophin. In addition to the functional groups of proteins found to be regulated by BDNF, 

other proteins not belonging to a specific cluster were also regulated and may also contribute 

to elucidate the mechanisms of action o BDNF. 
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A.1 – Soluble fraction resolved using IPG strips pH 4.5-5.5 

 

 
 

 

 
 
Figure A.1 – Two-dimensional gel electrophoresis of proteins from a soluble fraction 
isolated from cultured hippocampal neurons. Radiolabelled amino acids were incorporated into 
newly synthesized proteins for 12h and samples were processed as indicated in the caption of Fig. 
4.4. Proteins were focused using IPG strips pH 4.5-5.5. After the second dimension, gels were 
dried and placed in contact with a phosphor screen. Images were acquired using a STORM laser 
scanner. 
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Figure A.2 - Gel mapping. Proteins from the soluble fraction were treated and identified as stated 
in Tab. III. Image shows a colloidal Coomassie stained gel of proteins focused in pH 4.5-5.5 IPG 
strips, and the accession numbers of identified spots. 
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A.2 – S126 fraction resolved using IPG strips pH 4.5-5.5 

 

 
 

 

 
 
Figure A.3 – Two-dimensional gel electrophoresis of the S126 fraction. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h and samples were processed as 
indicated in the caption of Fig. 4.5. Proteins were focused using IPG strips pH 4.5-5.5. After the 
second dimension, gels were dried and placed in contact with a phosphor screen. Images were 
acquired using a STORM laser scanner. 
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Figure A.4 - Gel mapping. Proteins of the S126 fraction were treated and identified as stated in 
Tab. III. Image shows a colloidal Coomassie stained gel of proteins focused in pH 4.5-5.5 IPG 
strips, and the accession number of identified spots.
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A.2 – Soluble fraction resolved using IPG strips pH 5.0-6.0 

 

 
 

 

 
 
Figure A.5 – Two-dimensional gel electrophoresis of soluble proteins. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h and samples were processed as 
indicated in the caption of Fig. 4.4. Proteins were focused using IPG strips pH 5.0-6.0. After second 
dimension, gels were dried and placed in contact with a phosphor screen. Images were acquired 
using a STORM laser scanner. 
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Figure A.6 - Gel mapping. Proteins of the soluble fraction were treated and identified as stated in 
Tab. III. Image shows colloidal Coomassie stained gel of proteins focused in pH 5.0-6.0 IPG strips 
with accession number of identified spots. 
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A.3 – S126 fraction resolved using IPG strips pH 5.0-6.0 

 

 
 

 

 
 
Figure A.7 – Two-dimensional gel electrophoresis of the S126 fraction. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h and samples were processed as 
indicated in the caption of Fig. 4.5. Proteins were focused using IPG strips pH 5.0-6.0. After second 
dimension, gels were dried and placed in contact with a phosphor screen. Images were acquired 
using a STORM laser scanner. 
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Figure A.8 - Gel mapping. Proteins of the S126 fraction were treated and identified as stated in 
Tab. III. Image shows colloidal Coomassie stained gel of proteins focused in pH 5.0-6.0 IPG strips 
with accession number of identified spots. 
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A.4 – S126 fraction resolved using IPG strips pH 5.5-6.7 

 

 
 

 

 

 
 
Figure A.9 – Two-dimensional gel electrophoresis of the S126 fraction. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h and samples were processed as 
indicated in the caption of Fig. 4.5. Proteins were focused using IPG strips pH 5.5-6.7. After the 
second dimension, gels were dried and placed in contact with a phosphor screen. Images were 
acquired using a STORM laser scanner. 
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Figure A.10 - Gel mapping. Proteins of the S126 fraction were treated and identified as stated in 
Tab. III. Image shows colloidal Coomassie stained gel of proteins focused in pH 5.5-6.7 IPG strips 
with accession number of identified spots.
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A.5 – Soluble fraction resolved using IPG strips pH 6.0-9.0 

 

 
 

 

 
 
Figure A.11 – Two-dimensional gel electrophoresis of soluble proteins. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h and samples were processed as 
indicated in the caption of Fig. 4.4. Proteins were focused using IPG strips pH 6.0-9.0. After second 
dimension, gels were dried and placed in contact with a phosphor screen. Images were acquired 
using a STORM laser scanner. 
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Figure A.12 - Gel mapping. Proteins of the soluble fraction were treated and identified as stated in 
Tab. III. Image shows colloidal Coomassie stained gel of proteins focused in pH 6.0-9.0 IPG strips 
with accession number of identified spots. 
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A.6 – S126 fraction resolved using IPG strips pH 6.0-9.0 
 

 
 
 

 

 
 
Figure A.13 – Two-dimensional gel electrophoresis of the S126 fraction. Radiolabelled amino 
acids were incorporated into newly synthesized proteins for 12h and samples were processed as 
indicated in the caption of Fig. 4.5. Proteins were focused using IPG strips pH 6.0-9.0. After second 
dimension, gels were dried and placed in contact with a phosphor screen. Images were acquired 
using a STORM laser scanner. 
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Figure A.14 - Gel mapping. Proteins of the S126 fraction were treated and identified as stated in 
Tab. III. Image shows colloidal Coomassie stained gel of proteins focused in pH 6.0-9.0 IPG strips 
with accession number of identified spots. 
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