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Abstract

We propose an interactive reference point approach for multiple objective (mixed) integer linear programming

problems that exploits the use of branch-and-bound techniques for solving the scalarizing programs. At each dialogue

phase, the decision maker must specify a criterion reference point or just choose an objective function he/she wants to

improve in respect to the previous e�cient (nondominated) solution. In the latter case, a directional search is performed

adjusting automatically the reference point used at each stage. Tchebyche� mixed-integer scalarizing programs are

successively solved by branch-and-bound. Postoptimality techniques have been developed enabling the algorithm to

pro®t from previous computations to solve the next scalarizing programs. The previous branch-and-bound tree is used

as a starting point and operations of simpli®cation and branching are then performed to obtain a new e�cient solution.

Computational results have shown that this approach is e�ective for carrying out directional or local searches for

e�cient solutions. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Multi criteria analysis; Mixed-integer linear programming; Reference points; Tchebyche� metric; Branch-

and-bound; Sensitivity analysis

1. Introduction

In this paper we propose an interactive method
for multiobjective mixed-integer (and pure integer)
linear programming (MOMILP) problems.

Almost all the research work on multiobjective
(mixed) integer programming has been developed
since the ®nal of 1970s. Among the ®rst develop-
ments, we can mention the work of Bowman
(1976), Zionts (1977) and Bitran (1977) ± the latter
is devoted to multiobjective programs with zero±
one variables. Interested readers may refer to
Evans (1984) for an overview of techniques. Since
the early 1980s some researchers' attention has
focussed on the design of interactive approaches to
deal with these problems. Interactive methods
have shown to be more e�ective to deal with
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multiobjective problems than generating methods
because they enable to reduce the computational
e�ort ± specially relevant in large-sized problems ±
and generally provide means to assist the decision
maker (DM) in choosing his/her preferred solu-
tion. However, most of the methods developed so
far are designed for pure integer problems and
many of them do not apply to the mixed-integer
case. In fact, research in multiobjective mixed-in-
teger programming has been rather scarce. Con-
cerning just the mixed-integer case, among the ®rst
multiobjective interactive approaches there are the
branch-and-bound method of Villarreal et al.
(1980) later improved by Karwan et al. (1985) and
Ramesh et al. (1986), and the method of Steuer
and Choo (1983) that is valid for more general
multiobjective problems. For a review, see Teghem
and Kunsch (1986). More recent references are
Aksoy (1990), Solanki (1991), Durso (1992),
L'Hoir and Teghem (1995) and Ferreira et al.
(1996). They all refer to interactive approaches,
except Solanki's method that seeks to determine a
representative subset of e�cient solutions not re-
quiring the intervention of the DM. There are
some other interactive methods, which were de-
veloped for multiobjective integer linear pro-
gramming (MOILP), that also ®t the MOMILP
case. References of such methods are Karaivanova
et al. (1993), Vassilev and Narula (1993), Narula
and Vassilev (1994) and Karaivanova et al. (1995).

The increasing interest in MOMILP decision
aid is due to the fact that most decision problems
are inherently multiobjective and many of them
must include discrete variables. Examples of dif-
ferent applications are the multicriteria scheduling
problem (Huckert et al., 1980), nursing service
budgeting (Trivedi, 1981), vendor selection (Weber
and Current, 1993), the groundwater pollution
containment problem (Ritzel et al., 1994), loca-
tion±transportation problems (Osleeb and Ratick,
1983; Ferreira et al., 1996; Coutinho-Rodrigues
et al., 1997), among others. White (1990) provides
a survey of applications of multiobjective mathe-
matical programming that includes the integer and
mixed-integer cases.

The interactive method which we have devel-
oped and we present herein aims to provide a
simple protocol to interact with the DM, not de-

manding too much information about his/her
preferences, and aims to reduce the computational
e�ort, namely by taking advantage of computa-
tions previously performed for producing new ef-
®cient solutions.

These ideas also underlay our previous research
on the development of an interactive method for
multiobjective pure integer linear programs. That
method (Alves and Cl�õmaco, 1999) combines
Tchebyche� theory with cutting plane techniques.
At each interaction, the DM must specify a refer-
ence point (aspiration levels for the criteria) or just
the objective function he/she wants to improve in
respect of the previous e�cient solution. In the
latter case, the reference point is automatically
adjusted and new e�cient solutions are obtained
through a directional search. Cutting planes,
which are used to solve the pure integer Tche-
byche� scalarizing programs, facilitate the incor-
poration of sensitivity analysis used to adjust the
reference point for the next computing phase.
However, if cutting planes for pure integer pro-
grams already carry numerical di�culties, mixed-
integer cutting plane techniques have rather poor
performance. Further, some previous assumptions
for the sensitivity analysis phase, which are valid in
pure integer scalarizing programs, do not hold in
the mixed-integer case. Hence, we decided to use
branch-and-bound techniques to solve the Tche-
byche� scalarizing programs and a new challenge
emerged to pro®t from computations previously
performed within a branch-and-bound context.
Thus, postoptimality techniques were developed to
adjust automatically the reference point and to
pro®t from the previous branch-and-bound tree to
proceed to next computations. Whenever further
branching is required, an attempt is made to ®rst
reduce the tree by operations of simpli®cation ±
cutting deeper branches rather than simple prun-
ing ± to avoid an evergrowing tree. This procedure
also applies to multiobjective pure integer linear
programs.

The remainder of this paper is organized as
follows: In Section 2 the problem is de®ned and
some preliminary considerations are made. Sec-
tion 3 describes the interactive algorithm and how
the branch-and-bound tree is used to proceed to
next computations. An illustrative example is
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presented in Section 4. Section 5 is devoted to the
implementation and computational results. The
paper closes with some concluding remarks in
Section 6.

2. Problem de®nition and preliminary considerations

The MOMILP problem can be formulated as
follows:

(MOMILP)

max z1 � c1x

. . .

max zk � ckx

s:t Ax � b;

x P 0;

xi integer; i 2 I � f1; . . . ; ng;

where k is the number of objective functions (cri-
teria), n is the number of variables, A is a m ´ n
matrix, b is a column m-vector and ci,
``i � 1; . . . ; k'', are row n-vectors.

Let S denote the set of all feasible solutions,
that is S� {x: Ax� b, x P 0, xi integer,
i 2 I Í {1; . . . ; n}} and Z the set of the criterion
points z 2 Rk images of x 2 S. It is assumed that S
is closed and bounded. ~x 2 S is an e�cient solution
i� there does not exist another x 2 S such that
cix P ci ~x for all i and cjx > cj ~x for at least one j.
x̂ 2 S is said to be weakly e�cient i� there does not
exist another x 2 S such that cix > ci x̂ for all i.
The criterion points corresponding to (weakly)
e�cient solutions are called (weakly) nondominat-
ed points/solutions.

Let z� denote a criterion reference point that
may represent aspiration levels desired by the DM
for the objective functions. Without loss of gen-
erality, we will assume that z� satis®es z�i P z0i,
``i� 1; . . . ; k'', 8z0 2 Z. This can be assured by
considering z�P z* with z* being the ideal crite-
rion point.

The following program determines a solution x
whose criterion vector z 2 Z is the closest to the
reference point z� according to the Tchebyche�
metric:

(P1, z�)

min a

s:t: cix� aP z�i ; i � 1; . . . ; k;

x 2 S; a P 0:

Although (P1, z�) may have optimal solutions
that are weakly e�cient for the (MOMILP)
problem, among the alternative optima there is at
least one e�cient solution. Moreover, there always
exist reference points z�P z* that yield a partic-
ular e�cient solution (note that a nondominated
criterion point ~z is reached if a reference point z�

such that z�i � ~zi � d, ``i� 1,. . .,k'' with dP
maxi�1;...;k�z�i ÿ ~zi� is considered in (P1, z�)).

An augmented Tchebyche� program, (P2, z�),
which is obtained by replacing the objective func-
tion of (P1, z�) by aÿ q

Pk
i�1cix with q small

positive, always returns e�cient solutions.
(P2, z�)

min aÿ q
Xk

i�1

cix

s:t: cix� aP z�i ; i � 1; . . . ; k;
x 2 S; a P 0:

Concerning multiobjective linear programming
problems with all-continuous or all-integer vari-
ables (MOLP or MOILP), there always exist
values for q small enough such that all the e�-
cient solutions are reachable. In MOMILP (like
nonlinear feasible regions), even considering q
very small there may be small portions of the ef-
®cient set (close to weakly e�cient solution(s))
that (P2, z�) is unable to compute. However, this
is not a practical disadvantage because, for q very
small, those solutions are so close to the weakly
e�cient ones that the DM would not discriminate
them. It should also be stressed that, even in
MOLP or MOILP, the existence of such q is
mainly of theoretical interest because it is not
known a priori.

Tchebyche� metric-based or more general
achievement scalarizing functions (Wierzbicki,
1980) have the advantage over weighted-sums of
being able to reach not only supported e�cient
solutions but also unsupported e�cient solutions
(solutions that do not belong to the frontier
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of the convex hull of the feasible region). For
that reason, this type of computing process has
been widely used by other authors for dealing with
multiobjective problems with nonconvex feasible
sets.

While many authors have considered constant
reference point (usually the ideal criterion point)
varying the weights (e.g. Steuer and Choo, 1983),
we have opted for augmented non-weighted
Tchebyche� programs parameterized on the ref-
erence point. Using this computing process, we can
obtain e�cient solutions that improve a speci®c
objective function in relation to a previous e�cient
solution by increasing the respective component of
the reference point leaving the other components
unchanged. A related proposition is proved in
Alves and Cl�õmaco (1999) for MOILP being also
valid for MOMILP. This change in the reference
point leads to a parametric right-hand side sca-
larizing program. We developed a postoptimality
technique that identi®es ranges for the reference
points that lead to the same e�cient solution and
uses the branch-and-bound tree that solved the
previous scalarizing program as a starting point to
compute the following e�cient solutions. This
enables to save time in computation phases pro-
moting directional searches.

3. The proposed interactive method

Algorithm:
1. Ask the DM to specify a reference point. At the

®rst interaction the ideal criterion point of the
MOMILP problem (or its linear relaxation) is
proposed by default. Let the reference point
be z� � �z�1 ; . . . ; z�k �. (If necessary, z� is adjust-
ed in order to satisfy z�P z* by adding a con-
stant amount to all the components of z� ± just
for technical reasons). Solve the Tchebyche�
scalarizing program (P2, z�) using branch-
and-bound to obtain an e�cient solution.

2. If the DM is satis®ed, stop; otherwise, if he/she
wants to perform a global search by specifying
other reference points, go to 1, else go to 3.

3. Ask the DM to choose an objective function he/
she wants to improve in relation to the previous
e�cient solution. Let zj be the objective func-

tion speci®ed by the DM. A directional search
is carried out by considering reference points
of the type z� � hj � �z�1 ; . . . ; z�j � hj; . . . ; z�k �
in (P2, z� � hj) to produce e�cient solutions
that improve zj. When the DM wishes to stop
the search through this direction, return to 2.
The above algorithm is just a proposal protocol

to interact with the DM (like in Alves and
Cl�õmaco, 1999). The core of the method is the way
the directional search of step 3 is performed. It
consists in optimizing successive scalarizing pro-
grams (P2, z� � hj) where one scalarizing program
only di�ers from the previous one in the right-hand
side of the jth constraint. Postoptimality tech-
niques have been developed to perform this task.
This is an iterative process with two main phases:

(i) sensitivity analysis,
(ii) updating the branch-and-bound tree.
The sensitivity analysis (i) returns a parameter

value, hmax
j , that leaves unchanged the structure of

the branch-and-bound tree. It means that for
06 hj 6 hmax

j either the reference points lead to the
same e�cient solution or they lead to di�erent
e�cient solutions that are easily computed. The
branch-and-bound tree is then updated (ii) for hj

slightly over hmax
j . The process automatically re-

turns to (i) if the same e�cient solution is obtained
in (ii).

Let us assume that the Tchebyche� program
(P2, z�) was solved with z� � �z�1 ; . . . ; z�k � yielding
an e�cient solution x0 whose nondominated cri-
terion point is z0. Now, let us consider that the
DM chooses the objective function zj to be im-
proved in relation to z0. The next e�cient solutions
will be obtained by solving the parametric mixed-
integer Tchebyche� program where the jth com-
ponent of the reference point is increased:

(P2, z�, hj)

f �hj� � min a

(
ÿ q

Xk

i�1

cix

)
s:t: cix� aÿ si � z�i ; i � 1; . . . ; k; i 6� j;

cjx� aÿ sj � z�j � hj;

x 2 S;

aP 0; si P 0; i � 1; . . . ; k:
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The si, ``i � 1; . . . ; k'' are the surplus variables of
the ®rst k constraints.

The parameter is hj P 0. Concerning the ®rst
reference point, (P2, z�) º (P2, z�, 0).

Each node of the optimal branch-and-bound
tree for (P2, z�) is associated with a linear sub-
problem of (P2, z�). Regarding the parametric
Tchebyche� program, (P2, z�, hj), the linear sub-
problem associated with a node Qp can be for-
mulated as follows:

�Qp
hj
�

f p�hj� � min a

(
ÿ q

Xk

i�1

cix

)
s:t: cix� aÿ si � z�i ; i � 1; . . . ; k; i 6� j;

cjx� aÿ sj � z�j � hj;

x 2 Sp;

a P 0; si P 0; i � 1; . . . ; k;

where Sp�fx: Ax � b; x P 0; Lp
i 6 xi6U p

i ; i 2 Ig
(some Lp

i may be zero and some U p
i in®nite).

In what follows let integer solution denote a
solution of a sub-problem that has integer values
for all the integer-restricted variables in the mul-
tiobjective problem.

Let us analyze the e�ects of (P2, z�, hj) on the
current branch-and-bound tree (where hj � 0).

3.1. Infeasible sub-problems

When a sub-problem (Q p
hj

) is infeasible for
hj � 0, it will also be infeasible for all hj > 0.

This proposition holds because, for h2
j > h1

j , the
feasible set of (Q p

h1
j
) contains the feasible set of

(Q p
h2

j
). Hence, all the infeasible nodes of the

current tree may be discarded from further
consideration.

3.2. The behaviour of each node of the tree

The optimal objective value of a minimizing
parametric right-hand side linear program is a
piecewise linear convex function of the param-
eter. This is a well-known result for linear
programming with particularities for (Q p

hj
): be-

sides being convex, the piecewise linear func-
tion is nondecreasing and the slope of the
function in the last interval of hj is 1 (see e.g.
Fig. 1).

Let pi P 0, ``i � 1; . . . ; k'' be the dual vari-
ables associated with the ®rst k constraints of
(Q p

hj
). The function f p�hj� must be nondecreasing

because it is convex and 06pj 6 1 (nonnegative
slopes). As hj grows through positive values, (Q p

hj
)

returns solutions with greater values of zj� cjx
until the solution that optimizes zj in Sp is
reached. If hj grows more, (Q p

hj
) will yield the

same solution, say x̂, only varying the values of
the variables si and a. There exists a speci®c value
of hj above which the Tchebyche� distance be-
tween the reference point and the criterion point
image of x̂ is exclusively given by the jth com-
ponent, i.e, sj� 0 and si > 0, i 2 f1; . . . ; kg n fjg.
Hence, for hj larger than that speci®c value,
pi� 0, i 2 1; . . . ; k n fjg and pj � 1.

Fig. 1. Example of the behaviour of the optimal objective value of Qp
hj

.
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3.3. Sensitivity analysis

Consider that the e�cient solution x0 that op-
timizes (P2, z�) was produced by the node (sub-
problem) Q0 of the branch-and-bound tree. The
purpose of the sensitivity analysis is to provide a
range of values [0, hmax

j ] for the parameter hj such
that the optimal solutions of (P2, z�, hj) will still be
given by the node Q0. Notice that the hmax

j returned
by this procedure may be lower than the true
maximum value.

Two di�erent situations may occur depending
on whether sj is a basic variable in Q0 or not.

(A.1) sj is basic in Q0. If sj is basic in Q0, then
for hj up to the current value of sj, say s0

j , neither
the value of f 0�hj� changes (due to p0

j � 0) nor x0;
Q0 is still the optimal node of (P2, z�, hj) for hj 6 s0

j
and it yields the same e�cient solution x0. There-
fore, hmax

j � s0
j and there is no need to explore

variations of hj under this value.
(A.2) sj is nonbasic in Q0. Let hj 2 [0, h0max

j ] be
the optimality positive interval for the current
basis of Q0. We will analyze only the case when
variations of hj within the same basis still produce
integer solutions (otherwise, we consider hmax

j � 0).
Under this condition, the node Q0 provides

feasible solutions of (P2, z�, hj) for hj6 h0max

j and
f 0�hj�� f 0�0�+ p0

j hj. The performance of Q0

must be compared with other potential candidate
terminal nodes of the branch-and-bound tree
(containing or not an integer solution). Denoting
by pp

j the current optimal value of the jth dual

variable in the node Q p, the potential candidate
nodes are the terminal nodes Q p that satisfy
pp

j < p0
j . Nodes for which pp

j P p0
j need not to be

considered because, for hj within the range
06 hj 6 h0max

j , they cannot provide solutions of
(P2, z�, hj) better than the one given by Q0 (see
Fig. 2). In fact, each linear segment of f p�hj� has
a slope between p p

j (dashed line below in Fig. 2)
and 1 (dashed line above in Fig. 2). Since

p p
j P p0

j , f p�hj� cannot be less than f 0�hj� for

06 hj 6 h0max

j .

For each potential candidate terminal node Q p,
an ``intersection'' parameter value h0;p

j is comput-
ed. Using only the information provided by the
current optimal basis of each node, h0;p

j represents

a point where f p�hj� ``intersects'' f 0�hj� ± ``real
intersection'' (e.g. Fig. 3(a)) or ``virtual intersec-
tion'' (e.g. Fig. 3(b), (c) and (d)):

h0;p
j �

f p ÿ f 0

p0
j ÿ pp

j
; f p � f p�0�; f 0 � f 0�0�:

Q0 outperforms Qp at least until h0;p
j if h0;p

j < h0max

j ±
see examples in Fig. 3 (a) and (b) ± or at least until
h0max

j if h0;p
j P h0max

j ± see examples in Fig. 3(c) and
(d).

Hence, the parameter value that ensures that
the next e�cient solutions will still be given by
node Q0 is

hmax
j � min h0max

j ;min
p

h0;p
j

n o� �
:

Fig. 2. Example of a situation where pp
j P p0

j .
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The e�cient solutions that optimize (P2, z�, hj)
with 06 hj 6 hmax

j can be obtained in a straightfor-
ward way by applying classic linear programming
sensitivity analysis to the simplex tableau of Q0.

3.4. Inactive nodes

Any node Qv (di�erent from Q0) for which
pv

j � 1 may be considered inactive while the para-
metric analysis refers to the jth constraint of the
Tchebyche� scalarizing program. In fact, this node
(or its future descendants) could not provide the
optimal solution of the scalarizing program for
larger values of hj. Qv will be activated if the DM
changes the direction of search by choosing an-
other objective function to be improved.

3.5. Individual optima

If p0
j � 1 and all the other terminal nodes of the

branch-and-bound tree are either inactive or their

programs are infeasible, then the current e�cient
solution optimizes the objective function zj of the
MOMILP problem.

3.6. Information about the branch-and-bound tree
that is preserved

Some information about the branch-and-
bound tree must be preserved between two
consecutive iterations of the directional search
procedure. This information is used in the sen-
sitivity analysis and to proceed to the next
computations:
· The structure of the tree (node indices, links and

bounding constraints, excluding infeasible sub-
problems). For each terminal node Q p (tree leaf)
the following data is saved:

· a basis coding, which allows the procedure to re-
build quickly the simplex tableau; the indices of
the basic variables are used to code the basis,
just as Steuer (1986) does to determine all the al-

Fig. 3. Examples of intersections.
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ternative optima of a linear program;
· f p, the current optimal objective value of the

scalarizing sub-problem associated with Q p;
· p p

i and h pmax

i , ``i� 1; . . . ; k'';
· the current state of the node (which tells us

whether the node contains an integer solution
or not, or it is inactive).

3.7. Updating the branch-and-bound tree

As mentioned before, the e�cient solutions
obtained by optimizing (P2, z�, hj) within
06 hj 6 hmax

j can be obtained in a straightforward
way because they also optimize the parametric
linear sub-problem associated with the node Q0.
Hence, the structure of the tree does not change
for this range of parameter values.

For hj � hmax
j three situations can be distin-

guished:
(B.1) hmax

j � 0 because Q0 yields noninteger solu-
tions for larger values of hj (this situation occurs
within A.2);
(B.2) Q0 is ``intersected'' by other terminal node,
i.e., f 0�hmax

j � � f p�hmax
j � for any Q p (situation

(A.2) with hmax
j � ho;p

j );
(B.3) The optimal basis of Q0 changes for hj >
hmax

j (situations (A.1) and (A.2) with hmax
j �

h0max

j ).

To continue searching for e�cient solutions
throughout the same direction, we can consider
ĥj� hmax

j � �, with � small positive. In MOILP
problems ĥj is set to the smallest integer larger
than hmax

j because we can consider only integer
reference points without losing e�cient solutions
(proved in Alves and Cl�õmaco, 1999).

The next reference point is thus �z�1 ; . . . ; z�j �
ĥj; . . . ; z�k �.

Regardless of the situation (B.1, B.2 or B.3) the
procedure for updating the branch-and-bound tree
begins by updating the simplex tableau of Q0 and,
consequently f 0; p0

i and homax

i , ``i � 1; . . . ; k''. The
information on the other terminal nodes is also
updated. In situations B.2 and B.3 this task is not
done just now because it would be wasteful if parts
of the tree were cut o� later by a simpli®cation
phase. Afterwards, the information on each ter-
minal node Q p is updated as follows:

· if h pmax

j 6 ĥj, the basis is changed rebuilding the
corresponding simplex tableau (pro®ting from
the coding of the previous basis) and saving

the new values of f p, pp
i and h pmax

i ,
``i� 1; . . . ; k''. If the new value of pp

j is 1 and
Q p is not the new optimal node, Q p is assigned
the inactive status.

· if h pmax

j > ĥj the simplex tableau is not rebuilt,
just updating f p¬ f p+p p

j ĥj and h pmax

j ¬
hpmax

j ÿ ĥj; The values of p p
i ``i � 1; . . . ; k'' re-

main the same and h pmax

i i 6� j become unknown.
These values are not needed for the current di-
rection of search and their computation would
require more information about the simplex tab-
leau that has not been explicitly saved. The un-
known values are computed whenever the DM
changes the direction of search.
Let us now analyze how to update the tree for

hj � ĥj in each situation from (B.1) to (B.3).
(B.1) The solution of Q0 is no longer integer:
After updating the information on all the ter-

minal nodes, the branching process starts by
splitting Q0. The branch-and-bound proceeds as
usual until the optimum of the scalarizing program
is reached.

(B.2) Q0 was ``intersected'' by other terminal
node:

Let Q p be the node that ``intersected'' Q0 for
hmax

j . Notice that if there are other nodes that
``intersect'' Q0 within the range [ hmax

j , ĥj], they all
must be taken into account.

According to the statements (A.2), the optimal
basis of Q0 remains unchanged providing a fea-
sible solution of (P2, z�, hj). After updating the
information on Q p for hj � ĥj, it is compared
again with Q0: if f 06 f p (situation of ``virtual
intersection'' like in Fig. 3(b)) then Q0 still pro-
vides the optimal solution of the scalarizing pro-
gram; if f 0 > f p then the solution of Q p becomes
the new optimal solution if it is integer; otherwise,
Q p is the best candidate node and should be
branched.

If Q p needs to be branched, a low-level simpli-
®cation is ®rst attempted. The procedure begins by
examining the branching constraint that links Q p

to its parent. If this constraint is no longer active
(became redundant as the result of changes on
the basis that have occurred since the node was
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created), then a simpli®cation is made. This is
called a low-level simpli®cation because it only re-
gards the lowest link to Q p, i.e., the link between
Q p and its direct ancestor. Since no historical in-
formation is kept, this is the only variable
branching constraint that was surely active in Q p

when the node was created.
The simpli®cation consists in the following:

suppose that xi 6 Ki is the nonactive branching
constraint that links Q p to its parent (Fig. 4). Q p's
parent is removed, as well as its descendants from
the other side, and Q p becomes a direct descendant
of its previous grandparent (Fig. 4). Notice that
Q p will possibly be branched on the variable xi.
Without this simpli®cation this would lead to two
consecutive branching constraints on the same
variable!

Once the simpli®cation is made, the informa-
tion on the remaining terminal nodes is updated
and the branch-and-bound proceeds as usual until
the optimum of the scalarizing program is reached.

(B.3) The basis of Q0 changes:
If the updated optimal solution of Q0 is integer,

it still optimizes the scalarizing program for ĥj.
Thus, the new e�cient solution is found. Other-
wise, further branching is required, namely Q0, the
best candidate node, must be split. However, a
simpli®cation is ®rst attempted in order to prevent
the tree from being too large. The simpli®cation
now refers to all the variable bounding constraints
that were active in the previous base of Q0 and
become redundant with this change of the basis.
Therefore, low (as in situation B.2) and/or high-
level simpli®cations may occur. The steps, which

rule the general simpli®cation process, are the
following (illustrated in Fig. 5):

Assume that Q0 is the optimal node of the
previous scalarizing program and is now the best
candidate node (with a noninteger solution).

For each branching constraint that was active in
the previous optimal basis of Q0 and is now re-
dundant, do

Suppose that the branching constraint under
consideration links Qw and Qv (Qv being the parent
of Qw). In a low-level simpli®cations, Qw º Q0.
1. Cut o� the branch Qv ÿ Qw.
2. Link Qw directly to the parent of Qv, say Qu, by

the branching constraint that previously linked
Qv to Qu; if Qv was the root then Qw becomes
the root.

3. Remove Qv, its upper link and its descendants
from the side opposite to Qw.

4. Concerning Qw and its descendants, leave just
the intermediate nodes needed to get Q0 but as-
sure that they remain forked: considering that
there are q intermediate nodes between Qw

and Q0, that is Qw º Q0, Q1; . . . ;Qq, Qq�1 º Q0;
replace all the descendants of Qi ``i � 0; . . . ; q''
from the side opposite to Qi�1 with a new single
node (a temporary terminal node).
Now, neither Qw nor another descendant of Qw

includes in its linear program the bounding con-
straint that linked Qw to Qv.

If the simpli®ed tree has consecutive branching
constraints on the same variable, then a further
simpli®cation should be made (following the steps
above) in order to discard the constraint that is
redundant for Q0.

Fig. 4. The simpli®cation process and the resulting tree.
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This type of additional simpli®cation is illus-
trated in Fig. 6. Note that the new right branch of
Qw in Fig. 6 includes the sub-problems of the old
right branch of Qu.

To sum (B.3) up, if the updated solution of Q0

for ĥj is noninteger, the ®rst stage consists in
simplifying the tree (when possible). Then, the
information on the remaining terminal nodes is
updated and the information is built on the new
terminal nodes created by the simpli®cation
process; the last stage consists in the expansion of
the tree, which starts by branching Q0. The
branch-and-bound proceeds as usual until the
optimum of the new scalarizing program is
reached.

It should be stressed that if both (B.2) and (B.3)
occur within the range [hmax

j ; ĥj], Q0 must be com-
pared again with the updated terminal nodes. This
means that propositions stated in (B.2) or (B.3)
like ``if the solution of Q is integer, then it is the new
optimal solution of the scalarizing program'', which

are valid for individual situations (B.2) or (B.3),
must be checked whenever both of them occur
``simultaneously''.

4. An illustrative example

Consider the following MOMILP problem:

max z1 � 3x1 � x2 � 2x3 � x4

max z2 � x1 ÿ x2 � 2x3 � 4x4

max z3 � ÿx1 � 5x2 � x3 � 2x4

s:t: 2x1 � x2 � 4x3 � 3x46 56;

3x1 � 4x2 � x3 � 2x46 55;

xj P 0; j � 1; . . . ; 4;

x1 and x2 integer:

Let the initial reference point be z� � (108, 80,
75). The scalarizing program (P2, z�), considering

Fig. 5. Illustration of the general simpli®cation process.

Fig. 6. An additional simpli®cation.
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q� 0.001, was solved using branch-and-bound
yielding the e�cient solution x� (10, 4, 8, 0)
whose criterion point is z � �50; 22; 18�.

Suppose that the DM wants to perform a di-
rectional search improving the objective function
z2. The second component of the reference point
will be increased and (P2, z�) gives place to the
parametric Tchebyche� program (P2, z�, h2) with
h2 a nonnegative parameter. The optimal solution
of (P2, z�) was given by the branch-and-bound
tree shown in Fig. 7. (In order to improve clear-
ness, we only show the data needed for the current
directional search.)

Whenever the reference point is changed, h2 is
reset to 0 for the next iteration.

In this example we will consider 06 �6 0.1 in
ĥj� hmax

j +�. For simpli®cation reasons, � is such
that ĥj has only one decimal digit, i.e., ĥj � �hmax

j
truncated with precision 1� � 0:1.

First iteration
Sensitivity analysis. Q4 (in Fig. 7) is the current

optimal node and the solution remains integer for
variations of h2 within the same basis, i.e, for
h26 h4max

2 � 2.4. The performance of each other
terminal node Qp such that pp

2 < p4
2 is compared to

Q4 by computing the corresponding ``intersection''
parameter value: h4;3

2 � 31:386, h4;5
2 � 10:25;

hmax
2 � minfh4max

2 , h4;3
2 , h4;5

2 g � 2:4.
Hence, Q4 still provides optimal solutions of the

scalarizing programs for h26 2.4. Since the current
basis of Q4 remains feasible for h26 2.4, and the
variation of h2 does not destroy the integer-feasi-
bility of the solutions, the computation of non-

dominated solutions closest to reference points
from (108, 80, 75) to (108, 82.4, 75) is straight-
forward.

Let us now consider ĥ2 � 2:4� ��1� � 2:5 to
continue the search. The next reference point is
(108, 82.5, 75).

Updating the tree for z� � (108, 82.5, 75). Situ-
ation (B.3) ± The basis of Q4 changes leading to a
non-integer solution. The branching constraint
x26 4 becomes redundant. A low-level simpli®ca-
tion is performed (Fig. 8) and the information on
the other terminal nodes is then updated.

Starting the branch-and-bound with the simpli-
®ed tree and continuing until the optimum of the
scalarizing program is reached (Fig. 9), a new
e�cient solution is obtained: x� (10, 4, 7.4,
0.8), z� (49.6, 24, 19). As it was expected, z2 is
improved.

Suppose that the DM wishes to continue the
search along the same direction (improving z2) in
this and the next interactions. Hence, the proce-
dure returns to the sensitivity analysis phase after
updating the tree in a computing phase.

Second iteration
Sensitivity analysis. Q9 (in Fig. 9) is the new

current optimal node and the solution remains
integer for every positive change of h2. hmax

2 �
minfh9max

2 , h9;6
2 , h9;8

2 , h9;3
2 g � minf1; 0:929; �; �g �

0:929. The entries * need not be computed because
f � > f 6 and p:�2 > p:62 both in Q8 and Q3 which lead
to intersection values larger than 0.929.

Thus, for h2 6 0.929, Q9 is still the optimal
node for the scalarizing program.

Fig. 7. The ®nal tree for the reference point z� � (108, 80, 75).
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Let ĥ2 be 0.929 + ��2� � 1.0 to continue the
search.

Updating the tree for z� � (108, 83.5, 75). Situ-
ation (B.2) ± ``Q6 intersected Q9''. The basis of Q6

does not change for ĥ2 and the corresponding so-
lution is integer. The tree structure is not a�ected,
only the information on terminal nodes must be
updated (Fig. 10). The new e�cient solution is
given by Q6: x� (10, 3, 6.857, 1.857), z� (48.571,
28.143, 15.571).

Third iteration
Sensitivity analysis. Q6 (in Fig. 10) is the cur-

rent optimal node with p6
2� 0. The variable s2

(surplus variable of the constraint that represents
z2 in the scalarizing program) is basic ± situation
(A.1). Hence, the previous nondominated point
remains the closest to reference points (108,
83:5� h2, 75) with 0 < h26 h6max

2 � s2� 4.071.
Therefore, let us consider ĥ2 � 4:071� ��3� � 4:1
to search for other nondominated solutions.

Updating the tree for z� � (108, 87.6, 75). Situ-
ation (B.3) ± The basis of Q6 changes. Since Q6 is
the best candidate node and its new solution is
integer, Q6 remains the optimal node; x� (10, 3,
6.850, 1.867), z� (48.567, 28.167, 15.583).

In order to illustrate other situations while
avoiding repetitions, we will skip several iterations
assuming that the search has been, and will con-
tinue, through the same direction. Hence, consider
the reference point z� � (108, 120.5, 75) corre-
sponding to the tree shown in Fig. 11. x� (10, 0,
0.875, 10.833), z� (42.583, 55.083, 12.542). Q22 is
the current optimal node.

Sensitivity analysis. Q22 (in Fig. 11) is the cur-
rent optimal node and the solution remains integer
for variations of h2 within the current basis, i.e.,
for h26 h22max

2 � 3.5. In addition, no node satis®es
the basic requirements for checking ``intersection''.
So, for h2 6 3.5, Q22 is still the optimal node of
the scalarizing program. The computation of

Fig. 10. The ®nal tree for z� � (108, 83.5, 75).
Fig. 9. The ®nal tree for z� � (108, 82.5, 75).

Fig. 8. Simpli®cation yielding the starting-tree for z� � (108, 82.5, 75).
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nondominated solutions closest to reference points
from (108, 120.5, 75) to (50,124,18) is straightfor-
ward.

Let ĥ2� 3.5 + ��6� � 3.6.
Updating the tree for z� � (108, 124.1, 75). Sit-

uation (B.3) ± The optimal basis of Q22 changes
and the bounding constraints x26 0 and x16 10
become redundant for Q22. Although the non-
negativity constraint for x2 is brought active, so
that x2� 0, the solution is noninteger because
x1� 9.975. Q22 is thus the best candidate node that
should be branched. Before branching, two sim-
pli®cations of the tree are made. We ®rst pick the
bounding constraint x26 0 and, afterwards,

x16 10 leading to two consecutive low-level sim-
pli®cations (Fig. 12).

Starting the branch-and-bound with the sim-
pli®ed tree ± just the node Q22 ± and continuing
until the optimum is reached (Fig. 13), a new ef-
®cient solution is obtained, x� (10, 0, 0, 12),
whose criterion point is z� (42, 58, 14).

5. Implementation and computational results

We have implemented the proposed interactive
multiobjective approach using the DELPHI
developer for Windows 95 (in a PC ± Pentium,

Fig. 11. The ®nal tree for z� � (108, 120.5, 75).

Fig. 12. Simpli®cation yielding the starting-tree for z� � (108, 124.1, 75).
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166 MHz). The main modules are: a spreadsheet-
based problem editor, graphical procedures to in-
teract with the DM and computing routines that
include problem pre-processing.

The dialogue with the DM is mainly based on
asking him/her to specify a new reference point
(infeasible or not) or an objective function he/she
wants to improve with respect to the previous ef-
®cient solution. However, the DM may start with
a more global search by demanding the compu-
tation of the pay-o� table and some dispersed ef-
®cient solutions. All the e�cient solutions the DM
considers interesting are kept in memory. Nu-
merical and di�erent graphical displays (with sev-
eral sorter options) are available to show the
values of these solutions. Also, a graphical repre-
sentation of the reference point space for bicriteria

and tricriteria (pure) integer programs is presented
to the DM. In this graph, regions of reference
points that lead to the same e�cient solution are
iteratively appended (an example is shown in Alves
and Cl�õmaco, 1999). All this information that is
provided for the DM is of special importance to
guide him/her throughout the search process of
e�cient solutions.

The multiobjective approach proposed herein
was tested for several randomly generated prob-
lems with 2 or 3 objective functions: all-binary
variable problems (knapsack, multidimensional
knapsack, set covering and set packing), all-integer
problems (integer knapsack and generic ones) and
generic mixed-integer problems.

Several tests were carried out for the same
problem in order to compare the computational
times needed to obtain e�cient solutions through
a directional search with those required by indi-
vidual optimization of the Tchebyche� scalarizing
programs. These times are summarized in Table 1.
Pure integer multiobjective programs often require
more than one iteration of sensitivity analysis plus
updating the branch-and-bound tree to escape from
the previous e�cient solution. The respective
column of Table 1 refers to the total time spent
on these iterations. Concerning mixed-integer

Table 1

Average times of computing testsa

Problem type n m (excluding

bounds)

#problems Average time

Sensitivity analysis +

updating the tree

(step 3 of the algorithm)

Solving each sca-

larizing program

from the beginning

(Restart: step 1

of the algorithm)

0-1 knapsack 100 B 1 6 203000 303200

200 B 1 6 20800 604500

Integer knapsack 100 B 1 6 5000 10

200 B 1 6 205600 60100

0-1 multi-knapsack 50 B 10 6 102600 20500

60 B 10 5 70800 1105000

Set covering 100 B 20±30 5 1900 1800

Set packing 100 B 20 6 1600 2200

200 B 30 6 10800 304100

Generic all-integer 30 I 15 6 204800 403000

Generic MOMILP 15 I, 15 B, 30 C 30 6 300 3900

20 I, 20 B, 40 C 40 6 300 10400

a I: integer; B: Binary; C: Continuous.

Fig. 13. The ®nal tree for z� � (108, 124.1, 75).
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problems, we report here the average times spent
on iterations that involve changes on the tree
structure, i.e. ``more time consuming'' iterations.

Table 2 shows more detailed results for three
problems: (a) 0±1 knapsack problem with 100
variables and 3 criteria; (b) generic mixed-integer
problem with 100 variables (50 integer and 50
continuous), 50 constraints and 3 criteria to be
maximized; (c) location-routing problem with real
data (Coutinho-Rodrigues et al., 1997) ± 69 vari-
ables (3 binary and 66 continuous), 57 constraints
and 5 criteria to be minimized. The number of it-
erations (It.) of sensitivity analysis plus updating
the tree needed to obtain each new solution is also
shown in Table 2.

The times presented in the last two columns of
Table 1 or Table 2 should be analyzed in relative
terms rather than in absolute terms. In fact, join-
ing a commercial MIP solver to our procedures
would undoubtedly improve the times.

Our experimentation is still preliminary since
more problems should be considered namely sets
of problems already tested by other authors. But,
unfortunately, there is a lack of multiobjective
(mixed) integer problems in the literature.

6. Conclusions

In this paper we described an interactive
method for MOMILP problems that combines

Tchebyche� scalarizing programs with branch-
and-bound techniques. This work followed our
previous research on the development of an
MOILP method that uses cutting planes to solve
pure integer scalarizing programs. As expected, the
branch-and-bound method is more e�ective than
the cutting plane method because it is more reli-
able (there are, however, a few situations where the
cutting plane method is faster than the branch-
and-bound method).

The main feature of the branch-and-bound
multiobjective method we propose consists in us-
ing the previous branch-and-bound tree to per-
form a sensitivity analysis phase and to proceed to
next computations of e�cient solutions. Rules to
simplify the tree have been developed in order to
avoid an evergrowing tree. This leads to storage
space for the tree information and to save time in
handling it.

Computational experiments have shown that
this method succeeds in performing directional
and local searches. In almost all the tested prob-
lems, the times of computing phases were signi®-
cantly reduced by the use of the simpli®cation/
branching process. This is specially relevant in
some multiobjective problems, namely in mixed-
integer ones and higher-sized problems. MOILP
problems, rather than MOMILP, often require
changing the reference point more than once to
escape from the previous e�cient solution. How-
ever, the total time spent on those iterations of

Table 2

Some problem results

Directional search Re(start) Time

Strategy Reference point Solution z� (z1,z2,. . .) It. Total time

(a) � start (3147, 3022, 3305) (2836, 2702, 2988) 60000

� ­z3 ) (00,00, 3310) (2830, 2700, 2997) 2 105200 701800

� ­z3 )(00,00, 3324) (2821, 2701, 3000) 6 30200 403500

(b) � start (1514, 1372, 1492) (1307.9, 1137.8, 1257.8) 20200

� ­z3 ) (00,00, 1492.6) (1308.0, 1137.4, 1258.0) 1 400 204600

� ­z3 )(00,00, 1493.3) (1279.2, 1137.2, 1258.5) 1 200 20200

� ­z3 )(00,00, 1508.6) (1277.8, 1135.8, 1272.4) 1 1700 102700

(c) � start (893240, 5058000, 1520,3746.7,

609209)

(1160200, 5376000, 4320, 6360,

996827)

0.800

� ¯z5 )(00,00,00,00, 434802) (1162280, 5620000, 4320, 11240,

829228)

5 1.100 1.500

� ¯z5 )(00,00,00,00, 267061) (1162593, 5620000, 4320, 11240,

829060)

1 0.200 0.800
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sensitivity analysis plus updating the branch-and-
bound tree is quite good in comparison to the single
optimization of the ®nal scalarizing program of that
iterative process. Moreover, as the reference point
is automatically adjusted, the procedure assures
that each new e�cient solution obtained during
the directional search is close to, but di�erent
from, the previous e�cient solution and improves
the objective function selected by the DM. There-
fore, the DM need not attempt reference points
that could lead to the previous e�cient solution.
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