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Maria C. Pedroso de Lima c;d, Nejat Du«zgu«nes° a;*

a Department of Microbiology, School of Dentistry, University of the Paci¢c, 2155 Webster Street, San Francisco, CA 94115, USA
b Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal

c Department of Biochemistry, University of Coimbra, 3000 Coimbra, Portugal
d Center for Neurosciences, University of Coimbra, 3000 Coimbra, Portugal

Received 2 June 1999; received in revised form 4 October 1999; accepted 24 November 1999

Abstract

Cationic liposome^DNA complexes (`lipoplexes') are used as gene delivery vehicles and may overcome some of the
limitations of viral vectors for gene therapy applications. The interaction of highly positively charged lipoplexes with
biological macromolecules in blood and tissues is one of the drawbacks of this system. We examined whether coating cationic
liposomes with human serum albumin (HSA) could generate complexes that maintained transfection activity. The
association of HSA with liposomes composed of 1,2-dioleoyl-3-(trimethylammonium) propane and dioleoylphosphatidyl-
ethanolamine, and subsequent complexation with the plasmid pCMVluc greatly increased luciferase expression in epithelial
and lymphocytic cell lines above that obtained with plain lipoplexes. The percentage of cells transfected also increased by an
order of magnitude. The zeta potential of the ternary complexes was lower than that of the lipoplexes. Transfection activity
by HSA-lipoplexes was not inhibited by up to 30% serum. The combined use of HSA and a pH-sensitive peptide resulted in
significant gene expression in human primary macrophages. HSA-lipoplexes mediated significantly higher gene expression
than plain lipoplexes or naked DNA in the lungs and spleen of mice. Our results indicate that negatively charged HSA-
lipoplexes can facilitate efficient transfection of cultured cells, and that they may overcome some of the problems associated
with the use of highly positively charged complexes for gene delivery in vivo. ß 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The e¤cient delivery of functional therapeutic
genes into target cells in vitro and in vivo is an im-

portant problem in gene therapy approaches for the
treatment of cancer and metabolic diseases, as well as
human immunode¢ciency virus infection. The major
limitations of viral vectors, particularly those related
to safety and immunogenicity, have prompted studies
to improve methods of non-viral gene delivery [1].
Among such non-viral vectors, cationic liposome^
DNA complexes (`lipoplexes;' [2]) have been utilized
for numerous in vitro and in vivo gene delivery ap-
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plications [3^7]. Relatively stable expression has been
achieved in several tissues with this system [8^12].
Among the advantages of lipoplexes are lack of im-
munogenicity, safety, ability to package large DNA
molecules, and ease of preparation [4,5]. Their dis-
advantages include limited e¤ciency of delivery and
gene expression, toxicity at higher concentrations,
potentially adverse interactions with negatively
charged macromolecules in serum and on cell surfa-
ces, and impaired ability to reach tissues beyond the
vasculature unless directly injected into the tissue
[4,13]. Lipoplexes may be coated in vivo with serum
proteins, such as lipoproteins or immunoglobulins,
or bind non-speci¢cally to cells such as erythrocytes,
lymphocytes and endothelial cells, as well as to ex-
tracellular matrix proteins [3,4,13]. This will limit the
ability of the complexes to reach target tissues and
cells.

We considered the possibility that coating cationic
liposomes with the most abundant plasma protein,
albumin, might alleviate some of the undesired inter-
actions between liposome^DNA complexes and se-
rum components. In support of this hypothesis, a
recent study on the e¡ects of serum components on
cationic liposome^oligonucleotide complexes found
that bovine serum albumin can prevent the dissocia-
tion of the complexes induced by certain polyanions
[14]. Previous observations by Cheng [15] and our
laboratories [16,17] had indicated that transferrin
complexed to lipoplexes enhances gene delivery to
various cell types, including primary cells. Studies
on the mechanisms of gene delivery by such trans-
ferrin^lipoplexes suggested, however, that speci¢c
ligand^receptor interactions are not involved in
this process [6,18]. Thus, although albumin would
not be expected to function as a receptor ligand
[19], it could still facilitate transfection by lipoplexes,
possibly by mediating endocytosis similar to that by
transferrin. Earlier reports had also described the
ability of albumin to promote membrane fusion
under acidic conditions [20]. Therefore, besides its
potential role in triggering internalization of the lipo-
plexes, albumin may also function as a fusogenic
protein that destabilizes endosomes under acidic
conditions, thus enhancing intracellular gene deliv-
ery.

2. Materials and methods

2.1. Cells

HeLa and COS-7 cells were maintained at 37³C,
under 5% CO2, in Dulbecco's modi¢ed Eagle's me-
dium-high glucose (DME-HG) (Irvine Scienti¢c,
Santa Ana, CA) supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS) (Sigma, St.
Louis, MO), penicillin (100 U/ml), streptomycin
(100 Wg/ml) and L-glutamine (4 mM). For transfec-
tion, 0.2U105 HeLa cells, or 0.4U105 COS-7 cells,
were seeded in 1 ml of medium in 48-well culture
plates and used at either 80^90% (HeLa) or 40^
60% (COS-7) con£uence. For transfection 0.3U105

cells were seeded in 1 ml of medium in 48-well cul-
ture plates and used at 40^60% con£uence. H9 cells,
a CD4� clonal derivative of the Hut-78 T-cell line
readily infectable by HIV [21], were grown in RPMI
1640 medium (Irvine Scienti¢c) supplemented with
10% (v/v) FBS, L-glutamine (2 mM), and antibiotics
as above. B-lymphocytic TF228.1.16 cells that stably
express functional HIV envelope proteins on the cell
surface [22] were grown in DME-HG supplemented
with 16% (v/v) FBS, L-glutamine (4 mM) and anti-
biotics. Human peripheral blood monocyte-derived
macrophages were prepared as described previously
[23]. In some experiments, human granulocyte-mac-
rophage colony stimulating factor (hGM-CSF)
(Boehringer Mannheim Biochemica, Indianopolis,
IN) was added to the wells (¢nal concentration of
100 IU/well) on the second day following isolation.
In other experiments, cells were cultured for 8 more
days in medium containing 20% FBS, antibiotics and
L-glutamine, but in the absence of hGM-CSF.

2.2. Cationic liposome^DNA complexes

Unilamellar cationic liposomes were prepared
from a 1:1 mixture (by weight) of 1,2-dioleoyl-3-(tri-
methylammonium) propane (DOTAP) and dioleoyl-
phosphatidylethanolamine (DOPE) (Avanti Polar
Lipids, Alabaster, AL), by extrusion of multilamellar
liposomes through polycarbonate ¢lters of 50 nm
pore diameter, and ¢lter-sterilization (Millex 0.22
Wm ¢lters), as described [16]. Complexes were pre-
pared by sequentially mixing 100 Wl of a solution
of 100 mM NaCl, 20 mM HEPES, pH 7.4, with or
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without human serum albumin (HSA, Sigma) with
liposomes (2.1, 4.2, or 8.4 Wg of total lipid, depend-
ing on the +/3 charge ratio) and incubated at room
temperature for 15 min. One hundred microliters of
bu¡er containing 1 Wg of pCMVluc (VR-1216; a gift
of Dr. P. Felgner (Vical, San Diego, CA)) or 1 Wg
pCMVWSPORT-L-gal plasmid (Gibco-BRL Life
Technologies, Gaithersburg, MD) were then added
and gently mixed; the mixture was further incubated
for 15 min at room temperature. Quaternary com-
plexes containing both HSA and the fusogenic pep-
tide GALA (a 30 amino acid, pH-sensitive, amphi-
pathic peptide with the sequence WEAALAEALA-
EALAEHLAEALAEALEALAA) [24,25] were pre-
pared by adding the protein and the peptide sequen-
tially to the liposomes, followed by the initial 15-min
incubation, and the addition of the plasmid. The zeta
potential of the various complexes was measured in a
Coulter DELSA 440 instrument as described previ-
ously [16].

2.3. Transfection of cells

Transfection activity was measured as described
previously [16]. Lipid/DNA complexes were incu-
bated for 4 h with the cells in serum-free medium,
unless indicated otherwise. The medium was then
replaced with the appropriate medium containing
FBS, as described in the ¢gure legends, and the cells
were further incubated for 48 h. The level of gene
expression in cell lysates (obtained with lysis bu¡er,
Promega, Madison, WI) was evaluated by measuring
luciferase activity using a scintillation counter proto-
col (Promega) and a standard curve for luciferase
activity. The protein content of the lysates was mea-
sured by the Dc Protein Assay reagent (Bio-Rad,
Hercules, CA) using bovine serum albumin as the
standard. The data were expressed as ng of luciferase
per mg of total cell protein. Transfection e¤ciency
was evaluated by scoring the percentage of cells ex-
pressing L-galactosidase [16]. Cell viability following
transfection under the di¡erent experimental condi-
tions was quanti¢ed by a modi¢ed Alamar Blue (Ac-
cuMed, Westlake, OH) assay [16,26].

2.4. Transfection in vivo

Gene expression in vivo was assessed by injecting

HSA-lipoplexes, plain lipoplexes (both containing
DOTAP/cholesterol at a 1:1 mol ratio [11]) or naked
DNA into 8-week-old mice (Charles River) via the
tail vein in a volume of 200 Wl. Plain lipoplexes or
HSA-lipoplexes (containing 3.2 mg HSA) were pre-
pared at a charge ratio (+/3) of 2/1 and contained
100 Wg pCMVluc. The lungs and spleen were har-
vested and homogenized 8 h following injection,
and luciferase expression in the supernatant was
measured in a luminometer (Mediators Diagnostika,
Vienna, Austria; www.mediators-int.com) using a
standard curve for luciferase activity.

3. Results

3.1. Enhancement of transfection activity and
e¤ciency by human serum albumin (HSA)

We examined the e¡ect of HSA on transfection
mediated by cationic liposome^DNA complexes at
di¡erent lipid/DNA (+/3) charge ratios. An en-
hancement of transfection was observed as the
amount of albumin associated with (1/1) DOTAP:
DOPE/DNA complexes was increased up to 32 Wg
(Fig. 1). Doubling this amount led to a decrease in
the level of luciferase gene expression, indicating that
32 Wg of HSA is optimal for transfection. Although
increasing amounts of albumin still enhance trans-
fection as compared to plain lipoplexes (controls) it
also reduces the amount of DNA that can interact
with the cationic liposomes, since it reduces the net
surface charge on the liposomes. Thus, amounts of
albumin above 32 Wg appear to reduce the amount of
DNA associated with the liposomes to a su¤cient
degree to counteract its enhancing e¡ect. Further
studies were therefore performed with 32 Wg of
HSA. In a separate series of experiments, the role
of HSA in transfection by di¡erent lipid/DNA
(+/3) charge ratios was examined (Fig. 2A). HSA
enhanced transfection by all the lipid/DNA charge
ratios tested. This enhancement was particularly pro-
nounced for the net negatively charged (1/2) com-
plexes, since the plain lipoplexes were essentially in-
e¡ective. The highest levels of transfection were
obtained with the 1/1 (theoretically neutral) lipid/
DNA charge ratio. This observation suggests that a
net positively charged lipid/DNA complex is not re-
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quired to obtain high levels of transfection, and that
higher positive to negative charge ratios do not en-
hance gene transfer or expression mediated by HSA.
A similar tendency was also observed for the plain
lipid/DNA complexes. Zeta potential measurements
revealed that the HSA-associated complexes are
more negatively charged than the corresponding
plain lipoplexes. For the 1/1 (+/3) charge ratio, the
zeta potential was 1.4 þ 5.8 mV for the plain lipo-
plexes, and 325.6 þ 6.1 mV for the HSA-lipoplexes.
For the 1/2 charge ratio the zeta potential of the
HSA-lipoplexes was 333.8 þ 6.0 mV. These data in-
dicate that HSA facilitates gene delivery by net neg-
atively charged complexes.

The association of HSA with the lipoplexes also
resulted in a signi¢cant enhancement of the levels of
luciferase expression in HeLa cells, although to a
lower extent than in COS-7 cells (data not shown).
HSA-lipoplexes at the 1/1 (+/3) charge ratio were
again the most e¡ective of the di¡erent charge ratios,
but the luciferase levels were around 170 ng/mg pro-
tein, compared to about 1400 ng/mg in the case of
COS-7 cells. The association of HSA with the lipo-
plexes resulted in an increase of the number of cells

that were detectably transfected. In the case of the
1/1 (+/3) charge ratio complexes, the percentage of
cells expressing detectable L-galactosidase increased
from 2% for plain lipoplexes to 20^25% for HSA-
lipoplexes. For the 1/2 (+/3) complexes, the percent-
age increased from 0 to 5^10%, and for the 2/1 (+/3)
complexes it increased from 1 to 5%, respectively.
These results indicate that HSA-lipoplexes enhance
both transfection activity (level of luciferase expres-
sion) and transfection e¤ciency (the percentage of
cells transfected). It should be noted that our experi-
ments were not designed to maximize the e¤ciency
of transfection, but to explore the roles of HSA and
the +/3 charge ratio in transfection activity and e¤-
ciency.

3.2. Transfection of lymphocytes by HSA-lipoplexes

Adoptive cellular immunotherapy based on the use
of genetically modi¢ed T-cells represents a promising
strategy to increase the immune response against vi-
ral infections and malignant diseases, as well as to
correct single gene defects in T-cell immunode¢ciency
syndromes [27^29]. HSA-lipoplexes greatly enhanced

Fig. 1. The e¡ect of the amount of human serum albumin (HSA) complexed with DOTAP:DOPE liposomes on luciferase gene ex-
pression in COS-7 cells. Cells were rinsed twice with serum-free medium and then covered with 0.3 ml of DME-HG before lipid/DNA
complexes were added. The liposomes were complexed, in the presence or absence of di¡erent amounts of HSA, with 1 Wg of
pCMVluc in order to obtain a 1/1 lipid/DNA charge ratio. After an incubation of 4 h, the medium was replaced with DME-HG con-
taining 10% FBS and the cells were further incubated for 48 h. The level of gene expression was evaluated as described in Section 2.
The data are expressed as ng of luciferase per mg of total cell protein (mean þ S.D. obtained from triplicate wells), and are representa-
tive of two independent experiments.
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gene expression in the T-lymphocyte cell lines H9
(Fig. 2B) and TF228.1.16 cells (data not shown),
over that obtained with plain lipoplexes.

3.3. Transfection of primary macrophages by
HSA-GALA-lipoplexes

Although considered as being cells that are very
di¤cult to transfect by non-viral vectors, macro-

phages are crucial targets for gene therapeutic inter-
ventions since they are involved in a large variety of
biological processes and pathologies [30^32]. We
found that HSA-lipoplexes were considerably more
e¡ective than plain lipoplexes in transfecting macro-
phages (Fig. 3). We previously showed that the use
of transferrin in combination with the pH-sensitive
peptide GALA greatly enhanced the transfection of
macrophages by lipoplexes, presumably by both pro-

Fig. 2. The e¡ect of HSA complexation with DOTAP:DOPE liposomes on luciferase gene expression in COS-7 (A) or T-lymphocytic
H9 (B) cells. For COS-7 cells, experimental details were as in Fig. 1, except that the liposomes were complexed, in the presence or ab-
sence of 32 Wg of HSA, with 1 Wg of pCMVluc at the indicated theoretical lipid/DNA charge ratios. H9 cells were rinsed twice with
serum-free medium and 106 cells/0.3 ml of medium aliquoted into polypropylene culture tubes before lipid/DNA complexes were
added. The lipoplexes were prepared the same way as for COS-7 cells. After an incubation of 4 h, cells were centrifuged at 900 rpm
for 5 min, the medium was replaced with that containing FBS, and the cells were further incubated for 48 h. The data, expressed as
ng of luciferase per mg of total cell protein, indicate the mean þ S.D. obtained from triplicate wells (COS-7 cells) or tubes (H9 cells),
and are representative of two independent experiments.
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motion of internalization of the complexes and dis-
ruption of the endosome membrane, respectively
[17]. We therefore examined the e¡ect of associating
both albumin and GALA with cationic liposomes on
gene delivery to macrophages. The use of this strat-
egy resulted in signi¢cant gene transfer compared to
plain lipoplexes, with both the 1/1 and 2/1 (+/3)
lipid/DNA charge ratios (Fig. 3). It should be noted
that cell viability was not a¡ected signi¢cantly when
either plain lipoplexes or quaternary complexes (con-
taining albumin and GALA) were incubated for 4 h
at 37³C with human macrophages, followed by a
48-h incubation (data not shown). In fact, cell meta-
bolic activity, measured by Alamar blue, was unal-
tered even for the highest lipid/DNA charge ratio
tested (2/1), where about 8 Wg of total lipid were
used. These results were con¢rmed by both total
cell protein quanti¢cation and morphological obser-
vations for treated and untreated cells (data not
shown).

3.4. E¡ect of serum on transfection

Transfection of certain cell types by some cationic
liposome compositions is sensitive to the presence of
serum [33,34]. The inhibition of gene delivery by se-
rum is considered to be one of the limitations to the
use of lipoplexes in vivo [34]. We therefore examined

the e¡ect of serum on the levels of transfection medi-
ated by HSA-lipoplexes. The transfection activity
mediated by the plain lipoplexes at the 2/1 (+/3)
charge ratio was completely inhibited in the presence
of serum (Fig. 4), while that mediated by HSA-lipo-
plexes was slightly enhanced. In the case of 1/1 (+/3)
complexes, the presence of serum did not a¡ect sig-
ni¢cantly the level of transfection by plain lipoplexes,
but it enhanced transfection by HSA-lipoplexes.

3.5. Studies on the mechanisms of transfection
mediated by HSA-lipoplexes

Previous studies have indicated that endocytosis is
the major pathway of cellular entry of plain lipo-
plexes [35^37]. To gain insights into the internaliza-
tion pathway followed by the HSA-lipoplexes, HeLa
cells were pretreated before transfection with agents
that interfere with various aspects of the endocytotic
pathway: (1) a mixture of antimycin A, NaF and
NaN3, which, by restricting the metabolic activity
of the cell, strongly inhibits both receptor- and
non-receptor-mediated endocytosis [38,39]; and (2)
cytochalasin B, a drug that is known to disrupt the
micro¢lament network by inhibiting actin polymeri-
zation, thereby blocking phagocytosis and pinocyto-
sis, but not receptor-mediated endocytosis [40,41]. In
addition, to evaluate whether the fusogenic proper-

Fig. 3. E¡ect of the association of HSA, in the presence or absence of the fusogenic peptide GALA, with cationic liposome^DNA
complexes on transfection of macrophages derived from human blood monocytes. DOTAP:DOPE liposomes were mixed with 32 Wg
HSA or with its mixture with 0.6 Wg of GALA, and then complexed with 1 Wg of pCMVLuc plasmid. hGM-CSF (100 IU/ml) was
added to the macrophages on the second day of di¡erentiation. Other experimental details were as in Fig. 1, except that the cells were
incubated for 48 h in medium containing 20% of FBS after the removal of the complexes.
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ties of albumin also play a role in facilitating intra-
cellular gene delivery from within endosomes, experi-
ments were also carried out in the presence of ba¢-
lomycin A1. Being a speci¢c inhibitor of the vacuolar

ATPase proton pump, this drug prevents the acid-
i¢cation of the endocytotic pathway [42,43].

Although varying with the type of drugs used and
the charge of the complexes tested, an inhibitory ef-

Fig. 5. E¡ect of di¡erent inhibitors on transfection by HSA-lipoplexes. HeLa cells were incubated for 30 min at 37³C, in the absence
of serum, with a mixture of antimycin A (1 Wg/ml), NaF (10 mM) and NaN3 (0.1%), with cytochalasin B (25 Wg/ml), or with ba¢lo-
mycin A1 (125 nM). COS-7 cells were incubated for 30 min at 37³C with an excess of free HSA (8 mg/0.3 ml). Cells were further in-
cubated for 1 h at 37³C with HSA-lipoplexes in the presence of the various drugs or free HSA, and then washed once with serum-
free medium. The medium was then replaced with DME-HG containing 10% FBS, and the cells were further incubated for 48 h be-
fore evaluation of transfection. The data are expressed as the percentage of luciferase activity in untreated controls for the two charge
ratios tested (n.d., not determined).

Fig. 4. The e¡ect of serum on gene delivery by HSA-lipoplexes to COS-7 cells. Cells were covered with 0.3 ml of DME-HG supple-
mented with 0, 10 or 50% FBS before lipid/DNA complexes were added. The liposomes were complexed, in the absence or presence
of 32 Wg of HSA with 1 Wg of pCMVluc at the indicated theoretical lipid/DNA charge ratios and added to the cells in a volume of
0.2 ml. This procedure resulted in ¢nal serum concentrations of 0, 6 or 30%, respectively. After an incubation for 4 h, the medium
was replaced with 1 ml of medium containing 10% FBS and the cells were further incubated for 48 h.
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fect on transfection was evident for essentially all the
conditions (Fig. 5). The inhibitors of endocytosis
strongly inhibited transfection by the HSA-lipoplexes
at both charge ratios, the highest level of inhibition
being observed with the 1/1 charge ratio. Although,
in this study, these agents have been used to inhibit
endocytosis, we cannot rule out that they may have
other unknown e¡ects on the transfection machinery.
Cytochalasin B also had signi¢cant inhibitory e¡ects
on transfection. Inhibition of endosome acidi¢cation
by ba¢lomycin A1 caused a 50% reduction in the
levels of transfection, independently of the lipid/
DNA charge ratio used for the HSA-lipoplexes. It
should be noted that none of these treatments had
any toxic e¡ect on the cells, as we have reported
elsewhere [18].

To explore the possible existence of speci¢c recep-
tors for HSA that might facilitate the uptake of
HSA-lipoplexes, competitive inhibition studies were
also performed. For this purpose, COS-7 cells were
preincubated with 8 mg of free HSA/0.3 ml of DME-
HG medium for 30 min at 37³C, before the HSA-

lipoplexes were added to the cells and incubated for
1 h. The medium was then replaced with DME-HG
containing 10% FBS, and the cells were further in-
cubated for 48 h at which time they were harvested
for luciferase activity measurements. The presence of
a large excess of free HSA in the medium, represent-
ing 250 times the amount of HSA associated with
lipoplexes, had no signi¢cant e¡ect on the levels of
transfection mediated by HSA-lipoplexes at the 1/1
(+/3) charge ratio (Fig. 5).

3.6. Transfection by HSA-lipoplexes in vivo

To examine the potential use of HSA-lipoplexes
for in vivo gene therapy applications, we determined
luciferase gene expression in the lungs and spleen
of mice following intravenous administration. Plain
lipoplexes and naked DNA were used as controls.
HSA-lipoplexes mediated signi¢cantly higher levels
of luciferase gene expression in the lungs and
spleen compared to plain lipoplexes or naked DNA
(Fig. 6).

4. Discussion

Our results demonstrate that the association of
HSA with cationic liposomes prior to the complex-
ation of DNA produces a ternary complex that has
much higher transfection activity and e¤ciency than
plain lipoplexes at various (+/3) charge ratios. The
enhancement is evident not only in readily transfect-
able adherent cell lines, but also in lymphocytic cell
lines and primary macrophages that are not trans-
fected to an appreciable extent with plain lipoplexes.
It is surprising that the major protein component of
serum, which is usually inhibitory to lipoplex-medi-
ated transfection, especially for highly positively
charged complexes [33,34,44], would enhance trans-
fection when associated with cationic liposomes be-
fore complexation with plasmid DNA.

Although the exact mechanism of the enhancement
of gene delivery and expression by HSA-lipoplexes is
not known, our experiments indicate that the endo-
cytotic pathway is involved. HSA is thought not to
interact with human cells through a speci¢c cell sur-
face receptor [19]. Thus, the enhancement of gene
expression by HSA-lipoplexes is not likely to be via

Fig. 6. Transfection by HSA-lipoplexes in vivo. HSA-lipoplexes,
plain lipoplexes (both at a charge ratio (+/3) of 2/1 and con-
taining 100 Wg pCMVluc), or naked DNA were injected into
mice via the tail vein in a volume of 200 Wl. Luciferase gene ex-
pression in the lungs and spleen was measured 8 h following in-
jection, and is given as pg luciferase/mg organ. Each bar repre-
sents a di¡erent animal. Note that luciferase expression by
naked DNA was too low to be apparent at this scale.
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binding to a speci¢c receptor, unlike the mechanism
proposed previously for transferrin-lipoplexes [15].
Our experiments showing that excess free HSA
does not inhibit transfection support this hypothesis.
Nevertheless, the fact that only a partial inhibition of
transfection by cytochalasin B (an inhibitor of non-
coated pit-mediated endocytosis) was observed, and
the ¢nding of a more extensive inhibition by meta-
bolic inhibitors (which inhibit both coated pit and
non-coated pit endocytosis) suggest that some of
the internalization of HSA-lipoplexes is via coated
pit-mediated endocytosis. It is therefore likely that
the HSA-lipoplexes bind non-speci¢cally to cell sur-
face receptors, analogous to scavenger receptors,
which in turn mediate their endocytosis. Conjugation
of drugs or sugar residues to albumin results in an
e¤cient drug carrier system exhibiting selective tar-
geting to di¡erent types of cells in the liver [45,46].
Similar results were reported for anionized albumins
obtained through succinylation or aconitylation of
the protein. These results suggested that the uptake
of these neoglycoproteins by endothelial cells or mac-
rophages is mediated by sugar-speci¢c or scavenger
receptors [45,46]. The net negative charge exhibited
by the most active HSA-lipoplexes supports the hy-
pothesis that a scavenger receptor-like receptor may
be involved.

Experiments utilizing ba¢lomycin A1 indicate that
the acidi¢cation of endosomes plays a partial role in
transfection facilitated by HSA. Albumin has been
described as being able to undergo a low pH-induced
conformational change, thereby acquiring fusogenic
properties [20,47,48]. Thus, the partial protonation
of HSA at endosomal pH and its subsequent inter-
action with the endosome membrane may be in-
volved in the destabilization of the latter. This desta-
bilization may then promote the transbilayer
movement (£ip-£op) of anionic lipids from the cyto-
plasmic lea£et of the endosome membrane to the
lumenal lea£et. The anionic lipids may then mediate
the dissociation of the lipoplex and the entry of
DNA into the cytoplasm, as suggested by Xu and
Szoka [49]. It is also possible that the conformational
change of albumin, involving a reversible expansion
of the protein [47], reinforces the dissociation of the
complexes promoted by lipid £ip-£op. Experiments
utilizing ANS as a £uorescent probe have indicated
that albumin associated with cationic liposomes and

DNA exposes hydrophobic domains under acidic
conditions (unpublished data), which may result in
dissociation of the complexes and promote destabili-
zation of the endosomal membrane.

Highly positively charged complexes have been
proposed to be more stable in the biological milieu,
since an excess of positive charge may result in a
more compact or condensed complex, enabling better
protection of the DNA molecule against nucleases
[50]. However, for the same reasons (i.e. more stable
or compact DNA), a decrease of transfection activity
may also occur (as obtained with the 2/1 lipid/DNA
complexes in this study) due to the di¤culty of dis-
sociation of DNA from the complex and its subse-
quent release into the cytoplasm.

Our in vitro observations indicate that the com-
plexes (either net negatively or positively charged,
or neutral) remain e¡ective despite any possible in-
teraction with serum components. The fact that
transfection mediated by the HSA-lipoplexes is not
a¡ected by the presence of serum not only results in
a simpli¢cation of the transfection procedure, since
the washing steps can be eliminated, but also in-
creases the possibility that these complexes can be
utilized for gene delivery in vivo. Our in vivo data
indeed indicate that HSA-lipoplexes are much more
e¡ective than plain lipoplexes (Fig. 6). It is likely that
the presence of a major component of serum, HSA,
on the lipoplexes minimizes their interaction with
other serum components, including oleic acid and
heparin which were shown to promote the dissocia-
tion of genetic material from the complexes [14]. Ad-
ditional advantages of HSA are that it is an abun-
dant protein, is easy to prepare and purify, and is not
expected to be immunogenic.

The association of HSA and fusogenic peptides
with lipoplexes may overcome some of the limita-
tions associated with the use of cationic liposomes
in gene therapy. Indeed, the ternary complexes of
cationic liposomes, DNA, and HSA, not only lead
to high levels of transfection, but also have the ad-
vantages of being active in the presence of serum and
being non-toxic. Such ternary complexes are also
likely to alleviate the problems associated with the
use of highly positively charged complexes in vivo,
such as avid complexation with serum proteins.
These ternary complexes, and their future deriva-
tives, such as those utilizing serum-resistant sterically
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stabilized cationic liposomes, may thus be potential
alternatives to viral vectors for gene delivery in vivo.
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