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bstract

Since the discovery that certain flavonoids (namely flavones) specifically recognise the central BDZ receptors, several efforts have been made
o identify naturally occurring GABAA receptor benzodiazepine binding site ligands. Flavonoid derivatives with a flavone-like structure such
s apigenin, chrysin and wogonin have been reported for their anxiolytic-like activity in different animal models of anxiety. Luteolin (3′,4′,5,7-
etrahydroxyflavone) is a widespread flavonoid aglycon that was reported as devoid of specific affinity for benzodiazepine receptor (BDZ-R) binding
ite, but its psychopharmacological activity is presently unknown. Considering (1) the close structural similarity with other active flavones, (2) the
ctivity of some of its glycosilated derivatives and (3) the complexity of flavonoid effects in the central nervous system, luteolin was submitted to
battery of tests designed to evaluate its possible activity upon the CNS and its ability to interact with the BDZ-receptor binding sites was also
nalysed.
Luteolin apparently has CNS activity with anxiolytic-like effects despite the low affinity for the BDZ-R shown in vitro. Our findings suggest

possible interaction with other neurotransmitter systems but we cannot rule out the possibility that luteolin’s metabolites might show a higher
ffinity for the BDZ-R in vivo, thus eliciting the evident anxiolytic-like effects through a GABAergic mechanism.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Flavonoids are a large group of plant secondary metabolites
hat share a basic phenylbenzopyrone feature and are found
n all vascular plants where they occur in several structurally
nd biosynthetically related classes [1]. They are important
onstituents of the human diet [2] and can also be found in
xpressive amounts in many medicinal plants [3]. Amongst the
ide range of biological and pharmacological properties of these
ompounds we find a series of reports on their activity in the
entral nervous system (CNS) (for reviews see [4–6]). Since the
iscovery that certain flavonoids (namely flavones) specifically

∗ Corresponding author at: R. dos Girassóis, 258, 2785-725 Cascais,
ortugal. Tel.: +351 917600504; fax: +351 239827126.
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ecognise the central BDZ receptors [7,8], efforts have been
ade to identify naturally occurring GABAA receptor benzodi-

zepine binding site ligands [5] to understand their interaction
ith these receptors [9–12] and to establish the CNS activity of
ifferent natural [13] and synthetic flavonoids [14,15]. Amongst
hese reports flavonoid derivatives with a flavone-like structure
uch as apigenin [16,17], chrysin [18] and wogonin [19] have
een reported for their anxiolytic-like activity in different ani-
al models of anxiety. These flavonoids with BDZ-receptor

pecificity and/or anxiolytic activity have been isolated from
edicinal plants traditionally used in folk medicine for their

nxiolytic/sedative properties such as Passiflora coerulea [20],
atricaria recutita [16], Tilia tomentosa [21], Jatropha cilliata
22], Salvia guaranitica [23], Matricaria chamomilla [17], Zizi-
hus jujuba [24]. Recently, we have reported on the isolation
f luteolin-7-O-(2-rhamnosylglucoside) from Passiflora edulis
ims and demonstrated its anxiolytic-like activity [25].

mailto:mcoleta71@gmail.com
dx.doi.org/10.1016/j.bbr.2007.12.010
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ig. 1. Luteolin’s structure is close to that of other flavones that have been
eported for its anxyolitic activity like apigenin or chrysin.

Luteolin is a widespread flavonoid aglycon that was reported
s devoid of specific affinity for BDZ-receptor binding site [21],
ut its psychopharmacological activity is presently unknown.
onsidering (1) the close structural similarity with other active
avones (Fig. 1), (2) the activity of some of its glycosilated
erivatives [25,26,22] and (3) that flavonoid effects in the central
ervous system are complex and can involve different mech-
nisms [27] besides the interaction with the benzodiazepine
inding sites (BDZ-bs) at the GABAA receptors, we became
nterested in the possible psychopharmacological profile of
ction of luteolin. This substance, purchased from a commer-
ial source, was submitted to a battery of tests designed to
valuate its possible activity upon the CNS and to an even-
ual understanding of mechanisms underlying its activity(ies).
s we were also interested in analysing the ability of luteolin

o interact with the BDZ-receptor binding sites, we have also
valuated this substance in a radioreceptor binding assay with
3H]flunitrazepam.

. Material and Methods

.1. Animals

Male adult Swiss mice from our breeding stock, weighing 20–25 g, were
sed. Animals were placed in groups of 10 with free access to water and
ood, except during the experiments. They were kept on a 12/12 h day/night
ycle (lights on at 07:00 a.m.) at controlled room temperature (23 ± 2 ◦C) and

ere allowed to adapt to the laboratory conditions for, at least, 1 week before

he beginning of the behavioral experiments. Each animal was used just once.
ll experiments were conducted in accordance with international standards of

nimal welfare recommended by the Brazilian Society of Neuroscience and
ehavior. The experimental protocols were approved by the local Animal Care

2

a
a
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nd Use Committee. All efforts were made to minimize animal suffering and
o reduce the number of animals used and all behavioral testing was performed
uring the animal’s day light period between 09:00 a.m. and 01:00 p.m.

.2. Drugs

Diazepam i.v. solution (Dienpax ®, Sanofi-Winthrop Lab., Brazil) was
iluted with distilled water and used in the dose of 1 mg/kg as reference drug
positive control) for anxiolytic, sedative, muscle relaxant and anticonvulsant
ctivities. Luteolin, the flavonoid compound, was purchased from Extrasynthése
Genay, France). [3H]flunitrazepam was obtained from Amersham Biosciences.

.3. Treatments

Luteolin was freshly suspended (in an ultrasound bath) in a suitable amount
f distilled water to be acutely (1 h) or repeatedly (14 days) administered per
s (p.o.) by an intragastric cannula. Doses of luteolin (0.1–50 mg/kg) as well as
he time intervals were determined in preliminary tests. Control groups received
nly distilled water in equivalent volumes by the same route. The behavioral
ests were performed in a soundproof room between 09:00 a.m. and 01:00
.m. to reduce the confounding influence of diurnal variation in spontaneous
ehavior.

.4. Procedures

.4.1. Motor performance evaluation
Muscle relaxant effects were evaluated using the horizontal-wire test that

onsists of a stretched copper wire placed 20 cm above the ground [28]. Motor
oordination was assessed using a rota-rod apparatus. This equipment has a
.5 cm bar, rotating at 12 rpm, divided in six parts and placed at a height of
5 cm. Latency to fall from the rotating bar and number of falls in a period of
min test were registered [29].

.4.2. Elevated plus-maze test (EPM)
The elevated plus-maze was slightly modified from that used by Lister

30]. Briefly, it consisted of two open arms (30 cm × 5 cm × 0.25 cm) and
wo enclosed arms (30 cm × 5 cm × 15 cm), extending from a central plat-
orm (5 cm × 5 cm) and raised 50 cm above floor level. The maze floor was
onstructed from black Plexiglas and the walls from clear Plexiglas. The con-
entional spatial–temporal measures recorded were the number of entries (all
our paws on open or enclosed arms and expressed as percentage of total
ntries), the time spent on open arms (expressed as percentage of time spent
n closed plus open arms), number of entries on enclosed arms and the time
n the central platform. Ethologically derived measures were grooming, rear-
ng, stretched attend postures (SAP), head-dipping (HD) and defecation as
n emotionally related parameter [31]. A selective increase in the parame-
ers of exploration of the open arms of the maze reveals an anxiolytic effect
32].

.4.3. Hole-board test
The hole-board consisted of a square box made of transparent Plexiglas

50 cm × 50 cm × 30 cm), 10 cm above table surface, with equally distributed
ine holes, 2 cm in diameter. The area of the hole-board is divided with white
nk into 24 smaller areas. During 5 min we registered the number of head-dips,
rooming behavior, rears and also of displacements between the different areas
locomotor activity) [33].

.4.4. Potentiation of barbiturate-induced loss of righting reflex
One hour after treatment with luteolin, animals were administered (i.p.) with

odium pentobarbital (50 mg/kg). Latency for the loss of the righting reflex and
ts total duration was registered for three consecutive hours [34].
.4.5. Catalepsy test
Animals’ forepaws were placed over a horizontal glass tube standing 5 cm

bove floor surface, each 10 min interval for up 1 h. Catalepsy was evaluated
s the time until removal of the forefeet from the tube. Two different sets of
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xperiments were performed: (1) animals were treated with 5, 10 and 50 mg/kg
f pure luteolin and submitted to the test conditions; (2) animals previously
reated with luteolin were administered with haloperidol (1 mg/kg) immediately
efore testing [35].

.4.6. Maximal electroshock test
One hour after treatment, mice were submitted to a transcorneal electrical

timulation (50 mA; 0.2 s: 60 Hz). The flexion time (flexion of the front limbs)
nd the extension time (full hind limbs extension) of the convulsions elicited
y the electrical stimulus, as well as the incidence and lethality of the induced
onvulsions, were registered [36].

.4.7. Forced-swimming test
The test was slightly modified from that proposed by Porsolt et al. [37]

nd consisted in one exposure (6 min) to a water tank (height, 35 cm; diam-
ter, 24 cm, with a water column of 13.5 cm at 25 ◦C). We have registered
otal immobilization time and the latency for this behavior after the first

inute.

.4.8. Rectal temperature evaluation
Body temperature was measured through a glycerin-lubricated thermistor

Lumiscope 2018) probe inserted about 1 cm into the rectum of the animal
mmediately before (basal values) and 1 h after treatment.

.4.9. Statistical analysis
Data were analysed with Graphpad Prism® (v4.03). The statistical tests

sed were one-way ANOVA followed by Dunnett’s test for comparison of treat-
ent groups with control and Tukey’s test for comparison between all treatment

roups. Radioligand binding data were analysed by non-linear regression tools
rovided by the same software.

.4.10. In vitro radioreceptor binding assay
Crude synaptic membranes were prepared from isolated rat brain cortices as

reviously described elsewhere [38].
Binding assays were performed using a semi-automatic filtration tech-

ique with diazepam (100 �M) to obtain the specific binding. Competition
urves were obtained by adding to the assay tubes buffer solution (40 mM
epes-Tris, pH 7.4), luteolin (5.55 �M–3.5 mM) or diazepam, followed by

3H]flunitrazepam (88 Ci/mmol—final concentration 1.5 nM in the inhibition
urves and 0.014–20 nM in the saturation curves) and finally brain tissue
omogenate (about 300–400 mg protein) was added to initiate binding. The
ssays were done in triplicate and tubes were incubated at 37 ◦C during 30 min

nd terminated by rapid filtration through glass fiber filters. The radioac-
ivity remaining in the filters was determined in 8 ml of scintillation liquid
toluene 1 L, 167 mg of 2,5-difeniloxazol 7.3 g, p-bis(2(5-feniloxazoil(-benzene
nd 250 ml of Triton X-100) in a Packard Tri-Carb 2500 TR scintillation
ounter.

c
t
r
p

ig. 2. Performance of mice in the elevated plus-maze after acute treatment with 1,
alculated with relation to the total number of entries in both closed and open arm
*p < 0.01 versus control (vehicle treated group; Dunnett’s test).
Research 189 (2008) 75–82 77

. Results

.1. Motor performance evaluation

Acute treatment with luteolin (1–50 mg/kg) did not affect
he motor coordination or muscle relaxation of the animals, as

easured on the rota-rod (ANOVA: F4.38 = 1.705; p > 0.05) and
orizontal-wire tests (ANOVA: F4.38 = 0.7528; p > 0.05).

Also, there were no changes in the parameters directly related
ith motor activity in the hole-board test (number of cross-

ngs between the different sections) (ANOVA: F4.38 = 0.8242;
> 0.05) and in the elevated plus-maze (total number of entries

n the closed arms of the maze: data not shown; ANOVA:
4.38 = 1.311; p > 0.05).

.2. Anxiolytic activity

ANOVA showed a significant difference within treated
roups (F5.46 = 6.705; p < 0.0001) and Dunnett’s test revealed
hat only with the dose of 5 mg/kg there was a significant increase
p < 0.05) in the percentage of entries in the open areas of the
PM after acute treatment with luteolin (Fig. 2). As for the per-
entage of time spent in those areas we could not find significant
ifferences between luteolin-treated groups and control groups
F4.38 = 1.624; p > 0.05). ANOVA analysis of ethological param-
ters namely unprotected head-dipping and stretch approach
ostures also revealed significant differences when compared
ith the control group (F4.38 = 4.264 and 3.486, with p = 0.0060

nd 0.0021, respectively) and Dunnett’s test showed there was a
ignificant increase in unprotected head-dipping (p < 0.05) and
decrease in the stretch approach postures (p < 0.05) displayed

fter the administration of this same dose (Table 1).

.3. Sedative activity

ANOVA showed a significant difference within treated
roups (F6.50 = 13.83; p < 0.0001) and with Tukey’s multiple

omparison test we could observe a significant reduction of
he latency time for the pentobarbital-induced loss of righting
eflex, even with relatively low doses of luteolin (0.1 mg/kg;
< 0.05) and a more pronounced effect when doses higher

5, 10 and 50 mg/kg of luteolin. The percentage of entries in the open area was
s of the maze. Results are expressed as mean ± S.E.M. (n = 8–10). *p < 0.05;
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Table 1
Ethologically derived measures in the elevated plus-maze

Control Luteolin 1 mg/kg Luteolin 5 mg/kg Luteolin 10 mg/kg Luteolin 50 mg/kg

Protected head-dipping 12.6 ± 3.7 13.98 ± 4.9 9.3 ± 2.9 9.7 ± 3.9 11.3 ± 4.8
Unprotected head-dipping 0.8 ± 0.7 0.4 ± 0.5 2.9 ± 0.6* 1.6 ± 1.5 0.8 ± 0.6
Rearing 22.8 ± 7.0 19.4 ± 5.5 27.7 ± 5.8 18.0 ± 4.0 20.8 ± 4.2
Immobility 0.6 ± 1.0 1.4 ± 1.8 1,7 ± 2.2 2.5 ± 1.5 6.0 ± 6.4
G
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rooming 4.2 ± 4.2 4.0 ± 3.7
AP 9.4 ± 2.5 5.5 ± 4.7

esults are expressed as mean ± S.E.M. (n = 8–10). *p < 0.05 versus control (ve

han 1 mg/kg were tested (Fig. 3), as concluded from the fact
hat the effect observed after the administration of luteolin
.1 mg/kg was significantly lower than after luteolin 5 and
0 mg/kg (p < 0.05). ANOVA analysis of the total duration of
he pentobarbital-induced loss of righting reflex data showed
ignificant differences between treatment groups (F6.50 = 17.31;
< 0.0001); however, the total duration was only significantly

ncreased with high doses of luteolin (10 mg/kg) (p < 0.05, with
unnett’s test) (Fig. 4). Also, we have observed that during
he loss of righting reflex all the animals treated with lute-
lin and, particularly, groups that received the dose of 5 and
0 mg/kg, showed unusual tremors of both anterior and posterior
imbs.

s
c
n

ig. 3. Latency to the loss of the righting reflex induced by pentobarbital. Results a
ersus control (vehicle treated group; Tukey’s test).

ig. 4. Total duration of the loss of the righting reflex induced by pentobarbital. Result
reated group; Dunnett’s test).
0.7 ± 0.9 1.3 ± 1.3 4.6 ± 4.2
4.3 ± 1.1* 11.2 ± 3.4 12.3 ± 4.1

treated group) (Dunnett’s test).

.4. Anticonvulsant activity

Compared with control groups, animals treated with luteolin
howed no differences in the flexion and extension times as well
s in the lethality of the electroshock-induced seizures for any
f the doses tested (data not shown).

.5. Catalepsy test
Luteolin (5, 10 and 50 mg/kg) did not induce catalepsy per
e, but analysing the results with ANOVA and Dunnett’s test we
ould conclude that the dose of 5 mg/kg significantly antago-
ised catalepsy induced by haloperidol (F3.24 = 8.201; p < 0.01)

re expressed as mean ± S.E.M. (n = 7–11). *p < 0.05; **p < 0.01; ***p < 0.001

s are expressed as mean ± S.E.M. (n = 7–11). **p < 0.01 versus control (vehicle
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Fig. 5. Antagonism of haloperidol-induced catalepsy. Catalepsy was evaluated as the
removal of the forefeet of the tube). Results are expressed as mean ± S.E.M. (n = 6–8

F
o
(
t

a
(

3

d
a
p
o
h

E

a
t
D
(

s
b
F
l
r
n
a
F

3

m
1
m
l
c
s

F
t
R

ig. 6. Effect of chronic treatment with luteolin (5 mg/kg) on the frequency
f head-dips in the hole-board test. Results are expressed as mean ± S.E.M.
n = 9–11). *p < 0.05; **p < 0.01 versus control (vehicle treated group; Dunnett’s
est).

nd this effect disappeared when higher doses (10, 50 mg/kg)
F3.24 = 8.201; p > 0.05) were tested (Fig. 5).

.6. Chronic treatment

Animals treated with luteolin (5 mg/kg) daily for 14 days
id not exhibit any significant changes either on the motor
ctivity parameters as evaluated in the rota-rod (F2.27 = 0.967;
> 0.05) and horizontal-wire (F2.27 = 0.822; p > 0.05) tests or

n the parameters related with motor activity in the EPM and
ole-board test (data not shown).

Also, both ethological and spatio-temporal parameters of the
PM related with anxiolytic-like effects remained unchanged

4

a

ig. 7. Effect of chronic treatment with luteolin in the performance of mice in the forc
o this behavior after the first minute. A mouse was considered to be immobile when it
esults are expressed as mean ± S.E.M. (n = 9–11). *p < 0.05; **p < 0.01 versus cont
time of involuntary permanence of the animal in an unusual position (time until
). *p < 0.01 versus control (vehicle treated group; Dunnett’s test).

fter chronic treatment with luteolin (5 mg/kg); however, in
he hole-board test, analysis of the results with ANOVA and
unnett’s test showed a significant increase in head-dipping

F2.27 = 7.987; p < 0.01; Fig. 6).
On the contrary, in the forced-swimming test, the ANOVA

howed significant differences within treatment groups for
oth parameters measured (F2.27 = 10.26; p = 0.0005 and
2.27 = 4.236; p = 0.0292, for total immobilization time and

atency to immobilization, respectively) and Dunnett’s test
evealed that repeated treatment with luteolin (5 mg/kg) sig-
ificantly reduced the latency to immobilization (p < 0.05)
nd increased the total time of immobilization (p < 0.01;
ig. 7).

.7. Radioreceptor binding assay

From [3H]flunitrazepam saturation binding experi-
ents Kd and Bmax determined were 13.9 ± 3.3 nM and

0316 ± 1186 cpm, respectively. In competitive binding experi-
ents carried out in the presence of 5 nM of [3H]flunitrazepam,

uteolin inhibited this radioligand binding to the rat cerebral
ortex membranes (Fig. 8) with a Ki of 60.1 �M and a Hill
lope of −0.91.
. Discussion

The results in the different tests show that luteolin after both
cute and chronic treatment is devoid of muscle relaxant or motor

ed-swimming test. We have registered total immobilization time and the latency
floated or made only small movements necessary to keep its head above water.

rol (vehicle treated group; Dunnett’s test).
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Luteolin, despite its low affinity for the BDZ-R, seems to have
ig. 8. Structure of luteolin and competitive inhibition curve of
3H]flunitrazepam binding to synaptosomal membranes.

oordination effects and activity on the CNS is thus not hindering
otor activity performance.
Increased exploration in the open areas of the EPM (% open

rm entries), diminution of SAP and increase in unprotected
ead-dipping are all consistent and suggest an anxiolytic-like
ffect [39]. However, one should expect the increased number
f entries in the open areas of the maze also to reflect significantly
n the percentage of time spent there; but that was not the case
nd, also, we could not observe any clear dose–effect relation in
his test.

Potentiation of pentobarbital-induced loss of righting reflex
an be elicited through interaction with different neurotransmit-
er systems, namely GABA [40,41] or 5-HT [42]. In our tests,
he reduced latency time for the pentobarbital-induced loss of
ighting reflex elicited by luteolin (0.1, 5 and 10 mg/kg) and the
ncrease in the total duration of this effect (10 mg/kg) can be
nterpreted as an indication of luteolin’s possible interference
ith these systems.
Unlike classical benzodiazepines [43] and other flavone type

DZ-R ligands like apigenin [17] or chrysin [18], luteolin failed
o give any protection against maximal electroshock.

Haloperidol is a potent D2 antagonist [44] that elicits
atalepsy. Besides dopamine, several neurotransmitters like
erotonin, acetylcholine, GABA or endorphins are found to be
nvolved in the expression of catalepsy and haloperidol-induced
atalepsy can be blocked by such diverse drugs as selec-
ive dopamine D3 receptor antagonists [45], 5-HT1A agonists
46,47], anti-cholinergics [48] or A2A receptor antagonists [49].
here are also well-known interactions between the GABAergic
nd dopaminergic system [50,51] and classic benzodiazepines
ike diazepam potentiate haloperidol-induced catalepsy [52].

n the contrary, GABAA agonists like muscimol are reported

o antagonise haloperidol-induced catalepsy at low doses with
everse effects at higher doses [53] and, interestingly enough,

a
r
n

Research 189 (2008) 75–82

ABAB agonist baclofen antagonises the action of haloperi-
ol in a low dose (1 mg/kg) without any visible effect in higher
oses (2–8 mg/kg) [54]. There are reports of other flavonoid-
ype molecules like quercetin [55] or flavonoid-enriched extracts
56] interfering with haloperidol-induced catalepsy with differ-
nt outcomes but the present results suggest that luteolin has a
aclofen-like effect in this test. However, it must be noted that
nlike baclofen [57], luteolin did not produce any significant
eduction in the animals’ body temperature (results not shown).

After the chronic treatment, our results of the hole-board test
uggest an anxiolytic-like effect [58] but these were not observed
n the EPM. Normally, the results with anxiolytics in both tests
eem to correlate well but their sensitivity can differ [59] and
hat could explain these somewhat surprising results. On the con-
rary, it was previously reported that handling history can modify
he behavioral effects of drugs in the EPM and GABAB agonists
ike baclofen apparently exert an anxiolytic-like effect in this
est only in handling naı̈ve rats [60] and this could also explain
he different results in the EPM after acute or repeated treat-

ent. Moreover, the development of tolerance to the repeated
reatment with luteolin could also explain its lack of effect in the
PM since tolerance is observed with the benzodiazepine drugs

61].
The meaning of immobility in swimming tests may vary

n accordance with the protocol reflecting helplessness or
daptation in the forced-swimming test or in the swimming
tress, respectively [62]. For mice, the forced-swimming con-
itions used in this test resemble more closely the situation of
wimming-stress (once the animal does not touches the bottom
ith its hind paws) and in these conditions drugs like diazepam
ave the ability to increase immobility time [62,63] just as it
as observed in our assay. Other structurally related compounds

ike apigenin, upon acute treatment with relatively high doses
25 mg/kg), have induced an antidepressant-like activity (reduc-
ion in immobility time) in the forced-swimming test [64].

.1. Radioreceptor binding assay

Luteolin had previously been reported not to displace
3H]flunitrazepam binding to central benzodiazepine receptors
BDZ-R) (IC50 > 100 �M) [21]. In our experiments we have
etermined that luteolin has in fact the ability to displace
3H]flunitrazepam binding, though exhibiting a low affinity for
hese receptors, with a Ki in the high (60.1) �M range. Despite
he need to further analyse luteolin’s interaction with BDZ-R,
ur results suggest that by itself this interaction does not seem
o fully explain the results observed in vivo, thus prompting
enewed interest in the analysis of possible interactions with
ther receptors.

Most of the literature published concerning the anxiolytic-
ike activity of flavone-type compounds has focused on the
bility of these molecules to interact with the GABAA benzo-
iazepine binding site (BDZ-bs) (for review see [5]). However,
nxiolytic-like effects or, at least, to interact with different neu-
otransmitter systems so as to induce CNS effects. Another
eurotransmitter system such as the 5-HT receptors [65,66]
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ould be involved in its action, and this should be further inves-
igated. On the contrary, we must consider that flavonoids are
ubject to intense metabolism [67] and after oral administra-
ion of luteolin to rats, free luteolin has been determined in
lasma but also luteolin’s sulfate and glucoronate derivatives
the main metabolite was found to be a luteolin monoglucoro-
ate) as well as o-methyl luteolin, with the dose administered
trongly affecting the type of metabolites formed [68]. As there
s no information about the affinity for the BDZ-receptor of lute-
lin’s metabolites we cannot at this point discard the hypothesis
hat these might exhibit higher affinities for the BDZ-receptor,
hus eliciting the evidenced anxiolytic-like effects through a
ABAergic mechanism and this aspect should also be further

nvestigated.
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