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Abstract

Several interactive methods exist to identify nondominated solutions in a Multiple Objective Mixed Integer Linear

Program. But what if the Decision Maker is also interested in sorting those solutions (assigning them to pre-estab-

lished ordinal categories)? We propose an interactive ‘‘branch-and-bound like’’ technique to progressively build

the nondominated set, combined with ELECTRE TRI method (Pessimistic procedure) to sort identified nondomi-

nated solutions. A disaggregation approach is considered in order to avoid direct definition of all ELECTRE

TRI preference parameters. Weight-importance coefficients are inferred and category reference profiles are deter-

mined based on assignment examples provided by the Decision Maker. A computation tool was developed with a

twofold purpose: support the Decision Maker involved in a decision process and provide a test bed for research

purposes.
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1. Introduction

Considering the growing complexity of today�s
decision processes, it is more and more essential to

support Decision Makers (DMs). The keyword is

‘‘support’’: it is not about replacing the DM but it

is about helping him/her in every phase of the

decision process.

This support starts with the initial analysis and
structuring phase and may lead to a mathematical
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model defining admissible values for the decision
variables (expressed through constraints) and

identifying the relevant, usually multiple and

conflicting, criteria (expressed through objective

functions). Solutions to the problem are implicitly

defined by the model and may be made explicit

afterwards using some exploratory method. This

kind of models is usually referred to as Multiple

Objective Programming. In the scope of this paper
we are particularly interested in those models

where decision variables may assume integer or

continuous values and both constraints and ob-

jective functions are linear: Multiple Objective

Mixed Integer Linear Programming (MOMILP)

problems. Benson (1995), for instance, proposes to
ed.
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address the weekly surgery scheduling problem in
a hospital using a model of this type (in this spe-

cific example all variables are integer).

Once such a model is established, support

should focus on assisting the DM to explore it in

the context of a specific decision problematic or

problem statement. In our work this means inter-

actively identify the solutions resulting from a

MOMILP problem and assign them to a set of
ordinal categories. Among all solutions we are

only interested in those for which no other solu-

tion exists with, at least, equal performance in all

objective functions and better performance in, at

least, one objective function. These are the non-

dominated solutions and they represent, in the

scope of this paper, the alternatives to consider

during the inference process. Once the DM�s
preference structure is established, it also is pos-

sible to classify the remaining MOMILP solutions.

Assigning those alternatives to a set of catego-

ries corresponds to one of the three problem state-

ments proposed by Roy (1996) (choice, sorting and

ranking). More specifically, since we consider an

order structure over the entire set of pre-defined

categories, it constitutes what Mousseau et al.
(2000) designate by Ordered Multiple Criteria

Sorting Problems (Ordered MCSP) and Zopouni-

dis and Doumpos (2002) designate simply by

Sorting Problems 1. Among the several existing

approaches to this type of problems (again see

Mousseau et al., 2000; Zopounidis and Doumpos,

2002), namely using utility functions (for instance

UTADIS, Jacquet-Lagr�eeze, 1995), we opted to use
an approach based on the outranking relation,

more specifically the ELECTRE TRI method (Yu,

1992; Roy and Bouyssou, 1993). ELECTRE TRI

method puts several challenging technical issues

because the veto threshold makes its formulae

nonlinear.

As in most multiple criteria methods, ELEC-

TRE TRI requires many preference parameters.
Instead of asking the DM for a direct definition of

all parameters, which is often a difficult task, a
1 A distinction is made by these authors between classifica-

tion (categories defined in a nominal way) and sorting (cate-

gories defined in a ordinal way).
preference disaggregation approach (Jacquet-
Lagr�eeze and Siskos, 2001) takes solution assign-

ment examples based on holistic evaluations to

infer some of these parameters. Examples of this

disaggregation approach applied to the ELEC-

TRE TRI method can be found in the literature

(Mousseau and Slowinski, 1998; Ngo The and

Mousseau, 2000; Mousseau et al., 2001; Dias et al.,

2002) although they all apply to cases where the
alternatives are fully identified in advance.

Our work aims at supporting DMs involved in

decision processes in which the problem is already

structured (as a MOMILP model) and related to

the sorting problematic. Since, in these cases, the

set of alternatives is defined implicitly by a set of

linear constraints, the first step is to gradually

present the DM every alternative to consider
(which in the particular case of MOMILP prob-

lems are represented by nondominated solutions).

We use an interactive process to search the non-

dominated region of the MOMILP problem, al-

lowing the DM to choose the next solutions. This

way the DM is faced with the solutions he/she feels

more comfortable to classify. This is the main

advantage on integrating both methods: the MO-
MILP search with the ELECTRE TRI method. As

each solution is presented to the DM, he/she is

required to classify it (with a provisory status) in

an holistic manner. By this way, a set of assign-

ment examples is progressively built reflecting the

DM�s preferences. These examples will be used to

infer some parameters of an ELECTRE TRI type

structure underlying the DM�s expressed prefer-
ences. We are particularly interested in inferring

the weight-importance coefficients and determin-

ing the categories reference profiles, taking into

account the veto mechanism. The preference

structure established at a certain point reflects the

preferences expressed so far by the DM and will be

used to ‘‘advise’’ him/her as he/she will be asked to

classify the next solutions the DM chose to classify
(through the interactive search method). This ag-

gregation/disaggregation approach requires less

cognitive effort from the DM as compared to the

direct definition of all parameters. As soon as the

DM considers that the inferred ELECTRE TRI

type structure reflects his/her preferences (the

‘‘advises’’ for each new classification are consistent
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with his/her preferences), it is possible to stop the
interactive process and use the structure to classify

the remaining solutions (including the dominated

solutions of the MOMILP problem).

The LinearTri algorithm was presented in

Lourenc�o and Costa (2001b) and it was applied to

a Surgery Scheduling decision problem using the

software tool built to support it (see Lourenc�o and

Costa, 2001a). It is possible by now to identify/
confirm some of the algorithm limitations. For

instance, the simplifications introduced in the

weight-importance coefficients inference program

may reject certain assignment examples (alterna-

tive/classification) although, according to the cur-

rent preference structure, they would get precisely

the same classification. However, the main limi-

tation of the algorithm lies in the fact that it uses
nondominated solutions as category reference

profiles. This is not in accordance with the

ELECTRE TRI method and seems to make even

more difficult the weight inference process.

All considered, there was a need to improve

LinearTri: replace the nondominated solutions as

category inferior reference profiles and distinguish

between inconsistent assignments and the algo-
rithm inability to infer a preference structure. The

purpose of this paper is to present the algorithm

latest developments together with some reflections

about category reference profiles in the context of

MOMILP nondominated solutions classification.

A trial-and-error procedure is proposed to de-

termine the reference profiles, leaving some of the

effort to the DM him/herself. This procedure was
developed under the assumption that it would be

better to separate, in two consecutive steps, the

inference of weight importance coefficients and the

determination of category reference profiles. It is

important to start with ‘‘good’’ initial category

reference profiles in order to ‘‘minimise’’ the

‘‘discrepancies’’ left to be solved in the next step.

Once the weight importance coefficients are in-
ferred, it is necessary again to analyse the results

and adjust the reference profiles accordingly. The

procedure has been applied to an example problem

and the results were presented in Lourenc�o and

Costa (2002).

It is also necessary to distinguish between the

limitations of the algorithm and those situations
where the assignments were inconsistent and
therefore impossible to reproduce by an ELEC-

TRE TRI structure. We propose to establish some

pair wise comparison conditions between alterna-

tives that can be used to identify inconsistent as-

signment examples (Section 6). Although this

approach cannot be used to infer the preference

structure, it may be very useful to eliminate doubts

about the possiblity to infer those structures.
The LinearTri software, developed to support

the use of the LinearTri algorithm, as also been

improved to incorporate some of this latest de-

velopments. These additional test bed features aim

to give the DM more freedom when constructing

and analysing the preference structure that will

reflect his/her assignment examples. It is possible

to test different combinations of assignment ex-
amples, different values for the reference profiles

and combine this with the LinearTri algorithm. It

is also a research tool for any Analyst interested in

this kind of decision problems.

The next two sections give a brief method-

ological presentation of Multiple Objective Mixed

Integer Linear Programming and the ELECTRE

TRI method. Section 4 is dedicated to the Lin-
earTri algorithm, including some remarks about

its application and limitations. These limitations

were the main source of inspiration for the devel-

opments presented in Sections 5 and 6 and, ulti-

mately, to the LinearTri software test bed

described in Section 7. Finally some concluding

remarks are presented in Section 8.
2. A brief introduction to MOMILP problem

formulation

A MOMILP problem can be formulated as

max fz1¼ c1x; . . . ;zt ¼ ctxg
s:t: x2 S¼fx2RnjAx6b;xP0;xi integer; i2 Ig;

I �f1; . . . ;ng; I 6¼Ø;

ðP1Þ
where t is the number of objective functions (cri-

teria), n is the number of decision variables, A is a

m
 n matrix, b is a column m-vector and cj,

j ¼ 1; . . . ; t, are row n-vectors. Let Z denote the set
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of the criterion points (solutions) z 2 Rt, i.e., im-

ages of x 2 S. It is assumed that S is closed and

bounded.

Any solution �zz 2 Z is said to be nondominated iff

there does not exist another z 2 Z such that zP�zz
and z 6¼ �zz. Associated with ideal point z� 2 Rt

(composed of all objective functions maximum

values), there are, at most, t nondominated solu-
tions (one for each function maximum). These

may be determined using a linear program derived

from the original one (P1). Using an augmented

Tchebycheff program it is possible to determine an

‘‘extra’’ nondominated solution, zat 2 Z, that is

closest to the ideal point z� (Steuer, 1986).

The LinearTri algorithm will use these derived

problem formulations to interactively and pro-
gressively identify the nondominated solutions

associated with the original problem. These solu-

tions represent the alternatives available to the

DM, that is, the ones he/she wants to classify.

Similarly, the objective functions will act as

quantitative criteria for the ELECTRE TRI

method described in the next section.
3. Multiple criteria sorting methods

It is possible to distinguish between two large

‘‘families’’ of Multiple Criteria Decision Aiding

(MCDA) methods based on their criteria aggre-

gation models (Zopounidis and Doumpos, 2002):

the outranking relation and the utility function.
Within both ‘‘families’’ it is possible to find not

only sorting/classification specific methods but

also methods that use a preference disaggregation

approach.

The utility function disaggregation approach is

used in the UTADIS method (Jacquet-Lagr�eeze
and Siskos, 1982; Jacquet-Lagr�eeze, 1995). This

method defines category lower bounds as utility
thresholds and assigns each alternative to the right

category by comparing the global utility of the

alternative with those thresholds. To estimate the

weights necessary to determine the global utility

function (disaggregation approach) the UTADIS

method uses a linear program.

The ELECTRE TRI method (Yu, 1992; Roy

and Bouyssou, 1993) belongs to a group of meth-
ods, called ELECTRE (‘‘ELimination Et Choix
Traduisant la REalit�ee’’), which have their foun-

dations in the outranking relation as a mean to

aggregate different criteria. Among the several

preference parameters necessary to this method,

the veto threshold is perhaps the most character-

istic one: it is a straightforward way to say that if

an alternative is ‘‘much worse’’ than another al-

ternative in one criteria, then it cannot be better
than that alternative, regardless of all other crite-

ria. The next subsections present the ELECTRE

TRI fundamentals and some disaggregation ap-

proaches related to it.

3.1. ELECTRE TRI fundamentals

ELECTRE TRI was developed to deal with
ordered MCSP. It starts with a set of alternatives,

evaluated by quantitative and/or qualitative crite-

ria (gj), and a set of categories, and uses an out-

ranking relation to assign each alternative to a

category. This method requires several preference

parameters such as preference (pj), indifference (qj)
and veto (vj) thresholds, and weight-importance

coefficients k ¼ ðk1; . . . ; kt; kj > 0; j ¼ 1; . . . ; tÞ.
Each outranking relation ðaS bÞ between an alter-

native a and a category lower reference profile b is

established in four stages:

1. criteria concordance indexes cjða; bÞ and global

concordance indexes Cða; bÞ calculation;
2. discordance index djða; bÞ calculation;
3. credibility degree rSða; bÞ calculation;
4. establishing the outranking relation through the

cutting level.

Within the ELECTRE TRI method the cate-

gories are defined in an ordered way, and may be

represented as C1;C2; . . . ;Cr ðrP 2Þ, where Cr is

the best and C1 the worst category. Each category

Ci ð16 i6 rÞ is limited by two reference profiles
(bi––upper and bi�1––lower reference profile),

where the upper reference profile of a category

corresponds to the lower reference profile of the

category immediately above.

The ELECTRE TRI Pessimistic process (used

in the LinearTri Algorithm) aims to assign each

alternative to the highest category for which that
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alternative outranks the category inferior reference
profile. The followed procedure is:

1. Compare successively alternative a with refer-

ence profile bi, with i varying from r � 1 to 0

(from higher to lower categories);

2. Let bp be the first reference profile for which

ðaS bpÞ; then a is assigned to category Cpþ1.

In our work we consider all thresholds to be

fixed for each criteria, so they are simply noted qj
(indifference threshold for criteria j), pj (preference
threshold for criteria j) and vj (veto threshold for

criteria j). Furthermore, the performance of al-

ternative a and reference profile b, respectively

gjðaÞ and gjðbÞ, will simply be noted aj and bj.

3.2. ELECTRE TRI disaggregation approaches

Contrary to the ‘‘traditional way’’ of decision-

making (define the object of the decision, deter-

mine the problematic, define a consistent family of

criteria, develop a global preference model and

finally exploit the model to support a decision), the

disaggregation approach takes a final decision and
aims to infer the DM�s preference model that

‘‘best’’ matches the decision. This type of approach

has been applied widely in MCDA (Jacquet-

Lagr�eeze and Siskos, 2001) and particularly to the

ELECTRE TRI method.

Mousseau and Slowinski (1998) describe an al-

gorithm that starts from a set of assignment ex-

amples produced by the DM and tries to
determine a model (preference structure) that best

matches those examples. The inferred parameters

are the reference profiles, the weight-importance

coefficients and the preference and indifference

thresholds. Even without inferring veto thresholds

this approach leads to a nonlinear programming

problem. In Mousseau et al. (2001) it was only

considered the sub-problem of the determination
of the weight-importance coefficients (the thresh-

olds and reference profiles being fixed and without

veto) thus leading to a linear programming prob-

lem. A complementary work can be found in Ngo

The and Mousseau (2000), in which the impor-

tance coefficients are fixed and the inferred pa-

rameters are the category limits (excluding the veto
threshold). Finally, Dias et al. (2002) integrates the
disaggregation approach with robustness analysis

combining them in an interactive method.

Contrary to these previous authors, we aim to

integrate the initial phase of nondominated solu-

tions identification with the preference parameters

inference (weight-importance coefficients and de-

termination of categories reference profiles), thus

not starting with an initial complete set of as-
signment examples. We use an interactive process

to search the nondominated region of the MO-

MILP problem, allowing the DM to choose the

next solutions. This way the DM is faced with the

solutions he/she feels more comfortable to classify.

This is the main advantage on integrating both

methods: the MOMILP search with the ELEC-

TRE TRI method. Although we do not infer the
veto threshold, we consider it during the inference

process: this is particularly important since this is

one of the most distinguishing characteristics of

the ELECTRE TRI method. Finally, we propose

to use a linear inference program combined with

an interactive procedure leaving some of the effort

to the DM him/herself.
4. LinearTri algorithm

Having presented the MOMILP considerations

and the ELECTRE TRI method, this section will

present the LinearTri algorithm, which combines

elements from both approaches. Consequently, the

terms alternative/nondominated solution and crite-

ria/objective function will be used indistinctly.

The LinearTri algorithm is based on an algo-

rithm presented by Marcotte and Soland (1986)

and afterwards modified by Durso (1992).

Once the MOMILP problem is formulated and

the remaining (not inferred) parameters are set, the

LinearTri algorithm begins with the creation of an

initial node representing the entire problem. Then
it uses a branch-and-bound technique to build an

enumeration tree where each node represents a

sub-problem of the original problem and, conse-

quently, a subset of nondominated solutions.

For any generic node (including the first one)

the algorithm calculates t þ 1 (at most) nondomi-

nated solutions, resulting from the programs
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referred to in Section 2. The DM must then choose
one of these solutions and classify it taking into

consideration the classification ‘‘proposed’’ by the

previously established ELECTRE TRI type

structure. The algorithm will then try to infer a

new set of preference parameters that accommo-

dates this new example of the DM�s preferences.
The chosen solution is compared with the node

ideal point: for each objective function where the
difference is considered ‘‘significant’’ a new node is

created. These new nodes are characterised by an

additional constraint (to the programming prob-

lem represented by the parent node) defining a new

lower limit on the objective function for which the

node was created. This branching mechanism al-

lows for the complete identification of the original

problem nondominated solutions. Among all
nodes created but not yet analysed, the DM must

choose the one to proceed (the others will be

analysed afterwards). The algorithm ends when all

nodes are created and analysed, or at any time the

DM so wishes.

The algorithm has the scheme presented in Fig.

1, with the most important steps detailed in the

following sections.

4.1. Calculation of nondominated ‘‘characteristic’’

solutions: The alternatives

Any generic node nh from the enumeration tree

(representing a sub-problem) is characterised by:

• a lower limit vector Lh 2 Rt for the objective
functions and an ideal point z�h.

• a subset of feasible ðZhÞ and nondominated ðNhÞ
solutions ðNh � ZhÞ.

For each node nh the ideal point z�h is calculated

simultaneously with t (at most) nondominated

solutions associated with it. These are ‘‘charac-

teristic’’ solutions since they ‘‘represent’’ the entire
subset of nondominated solutions associated with

the node and show the maximum reachable value

for each objective function. Another ‘‘character-

istic’’ nondominated solution (Tchebycheff solu-

tion) results from an augmented unweighted

Tchebycheff problem and represents a ‘‘balance’’

between all objective functions. In conclusion,
t þ 1 nondominated solutions are calculated and
presented to the DM in each node nh. Fig. 2 pre-

sents a screen from the LinearTri software tool,

with four 2 nondominated ‘‘characteristic’’ solu-

tions associated with node n4.

The left side of the screen shows the enumera-

tion tree representing the hierarchy of sub-prob-

lems being defined along the LinearTri algorithm.

On the right we can see which is the current node
and some information about it, particularly the

node ideal point that will determine which new

nodes will be created once a nondominated solu-

tion is chosen by the DM. The purpose of the grid

on the right side is to present to the DM the t þ 1

nondominated solutions for him/her to choose

from. The chosen solution is afterwards classified

and will be another example of the DM�s prefer-
ences.

4.2. Testing the selected solution against the ideal

point and creation of new nodes

Having selected and classified a nondominated

solution, the question is ‘‘How far is that solution

from the ideal point determined for the respective
node?’’ or, to put it in another way, ‘‘Is it possible/

desirable to improve any of the objective func-

tions?’’. That depends on Delta values defined, in

the beginning of the algorithm, for each objective

function. These values will determine which nodes

are created from the current one. Generally, they

determine the granularity of solutions found.

4.3. Inference of weight-importance coefficients

In the LinearTri algorithm the weight-impor-

tance coefficients are inferred through a linear

programming problem whose formulation will be

presented below.

According to the ELECTRE TRI Pessimistic

assignment procedure (see Yu, 1992, for details),
in a preference structure with r categories ðC1; . . . ;
CrÞ inferior limited by reference profiles b0; . . . ;
br�1 respectively, where Cr represents the highest
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New preference structure

Fig. 1. LinearTri scheme for identification and classification of nondominated solutions in MOMILP.
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category, each solution a assigned to category i
ð16 i6 rÞ must respect the following propositions:

(I) NOT ðaS bm�1Þ, for i < m6 r
A solution cannot outrank any of the inferior

reference profile representing the categories higher
than the category to which it is assigned.
(II) ðaS bi�1Þ
A solution must outrank the inferior reference

profile representing the category to which it is as-

signed.

By respecting the above propositions, solution a
will be assigned to category i since, as we run down
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the reference profiles in descending order br�1; . . . ;
b0, reference profile bi�1 is the first one for which

ðaS bi�1Þ.
Each proposition type (I and II) will give origin

to functional constraints to be incorporated in the

different linear programming problems used to
infer the weight-importance coefficients. In order

to work only with linear constraints, it is necessary

to simplify them without compromising the end

results.

As to proposition type I, we begin by ensuring

that

F ða; bÞ ¼ fj 2 F jdjða; bÞ > Cða; bÞg 6¼ Ø ð4:1Þ

that is, considering F as the set of the indices of the

objective functions ðF ¼ f1; . . . ; tgÞ, there is at

least one criteria for which the discordance index

djða; bÞ is greater than the global concordance in-

dex Cða; bÞ.
Consider DMða; bÞ ¼ Max8j2F djða; bÞ. Then, in

order to have at least one discordance index infe-

rior to the global concordance index ð#F ða; bÞP
1Þ, the first constraint is

Cða; bÞ < DM : ð4:2Þ
Under this condition, the calculation of the cred-

ibility degrees rSða; bÞ necessary to establish the
outranking relation ðaS bÞ gives origin to the

constraint

rSða; bÞ ¼ Cða; bÞ �
Y
j2F

1� djða; bÞ
1� Cða; bÞ < k: ð4:3Þ

Since we aim to solve linear programming prob-
lems it is necessary to make this constraint linear

on kj (this variable appears on the expression of

Cða; bÞ). Consider �tt ¼ #F ða; bÞ. Since we do not

determine �tt, the constraint (4.3) is simplified con-

sidering that tP�tt. Taking also in consideration

that 06Cða; bÞ6 1, it is sufficient to assure thatQ
j2F ½1� djða; bÞ�
½1� Cða; bÞ�t

< k: ð4:4Þ

Since we can only be sure for one objective func-

tion that djða; bÞ > Cða; bÞ, it is sufficient to assure
that

1� DM

½1� Cða; bÞ�t
< k: ð4:5Þ

In conclusion, the second constraint becomes

Cða; bÞ < 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DM

k
t

r
: ð4:6Þ

From constraints (4.2) and (4.6) it will result a

single constraint of type
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Cða; bÞ < Min DM ; 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DM

k
t

r
: ð4:7Þ

In a similar way, from proposition type II we ar-
rive to another constraint:

Cða; bÞPMaxfDM ; kg: ð4:8Þ
The linear programming problem, which consti-

tutes the core of the inference procedure, will take

constraints of type (4.7) and (4.8) as functional

constraints. It will be used to validate a certain
preference structure by inferring the corresponding

importance coefficients, and has the following ge-

neric formulation.

The goal is to minimise the increment ej (always
nonnegative) of the importance coefficients, start-

ing from its previous value kj. The linear pro-

gramming problem to be solved to determine the

increments ej of the importance coefficients kj, for
a certain preference structure, can then be stated as

Min
X
j

ej ðP2Þ

s:t: X
j

ejðcj �MinÞ <
X
j

kjðMin � cjÞ; ðIÞ
X
j

ejðcj �MaxÞP
X
j

kjðMax � cjÞ; ðIIÞ

ej P 0; 8j;

where: cj ¼ cjða; bÞ, DM ¼ Max djða; bÞ, 8j 2 F ,

Min ¼ Min 1�
ffiffiffiffiffiffiffiffiffi
1�DM

k
t
q

; k
n o

, Max ¼ MaxfDM ; kg;

(I) for all classified solutions––including the cate-

gory reference ones––a, for each inferior refer-

ence profile b of the upper categories;

(II) for all classified solutions a, for the inferior ref-
erence profile b of the corresponding category.
4.4. Determination of category reference profiles

In the LinearTri algorithm reference profiles are

not inferred. Instead, a simple heuristic was used

to choose, among the nondominated solutions

classified in a certain category, the one that will

represent the category as reference profile.
According to this heuristic, if a new solution is
the first one to be classified in a particular cate-

gory, then there is no doubt that this solution

should be the reference profile for that category.

On the other hand, if that category has already a

reference profile, it is necessary to know which of

the two solutions is the best one to act as reference

profile. Two alternative structures are in analysis

and, if it is possible to infer the importance coef-
ficients for both structures, the selected structure

will be the one that implies a smaller variation of

the original importance coefficients.

4.5. Final remarks

The LinearTri algorithm has already been ap-

plied to a decision problem (see Lourenc�o and
Costa, 2001a) allowing for the identification and

classification of alternatives and, at the same time,

making explicit the DM�s preference structure. The
problem was to find efficient weekly surgery

schedules in a hospital. To address it, Benson

(1995) proposed a Multiple Objective Integer

Programming model which required the DM to

directly establish different sets of weights for the
objective functions. For each set it was then pos-

sible to determine one or several efficient sched-

uling solutions. The use of LinearTri avoided the

need for direct elicitation of the relative impor-

tance of the different types of surgery (as proposed

in Benson, 1995). Instead, through the holistic

classification of some schedule examples, the al-

gorithm was able to infer the weight-importance
coefficients of an ELECTRE TRI type structure

and establish reference solutions for the categories

proposed by the DM.

It is possible by now to identify/confirm some of

the algorithm limitations. For instance, the sim-

plifications introduced in the weight-importance

coefficients inference program (described in Sec-

tion 4.3) to make the functional restrictions linear,
may block out some solutions. This means that a

certain assignment example (alternative/classifica-

tion) may not be included in the final DM�s pref-
erence structure (because it was not possible to

infer a set of weights to accommodate it) although,

according to the same structure, it would get pre-

cisely the same classification. However, the main
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limitation of the algorithm lies in the fact that it
uses nondominated solutions as category reference

profiles. This is not in accordance with the

ELECTRE TRI method. Furthermore, it seems to

make even more difficult the weight inference

process.

All considered, there was a need to improve

LinearTri and replace the nondominated solutions

as category inferior reference profiles and to dis-
tinguish between inconsistent assignments and the

algorithm inability to infer a preference structure.

The resulting developments are presented in the

next sections.
Yes

Adjust the reference
profiles

remain?
END

Fig. 3. Simple scheme of a trial-and-error procedure to deter-

mine reference profiles.
5. A trial-and-error procedure to determine refer-

ence profiles

Using nondominated solutions as category ref-

erence profiles was a major drawback of the Lin-

earTri algorithm. Not only because it was not in
full compliance with ELECTRE TRI but also

because it seemed to make the weight inference

process much harder. This led to the development

of a trial-and-error procedure with two separate

but consecutive major steps: the determination of

reference profiles and the inference of weight-im-

portance coefficients. Each step begins with the

analysis of the previous step results and tries to
solve the remaining ‘‘issues’’.

A simple scheme of the procedure is presented

in Fig. 3. The next subsections will give more de-

tails about each step of the procedure.
5.1. Establish initial category reference profiles

The first step of the procedure consists of find-
ing an initial set of values for the category refer-

ence profiles. Ideally each component (associated

with each criteria) of each reference profile (asso-

ciated with each category) would be greater than

the values of all alternatives in the lower categories

and lower than the values of all alternatives clas-

sified in the category itself or in categories above.

That is not possible when the alternatives are
represented by nondominated solutions. The goal

is then to determine for each bi�1
j (category i in-
ferior reference profile, for criteria j) a value that

minimise ‘‘classification discrepancies’’. Those

discrepancies occur when:

• an alternative is classified in a category below

category i, but it has a performance in criteria
j greater than bi�1

j , or

• an alternative is classified in or above category

i, but it has a performance in criteria j lower

than bi�1
j .

Additionally, some ‘‘measures’’ of the discrep-

ancy are considered: how many categories away is

the ‘‘discrepant alternative’’ from the category
being considered, and the ratio number of ‘‘dis-

crepant alternatives’’/total number of alternatives

in a category.

The value of each component––bi�1
j (category

Ci inferior reference profile, criteria j)––is calcu-

lated independently, minimising the following ex-

pression:X
jakj � bi�1

j j=N 
 Q ð5:1Þ

• for all alternatives ak classified in categories

below Ci, for which akj > bi�1
j ;
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• for all alternatives ak classified in category Ci or

above, for which akj < bi�1
j ;

where: N ¼ number of alternatives classified in the

same category as ak; Q ¼ ‘‘distance’’ (measured by

the number of categories between ak category and

category Ci).

All profiles determined through the expression

above must also respect the following rules:

• 8j8i bij P bi�1
j ðj ¼ 1; . . . ; t; i ¼ 1; . . . ; rÞ,

• 8jbi�1
j < akj þ vj ðj ¼ 1; . . . ; tÞ, for each alterna-

tive––ak––classified in category Ci,

where t represents the number of criteria and r the
number of categories.
5.2. Try to infer the weight-importance coefficients

Once a set of reference profiles is determined, it

is necessary to infer a set of weight-importance

coefficients. A new approach was also developed

for this part of the procedure. The starting point is

the same as it was for the LinearTri algorithm (see

Section 4.3) where each solution a assigned to
category i ð16 i6 rÞ must respect the following

propositions:

(I) NOT ðaS bm�1Þ, for i < m6 r,
(II) ðaS bi�1Þ.

Again, each proposition type (I and II) will give

origin to functional constraints to be incorporated
in the linear programming problem used to infer

the weight-importance coefficients.

As to proposition type I, that is, solution a is

not assigned to a category whose inferior reference

profile is b, it is sufficient that

Cða; bÞ < k

_

9j djða; bÞ > Cða; bÞ ^ Cða; bÞ 
 ð1� djða; bÞÞ
ð1� Cða; bÞÞ < k;

1P jP t:

ð5:2Þ
Solving in order to Cða; bÞ yields
9j Cða; bÞ < djða; bÞ ^ Cða; bÞ

<
k

1� djða; bÞ þ k
; 1P jP t; ð5:3Þ

or, in another way,

9j Cða; bÞ < Min djða; bÞ;
k

1� djða; bÞ þ k

� �
;

1P jP t: ð5:4Þ

The complete condition is then

Cða;bÞ<Max k;Min djða;bÞ;
k

1� djða;bÞþ k

� �� �
;

1P jP t: ð5:5Þ

Likewise, to make a proposition type II valid, that

is, solution a is assigned to a category whose in-

ferior reference profile is b, it is necessary that

Cða; bÞP k: ð5:6Þ
To simplify the definition of Cða; bÞ it was con-

sidered that
Pt

j¼1 kj ¼ 1, which leads to

Cða; bÞ ¼
Xt

j¼1

kj 
 cjða; bÞ: ð5:7Þ

Using the set of reference profiles determined in

the previous step, we start out by calculating all

local concordance and discordance indexes. It is

then possible to infer a corresponding set of

weight-importance coefficients––kj––using the fol-

lowing linear program:

Max
Xt

j¼1

kj ðP3Þ

s:t: Xt

j¼1

kj 
 cjða; bÞ < Maxfk;m1; . . . ;mtg; ðIÞ

Xt

j¼1

kj 
 cjða; bÞP k; ðIIÞ

Xt

j¼1

kj ¼ 1;

kj P 0;

where

mj ¼ Min djða; bÞ;
k

1� djða; bÞ þ k

� �
; 1P jP t;
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(I) for all classified solutions––including the cate-

gory reference ones––a, for each inferior refer-

ence profile b of the upper categories;

(II) for all classified solutions a, for the inferior

reference profile b of the corresponding cate-

gory.

The main difference between this linear pro-
gram and the one presented in Section 4.3 (P2) is

that the later program uses necessary conditions as

constraints. This means that even if it is possible to

find a solution for the linear program (a set of

weights) now it is not guaranteed that the corre-

sponding preference structure is valid. On the

other hand, using necessary instead of sufficient

conditions makes it possible to reach more solu-
tions (set of weights) that were blocked out in the

initial LinearTri algorithm.

Since this is a trial-and-error procedure, if the

linear program is impossible it does not mean the

end of the procedure. Instead, the weight-impor-

tance coefficients, valued up to the point where the

impossibility was detected, are used in the next

step. It is always necessary to validate the resulting
preference structure and analyse the corresponding

weight-importance coefficients.

5.3. Validate the resulting preference structure

Once a set of weight-importance coefficients is

determined, it is always necessary to check if the

resulting preference structure is valid. This means
that each classification example provided by the

DM is matched against the classification obtained

using the inferred preference structure and the

ELECTRE TRI pessimistic assignment procedure.

If all classifications match, then the preference

structure really reflects the DM�s preferences and

the procedure ends. Otherwise it is necessary to

check where are the discrepancies (alternatives as-
signed to different categories) and what is the

dimension of those discrepancies (outranking re-

lation credibility degree obtained versus necessary).

5.4. Analyse classification discrepancies

This analysis step starts by calculating all global

concordance indexes––Cða; bÞ––and outranking
relation credibility degrees––rSða; bÞ––for each al-
ternative with regard to the relevant reference

profiles. It is possible to detect which alternatives

do not fit the inferred structure (discrepancy) just

by observing the obtained values:

• if rSða; bÞ < k when it is intended to be ðaS bÞ;
• if rSða; bÞP k when it is intended to be NOT

ðaS bÞ.

The degree of each discrepancy is given by ex-

pression DrS ¼ jk � rSða; bÞj.
Once the discrepancies are detected and analy-

sed, the DM may reconsider some classifications.

It is possible that, by this action, all discrepancies

disappear and the search ends. If some discrep-

ancies remain, it is necessary to adjust the refer-
ence profiles and try again.

5.5. Adjust reference profiles

Taking into consideration the information re-

sulting from the analysis of classification discrep-

ancies it is now necessary to adjust the relevant

reference profiles. In order to better control the
effect of the adjustment process, only one reference

profile component––bi�1
j ––is adjusted on each it-

eration. The first task is to choose which profile

and then which component to adjust.

The idea is to start by eliminating the biggest

discrepancy, which means the reference profile to

adjust is the one with a greater degree of discrep-

ancy––DrS . Consider b to be that profile. As to
the component of b to adjust (increase or decrease)

in order to eliminate the discrepancy ðDrS ! 0Þ,
it is necessary to analyse each local concor-

dance and discordance index. It is intended that

the adjustment made would contribute to one of

two situations (depending on the type of discrep-

ancy):

• ðaS bÞ. In this case bj should diminish to bj ¼
pj � kðpj � qjÞ þ aj.

• NOT ðaS bÞ. In this case bj should increase to

bj ¼ pj � kðpj � qjÞ þ aj.

The idea behind these values is that a criteria

‘‘strongly’’ contributes to the establishment of an
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outranking if its local concordance index is greater
than the cutting level threshold.

Once adjusted, the new proposed values for

each component of b would have to comply with

the global rules mentioned before:

• 8j8i bij P bi�1
j ðj ¼ 1; . . . ; t; i ¼ 1; . . . ; rÞ,

• 8j bi�1
j < akj þ vj ðj ¼ 1; . . . ; tÞ, for each alterna-

tive––ak––classified in category Ci,

where t represents the number of criteria and r the
number of categories.

Finally, considering all components of b, we

choose to adjust the one that implies a smaller rel-

ative (to the previous value) change. The next step is

to go back to the weight-importance coefficients

inference stage with the new reference profiles.
5.6. End of the trial-and-error procedure

This procedure ends when the inferred ELEC-

TRE TRI preference structure entirely reflects

the DM�s preferences, expressed through the

assignment examples. This means that no dis-

crepancies occur after the inference of weight-
importance coefficients and establishment of

reference profiles. That is, it is necessary that all

outranking relations established (or not) between

the alternatives and the reference profiles agree

with the propositions inherent to ELECTRE TRI

assignment method.

This is a trial-and-error procedure without

guarantee that a ‘‘discrepancy free’’ situation will
occur. It is possible that, at some iteration, the

DM reconsiders some assignment examples pre-

viously given when confronted with the ‘‘dimen-

sion’’ of discrepancies detected and accepts the

classifications proposed by the procedure. If not, it

is up to the DM to decide when to stop the pro-

cedure considering that it is not possible to ac-

commodate some assignment examples.
5.7. Final remarks

This trial-and-error procedure was devel-

oped under the assumption that it would be bet-

ter to separate the inference weight importance
coefficients from the determination of category
reference profiles. These inference processes are

performed in two separate but consecutive steps,

where each step begins by analysing the results of

the previous step. It is important to start with

‘‘good’’ initial category reference profiles in order

to ‘‘minimise’’ the ‘‘discrepancies’’ left to be solved

in the next step. Once the weight importance co-

efficients are inferred, it is necessary again to an-
alyse the results and, if some ‘‘discrepancies’’

remain, to adjust the reference profiles accord-

ingly.

The procedure has been applied to an example

problem and the results were presented in Lou-

renc�o and Costa (2002). Starting from a set of

classification examples provided by the DM it was

possible to determine a set of weight-importance
coefficients and reference profiles that reflected the

DM�s preferences through an ELECTRE TRI

structure.
6. Inconsistent classifications proposed by the De-

cision Maker

During the development of the LinearTri algo-

rithm and the trial-and-error procedure a question

arose. When it is not possible to infer an ELEC-

TRE TRI structure to match the DM expressed

preferences, is this due to the inference method

or are the assignment examples incompatible?

The following subsection presents a set of neces-

sary conditions that detect incompatibilities among
the DM�s expressed preferences thus avoiding

the effort to find a matching ELECTRE TRI

preference structure. A simple example is pre-

sented afterwards to better understand those con-

ditions.

6.1. Compatibility conditions

Consider two alternatives, a1 and a2, which

were assigned by the DM to two different catego-

ries in a problem with t criteria. Alternative a1 was
assigned to a category characterized by inferior

reference profile b and a2 was assigned to a lower

category. According to the ELECTRE TRI Pes-

simistic assignment method:
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ða1 S bÞ AND NOT ða2 S bÞ ) rSða1; bÞ
> rSða2; bÞ: ð6:1Þ

Suppose that 8j a1j 6 a2j , j ¼ 1; . . . ; t. Then

8j cjða1; bÞ6 cjða2; bÞ ^ djða1; bÞP djða2; bÞ
) rSða1; bÞ6 rSða2; bÞ: ð6:2Þ

This means that

ða1 S bÞ AND NOT ða2 S bÞ ) 9j cjða1; bÞ
> cjða2; bÞ _ djða1; bÞ < djða2; bÞ ) 9j a1j > a2j :

ð6:3Þ

Consider then a criteria j for which a1j > a2j . Table
1 shows a comparison of both alternatives local

concordance indexes across the range of possible
values for the reference profile, divided into in-

tervals 3.

In conclusion,

bj 2�qj þ a2j ; pj þ a1j ½ () cjða1; bÞ > cjða2; bÞ:

A similar line of reasoning applied to djða1; bÞ and
djða2; bÞ yields
bj 2�pj þ a2j ; vj þ a1j ½ () djða1; bÞ < djða2; bÞ:

Finally, considering that a1j > a2j ,

bj 2�qj þ a2j ; vj þ a1j ½ () cjða1; bÞ
> cjða2; bÞ _ djða1; bÞ < djða2; bÞ ð6:4Þ

or

ða1 S bÞ AND NOT ða2 S bÞ ) 9j a1j

> a2j ^ bj 2�qj þ a2j ; vj þ a1j ½: ð6:5Þ

This later proposition should hold for all combi-
nations of alternatives classified in different cate-

gories. Additionally, according to ELECTRE TRI,
8j bi�1
j < akj þ vj ðj ¼ 1; . . . ; tÞ; for each

alternative—ak—classified in category Ci ð6:6Þ
and

8j8i bij P bi�1
j ðj ¼ 1; . . . ; t; i ¼ 1; . . . ; rÞ: ð6:7Þ
3 This line of reasoning assumes that pj � qj > a1j � a2j
without any loss of generality.
6.2. Inconsistent classification example

The following example will illustrate how the

propositions presented in the last subsection may

be used to detect inconsistent classifications.

Consider a problem with three criteria and three

categories ðC1;C2;C3Þ defined by three inferior

reference profiles ðb0; b1; b2 respectively). Table 2
presents the indifference, preference and veto

thresholds defined for this problem.

Suppose now that the DM expressed his/her

preferences assigning three alternatives to those

three categories as presented in Table 3.

Consider alternatives a2 and a3. The DM has

assigned a2 to category C2 and a3 to a lower cat-

egory C1. This means that ða2 S b1Þ AND NOT
ða3 S b1Þ must hold 4 and consequently

ða2 S b1Þ AND NOT ða3 S b1Þ )

9j a2j > a3j ^ bj 2�qj þ a3j ; vj þ a2j ½;

j ¼ 1; 2; 3: ð6:8Þ

This means that, if alternative a2 is to be classified

in a category above a3 category, it is necessary that

a2 is better in at least one criteria. Furthermore,

the difference must be such that allows for either

cjða2; b1Þ > cjða3; b1Þ or djða2; b1Þ < djða3; b1Þ. Only

then it is possible that Cða2; b1Þ > Cða3; b1Þ which
finally makes possible that ða2 S b1Þ AND NOT
ða3 S b1Þ.

Since only criteria 1 meets the requirement that

a2j > a3j , it is necessary that b11 2�63; 78½.
Looking now at the veto conditions, alternative

a1 may be assigned to category C3 if and only

if ða1 S b2Þ. This means that 8j b2j < a1j þ vj ðj ¼
1; 2; 3Þ. Then, for criteria 1, b21 < 45:6.

Another general condition from ELECTRE
TRI is 8j8i bij P bi�1

j ðj ¼ 1; 2; 3; i ¼ 1; 23Þ.
It is now easy to see that b11 2�63; 78½^b21 P

b11 ^ b21 < 45:6 is an impossible condition. In con-

clusion, there is no ELECTRE TRI structure that

accommodates these assignment examples: they

are inconsistent.
4 b1 is the inferior reference profile of category C2.



Table 1

Comparison of local concordance indexes value

Interval Local concordance indexes value Comparison

bj < qj þ a2j cjða1; bÞ ¼ 1 ^ cjða2; bÞ ¼ 1 cjða1; bÞ ¼ cjða2; bÞ
qj þ a2j < bj < qj þ a1j cjða1; bÞ ¼ 1 ^ cjða2; bÞ ¼

pj�ðbj�a2j Þ
pj�qj

< 1 cjða1; bÞ > cjða2; bÞ
qj þ a1j < bj < pj þ a2j cjða1; bÞ ¼

pj�ðbj�a1j Þ
pj�qj

^ cjða2; bÞ ¼
pj�ðbj�a2j Þ

pj�qj
cjða1; bÞ > cjða2; bÞ

pj þ a2j < bj < pj þ a1j cjða1; bÞ ¼
pj�ðbj�a1j Þ

pj�qj
^ cjða2; bÞ ¼ 0 cjða1; bÞ > cjða2; bÞ

bj > pj þ a1j cjða1; bÞ ¼ 0 ^ cjða2; bÞ ¼ 0 cjða1; bÞ ¼ cjða2; bÞ

Table 2

Indifference, preference and veto thresholds

Criteria 1 Criteria 2 Criteria 3

Indifference ðqÞ 6 8.77 8.6

Preference ðpÞ 12 17.53 17.2

Veto ðvÞ 18 26.3 25.8

Table 3

DM�s assignment examples

Criteria 1 Criteria 2 Criteria 3

a1 27.6 38 63 C3

a2 60 28 )10 C2

a3 57 33 )6 C1
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6.3. Final remarks

As a first remark, it is necessary to point

out that the conditions used are necessary but
not sufficient. Even if it is possible to establish

a set of intervals for all reference profiles that

does not mean it is possible to find an ELEC-

TRE TRI structure that fits the assignment ex-

amples.

Although this is a simple process to understand,

it may be complex to implement. This is especially

true when the number of criteria increases because
they increase the number of disjunctive conditions.

One way to deal with the growing complexity

might be to start by analysing those pairs of al-

ternatives assigned to different categories but

‘‘very close’’ in performance according to the cri-

teria.

It is also noteworthy to point out that

the process may be improved considering not
only pair wise alternative analysis but also alter-
native/profile analysis (besides the veto condi-

tions).

Although this approach cannot be used to infer

the preference structure, it may be very useful to

eliminate doubts about the capacity of other

methods to infer those structures.
7. LinearTri software test bed

A software package was developed to support

any DM wanting to use the LinearTri algorithm.
The software implements every step of the original

algorithm and drives the DM through those steps

as depicted in Fig. 1 flowchart. It uses a visual

enumeration tree to keep track of all sub-problems

being defined and several grids to present the

nondominated solutions (alternatives) in an orga-

nized way (see Fig. 2).

Afterwards, the software was extended, in order
to constitute a test bed where the DM may ‘‘toy

around’’ with the problem outside the LinearTri

algorithm, and provide a research tool for the

Analyst. The extensions made were inspired in

the developments presented in Sections 5 and 6.

The next subsections will present the most im-

portant aspects of the test bed.
7.1. Outranking indexes calculation

A very simple feature of the software package is

to allow the DM to calculate all local and global
indexes of the outranking relation between any

pair of nondominated solutions (alternatives) al-

ready identified. An example is presented in Fig. 4.



Fig. 4. LinearTri screen to calculate outranking relation in-

dexes.

286 R.P. Lourenc�o, J.P. Costa / European Journal of Operational Research 153 (2004) 271–289
7.2. Direct manipulation of ELECTRE TRI pref-

erence structure

Another useful characteristic of the test bed is
that it allows the DM to ‘‘manipulate’’ at will the

preference structure determined by the LinearTri

algorithm. Fig. 5 shows the interface built for that

purpose.

The left side grid shows the current preference

structure (classified alternatives and reference

profiles). The right side grid presents all nondom-

inated solutions (alternatives) identified but not
Fig. 5. LinearTri screen to manipu
included in the preference structure (either because
it was not possible to find a set of weights and

reference profiles or due to DM�s option). Upon

entering this screen, the preference structure is al-

ways valid since it comes from the LinearTri al-

gorithm. The DM may then manipulate the

structure by removing alternatives, changing al-

ternatives category, inserting alternatives or

changing category reference profiles. This last
possibility includes the definition of ‘‘automatic

profiles’’ according to Section 5.1 or ‘‘manual

profiles’’, that is, profiles with values directly in-

serted by the DM. This is of particular importance

since it makes possible to have preference struc-

tures without nondominated solutions as category

reference profiles.

Whatever changes are made, the resulting pref-
erence structure will only be accepted if it is pos-

sible to infer a set of weight importance coefficients

that, together with the reference profiles and the

preference parameters defined in the beginning of

the algorithm, define a preference structure that

‘‘matches’’ (see Section 5.3) the classification ex-

amples in the left side grid. This inference process is

started through the ‘‘Test Structure’’ button.
However, as it was mentioned in Section 5.3,

whatever the result of the weights inference process

it is always necessary to analyse it.
late the preference structure.



Fig. 6. LinearTri screen to analyse weight-importance coefficients inference.
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7.3. Weights inference analysis

The screen in Fig. 6 is used to analyse the results

of the weights inference process as it was proposed

in Sections 5.3 and 5.4.

This screen shows all outranking relations nec-
essary (or not necessary) to assign each alternative

to the correspondent category according to the

ELECTRE TRI pessimistic assignment method.

All local concordance and discordance indexes,

global concordance indexes, and credibility de-

grees are presented for each relation. The last

column presents, if relevant, the degree of dis-

crepancy as defined in Sections 5.4. Additionally,
for each discrepancy detected, it also pointed out

to the DM what type of adjustment (increase or

decrease) should be made on the relevant reference

profile to eliminate the discrepancy. These adjust-

ments could be made according to Section 5.5,

manually, in the screen of Fig. 5.

7.4. Final remarks

These additional test bed features of the Lin-

earTri software aim to give the DM more freedom

when constructing and analysing the preference

structure that will reflect his/her assignment ex-

amples. It is possible to test different combinations
of assignment examples, different values for the

reference profiles and combine this with the Lin-

earTri algorithm. It is also a research tool for any

Analyst interested in this kind of decision prob-

lems. The developments presented in Sections 5

and 6 inspired these additional features.
8. Conclusion

This paper presents an algorithm developed to

help the DM to identify and classify nondomi-

nated solutions resulting from MOMILP prob-

lems, with a high degree of integration between the
procedures of identification and classification, and

preference elicitation. The node generation mech-

anism used to identify the complete nondominated

set is based upon the establishment of lower bound

values for the objective functions. The ELECTRE

TRI method was chosen among the various sort-

ing methods to express the DM�s preferences and it

was used within an aggregation/disaggregation
framework. This approach tries to overcome the

natural difficulties to precisely quantify every

preference parameter necessary to the ELECTRE

TRI method. Instead, the DM is asked to provide

assignment examples and the algorithm itself tries

to infer those parameters. In the particular case of
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the LinearTri algorithm, the DM�s ELECTRE
TRI preference structure is modified step-by-step,

as each new nondominated solution (representing

an alternative) is identified and classified.

The weight-importance coefficients are inferred

using a linear programming problem and the cat-

egory reference solutions were established through

an heuristic. The presence of a veto mechanism in

the ELECTRE methods, although very useful to
model the DM�s preferences, poses several diffi-

culties when it is necessary to infer the preference

parameters. This initial proposal used very strict

sufficient conditions that guaranteed, when possi-

ble, a set of parameters reflecting the DM�s clas-

sification examples. However this proved, in some

occasions, to block out perfectly good sets of

weight-importance coefficients. Also, the use of
nondominated solutions as category reference was

not in strict accordance with the ELECTRE TRI

method.

An attempt was made to overcome these limi-

tations. A trial-and-error procedure was proposed

to determine the reference profiles, leaving some of

the effort to the DM him/herself. The sufficient

conditions were relaxed, thus enabling more sets of
weight-importance coefficients to be achieved. As a

drawback, there was no more assurance that a set

of weight-importance coefficients inferred this way

would lead to an ELECTRE TRI structure that

fully reflected the DM�s expressed preferences. It

was then necessary to try and distinguish between

the limitations of the algorithm to reproduce the

example assignments made by the DM and those
situations where the assignments were inconsistent

and therefore impossible to reproduce by an

ELECTRE TRI structure. We proposed to estab-

lish some pair wise comparison conditions between

alternatives that can be used to identify inconsis-

tent assignment examples. On a future work we are

planning to use this approach in order to know

which alternatives should have a different classifi-
cation to give some support to the DM in order

that he/she can better resolve his/her inconsisten-

cies.

The LinearTri software, developed to support

the use of the LinearTri algorithm, as also been

improved to incorporate some of this latest de-

velopments. These additional test bed features aim
to give the DM more freedom when constructing
and analysing the preference structure that will

reflect his/her assignment examples. It is possible

to test different combinations of assignment ex-

amples, different values for the reference profiles

and combine this with the LinearTri algorithm. It

is also a research tool for any Analyst interested in

this kind of decision problems.
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referêencia para classificac�~aao de soluc�~ooes n~aao-dominadas em

Programac�~aao Linear Inteira Multi-Objectivo. Relat�oorio de

Investigac�~aao, Faculdade de Economia, Universidade de

Coimbra, Portugal.

Marcotte, O., Soland, R.M., 1986. An interactive branch-and-

bound algorithm for multiple criteria optimization. Man-

agement Science 32 (1), 61–75.

Mousseau, V., Figueira, J., Naux, J.-P., 2001. Using assignment

examples to infer weights for ELECTRE TRI method:

Some experimental results. European Journal of Opera-

tional Research 130, 263–275.

Mousseau, V., Slowinski, R., 1998. Inferring an ELECTRE

TRI Model from assignment examples. Journal of Global

Optimization 12, 157–174.

Mousseau, V., Slowinski, R., Zielniewicz, P., 2000. A user-

oriented implementation of the ELECTRE TRI method
integrating preference elicitation support. Computers &

Operations Research 27, 757–777.

Ngo The, A., Mousseau, V., 2000. Using assignment exam-

ples to infer category limits for the ELECTRE TRI method.

Cahier du Lamsade 168, Universit�ee Paris-Dauphine.

Roy, B., 1996. Multicriteria Methodology for Decision Aiding.

Kluwer Academic Publishers, Dordrecht.

Roy, B., Bouyssou, D., 1993. Aide Multicrit�eere �aa la D�eecision:
M�eethodes et Cas. Economica, Paris.

Steuer, R.E., 1986. Multiple Criteria Optimization: Theory,

Computation and Application. Wiley, New York.

Yu, W., 1992. ELECTRE TRI––Aspects methodologiques et

guide d�utilisation. Document du Lamsade 74, Universit�ee

Paris-Dauphine.

Zopounidis, C., Doumpos, M., 2002. Multicriteria classification

and sorting methods: A literature review. European Journal

of Operational Research 138, 229–246.


	Using ELECTRE TRI outranking method to sort MOMILP nondominated solutions
	Introduction
	A brief introduction to MOMILP problem formulation
	Multiple criteria sorting methods
	ELECTRE TRI fundamentals
	ELECTRE TRI disaggregation approaches

	LinearTri algorithm
	Calculation of nondominated ``characteristic'' solutions: The alternatives
	Testing the selected solution against the ideal point and creation of new nodes
	Inference of weight-importance coefficients
	Determination of category reference profiles
	Final remarks

	A trial-and-error procedure to determine reference profiles
	Establish initial category reference profiles
	Try to infer the weight-importance coefficients
	Validate the resulting preference structure
	Analyse classification discrepancies
	Adjust reference profiles
	End of the trial-and-error procedure
	Final remarks

	Inconsistent classifications proposed by the Decision Maker
	Compatibility conditions
	Inconsistent classification example
	Final remarks

	LinearTri software test bed
	Outranking indexes calculation
	Direct manipulation of ELECTRE TRI preference structure
	Weights inference analysis
	Final remarks

	Conclusion
	Acknowledgements
	References


