
European Journal of Operational Research 178 (2007) 500–513

www.elsevier.com/locate/ejor
Decision Support

Implementing stochastic multicriteria acceptability analysis

Tommi Tervonen a,b,c,*, Risto Lahdelma a

a University of Turku, Department of Information Technology, FIN-20520 Turku, Finland
b INESC—Coimbra, R. Antero de Quental 199, 3000-033 Coimbra, Portugal

c Faculdade de Economia da Universidade de Coimbra, Av. Dias da Silva 165, 3004-512 Coimbra, Portugal

Received 27 July 2004; accepted 29 December 2005
Available online 17 April 2006
Abstract

Stochastic multicriteria acceptability analysis (SMAA) is a family of methods for aiding multicriteria group decision
making in problems with inaccurate, uncertain, or missing information. These methods are based on exploring the weight
space in order to describe the preferences that make each alternative the most preferred one, or that would give a certain
rank for a specific alternative. The main results of the analysis are rank acceptability indices, central weight vectors and
confidence factors for different alternatives. The rank acceptability indices describe the variety of different preferences
resulting in a certain rank for an alternative, the central weight vectors represent the typical preferences favouring each
alternative, and the confidence factors measure whether the criteria measurements are sufficiently accurate for making
an informed decision.

The computations in SMAA require the evaluation of multidimensional integrals that must in practice be computed
numerically. In this paper we present efficient methods for performing the computations through Monte Carlo simulation,
analyze the complexity, and assess the accuracy of the presented algorithms. We also test the efficiency of these methods
empirically. Based on the tests, the implementation is fast enough to analyze typical-sized discrete problems interactively
within seconds. Due to almost linear time complexity, the method is also suitable for analysing very large decision prob-
lems, for example, discrete approximations of continuous decision problems.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Stochastic multicriteria acceptability analysis; Simulation; Multiple criteria analysis; Complexity analysis
1. Introduction

Stochastic multicriteria acceptability analysis
(SMAA) methods have been developed for discrete
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multicriteria decision aiding (MCDA) problems,
where criteria measurements are uncertain or inac-
curate and where it is for some reason difficult to
obtain accurate or any preference information from
the decision makers (DMs) (Lahdelma and Salmi-
nen, 2001).

Usually in MCDA problems the preference infor-
mation is modelled by determining importance
weights for criteria. The SMAA methods are based
on exploring the weight space in order to describe
.
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the preferences that would make each alternative
the most preferred one, or that would give a certain
rank for a specific alternative. The main results of
the analysis are rank acceptability indices, central
weight vectors and confidence factors for different
alternatives. The rank acceptability indices describe
the variety of different preferences resulting in a cer-
tain rank for an alternative, the central weight vec-
tors represent the typical preferences favouring each
alternative, and the confidence factors measure
whether the criteria measurements are sufficiently
accurate for making an informed decision.

In MCDA literature outside SMAA, there is a
long history of methodologies that allow decision
aiding under uncertain and/or imprecise informa-
tion. See e.g. Dias and Clı́maco (2000), Dias et al.
(2002), Fishburn (1965), Hazen (1986), Kirkwood
and Sarin (1985), Mousseau et al. (2000, 2003),
and for more general information on this subject,
see Figueira et al. (2005). Although this area has
been studied for three decades, the SMAA methods
are the first ones allowing both preference informa-
tion and criteria measurements to be expressed as
arbitrarily distributed stochastic variables. The
SMAA approach has also recently been applied to
extend other MCDA methods to allow using them
with imprecise information (see Tervonen et al.,
2005).

The SMAA methods are based on inverse weight
space analysis, which has also been considered in
the works of Charnetski Soland (1978) and Bana e
Costa (1986). In the original SMAA method by
Lahdelma et al. (1998) the weight space analysis is
performed based on an additive utility or value
function and stochastic criteria measurements. The
SMAA-2 method (Lahdelma and Salminen, 2001)
generalized the analysis to a general utility or value
function, to include various kinds of preference
information and to consider holistically all ranks.
The SMAA-3 method (Lahdelma and Salminen,
2002) applies ELECTRE III type pseudo-criteria
in the analysis. The SMAA-O method (Lahdelma
et al., 2003) extends SMAA-2 for treating mixed
ordinal and cardinal criteria in a comparable man-
ner. The SMAA-A method (or Ref-SMAA method)
models the preferences using reference points and
achievement scalarizing functions (Lahdelma et al.,
2005). Durbach (2006) has also developed a variant
of the SMAA-A method using achievement
functions.

SMAA methods are applicable in many real-life
problem types for a number of reasons. Firstly,
the inverse weight space approach is suitable for
many group decision-making problems, where the
DMs are unable or unwilling to provide preference
information, or it is difficult to reach consensus over
the preferences. In such cases the preference infor-
mation can be expressed as weight intervals includ-
ing preferences of all DMs, or with some other
weight distribution accepted by all DMs. SMAA
can then be used to compute descriptive informa-
tion about the acceptability of different alternatives,
and this can help the DMs to identify commonly
acceptable compromise solutions. Secondly, SMAA
supports a very general and flexible way to model
different kinds of uncertain or inaccurate preference
and criteria information through stochastic distri-
butions. Thirdly, as demonstrated in this paper,
the SMAA computations can be implemented very
efficiently through numerical methods, making it
possible to use the method in many different deci-
sion-making contexts, including interactive decision
processes. As a consequence, SMAA methods have
been successfully applied in a number of real-life
decision problems in Finland. For applications of
SMAA, see e.g. Hokkanen et al. (1998, 1999,
2000), Kangas et al. (2003, in press), Kangas and
Kangas (2003), Lahdelma and Salminen (2006),
Lahdelma et al. (2001, 2002).

In this paper we describe how the basic computa-
tions of the SMAA-2 and SMAA-O methods can be
implemented efficiently through Monte Carlo simu-
lation. We have chosen to present the computations
of these two methods, because they form the basis
for all other SMAA variants. In particular, we pres-
ent the algorithms for computing the rank accept-
ability indices, central weight vectors, and
confidence factors. We begin by introducing the
SMAA-2 and SMAA-O methods in Section 2. In
Section 3, we describe the implementation of the
algorithms and discuss techniques for handling pref-
erence information. Following this, we analyze the
complexity of the algorithms theoretically in Section
4. We assess the accuracy of the computations in
Section 5, and present results from empirical effi-
ciency tests in Section 6. We end this paper with
conclusions in Section 7.

2. The SMAA-2 and SMAA-O methods

2.1. The basic SMAA-2 method

The SMAA-2 method (Lahdelma and Salminen,
2001) has been developed for discrete stochastic
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multicriteria decision-making problems with multi-
ple DMs. SMAA-2 applies inverse weight space
analysis to describe for each alternative what kind
of preferences make it the most preferred one, or
place it on any particular rank. The decision prob-
lem is represented as a set of m alternatives
{x1,x2, . . . ,xm} that are evaluated in terms of n cri-
teria. The DMs’ preference structure is represented
by a real-valued utility or value function u(xi,w).
The value function maps the different alternatives
to real values by using a weight vector w to quantify
DMs’ subjective preferences. SMAA-2 has been
developed for situations where neither criteria mea-
surements nor weights are precisely known. Uncer-
tain or imprecise criteria are represented by
stochastic variables nij with joint density function
fX(n) in the space X � Rm·n. The DMs’ unknown
or partially known preferences are represented by
a weight distribution with joint density function
fW(w) in the feasible weight space W. Total lack of
preference information is represented in ‘Bayesian’
spirit by a uniform weight distribution in W, that
is, fW(w) = 1/vol(W). The weight space can be
defined according to needs, but typically, the
weights are non-negative and normalized, that is;
the weight space is an n � 1-dimensional simplex
in n-dimensional space:

W ¼ w 2 Rn : w P 0 and
Xn

j¼1

wj ¼ 1

( )
. ð1Þ

Fig. 1 presents the feasible weight space of a three-
criterion problem as the shaded triangle with corner
points (1,0,0), (0, 1,0), and (0, 0,1).
Fig. 1. Feasible weight space of a three-criterion problem.
The value function is used to map the stochastic
criteria and weight distributions into value distribu-
tions u(ni,w). Based on the value distributions, the
rank of each alternative is defined as an integer from
the best rank (=1) to the worst rank (=m) by means
of a ranking function

rankði; n;wÞ ¼ 1þ
Xm

k¼1

qðuðnk;wÞ > uðni;wÞÞ; ð2Þ

where q(true) = 1 and q(false) = 0. SMAA-2 is then
based on analysing the stochastic sets of favourable
rank weights

W r
i ðnÞ ¼ fw 2 W : rankði; n;wÞ ¼ rg. ð3Þ

Any weight w 2 W r
i ðnÞ results in such values for dif-

ferent alternatives, that alternative xi obtains rank r.
The first descriptive measure of SMAA-2 is the

rank acceptability index br
i , which measures the vari-

ety of different preferences (weights) that grant
alternative xi rank r. It is the share of all feasible
weights that make the alternative acceptable for a
particular rank, and it is most conveniently
expressed percentage-wise. The rank acceptability
index br

i is computed numerically as a multidimen-
sional integral over the criteria distributions and
the favourable rank weights as

br
i ¼

Z
n2X

fX ðnÞ
Z

w2W r
i ðnÞ

fW ðwÞdwdn. ð4Þ

The most acceptable (best) alternatives are those
with high acceptabilities for the best ranks. Evi-
dently, the rank acceptability indices are in the
range [0, 1], where 0 indicates that the alternative
will never obtain a given rank and 1 indicates that
it will obtain the given rank always with any choice
of weights.

Favourable rank weights and rank acceptability
indices are illustrated in Fig. 2. The figure represents
a deterministic two-criterion, three-alternative prob-
lem with linear value function. The favourable first
rank weights ðW 1

i Þ are shown in light gray, bordered
by the favourable second rank weights ðW 2

i Þ in dark
gray. First and second rank acceptability indices
ðb1

i ; b
2
i Þ correspond in this figure to the distances

spanned by the favourable rank weights. When the
problem contains multiple criteria and alternatives,
the rank acceptability indices can be better visual-
ized by a three-dimensional column chart. Fig. 3
shows the rank acceptability indices from the Hel-
sinki Harbour case with 13 alternatives and 11 crite-
ria (Hokkanen et al., 1999).



Fig. 2. First and second rank acceptabilities in a deterministic
two-criterion problem with linear value function (Lahdelma and
Salminen, 2001).

Fig. 3. Rank acceptability indices (bi) from the Helsinki Harbour
decision-making problem.
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The first rank acceptability index b1
i is called the

acceptability index ai. The acceptability index is par-
ticularly interesting, because it is non-zero for sto-
chastically efficient alternatives (alternatives that
are efficient with some values for the stochastic cri-
teria measurements) and zero for inefficient alterna-
tives. The acceptability index not only identifies the
efficient alternatives, but also measures the strength
of the efficiency considering the uncertainty in crite-
ria and DMs’ preferences.

The central weight vector wc
i is the expected centre

of gravity (centroid) of the favourable first rank
weights of an alternative. The central weight vector
represents the preferences of a ‘typical’ DM sup-
porting this alternative. The central weights of dif-
ferent alternatives can be presented to the DMs in
order to help them understand how different weights
correspond to different choices with the assumed
preference model. The central weight vector wc

i is
computed numerically as a multidimensional inte-
gral over the criteria distributions and the favour-
able first rank weights using

wc
i ¼

Z
n2X

fX ðnÞ
Z

w2W 1
i ðnÞ

fW ðwÞwdwdn=ai. ð5Þ

Fig. 4 presents a sample chart of central weight vec-
tors from the Helsinki Harbour decision-making
problem.

The confidence factor pc
i is the probability for an

alternative to obtain the first rank when the central
weight vector is chosen. The confidence factor is
computed as a multidimensional integral over the
criteria distributions using

pc
i ¼

Z
n2X :rankði;n;wc

i Þ¼1

fX ðnÞdn. ð6Þ

Confidence factors can similarly be calculated for
any given weight vectors. The confidence factors
measure whether the criteria measurements are
accurate enough to discern the efficient alternatives.

2.2. Ordinal criteria

The SMAA-O method (Lahdelma et al., 2003)
extends SMAA-2 to handle ordinal criteria mea-
surements. In SMAA-O, the criteria may be ordinal,
cardinal, or mixed. In the mixed case some of the
criteria are measured on cardinal (interval) scales
and others on ordinal scales. For an ordinal crite-
rion, each alternative is measured by assigning it a
rank level. The rank level xij is an integer from the
best rank level 1 to the worst rank level mj. Observe
that multiple alternatives may obtain the same rank
level, in which case mj < m. The idea in SMAA-O is
to map the ordinal criteria measurements into cardi-
nal scales before they are used in the computations.
The mapping is implemented by a function gj(Æ) that
preserves the ordinal information:

xij � xkj () gjðxijÞ > gjðxkjÞ 8i; k 2 f1; . . . ;mg.
ð7Þ

Without loss of generality we can assume that the
mapping is scaled to interval [0,1]. Otherwise the



Fig. 4. Central weight vectors from the Helsinki Harbour decision-making problem.

504 T. Tervonen, R. Lahdelma / European Journal of Operational Research 178 (2007) 500–513
shape of the mapping is unknown. SMAA-O simu-
lates numerically all such mappings that preserve
the ordinal criteria information.

2.3. Preference information

There are several different ways to handle partial
preference information in SMAA methods. In this
paper we focus on two ways that are applicable
when the value function is additive (Lahdelma and
Salminen, 2001):

• interval constraints for weights, and
• complete ranking of the criteria.

The preference information might also be mixed:
there might be exact numerical values for some
weights, ranking for a set of weights, and interval
constraints for some weights. Mixed preference
information is not considered in this paper.

Interval constraints for weights are given in the
form

0 6 wmin
j 6 wj 6 wmax

j 6 1; where j 2 f1; . . . ; ng.
ð8Þ

The intervals [wmin,wmax] can be defined so that they
contain the preferences of the DMs (and other inter-
est groups). The DMs can express their preferences
either as precise weights or as weight intervals. The
weight space analysis of SMAA is then performed in
the restricted weight space

W 0 ¼ fw 2 W jwmin
j 6 wj 6 wmax

j ; j ¼ 1; . . . ; ng. ð9Þ

This means that the uniform weight distribution
fW(w) is redefined as

fW ðwÞ ¼
1=volðW 0Þ if w 2 W 0;

0 otherwise.

(
ð10Þ

Fig. 5 illustrates the restricted feasible weight space
of a three-criterion problem with lower and upper
bounds for w1.

Complete ranking of the criteria is expressed as a
sequence of inequality constraints for the weights

wj1
P wj2

P � � �P wjn
. ð11Þ

Such a ranking can be obtained by asking the DMs
to identify the most important, second most impor-
tant, etc. criterion. When judging mutual impor-
tance of the criteria, the DMs should consider the
difference between the best and worst value for each
criterion. If the DMs consider two criteria equally
important, this can be represented by an equality
constraint between those criteria in (11). Fig. 6 illus-
trates the feasible weight space for a three-criterion
problem with the ranking w1 P w2 P w3.



Fig. 6. Feasible weight space of a three-criterion problem with
ranking of the criteria.

Fig. 5. Feasible weight space of a three-criterion problem with
lower and upper bounds for w1.
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3. Description of the SMAA algorithm

The multidimensional integrals (4)–(6) of SMAA
computations are in practice impossible to compute
analytically, because the distributions fX and fW

vary according to the application and can be arbi-
trarily complex. Straightforward integration tech-
niques based on discretizing the distributions with
respect to each dimension are infeasible, because
the integrals have a very high dimension, and the
required effort depends exponentially on the num-
ber of dimensions. For example, in a problem with
eight criteria and 10 alternatives, the dimension of
the integral for computing rank acceptability indices
is 88, because in (4) the outer integration is through
the eight-dimensional criteria space, and the inner
one through the space of all criteria measurements
for all alternatives (8 · 10 = 80 dimensions). How-
ever, due to the nature of the problem, we do not
need an answer with very high precision. Monte
Carlo simulation is a well-established method for
computing approximative values for high-dimen-
sional integrals. In Monte Carlo simulation the
required number of iterations is inversely propor-
tional to the square of the desired accuracy, but
does not significantly depend on the dimensionality
of the problem (Fishman, 1996). Thus, Monte Carlo
simulation can be used to obtain a precision of a few
decimal places with moderate effort.

The algorithm is described in four parts. We first
describe the method for generating a criterion
matrix with cardinal and ordinal criteria. Secondly,
we describe the applied weight generation technique
and how preference information is handled. Before
we describe the actual SMAA algorithm, we observe
that the confidence factors (6) depend both on the
central weight vectors and on the acceptability indi-
ces. As a consequence, the algorithm must consist of
two phases. Phase 1 consists of computation of the
rank acceptability indices and the central weight
vectors. The confidence factors are computed in
Phase 2.

The following symbols are used in Algorithms 1–
4:
hj

i number of times alternative i is evaluated
into rank j in Monte Carlo simulations of
Phase 1 (hits for rank j of alternative i)

Kw number of iterations in Phase 1 (rank
acceptability index and central weight vec-
tor computation)

Kc number of iterations in Phase 2 (confidence
factor computation)

mj number of rank levels for ordinal criterion j

r = [r1, . . . , rm] vector of ranks of the alternatives
t = [t1, . . . , tm] vector of value function values of the

alternatives

The algorithms also use the following functions
and subroutines:
RANDU[0,1]() function returning a uniformly dis-

tributed random number from the interval
[0,1]

RANDX() function returning a random criterion
matrix from criteria distribution fX



Output: q

1: for j 2 to mj � 1 do
2: qj RANDU[0,1]()
3: end for

4: SORTdesc(q)
5: q1 1
6: qmj

 0
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RANDW() function returning a random weight
vector from weight distribution fW

RANK(t) function returning a vector of ranks cor-
responding to the vector of value function
values t

SORTasc(s) subroutine sorting the components of
vector s into ascending order

SORTdesc(s) subroutine sorting the components of
vector s into descending order

3.1. Generation of the criteria measurement matrix

The RANDX() function generates a random cri-
terion matrix of size m · n from the given criteria
distribution. Each row of the matrix contains crite-
ria measurements of a certain alternative. Cardinal
criteria measurements follow a joint distribution,
or independent distributions. We do not consider
joint distribution for cardinal criteria in this paper.
Refer to Lahdelma et al. (2004). Independent crite-
ria measurements are generated separately from
their corresponding distributions. Their distribu-
tions may have an arbitrary shape (e.g.uniform,
normal, . . .).

If some of the criteria are measured on ordinal
scales, then the ordinal to cardinal mapping must
be simulated for those criteria each time a new cri-
terion matrix is created. The ordinal to cardinal
mapping is simulated using the following method:
first, mj � 2 uniformly distributed random numbers
from the interval ]0,1[ are generated and sorted into
Fig. 7. A sample ordinal to cardinal m
descending order (mj is the number of rank levels).
Then, 1 is inserted as the first number and 0 as the
last number. The simulated cardinal value for rank
level j is then the jth of these numbers. Thus the sim-
ulated cardinal value for the best rank level is 1, and
the simulated cardinal value for the worst rank level
is 0. The simulated cardinal values for other rank
levels should be unique and in the interval ]0,1[.
Because the majority of pseudo-random number
generators will not produce duplicate floating point
values except after a very long sequence, it is in
practice unnecessary to have any special treatment
for duplicate values. The procedure for generating
the simulated cardinal values is defined as pseudo-
code in Algorithm 1. Complexity of this procedure
is due to sorting O(mlog(m)). The procedure must
be executed once for each ordinal criterion when a
new criterion matrix is generated. Fig. 7 illustrates
a possible mapping with 11 rank levels generated
by this procedure.

Algorithm 1. Generation of mj simulated cardinal
values (q1, . . . ,qmj

).
apping with mj = 11 rank levels.
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3.2. Generation of weights and handling preference

information

The RANDW() function generates the weights
from the given weight distribution. We describe
weight generation corresponding to three different
types of preference information:

• absent preference information,
• interval constraints for weights, and
• complete ranking of the criteria.

In case of absent preference information the
weights are generated from a uniform distribution
in the normalized weight space (1). Because the
weights must sum to unity, the n weights wj are gen-
erated according to the following method: first n � 1
independent random numbers are generated from
the uniform distribution in interval [0, 1], and sorted
into ascending order (q1,q2, . . . ,qn�1). After that, 1
is inserted as the last number (qn = 1) and 0 as the
first number (q0 = 0). Uniformly distributed nor-
malized weights are then obtained as intervals
between the consecutive numbers (wj = qj � qj�1)
(David, 1970). The procedure for generating the n

uniformly distributed normalized weights is defined
in Algorithm 2. Complexity of this procedure is
O(nlog(n)) due to sorting.

When preference information is available, the
weight generation process must be modified a little.
Upper and lower bounds for weights (and in princi-
ple also more complex weight constraints) can be
implemented by the rejection technique. After a vec-
tor of uniformly distributed normalized weights has
been generated, the weights are tested against their
bounds. If any of the constraints is not satisfied,
the entire set is rejected and the weight generation
is repeated. A problem with the rejection technique
is that it may cause a very large share of the weights
to be rejected and a very small share of them to be
accepted. A small acceptance rate not only slows
down the computation, but may also cause problems
with the quality of the generated pseudo-random
numbers that pass the rejection test. However, upper
and lower bounds affect the acceptance rate differ-
ently. As can be seen from Fig. 5, upper bounds cut
off the tip of the simplex, but lower bounds cut off
the base. In a high-dimensional weight space, the vol-
ume of the tip is very small, but the volume of the
base is large in relation to the entire weight space.

To estimate how large a share of the weight vec-
tors need to be rejected due to upper bounds, we
assume that all weights have a common upper
bound wmax. Then the probability for the largest
of the generated weights to exceed the upper bound
is

P ½maxfwjg > wmax�

¼ nð1� wmaxÞn�1 �
n

2

� �
ð1� 2wmaxÞn�1

þ � � � ð�1Þk�1 n

k

� �
ð1� kwmaxÞn�1 � � � ; ð12Þ

where the series continues as long as 1 � kwmax > 0
(David, 1970). For example, if there are n = 5
weights with upper bound wmax = 0.4, the rejection
percentage is 63.2%. If we are applying both lower
and upper bounds, it might be the case, that the
lower bounds render some upper bounds redun-
dant. Consider a three-criterion case with a lower
bound of 0.3 for all weights. Then the maximum
value that any weight may obtain is 1 � 0.3 � 0.3 =
0.4. Therefore all upper bound weight constraints
of 0.4 or higher are redundant.

The rejection technique can be very inefficient
for weights with lower bounds in high-dimen-
sional problems. Lower bounds can be treated effi-
ciently by using a simple transformation
technique. With lower bounds the feasible weight
space becomes

W 0 ¼ w 2 Rnjwj P wmin
j and

Xn

j¼1

wj ¼ 1

( )
;

ð13Þ

which has the same simplex shape as the original
weight space W, but is smaller. By substituting
w0j ¼ wj � wmin

j the restricted weight space becomes

W 0 ¼ w0 2 Rnjw0j P 0 and
Xn

j¼1

w0j ¼ 1� C

( )
;

where C ¼
Xn

j¼1

wmin
j . ð14Þ

The shifted weights w0j can now be generated by a
modification of Algorithm 2 where the weights are
generated to sum to 1 � C instead of 1. Then the
lower bounded weights wj are obtained by substitut-
ing back wj ¼ w0j þ wmin

j . Lower bounds do therefore
not increase the complexity of weight generation.

Preference information presented in form of a
complete ranking of the criteria is handled using a
similar technique that was used for simulating the
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ordinal to cardinal mapping in the previous section.
First we generate a set of weights from a uniform
distribution in the normalized weight space as in
the case of absent preference information. Then
we sort the weights into a consistent order according
to the ranking of the criteria. This does not increase
the complexity of weight generation.

Algorithm 2. Generation of n uniformly distributed
random weights from the interval [0,1] (w1, . . . ,wn)
which sum to unity.
Output: w

1: for j 1 to n � 1 do
2: qj RANDU[0,1]()
3: end for

4: SORTasc(q)
5: q0 0
6: qn 1
7: for j 1 to n do

8: wj qj � qj�1

9: end for

Output: wc
i ’s, br

i ’s
1: // Initialization of wc

i and hit count
2: for i 1 to m do

3: wc
i  0

4: for j 1 to m do

5: hj
i  0

6: end for

7: end for

8: // Main loop
9: for k 1 to Kw do

10: w RANDW()
11: x RANDX()
12: for i 1 to m do

13: ti u(xi,w)
14: end for

15: r RANK(t)
16: for i 1 to m do

17: hri
i  hri

i þ 1
18: if ri = 1 then

19: wc
i  wc

i þ w
20: end if

21: end for
22: end for

23: // Computation of wc
i and br

i

24: for i 1 to m do

25: if h1
i > 0 then

26: wc
i  wc

i =h1
i

27: end if

28: for j 1 to m do

29: bj
i  hj

i=Kw

30: end for

31: end for
3.3. Phase 1. Computation of br
i and wc

i

To compute the rank acceptability indices br
i and

the central weight vectors wc
i for each alternative i,

we must integrate over the criteria and weight distri-
butions. Straightforward computation of the rank
acceptability indices (4) would require executing
Monte Carlo simulation m Æ n times, once for each
index. Similarly, computing the central weight vec-
tor (5) for each alternative would require m execu-
tions. We can speed up the computation
remarkably by observing that all rank acceptability
indices and central weight vectors can be computed
in a single simulation run. To do this, we generate
during each iteration a random criterion matrix
and a random weight vector from their correspond-
ing distributions. Then we compute statistics on the
ranks that different alternatives obtained and
update the central weight vector of the most pre-
ferred alternative. Phase 1 is described as pseudo-
code in Algorithm 3.

Algorithm 3 uses the function RANK(t).
RANK(t) returns a vector of ranks for alternatives
based on their values in vector t. For example, if
t = [0,0.5, 0.2], the resulting rank vector is [3,1,2].
This function is implemented efficiently by sorting
the alternatives into descending order by their val-
ues and then assigning consecutive ranks from 1
to m to the sorted alternatives. Sometimes two or
more alternatives may have the same values, and
they should thus be assigned the same rank. Rank
assignment should be implemented to handle such
cases properly. However, shared ranks will be extre-
mely rare when the criteria measurements are sto-
chastic and independent. Complexity of this
procedure is due to sorting O(mlog(m)).

Observe in Algorithm 3 that the central weight
vector ðwc

i Þ is defined only when the acceptability
index is non-zero, or, equivalently, when hits for
the first rank ðh1

i Þ is greater than zero.

Algorithm 3. Monte Carlo simulation to compute
the central weight vectors (wc

i ’s) and the acceptabil-
ity indices (br

i ’s).
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3.4. Phase 2. Computation of pc
i

To compute the confidence factors pc
i from (6) we

must integrate over the criteria distribution with
respect to the different central weight vectors. Naive
implementation of the computation would require
repeating the simulation m times, once for each
alternative. Again, we can device a way to compute
all integrals simultaneously. To do this, we first gen-
erate during each iteration a random criterion
matrix from the appropriate criteria distribution.
After that, we evaluate for each alternative whether
that alternative is the most preferred one using its
central weight vector and the random criterion
matrix. This technique decreases the number of
generated criterion matrices by a factor of m.
However, to evaluate if the alternative is the
most preferred one, we still need to evaluate the
value function a maximum of m times in an inner
loop. We shall see later a surprising result on the
expected complexity of this algorithm. The algo-
rithm for Phase 2 is presented as pseudo-code in
Algorithm 4.

Algorithm 4. Monte Carlo simulation to compute
the confidence factors (pc

i ’s).
Output: pc
i ’s

1: for i 1 to m do
2: pc

i  0
3: end for

4: for j 1 to Kc do

5: x RANDX()
6: for i 1 to m do

7: t uðxi;wc
i Þ

8: for all k 2 {1, . . . ,m}n{i} do

9: if uðxk;wc
i Þ > t then

10: goto worse
11: end if

12: end for

13: pc
i  pc

i þ 1
14: worse:
15: end for

16: end for

17: for i 1 to m do
18: pc

i  pc
i =Kc

19: end for
4. Complexity of the SMAA algorithm

If all of the criteria are measured on cardinal
scales, the complexity of the algorithm for Phase 1
(Algorithm 3) is O(Kw Æ /W + Kw Æ /X + Kw Æ m Æ n +
Kw Æ mlog(m) + m2), where /W is the complexity of
generating a weight vector from the weight distribu-
tion and /X is the complexity of generating a crite-
rion matrix from the criteria distribution. In many
applications the weights are generated from a uni-
form distribution following the method described
before (Algorithm 2). In practice the number of iter-
ations Kw� m, because Kw is fairly large (104–106)
to obtain sufficient accuracy and m is fairly small.
With these assumptions the complexity can be writ-
ten as O(Kw Æ (nlog(n) + m Æ n + /X + mlog(m))). If
criteria measurements are independent, the com-
plexity is O(Kw Æ (n log(n) + m Æ n + mlog(m))). In
many practical decision-making problems the term
m Æ n dominates, and the complexity can thus be
written as O(Kw Æ m Æ n). If some of the criteria are
measured on ordinal scales, the ordinal to cardinal
mapping is required for those criteria, and in
that case the total complexity of Algorithm 2 is
O(Kw Æ n Æ mlog(m)).

The complexity of the algorithm for Phase 2
(Algorithm 4) is O(Kc Æ (/X + m2 Æ n)), if all of the
criteria are measured on cardinal scales. During
each iteration, the algorithm first generates a crite-
rion matrix for all alternatives, and then uses these
when computing the values with different central
weight vectors. This decreases the number of crite-
rion matrices generated during Phase 2 of the algo-
rithm from Kc Æ m to Kc and affects the running time
remarkably. If the criteria measurements are inde-
pendent, the complexity of the algorithm for Phase
2 can be written as O(Kc Æ m2 Æ n).

The algorithm for Phase 2 which has squared
worst-case complexity with respect to m, has in fact
quite low typical-case complexity. The squared
complexity is a consequence of the inner loop com-
paring values of the alternatives. However, that
loop is almost never executed completely. Normally,
when the criteria measurements are independent
stochastic variables, the values of the alternatives
will be distinct. If we assume that during each
Monte Carlo iteration one of the alternatives will
have the best value with respect to its central weight
vector, one the second best, etc., and if the alterna-
tives are compared in a random order, then the
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expected number of value function evaluations dur-
ing each Monte Carlo iteration is

ð1þ ðm� 1ÞÞ þ 1þm
2

� �
þ 1þm

3

� �
þ � � � þ 1þm

m

� �
¼ m� 1þm

Xm

i¼1

1

i
¼ m� 1þm �H m. ð15Þ

In this formula, the mth subsum of the harmonic
series is known as the harmonic number Hm. Hm

grows very slowly, so the typical-case complexity
of the algorithm is not squared with respect to m,
but rather close to linear. The typical-case complex-
ity can be written as O(Kc Æ Hm Æ m Æ n). Again, if cri-
teria are measured on ordinal scales, the complexity
of the ordinal to cardinal mapping procedure in-
creases the total typical-case complexity of Algo-
rithm 4 to O(Kc Æ Hm Æ n Æ mlog(m)).
5. Accuracy of the SMAA computations

The accuracy of the results can be calculated by
considering the Monte Carlo simulations as point
estimators for br

i and pc
i . By the central limit theo-

rem we can conclude that br
i and pc

i are normally dis-
tributed, if the numbers of iterations (Kw,Kc) are
large enough (>25) (Milton and Arnold, 1995). In
practical SMAA computations the number of itera-
tions is typically 104–106.

If we want to achieve accuracy db with 95% con-
fidence for br

i , we need the following number of
Monte Carlo iterations Kw (Milton and Arnold,
1995):

Kw ¼
1:962

4d2
b

. ð16Þ

For example, if we want to achieve error limits of
0.01 for br

i , that can be accomplished with 95% con-
fidence by performing Kw = 9604 Monte Carlo
iterations.

The accuracy of pc
i depends on the accuracy of

the central weight vectors and the criteria distribu-
tion in a complex manner. In theory, an arbitrarily
small error in a central weight vector may cause an
arbitrarily large error in a confidence factor. If we
disregard this error source for the confidence fac-
tors, then the same accuracy analysis applies for
the confidence factors as for the rank acceptability
indices, that is, Kc = Kw yields the same precision
for the confidence factors as for the rank acceptabil-
ity indices.

The accuracy of wc
i does not depend on the total

number of Monte Carlo iterations, but rather on the
number of iterations that contribute to the compu-
tation of that central weight vector. To achieve an
accuracy of dw with 95% confidence for wc

i , the
required number of iterations is

Kc ¼
1:962

ai � 4d2
w

. ð17Þ

Thus, alternatives with small acceptability indices
require more iterations to compute their central
weight vectors with a given accuracy. In practice,
we are normally not interested in central weight vec-
tors for alternatives with extremely low acceptabil-
ity indices.
6. Empirical tests

We have performed empirical tests to measure
the running time of the algorithm separately for
Phases 1 and 2. The tests were performed on a
GNU/Linux personal computer with one 2.6 GHz
Pentium-4 processor and no significant extra load
during the tests.

Our test problems include all combinations of the
number of alternatives m and number of criteria n,
where

m 2 f4; 6; 8; 10; 15; 25; 50; 100; 150; 200g and

n 2 f4; 8; 16; 32g.

For each problem size we generated six sample
problems: three with uniformly distributed cardinal
criteria measurements (SMAA-2), and three with
ordinal criteria measurements (SMAA-O). The car-
dinal criteria measurements were uniformly distrib-
uted in the intervals [xij � 0.2,xij + 0.2] where the
mean xij was chosen randomly from the interval
[0, 1]. The ordinal measurements had distinct ran-
dom rank levels for all criteria. For both SMAA-2
and SMAA-O, one problem contained no prefer-
ence information (NOP), another included complete
ranking of the criteria (ORDP), and the third con-
tained preference information in form of
weight intervals [1/(n * 2), 0.5] for all criteria
(INTP). Thus, we have a total of 10 Æ 4 Æ 6 = 240 test
problems.
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For each test run we used 10000 Monte Carlo
iterations (Kw = Kc = 10000). Based on Eq. (16)
this yields an accuracy of d < 0.01 for the rank
acceptability indices, which is sufficient in many
real-life applications.

We executed the SMAA algorithm 20 times for
all test problems. After that, we calculated the mean
of the running time for each model. Total running
times are presented in Fig. 8. The times for test runs
with weight intervals are not shown in the figure,
because including weight intervals had no observa-
ble impact on the running time when compared with
no preference information. From Fig. 8 we can see
that when the problem size grows, SMAA-O is
Fig. 8. Total running

Fig. 9. Ratio of running time of SMAA-2 (in milliseconds
clearly slower than SMAA-2. Still, both methods
are fast enough to be used in practical decision-
making situations. Inclusion of ordinal preference
information does not significantly increase the run-
ning time of SMAA-O, and imposes only a minor
increase to the running time of SMAA-2.

To analyze the complexity of Phases 1 and 2 in
more detail, we have computed the running times
in milliseconds divided by the product of number
of alternatives and criteria. We have plotted these
times as stacked columns for SMAA-2 in Fig. 9
and for SMAA-O in Fig. 10. Note that some combi-
nations of (m,n) result in duplicate labels on the x-
axis. From these figures it can be seen, that the
times of tests.

) and product of number of alternatives and criteria.



Fig. 10. Ratio of running time of SMAA-O (in milliseconds) and product of number of alternatives and criteria.
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Phase 1 indeed has linear running time in respect to
the number of criteria and alternatives. The running
time for Phase 2 grows a little faster than the factor
Hm would indicate. This is due to the fact that our
implementation does not randomize the order in
which the alternatives are compared in the inner-
most loop.

The empirical test results show that SMAA
methods are applicable in MCDA problems with a
large number of criteria and alternatives. In a typi-
cal MCDA ranking or choosing problem, there are
under 20 alternatives and criteria. In this case, the
execution of the algorithm with a personal com-
puter takes only a few seconds. It should also be
noted, that the total execution time grows almost
linearly with respect to the number of alternatives
and criteria. Therefore, these algorithms can be used
also with very large decision-making problems
(for example, over 100 criteria and over 1000
alternatives).

7. Conclusions

Stochastic multicriteria acceptability analysis is a
family of methods for aiding multicriteria group
decision making in problems with inaccurate, uncer-
tain, or missing information. The multidimensional
integrals which form core of the SMAA computa-
tions are in practice impossible to compute analyti-
cally. We have demonstrated that the computations
can be implemented efficiently with sufficient accu-
racy using Monte Carlo simulation techniques.
With cardinal criteria, the computation time is
nearly proportional to n Æ m. With ordinal criteria,
the computation time is nearly proportional to
n Æ m Æ log(m).

In a group decision-making process, it is com-
mon that new preference information is received
and old information is adjusted as the process
evolves. When new information is added to the
model, the SMAA computations must be repeated.
The empirical efficiency tests of the presented imple-
mentations show that the required time for comput-
ing a typical decision-making problem with 10
alternatives and eight criteria with a personal com-
puter is less than a second. Thus, the effect of
modified preference information on the results
can be investigated interactively by the decision
makers.

Some decision-making problems are continuous
by nature, and the number of alternatives is thus
in principle infinite. One approach to solve such
problems is to form a large number of discrete deci-
sion alternatives and to evaluate them using discrete
decision support methods. SMAA methods can help
in such processes to filter out alternatives that are
inefficient or otherwise inferior. The results in this
paper show that SMAA methods are fast enough
also to be used in such, fairly large problems.
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