
European Journal of Operational Research 181 (2007) 1045–1054

www.elsevier.com/locate/ejor
Internet packet routing: Application of a K-quickest
path algorithm

João C.N. Clı́maco a,b,*, Marta M.B. Pascoal b,c,
José M.F. Craveirinha b,d, M. Eugénia V. Captivo e

a Faculdade de Economia da Universidade de Coimbra, Avenida Dias da Silva, 165, 3004-512 Coimbra, Portugal
b Instituto de Engenharia de Sistemas e Computadores—Coimbra, Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal

c Departamento de Matemática, Polo I da Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
d Departamento de Engenharia Electrotécnica e de Computadores, Polo II da Universidade de Coimbra,

Pinhal de Marrocos, 3030-290 Coimbra, Portugal
e DEIO-CIO, Faculdade de Ciências, Universidade de Lisboa, Bloco C6, Campo Grande, 1749-016 Lisboa, Portugal

Available online 3 May 2006
Abstract

This paper describes a study on the application of an algorithm to rank the K-quickest paths to the routing of data
packets in Internet networks. For this purpose an experimental framework was developed by considering two types of ran-
dom generated networks. To simulate values of the IP packet sizes, a truncated Pareto distribution was defined, having in
mind to reflect a key feature of Internet traffic, namely its self-similar stochastic nature. Results concerning the average
CPU times of the algorithm for the different sets of experiments will be presented and discussed.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Telecommunication networks; Quickest path; Simple paths ranking
1. Introduction

The quickest path problem is an optimal path problem where it is intended to compute a path along which
a given amount of data can be sent with minimum transmission time, depending on its delay and on its bot-
tleneck bandwidth (i.e., the minimum of its arc bandwidths). This problem has been studied by several authors
from a network optimization point of view [2,5,10], and it has been extended to compute the K best routes,
with K > 1 integer, by non-decreasing order of transmission times [1,7,10].

Conventional packet routing protocols (such as OSPF—open shortest path first—, or IS–IS—intermedi-
ate system–intermediate system) use shortest path algorithms, usually considering as (additive) metrics the
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2006.03.013

* Corresponding author. Address: Faculdade de Economia da Universidade de Coimbra, Avenida Dias da Silva, 165, 3004-512
Coimbra, Portugal. Tel.: +351 239 790595.

E-mail addresses: jclimaco@inescc.pt (J.C.N. Clı́maco), marta@mat.uc.pt (M.M.B. Pascoal), jcrav@deec.uc.pt (J.M.F. Craveirinha),
mecaptivo@fc.ul.pt (M.E.V. Captivo).

mailto:jclimaco@inescc.pt
mailto:marta@mat.uc.pt
mailto:jcrav@deec.uc.pt
mailto:mecaptivo@fc.ul.pt

1046 J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054
number of hops (see e.g. [14]) or the inverse of the available arc bandwidth. It is known that this approach is
not very efficient in terms of network traffic carrying capacity and network resource utilization since it does
not enable a balanced traffic distribution to be obtained in many working conditions. To improve the effi-
ciency of packet routing algorithms it is important to consider multiple metrics such as paths bandwidth (min-
imal bandwidth among the arcs of the path) and delay, some of which are non-additive. Such approaches are
associated with traffic engineering mechanisms of increasing importance in the new multiservice Internet tech-
nologies, namely multiprotocol label switching (MPLS). A central objective of those mechanisms is to adapt
the routing decisions to variable network conditions, in terms of various quality of service (QoS) instances, by
seeking to ‘‘optimise’’ the associated metrics; the ultimate aim is to obtain a distribution of the traffic flows
across the network as favourable as possible, from the point of view of the multiple QoS requirements. In this
model the objective function of the routing algorithm includes two metrics, delay and path bandwidth. The
calculation of the K-quickest paths enables to consider implicitly various QoS dimensions as constraints. This
procedure enables an efficient solution to the problem of eliminating paths not satisfying constraints regarding
various QoS dimensions such as jitter or non-linear parameters such as path bandwidth.

In this work we consider the generation of alternative routes for packets in Internet, using the total trans-
mission time as the metric function, and applying the K-quickest path algorithm introduced in [7]. This algo-
rithm presented an efficient computational behaviour and is valid only in undirected networks. Note that there
are many potential benefits of using multiple routes between a source and a destination. A known particular
use of multiple routes is in ‘traffic splitting’ schemes where the offered load is divided by several routes having
in mind to achieve a load balancing situation in the network. Another use of multiple routes is in alternative
routing schemes of various kinds which enable to increase the robustness of the information transfer, associ-
ated with a given application, against packet losses resulting from network congestion or failure.

An experimental environment for application and test of the mentioned routing algorithm was imple-
mented by defining a truncated Pareto distribution for simulating the packet sizes. This approximation has
in mind to reflect a key feature of Internet traffic, namely its self-similar nature. The computational experi-
ences were performed on two network topologies: random networks and networks based on the geographic
coordinates of US cities.

This paper is divided into three parts: Section 2 describes the usage of the quickest path problem in Internet
packet routing, Section 3 summarizes the K-quickest paths algorithm, and finally, Section 4 is devoted to the
application model and computational experiments.

2. Internet packet routing

The routing of data packets in Internet has been traditionally based on shortest path algorithms using dif-
ferent types of additive metrics, such as arc (or link) count or delay. However, a number of studies has
revealed that this simple procedure is not the most efficient approach from the point of view of various
QoS criteria associated with end-to-end connections and overall network performance (see [11]). This has
led to the interest in defining other more effective routing approaches, by including multiple path metrics,
namely delay, bandwidth, link load (related to available bandwidth) or reliability, some of which are not addi-
tive. Concerning the application of this type of approaches one must be aware that the measurement or esti-
mation of the parameters used in the objective function is a difficult task. This is a difficulty common to all
routing approaches not based on hop account alone. Nevertheless, as stated above, it is known that the
use of shortest path in terms of number of arcs it is not an efficient approach. Furthermore the efficiency
of the algorithm makes it adequate for frequent recalculation of the paths in response to parameter changes.

A significant example is CISCOs enhanced interior gateway routing protocol (EIGRP), running in some
Internet Provider networks, which uses a non-additive minimum bandwidth component by default [9]. Its
standard objective function can be reduced to
T ðpÞ ¼ dðpÞ þ r
BðpÞ ;
for a path p. T(p) represents the time to transmit r data units throughout path p; dðpÞ ¼
P
ði;jÞ2pdij is the total

delay and B(p) = min(i,j)2p{bij} is the lowest bandwidth, both along p. The second term of function T gives the

J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054 1047
time spent to transmit the data in the slowest arc of the path. The consideration of this metric is equivalent to
preferring paths which are shortest in terms of an additive combination of total packet delay and transmission
time in the current slowest path link. In network optimization, the problem above,
minfT ðpÞ : p 2 Pg; ð1Þ
where P denotes the set of feasible paths between an origin and a destination nodes, is known as the quickest
path problem.

Although in communication networks problem (1) is often simplified and its resolution replaced by the
computation of shortest–widest (that is, the shortest path among those with maximal bandwidth), or wid-
est–shortest (that is, the maximal bandwidth path among the shortest paths) paths (see for instance
[12,13]), specific algorithms for that problem have been presented. Chen and Chin presented the first algorithm
known for this problem [2], and later Rosen et al. improved it [10] achieving an Oðrmþ rn log nÞ time complex-
ity and Oðmþ nÞ space complexity, where n, m and r denote the number of nodes, arcs, and distinct bandwidth
values in the network. The algorithm [10] is based on finding the shortest path (with respect to d) in a sequence
of subnetworks of ðN;AÞ, where the bandwidth lower-bound increases. Martins and Santos, also proposed
an algorithm with the same worst-case complexity, after studying the problem as a bicriteria problem [5]. The
result is very similar to Rosen et al.’s algorithm, but each shortest path is replaced by a maximum bandwidth
path, among those with minimum delay, and it is sketched in Algorithm 1, where (N0;A0ðwÞ), w > 0, stands
for the subnetwork of ðN0;A0Þ without arcs with bandwidth smaller than w.

Algorithm 1 (Algorithm of Martins and Santos for the quickest path problem)

X ;
p Widest–shortest path from s to t in ðN;AÞ
While (p is defined) Do
X X [fpg
p Widest–shortest path from s to t inðN;AðBðpÞÞÞ

EndWhile

p� Quickest path in X

This study concerns the determination of more than one route for packets, i.e., the ‘‘K-best’’ routes, thus
the algorithm proposed in [7] was applied, having in mind its efficiency. That algorithm is reviewed in the next
section.

3. A review of the K-quickest path algorithm

One way to find ‘‘good’’ alternative paths is to compute the K-quickest paths by order of the transmission
time, instead of only one, that is, given an integer K, to determine p1, . . . ,pK such that:

• pi is determined before pi+1, for i 2 {1, . . . ,K � 1},
• T(pi) 6 T(pi+1), for i 2 {1, . . . ,K � 1},
• T(pK) 6 T(p), for p 2 P� fp1; . . . ; pKg,

which is known as the ranking quickest path problem, or the K-quickest paths problem. It will be assumed
that these are loopless paths, that is, paths with no repeated nodes, but for the sake of simplicity only the term
path will be used in the following. Two algorithms are known to solve that problem [1,10], and more recently
another one was proposed [7] which presents a better computational performance. The latter will now be
briefly reviewed and later it will be applied to an Internet packet routing model.

The algorithm uses a set X, initialized with the quickest path from s to t. Throughout the algorithm the best
path is picked up from X, to be analysed, in order to generate new paths. Each path chosen in X is pk, for some
k 2 {1, . . . ,K}, and the new paths are candidates to a future pj, with j > k, therefore they are stored in X. The
paths to be generated from each pk are the quickest in a partition of path sets proposed by Katoh et al. [4].

1048 J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054
Denote by vdðpkÞ the deviation node of pk, that is, the farthest node from s, where pk deviates from p1, . . . ,pk�1,
and let pk be obtained as the best path in Pj

kðvd; vcÞ, where:

• pj is the path analysed to obtain pk (called its parent),
• vd is the deviation node of another path obtained from pj, which is the farthest from s and that precedes

vdðpkÞ,
• vc is the deviation node of another path obtained from pj, closest to s and following vdðpkÞ.

Given the paths p from s to i and q from i to t, p � q denotes the path from s to t formed by p followed by q,
and it is named the concatenation of p and q. Pj

kðvd; vcÞ contains the paths p ¼ subpj
ðs; vdÞ } q, different from

p1, . . . ,pk, where q is a path from vd to t that deviates from pj before node vc. Katoh et al. noticed that the set of
paths where pk was computed can be partitioned according to
Pj
kðvd; vcÞ � fpkg ¼ Pj

kþ1ðvd; vdðpkÞÞ [Pj
kþ1ðvdðpkÞ; vcÞ [Pk

kþ1ðvdðpkÞþ1; tÞ
and analysing pk consists in computing the quickest path in each subset of this partition. Therefore the new
paths that should be added to the set X of candidates are:

• the best one in Pj
kþ1ðvd; vdðpkÞÞ, i.e., that deviates from pj between vd and vdðpkÞ,

• the best one in Pj
kþ1ðvdðpkÞ; vcÞ, i.e., that deviates from pj between vdðpkÞ and vc,

• and the best one in Pk
kþ1ðvdðpkÞþ1; tÞ, i.e., that deviates from pk between vdðpkÞþ1 and t.

The resulting algorithm follows.

Algorithm 2 (Algorithm to rank K-quickest simple paths)

p1 Quickest path from s to t
p Quickest path from s to t; deviating from p1 before t; X fpg
For (i 2 {2, . . . ,K}) Do
pi Quickest path in X ; X X � fpig
pj Path analysed to obtain pi

/* Quickest path in Pj
iþ1ðvd; vdðpiÞÞ */

Delete (vd,x) such that (vd,x) 2 {pj, . . . ,pi� 1}
P c Quickest path coincident with pj until vd and deviating before vdðpiÞ; X X [fP cg

/* Quickest path in Pj
iþ1ðvdðpiÞ; vcÞ */

Delete ðvdðpiÞ; xÞ such that ðvdðpiÞ; xÞ 2 fpj; . . . ; pig
P b Quickest path coincident with pj until vdðpiÞ and deviating before vc; X X [fP bg

/* Quickest path in Pi
iþ1ðvdðpiÞþ1; tÞ */

P a Quickest path coincident with pi until vdðpiÞþ1 and deviating after; X X [fP ag
Restore original network

EndFor

Consider now the determination of the quickest path in a set Pj
kðvx; vyÞ. In order to avoid the calculation of

repeated paths, some of its arcs cannot belong to q. The same happens with the nodes in subpj
ðs; vxÞ (except vx),

in order to obtain a path without loops. Let ðN0;A0Þ be the subnetwork of ðN;AÞ without those arcs and
nodes. Let also b1, . . . ,br be the distinct values of the arcs bandwidths.

A result by Pascoal et al. [7] states that:

Theorem 1. Let qj0 be the shortest path (in terms of delay) from vx to t, deviating from subpj
ðvx; tÞ before vy 2 pj,

in ðN0;A0ðbj0 ÞÞ and pj0 ¼ subpk
ðs; vxÞ } qj0 , with j = 1, . . . , r. Then the quickest path in P

j
kðvx; vyÞ is p* such that

T ðp�Þ ¼ min16j6rfT ðpj0 Þg.

Theorem 1 leads to the following method to find a quickest path in Pj
kðvx; vyÞ.

J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054 1049
Procedure 2.1. Procedure for the quickest path problem coincident with q until vx and deviating before vy

Sort A by increasing order of the arcs bandwidth
X ;
i 1
While (i 6 r) Do
N0 fu 2N : u 62 subqðs; vxÞg
A0ðbiÞ fðu; vÞ 2A : u 2N0 ^ v 2N0 ^ buv P big
p Minimum delay path from vx to t, coincident with q and deviating before vy in ðN0;A0ðbiÞÞ
X X [fpg
j k such that BðpÞ ¼ bk; i jþ 1

EndWhile

p� Quickest path in fq } p : p 2 Xg
We will now focus on the determination of the shortest path q from s to t in a network ðN;AÞ, that devi-
ates from p0 ¼ hs ¼ v1; v2; . . . ; v‘ðp0Þ ¼ ti before va, with 1 6 a < ‘(p 0). Let Ts and Tt be the trees of the shortest
paths from s to any i 2N, and from any i 2N to t, respectively. Denote by TsðiÞ the path from s to i 2N in
Ts, and by ns(i) the index of the node where TsðiÞ deviates from p� ¼TsðtÞ ¼TtðsÞ (analogously for TtðiÞ
and nt(i)). According to Katoh et al.,

Lemma 1. Let p� ¼T�
s ðtÞ ¼T�

t ðsÞ ¼ hv1; v2; . . . ; v‘ðp�Þi, be the shortest path from s to t in ðN;AÞ and va be a
node of p*. If there is a path from s to t deviating from p* before va, then the shortest one is of one of the following

types:

Type 1. TsðuÞ }TtðuÞ, with ns(u) < a,

Type 2. TsðuÞ } ðu; vÞ }TtðvÞ, with ðu; vÞ 2A� ðTs [TtÞ and ns(u) < a.

When the goal is to rank quickest paths we cannot assure that p 0 is the path with the minimal delay, there-
fore Lemma 1 cannot be applied straightforwardly. However, path q can be found according to the following
scheme:

• If p0 6¼TsðtÞ then q ¼TsðtÞ ¼TtðsÞ is the path to be used.
• Otherwise, p0 ¼TsðtÞ ¼TtðsÞ, and Lemma 1 can be used, so q is the path of type 1 or type 2, above, which

has minimal delay.
Procedure 2.2. Procedure for the minimum delay path problem deviating from q before va

Compute tree Ts

If ((q is not defined) or ðq 6¼TsðtÞÞ) Then
p TsðtÞ

Else
Compute tree Tt

d� þ1; X fsg
While (X 5 ;) Do

u element in X ; X X � fug
If (ns(u) = nt(u)) Then

For (ðu; vÞ 2A�Ts �Tt such that ns(u) < nt(v)) Do
If ðdðTsðuÞÞ þ duv þ dðTtðvÞÞ < d�Þ Then
d� dðTsðuÞÞ þ duv þ dðTtðvÞÞ; u� u; v� v
EndIf

For (ðu; vÞ 2Ts such that ns(v) < a) Do X X [fvg
EndIf

1050 J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054
If (ns(u) < nt(u)) Then
If ðdðTsðuÞÞ þ dðTtðuÞÞ < d�Þ Then
d� dðTsðuÞÞ þ dðTtðuÞÞ; u� u
EndIf

For (ðu; vÞ 2Ts such that ns(v) < a) Do X X [fvg
EndIf

EndWhile

If ((u*,v*) is defined) Then p Tsðu�Þ } ðu�; v�Þ }Ttðv�Þ
If (u* is defined) Then p Tsðu�Þ }Ttðu�Þ

EndIf

The worst-case computational time complexity of Algorithm 2 is OðKrðmþ n log nÞÞ, while its memory com-
plexity is OðKnÞ. For full understanding of the algorithm [7] should be consulted.

4. Application model

An experimental environment for application and test of the mentioned routing algorithm was obtained by
building the following model to simulate packet sizes and Internet routing conditions.

4.1. Simulation of Internet packet routing

A number of experimental based studies have shown that Internet traffic, unlike Markovian type traffic,
possesses a specific property of self-similarity (see a review in [6, chapter 1]). This property is expressed by
the fact that this traffic has similar or identical key statistical features in all time scales, namely concerning
its correlational structure. In most cases of practical interest the self-similar nature of the Internet traffic is
associated with a property of long-range dependence which means that the autocorrelation function q(k) of
the discrete stationary traffic process fX t : t 2 Zg decays slowly according to a hyperbolic function:
qðkÞ � ck�b; as k !1; ð2Þ
where 0 < b < 1 and c > 0. This implies that the autocorrelation function is not summable, unlike Markovian
type processes which are said to be short-range dependent. In the case of exactly second-order self-similar
processes with Hurst parameter 1/2 < H < 1 which are characterized by an autocorrelation function of the
form:
qðkÞ ¼ 1

2
ðk þ 1Þ2H � 2k2H þ ðk � 1Þ2H
� �

; ð3Þ
long-range dependence is verified (with b = 2 � 2H) and vice-versa. Similarly long-range dependence holds for
asymptotically second-order self-similar processes, characterized by the fact that (3) is verified asymptotically,
as k!1. These traffic processes are designated as canonical self-similar models. These models also enable the
representation of the typically bursty character of the traffic in a wide range of time scales.

There is a significant variety of stochastic models enabling the representation of the essential features of
self-similar traffic, some of which seek the functional behaviour of the traffic sources to be reflected in the
model (see an overview of simulation models for self-similar traffic in [3]). This type of models incorporate,
in one form or another, specific distributions of sizes and durations of functional objects in the IP-networks
(e.g. network protocols, data units, file sizes and TCP—transmission connection protocol—connections)
which are known to be related to the long-range dependence property (see [6]). For this reason the distribu-
tions in question are heavy tailed, that is with asymptotical form
P ðX > xÞ � cx�a as x! þ1
with c > 0 and 0 < a < 2. Heavy tailed distributions have infinite variance for 1 < a < 2 and also an unbounded
mean if 0 < a 6 1.

J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054 1051
A practical heavy-tailed distribution often used in this context is the Pareto distribution:
Table
Arcs d

dij (mi

%

F X ðxÞ ¼ P ðX 6 xÞ ¼ 1� b
x

� �a

; ð4Þ
where a > 0, x 2 [b,+1[and b P 0 is the location parameter. The parameter a varies in]1,2[in order to guar-
antee the statistical properties required by associated traffic processes with long range dependence.

In particular this distribution can be used to generate computationally traces of asymptotically self-similar
traffic. In fact it can be proved that the number of simultaneous occupations in a M/G/1 queue with Poisson
arrivals and heavy-tailed distribution (with 1 < a < 2) of the service times is an asymptotically second-order
self-similar process, with H ¼ 3�a

2
.

On the other hand the Internet Protocol (IP) datagram format has a maximal number of bytes equal to
65,535, including the IP header and the data content (cf. [14]). Considering a lower bound on the packet size
equal to the minimum Ethernet II transmission unit (64 bytes) we obtained two practical requirements on the
bounds for the packet size in our application study. Taking further into account the above theoretical consid-
erations on self-similar traffic we defined a truncated Pareto distribution as an approximation to represent the
simulated packet sizes r in the range [rmin,rmax]:
bF rðxÞ ¼ P ðr 6 xÞ ¼ 1� ðb=xÞa

F rðMÞ
; ð5Þ
where b = rmin, M = rmax, F is the standard Pareto distribution and the mean of the distribution bF is
�r ¼ EðrÞ ¼ ba
a� 1

1

F rðMÞ
:

Note that the variance of the distribution (5) is finite (albeit with great value) depending on the values b and
M, unlike the corresponding standard Pareto distribution which has infinite variance for a 2]1,2[. To generate
random packet sizes according to (5) we can use the method of the inverse transform, based on the r.v. U uni-
formly distributed in [0, 1]:
x ¼ bF �1ðuÞ) x ¼ bð1� ucÞ�1=a
; ð6Þ
where c = Fr(M) and u is a value of U obtained from any appropriate uniform random number generator. The
bounds on the packet sizes used in the study are therefore b = 512 bits, and M = 524280 bits. As stated above
the parameter a is related to the Hurst parameter H ¼ 3�a

2
ð1=2 < H < 1Þ which is a measure of self-similarity of

the associated traffic process described by the number of busy servers of the M/G/1 queue with Pareto distrib-
uted service times. In the present application we have considered a = 1.2 (H = 0.9) and a = 1.5 (H = 0.75).

As for the delays experienced by the packets on the network links (transmission arcs), these were obtained
from results in the large-scale measurement based study on packet dynamics [8], assuming a variation in the
corresponding average number of arcs per path, from 1.5 to 7.5. This approximation leads to the empirical
distribution in Table 1.

Concerning the values to be used as path bottleneck bandwidths B(p) it should be noted that the estimation
of such values based on measurements in a real network is very complex due to the extremely complicated
functional working patterns of the Internet (see [8]). Taking as basis some histograms presented in [8] we have
obtained an empirical distribution for the bottleneck bandwidths bij (in bits/millisecond), given in Table 2.

Note that this type of empirical distributions is quite variable, depending critically on the size of the ana-
lysed network, sites where the underlying measurements were taken, time periods of the measurements and
estimation procedures. The empirical distributions in Tables 1 and 2 are just examples of possible situations,
based on actual measurements in a large scale study, not ‘‘typical’’ average patterns.
1
elay empirical distribution

llisecond) 11 16 25 42 73 128 227 410 744 1365 2520 4681 8700

2.3 5.4 8.5 10.0 12.0 11.0 10.0 11.0 8.5 7.0 5.0 5.0 4.3

Table 2
Arcs bandwidth empirical distribution

bij (bits/millisecond) 1360 64 128 256 800 1680 2640 4000 8000

% 51.30 7.15 5.30 0.88 4.40 19.47 4.40 2.70 4.40

1052 J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054
4.2. Application experiments

When Algorithm 2 was introduced by Pascoal et al.’s [7], extensive computational experiments were pre-
sented, with networks of several types and sizes, comparing it both with Rosen et al.’s and with Chen’s algo-
rithms. The two main conclusions drawn from this experiments were:

• The comparison between Chen’s algorithm and the two others is not straightforward, once it separates into
2 phases the generation of paths and the selection of the K-quickest ones. This also implies the determina-
tion of more paths and, consequently, a higher total execution time.

• In general Pascoal et al.’s algorithm outperformed Rosen et al.’s. On the one hand the latter showed a
higher dependence on the size of the network, on the other hand its CPU times increased faster than Pas-
coal et al.’s ones.

In the following some results of the application of Algorithm 2 to the determination of K-quickest paths, in
the case of data packet routing in the Internet, will be reported.

In terms of the network topology, the algorithm was applied to two sets of networks. In the first set ran-
domly generated networks with m = 4n arcs, based on a rectangular grid of 400 · 240 (corresponding to a
mesh size unit of 10Km), were obtained. Hence n nodes were randomly located in this grid structure, where
n 2 {500,1000, . . . , 3000}. It was imposed that each node is adjacent to at least 2 and at most 10 other nodes
and all generated networks contain at least one Hamiltonian path. The second set of networks was obtained
by using geographic coordinates of 1088 US cities (these coordinates were downloaded from the URL
www.realestate3d.com/gps/latlong.htm). A node was assigned to each city and m arcs were randomly gener-
ated, guaranteeing an average node degree equal to 4 and a minimal (maximal) degree per node equal to 2
(10). In both sets undirected connected networks were considered, where each node has a degree between 2
and 10, and m = 4n arcs.

For each size n, ten networks were generated, using ten different seeds. For each problem the K = 50
quickest paths between b n2

2500
c source–destination pairs randomly chosen, were ranked by non-decreasing

order of the transmission time, considering a different r value for each source–destination pair. In possible
applications of the algorithm in present teletraffic engineering mechanisms it is not necessary to select (for a
given node-pair and application) more than a limited number of routes, say 5 or even less. Nevertheless the
calculation of a larger number of K-quickest paths might be useful or even recommended as a first step of a
route selection procedure. For example, this calculation could be used for generating candidate paths in a
QoS routing model with an objective function of the given structure but including additional constraints
related to other QoS metrics. Furthermore the experimentation with high values of K is useful for testing
the efficiency of the algorithm, also having in mind other possible unexpectable applications. In those tests
an implementation, KQPA, in C language of the K-quickest paths algorithm in Section 3, was used. The expe-
rience was carried out on an AMD Athlon 1.3 GHz computer with 512 MB of RAM. The results of the
application of KQPA to the first set of experiments are summarized in Fig. 1, while Fig. 2 refers to the tests
that used US-type networks.

It should be noted that the running times depend linearly on the number K of paths determined, and that it
increases also with the size of the network. In fact, KQPA computed the 50 quickest paths in an average time of
0.103 seconds for networks with 500 nodes, and that time is of 1.743 seconds if n = 3000. It can also be noticed
that the difference between the CPU times is larger when K increases. In terms of the path transmission times,
they also grow with K and with n, varying from 342.059 to 391.194 milliseconds for p50, in networks with 500
and 3000 nodes, respectively. In fact, when the network dimension is higher, the average number of arcs in
each path also increases, and this results in an increase in the path transmission times.

http://www.realestate3d.com/gps/latlong.htm

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
CPU times

K

S
ec

on
ds

n=500
n=1000
n=1500
n=2000
n=2500
n=3000

10 20 30 40 50
260

280

300

320

340

360

380

400
Path costs

K

M
ill

is
ec

on
ds

n=500
n=1000
n=1500
n=2000
n=2500
n=3000

Fig. 1. Average results of KQPA on random networks, K = 50.

10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25
CPU times

K

S
ec

on
ds

10 20 30 40 50
250

260

270

280

290

300

310

320
Path costs

K

M
ill

is
ec

on
ds

Fig. 2. Average results of KQPA on US-type networks, K = 50.

J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054 1053
As expected, the results obtained in the networks based on the US cities coordinates follow the same trends
as the ones obtained for the first set of experiments, with 1000 nodes random networks.

5. Conclusions

In this work we considered the generation of alternative routes for packets in Internet, using the total trans-
mission time as the metric function and applying an efficient K-quickest path algorithm. A probabilistic model
was constructed to generate packet sizes, using a truncated Pareto distribution and to simulate Internet rout-
ing conditions. The computational experience was performed on the two types of network topologies: random
generated networks and networks based on the geographic coordinates of US cities. It must be emphasized
that the running times depend linearly on the number K of determined paths and that it also increases with
the size of the network. In any case, it can be concluded that the procedure is efficient in practical situations.
In the worst tested situation the 50 best solutions in a network with 3000 nodes were obtained in
1.743 seconds.

As a major conclusion, the proposed approach is efficient enough to justify in many cases the use of the
formulation (1) for the Internet packet routing problem (as permitted, for example, by the CISCOs routing
protocol implementation EIGRP) instead of currently proposed simplifications such as the computation of
shortest–widest or widest–shortest paths.

1054 J.C.N. Clı́maco et al. / European Journal of Operational Research 181 (2007) 1045–1054
Acknowledgments

This research was partially supported by POSI/SRI/37346/2001 (Project title: ‘‘Modelos e Algoritmos para
Tratamento da Incerteza em Sistemas de Apoio à Decisão’’), POCTI/MAT/139/2001 and POCTI/ISFL-1/
152.

References

[1] Y.L. Chen, Finding the K quickest simple paths in a network, Information Processing Letters 50 (1994) 89–92.
[2] Y.L. Chen, Y.H. Chin, The quickest path problem, Computers and Operations Research 17 (2) (1990) 153–161.
[3] R. Girão-Silva, J. Craveirinha, Study on simulation models for self-similar traffic, in: Proceedings of the 6-th IEEE International

Conference High-Speed Networks and Multimedia Communications, 2003, Springer-Verlag, 2003, pp. 571–580.
[4] N. Katoh, T. Ibaraki, H. Mine, An efficient algorithm for K shortest simple paths, Networks 12 (1982) 411–427.
[5] E.Q.V. Martins, J.L.E. Santos, An algorithm for the quickest path problem, Operations Research Letters 20 (1997) 195–198.
[6] K. Park, W. Willinger (Eds.), Self-similar Network Traffic and Performance Evaluation, Self-similar Network Traffic: An Overview,

Wiley-Interscience, 2000, pp. 1–38 (Chapter 1).
[7] M.M.B. Pascoal, M.E.V. Captivo, J.C.N. Clı́maco, An algorithm for ranking quickest simple paths, Computers and Operations

Research 32 (3) (2005) 509–520.
[8] V. Paxson, End-to-end Internet packet dynamics, IEEE/ACM Transactions on Networking 7 (3) (1999) 277–292. Available from:

<http://citeseer.nj.nec.com/paxson97endtoend.html> .
[9] A. Riedl, D.A. Schupke, A flow-based approach for IP traffic engineering utilizing routing protocols with multiple metric types, in:

Proceedings of the 6th INFORMS Telecommunication Conference, Boca Raton, USA, March 2002. Available from: <http://
www.informs.org/Conf/Telecom02/Abstracts/Riedl01351033926.pdf>.

[10] J.B. Rosen, S.Z. Sun, G.L. Xue, Algorithms for the quickest path problem and the enumeration of quickest paths, Computers and
Operations Research 18 (6) (1991) 571–584.

[11] S. Savage, A. Collins, E. Hoffman, J. Snell, T.E. Anderson, The end-to-end effects of Internet path selection, in: Proceedings of ACM
SIGCOMM’99, September 1999, pp 289–299. Available from: <http://citeseer.nj.nec.com/savage99endtoend.html>.

[12] J.L. Sobrinho, Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet, in: Proceedings of the
IEEE Infocom 2001 Conference, Anchorage, Alaska USA, April 2001, pp 727–735. Available from: <http://www.ieee-infocom.org/
2001/paper/105.pdf>.

[13] J.L. Sobrinho, Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet, IEEE Transactions on
Networking (August) (2002) 541–550.

[14] F. Wilder, A Guide to the TCP/IP Protocol Suite, Artech House, Inc., Boston, 1998.

http://citeseer.nj.nec.com/paxson97endtoend.html
http://www.informs.org/Conf/Telecom02/Abstracts/Riedl01351033926.pdf
http://www.informs.org/Conf/Telecom02/Abstracts/Riedl01351033926.pdf
http://citeseer.nj.nec.com/savage99endtoend.html
http://www.ieee-infocom.org/2001/paper/105.pdf
http://www.ieee-infocom.org/2001/paper/105.pdf

	Internet packet routing: Application of a K-quickest path algorithm
	Introduction
	Internet packet routing
	A review of the K-quickest path algorithm
	Application model
	Simulation of Internet packet routing
	Application experiments

	Conclusions
	Acknowledgments
	References

