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a Faculdade de Economia, Universidade de Coimbra, Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal
b Department of Mathematical Sciences, 6113 Wean Hall, Carnegie Mellon University, Pittsburgh, PA 15213, USA
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Abstract

We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an
underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline
functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the
corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formula-
tion. Both of these problems can be efficiently solved by numerical optimization software.

In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear
inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured
by using a semidefinite programming characterization of nonnegativity for polynomial functions.

We tested our approach using data simulated from Black–Scholes option prices and using market data for options on
the S&P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-
neutral probability density function.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Option pricing; Risk-neutral density estimation; Cubic splines; Quadratic programming; Semidefinite programming
1. Introduction

The risk-neutral probability measure is a fundamental concept in arbitrage pricing theory. By definition, a
risk-neutral probability measure (RNPM) is a measure under which the current price of each security in the
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economy is equal to the present value of the discounted expected value of its future payoffs given a risk-free
interest rate. Fundamental theorems of asset pricing indicate that RNPMs are guaranteed to exist under an
assumption of no arbitrage.

If a unique RNPM on the space of future states of an economy is given, we can price any security for which
we can determine the future payoffs for each state in the state space. Therefore, a fundamental problem in
asset pricing is the identification of a risk-neutral probability measure. While the dynamics of an economy
and the parameters for its stochastic models are not directly observable, one can infer some information about
these dynamics from the current prices of the securities in this economy. In particular, one can extract one or
more implied risk-neutral densities of the future price of a security that are consistent with the prices of
options written on that security. When there are multiple RNPMs consistent with the observed prices, one
may try to choose the ‘‘best’’ one, according to some criterion. We address this problem in this article using
optimization models.

For a stock or index, the set of possible future states can be represented as an interval or ray, discretized if
appropriate or necessary. In most cases, the number of states in this state space is much larger than the num-
ber of observed prices, resulting in a problem with many more variables than equations. This underdetermined
problem has many potential solutions and we cannot obtain an unique or sensible solution without imposing
some additional structure into the risk-neutral probability measure we are looking for.

The type of additional structure imposed has been the differentiating feature of the existing approaches to
the problem of identifying implied RNPMs. These approaches can be broadly classified as parametric and
nonparametric techniques and are reviewed by Jackwerth [18], and Bondarenko [9] (see also Section 2). Para-
metric methods choose a distribution family (or a mixture of distributions) and then try to identify the param-
eters for these distributions that are consistent with the observed prices [6,22]. In nonparametric techniques,
one achieves more flexibility by allowing general functional forms. Structure is introduced either using prior
distributions or smoothness restrictions. Our approach fits into this last category and we ensure the desired
smoothness of the RNPM using spline functions.

Spline functions are piecewise polynomial functions that assume a predetermined value at certain points
(knots) and satisfy certain smoothness properties. Other authors have also used spline fitting techniques in
the context of risk-neutral density estimation, see [3,13]. In contrast to existing techniques, we allow the dis-
placement of spline knots in a superset of the set of points corresponding to option strikes. The additional set
of knots makes our model flexible and we use this flexibility to optimize the fit of the spline function to the
observed prices. The basic formulation, without requiring the nonnegativity of the risk-neutral probability
density function (pdf), is a convex quadratic programming (QP) problem.

Two strategies to impose the nonnegativity of the RNPM are presented and discussed in this paper. The
first and simpler strategy is to require the estimated pdf to remain nonnegative at the spline nodes. This
scheme maintains the QP structure of the problem since it brings only linear inequality constraints to the basic
formulation. However, there is no guarantee of nonnegativity between the spline nodes. Our second approach
replaces the basic QP formulation with a semidefinite programming (SDP) formulation but rigorously ensures
the nonnegativity of the estimated pdf in its entire domain. It is based on an SDP characterization of nonneg-
ative polynomial functions due to Bertsimas and Popescu [5] and requires additional variables and linear
equality constraints as well as semidefiniteness constraints on some matrix variables. To our knowledge, this
is the first spline function approach to risk-neutral density estimation with a positivity guarantee.

The rest of this paper is organized as follows: In Section 2, we provide the definition of RNPMs and briefly
discuss some of the existing approaches. In Section 3, we discuss our spline approximation approach to
RNPMs and develop our basic QP optimization model. The treatment of nonnegativity is given in Section
4. Section 5 is devoted to a numerical study of our approach both with simulated and market data. We provide
a brief conclusion in Section 6.

2. Risk-neutral probability measures

We consider the following one-period economy: There are n securities whose current prices are given by si
0

for i ¼ 1; . . . ; n. At the end of the current period, the economy will be in one of the states from the state space
X. If the economy reaches state x 2 X at the end of the current period, security i will have the payoff si

1ðxÞ. We
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assume that we know all si
0’s and si

1ðxÞ’s but do not know the particular terminal state x, which will be deter-
mined randomly.

As an example of the set-up explained in the previous paragraph, we consider a particular security (stock,
index, etc.) and let the n securities be financial options written on this stock. Here, X denotes the state space for
the terminal price of the underlying stock and si

1ðxÞ denotes the payoff of the option i when the underlying
stock price is x at termination. For example, if option i is a European call with strike price Ki to be exercised
at the end of the current period, we would have si

1ðxÞ ¼ ðx� KiÞþ.
Next, we give a definition of RNPMs:

Definition 1. Consider the economy described above. Let r denote the risk-free interest rate in the period ½t; T �.
A risk-neutral probability measure in the

• discrete case and on the state space X ¼ fx1;x2; . . . ;xmg is defined by a vector of positive numbers
p1; p2; . . . ; pm such that

1.
Pm

j¼1pj ¼ 1,
2. si

0 ¼ e�rðT�tÞPm
j¼1pjs

i
1ðxjÞ; i ¼ 1; . . . ; n;
• continuous case and on the state space X ¼ ða; bÞ is defined by a density function p : R! Rþ such that
1.
R b

a pðxÞdx ¼ 1,
2. si

0 ¼ e�rðT�tÞ R b
a pðxÞsi

1ðxÞdx; i ¼ 1; . . . ; n.
It is well known that the existence of a risk-neutral probability measure is strongly related to the absence of
arbitrage opportunities as expressed in the First Fundamental Theorem of Asset Pricing (see [15]). We first give
an informal definition of arbitrage and then state this theorem:

Definition 2. An arbitrage is a trading strategy

• that has a positive initial cash flow and has no risk of a loss later, or
• that requires no initial cash input, has no risk of a loss, and a positive probability of making profits in the

future.
Theorem 1. A risk-neutral probability measure exists if and only if there are no arbitrage opportunities.

Definition 1 and Theorem 1 illustrate why we care about risk-neutral probability measures. When a RNPM
is available on the future states of an economy, any security whose future payoffs in all these future states is
known can be reliably priced. Furthermore, if we assume that arbitrage opportunities do not exist as com-
monly done in the financial literature, we know that an RNPM must exist. Then the question becomes,
how do we find or estimate an RNPM on the future states of an economy?

One very important and potentially tractable instance of this problem arises when the economy consists of a
security (say a stock or a market index) that we will call the underlying security and a number of derivative
securities based on this underlying security. We are interested in the RNPM for the price of the underlying
security at a fixed future date. As we argued in Section 1, since the payoffs of the derivatives depend on
the future values of the underlying asset, we can use the prices of these derivatives to get information about
the probability distribution of the future values of the underlying. We can say that the prices of option con-
tracts contain some information about the market expectations, namely a possible correspondence between
the price of the underlying and its strike.

The estimation of the risk-neutral densities serves several purposes. The most common application of risk-
neutral densities is related to the setting we discussed in the previous paragraph. Given the observed prices of
derivative securities on a particular underlying asset, one can use the RNPM derived from these prices to
determine an arbitrage-free price (or limits on arbitrage-free prices) of new, exotic derivatives with compli-
cated payoff structures on the same underlying security. By providing a mechanism for extrapolating informa-
tion from observed derivative prices, risk-neutral densities can also be used to detect arbitrage opportunities.
Another relevant application is related to capturing the market sentiment. A risk-neutral density can
compactly summarize the collective expectation of market participants regarding the fluctuations of asset
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prices in the future (see, e.g., [6]). This information may assume a greater importance under unusual economic
or political scenarios (see, e.g., [22]). The risk-neutral densities are also used to determine new risk-adjusted
densities that accommodate investors’ risk preferences, namely the preferences that derive from the interaction
between the market participants.

Mathematically, the problem of estimating risk-neutral densities provides an interesting challenge. From an
optimizer’s perspective, the problem is to find the best RNPM estimate given the available information. The
price of each additional security provides an additional piece of information on the structure of the density
and makes the set of densities consistent with all observed prices smaller. Structural properties of probability
measures (nonnegativity, integrate to one) provide additional constraints that are not always straightforward
to impose.

There are several approaches, reported in the literature, to derive risk-neutral probabilities from observed
options prices (see the surveys in [6,9,18]). One can either assume that the density belongs to a parametric fam-
ily of distributions and reduce the problem to a simple parameter-fitting problem, or use a nonparametric
method. In the context of the Black–Scholes model [7], it is well known that the geometric Brownian motion
followed by the underlying asset price implies a lognormal risk-neutral pdf. In practice, parametric methods
derive the risk-neutral pdf’s from a set of statistical distributions and the set of observational data. A specific
parameterized form for the density function on the underlying asset (such as a mixture of lognormals; see
[6,22]), or for the stochastic process [7,14] is assumed and then the optimal parameters are identified by fitting
the data (see also [4,24]).

Nonparametric methods are more flexible as they essentially allow an infinite number of parameters.
Among the nonparametric approaches, and following Bondarenko [9], we can point out: implied trees meth-
ods [23], kernel methods [2], maximum-entropy methods [12,26], methods applied to the volatility smile
[3,11,13,25], methods applied to the risk-neutral probability [19,21]. Other methods share both parametric
and nonparametric features [1,9]. Here, we follow the nonparametric approach.

Several of the methods mentioned above, including both parametric and nonparametric ones, suffer from a
lack of guarantee of nonnegativity of the risk-neutral density they generate. Jackwerth [18] notes that para-
metric methods based on the expansion of a basic risk-neutral density can generate densities with negative val-
ues. Rubinstein [24] states that for some set of parameters the risk-neutral densities generated violate the
nonnegativity constraint. The methods proposed by Shimko [25] and developed by Aparicio and Hodges
[4], Bliss and Panigirtzoglou [8], and Campa et al. [13] can produce negative probabilities. Jackwerth [18]
as well as Brunner and Hafner [11] mention that, for these methods, the nonnegativity of the density must
be checked since there is no guarantee of nonnegativity. Bondarenko [9] corroborates the latter and indicates
that also [19] may obtain negative probabilities. These concerns lead us to search for a guarantee of nonneg-
ativity for the risk-neutral density. As we will later see, we show that it is possible to guarantee the nonneg-
ativity of the risk-neutral density in a rigorous manner by reformulating the problem using tools from
semidefinite programming.
3. The basic formulation using splines

As discussed in Section 1, one of the desired structural properties of a RNPM estimate is smoothness. The
strategy developed in this section guarantees appropriate smoothness of the risk-neutral pdf by estimating it
using cubic splines (see the Appendix of this paper). The estimation is carried out by the solution of an opti-
mization problem where the optimization variables are the parameters of the spline functions.
3.1. The quadratic programming formulation

We now formulate an optimization problem with the objective of finding a risk-neutral pdf described by
cubic splines for future values of an underlying security that provides a best fit with the observed option prices
on this security.

For the security under consideration, we fix an exercise date, a range ½a; b� for possible terminal values of
the price of the underlying security at the exercise date of the options, and an interest rate r for the period
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between now and the exercise date. The other inputs to our optimization problem are the chosen expiration
date and market prices, CK for call options and P K for put options, on the chosen underlying security, with
strike price K. Let C and P, respectively, denote the set of strike prices K for which reliable market prices
CK and P K are available. For example, C may denote the strike prices of call options that were traded on
the day that the problem is formulated.

Next, we consider a super-structure for the spline approximation to the risk-neutral pdf, meaning that we
choose how many knots to use, where to place the knots and what kind of polynomial (quadratic, cubic, etc.)
functions to use. For example, one may decide to use cubic splines (as we do in this paper) and ns þ 1 equally
spaced knots. The parameters of the polynomial functions that comprise the spline function will be the vari-
ables of the optimization problem we are formulating. For cubic splines with ns þ 1 knots, we will have 4ns

variables ðas; bs; cs; dsÞ, for s ¼ 1; . . . ; ns. Collectively, we will represent these variables by y 2 R4ns . For all y

chosen so that the corresponding polynomial functions fs satisfy the systems (20)–(23) of the Appendix, we
will have a particular (natural) spline function defined on the interval ½a; b�. Let pyðxÞ denote this function.
Note that we do not impose the constraints given in (19) because the values of the pdf we are approximating
are unknown and will be the result of the solution of an optimization problem.

By imposing the following additional restrictions we make sure that py is a probability density function:
pyðxÞP 0; 8x 2 ½a; b�; ð1Þ
Z b

a
pyðxÞdx ¼ 1: ð2Þ
In practice the requirement (2) is easily imposed by including the following constraint in the optimization
problem:
Xns

s¼1

Z xsþ1

xs

fsðxÞdx ¼ 1: ð3Þ
One can easily see that this is a linear constraint in the components ðas; bs;cs; dsÞ of the optimization variable
y. The treatment of (1) is postponed to the next section and is ignored until the end of this section.

Next, we define the discounted expected value of the terminal value of each option using py as the risk-neu-
tral probability density function (see [10,14]):
CKðyÞ ¼ e�rðT�tÞ
Z b

a
pyðxÞðx� KÞþdx; ð4Þ

P KðyÞ ¼ e�rðT�tÞ
Z b

a
pyðxÞðK � xÞþdx: ð5Þ
If py was the actual risk-neutral probability density function, the quantities CKðyÞ and P KðyÞ would be the fair
values of the call and put options with strikes K. The quantity
ðCK � CKðyÞÞ2;
measures the squared difference between the observed value and discounted expected value considering py as
the risk-neutral pdf. Now consider the overall residual least squares function for a given y:
EðyÞ ¼
X
K2C
ðCK � CKðyÞÞ2 þ

X
K2P
ðP K � P KðyÞÞ2: ð6Þ
The objective now is to choose y such that EðyÞ is minimized subject to the constraints already mentioned. The
resulting optimization problem is a convex quadratic programming problem corresponding to the following
formulation:
min
y

EðyÞ s:t: ð20Þ–ð23Þ; ð3Þ: ð7Þ
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3.2. Functions CKðyÞ and P KðyÞ

We now look at the structure of problem (7) in more detail. In particular, we evaluate the function CKðyÞ.
Consider a call option with strike K such that x‘ 6 K < x‘þ1. Recall that y denotes a collection of variables
ðas; bs; cs; dsÞ for s ¼ 1; . . . ; ns and that x1 ¼ a; x2; . . . ; xns ; xnsþ1 ¼ b represent the locations of the knots. The for-
mula for CKðyÞ can be derived as follows:
erðT�tÞCKðyÞ ¼
Z b

a
pyðxÞðx� KÞþdx ¼

Xns

s¼‘

Z xsþ1

xs

pyðxÞðx� KÞþdx

¼
Z x‘þ1

K
pyðxÞðx� KÞdxþ

Xns

s¼‘þ1

Z xsþ1

xs

pyðxÞðx� KÞdx

¼
Z x‘þ1

K
a‘x

3 þ b‘x
2 þ c‘xþ d‘

� �
ðx� KÞdxþ

Xns

s¼‘þ1

Z xsþ1

xs

ðasx
3 þ bsx

2 þ csxþ dsÞðx� KÞdx:
One can easily see that this expression for CKðyÞ is linear in the components ðas; bs; cs; dsÞ of the optimization
variable y. A similar formula can be derived for P KðyÞ. Another relevant aspect that should be pointed out is
that the formula for CKðyÞ will involve coefficients of the type x5

s which can, and in fact do, make the Hessian
matrix of the QP problem (7) severely ill-conditioned.

4. Guaranteeing nonnegativity

The simplest way to deal with the requirement of nonnegativity of the risk-neutral pdf is to weaken con-
dition (1), requiring the cubic spline approximation to be nonnegative only at the knots:
fsðxsÞP 0; s ¼ 1; . . . ; ns and f ns
ðxnsþ1ÞP 0: ð8Þ
Then, the basic QP formulation changes to
min
y

EðyÞ s:t: ð20Þ–ð23Þ; ð3Þ; ð8Þ: ð9Þ
One can easily see that problem (9) is still a convex quadratic programming problem, since (8) are linear
inequalities in the optimization variables. The drawback of this strategy is the lack of guarantee of nonneg-
ativity of the spline functions between the spline knots. This heuristic strategy proved sufficient to obtain non-
negative pdf estimates in most of our experiments some of which are reported in Section 5. However, in some
instances pdf estimates assumed negative values between knots. Since our aim is to estimate a probability den-
sity function, estimates with negative values are not acceptable.

In what follows, we develop an alternative optimization model where the nonnegativity of the resulting
risk-neutral pdf estimate is rigorously guaranteed. The cost we must pay for this guarantee is an increase
in the complexity of the optimization problem. Indeed, the new model involves semidefiniteness restrictions
on some matrices related to new optimization variables. While the resulting problem is still a convex optimi-
zation problem and can be solved with standard conic and semidefinite optimization software (see, e.g., [27]),
it is also more expensive to solve than a convex QP.

The model we consider is based on necessary and sufficient conditions for the nonnegativity of a single var-
iable polynomial in intervals, as well as on rays and on the whole real line. This characterization is due to
Bertsimas and Popescu [5] and is stated in the next proposition.

Proposition 1 (Proposition 1(d), [5]). The polynomial gðxÞ ¼
Pk

r¼0yrx
r satisfies gðxÞP 0 for all x 2 ½a; b� if and

only if there exists a positive semidefinite matrix X ¼ ½xij�i;j¼0;...; k such that
X
i;j:iþj¼2‘�1

xij ¼ 0; ‘ ¼ 1; . . . ; k; ð10Þ

X
i;j:iþj¼2‘

xij ¼
X‘
m¼0

Xkþm�‘

r¼m

yr

r

m

� �
k � r

‘� m

� �
ar�mbm; ð11Þ
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‘ ¼ 0; . . . ; k; ð12Þ
X � 0: ð13Þ� �
In the statement of the proposition above, the notation
r
m

stands for r!
m!ðr�mÞ! and X � 0 indicates that the

matrix X is symmetric and positive semidefinite. For the cubic polynomial fsðxÞ ¼ asx3 þ bsx
2 þ csxþ ds we

have the following corollary:

Corollary 1. The polynomial fsðxÞ ¼ asx3 þ bsx
2 þ csxþ ds satisfies fsðxÞP 0 for all x 2 ½xs; xsþ1� if and only if

there exists a 4� 4 matrix X s ¼ ½xs
ij�i;j¼0;...;3 such that
xs
ij ¼ 0; if iþ j is 1 or 5;

xs
03 þ xs

12 þ xs
21 þ xs

30 ¼ 0;

xs
00 ¼ asx3

s þ bsx
2
s þ csxs þ ds;

xs
02 þ xs

11 þ xs
20 ¼ 3asx2

s xsþ1 þ bsð2xsxsþ1 þ x2
s Þ þ csðxsþ1 þ 2xsÞ þ 3ds;

xs
13 þ xs

22 þ xs
31 ¼ 3asxsx2

sþ1 þ bsð2xsxsþ1 þ x2
sþ1Þ þ csðxs þ 2xsþ1Þ þ 3ds;

xs
33 ¼ asx3

sþ1 þ bsx
2
sþ1 þ csxsþ1 þ ds;

X s � 0:

ð14Þ
Observe that the positive semidefiniteness of the matrix X s implies that the first diagonal entry xs
00 is nonneg-

ative, which corresponds to our earlier requirement fsðxsÞP 0. In light of Corollary 1, we see that introducing
the additional variables X s and the constraints (14), for s ¼ 1; . . . ; ns, into the earlier quadratic programming
problem (7), we obtain a new optimization problem which necessarily leads to a risk-neutral pdf that is non-
negative in its entire domain. The new formulation has the following form:
min
y;X 1;...;X ns

EðyÞ s:t: ð20Þ–ð23Þ; ð3Þ; ½ð14Þ; s ¼ 1; . . . ; ns�: ð15Þ
All constraints in (15), with the exception of the positive semidefiniteness constraints X s � 0, s ¼ 1; . . . ; ns, are
linear in the optimization variables ðas; bs; cs; dsÞ and X s, s ¼ 1; . . . ; ns. The positive semidefiniteness con-
straints are convex constraints and thus the resulting problem can be reformulated as a (convex) semidefinite
programming problem with a quadratic objective function.

For appropriate choices of the vectors c, fi, gs
k, and matrices Q and H s

k, we can rewrite problem (15) in the
following equivalent form:
min
y;X 1;...;X ns

c>y þ 1

2
y>Qy

s:t: f >i y ¼ bi; i ¼ 1; . . . ; 3ns;

Hs
k � X s ¼ 0; k ¼ 1; 2; s ¼ 1; . . . ; ns;

ðgs
kÞ
>y þ Hs

k � X s ¼ 0; k ¼ 3; 4; 5; 6; s ¼ 1; . . . ; ns;

X s � 0; s ¼ 1; . . . ; ns;

ð16Þ
where • denotes the trace matrix inner product.
We should note that standard semidefinite optimization software such as SDPT3 [27] can solve only prob-

lems with linear objective functions. Since the objective function of (16) is quadratic in y a reformulation is
necessary to solve this problem using SDPT3 or other SDP solvers. We replace the objective function with
min t where t is a new artificial variable and impose the constraint t P c>y þ 1

2
y>Qy. This new constraint

can be expressed as a second-order cone constraint after a simple change of variables; see, e.g., [20]. This final
formulation is a standard form conic optimization problem, which is a class of problems that contains
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semidefinite programming and second-order cone programming as special classes. Since SDPT3 can solve
standard form conic optimization problems we used this formulation in our numerical experiments.
5. Numerical experiments

In this section, we report some numerical experiments obtained with the methodologies introduced in this
paper to estimate the risk-neutral pdf, namely the approaches that led to the formulation of problems (9) and
(15). We also consider a mixture of lognormals model and compare the three approaches.

We have applied the active set method provided by MATLAB to solve the convex QP problem (9) and the
MATLAB-based interior-point code SDPT3 [27] to solve the SDP problem (15) (more precisely its reformulation
described at the end of the last section). The performance of these two approaches is illustrated with four dif-
ferent data sets, one generated from a Black–Scholes model and the other three extracted from the S&P 500
Index.

Numerically, we solved scaled versions of both the QP problem (9) and the SDP problem (16). The need for
scaling the data of these problems results from the fact that the Hessian matrix in (7), which appears in both
problems, is highly ill-conditioned, as we have already pointed out in Section 3.2. Since the magnitude of x
plays a relevant role in the size of the entries of this Hessian matrix, we used as our reference scaling factor the
average value of the components of the vector of the knots. Let us call this average value xavg. Then each knot
xs, s ¼ 1; . . . ; ns þ 1, is scaled by xavg and replaced by x0s ¼ xs=xavg. Such a scaling amounts at the end to scale
the variables as; bs; cs; ds corresponding to the spline coefficients by, respectively, a; b; c; d, whose values depend
on xavg as well as on the expressions for the integrations given in Section 3.2. The problem is then solved in the
scaled variables a0s; b

0
s; c
0
s; d
0
s, s ¼ 1; . . . ; ns. We also multiply each term of the objective function in (7) by 1=x2

avg.
The unscaled solution is recovered by the formulas ðas; bs; cs; dsÞ ¼ ðaa0s; bb0s; cc

0
s; dd0sÞ, s ¼ 1; . . . ; ns.
5.1. Mixture of lognormals approach

We compared our QP and SDP approaches with an approach based on mixture of lognormals. Following
the procedures presented by Bahra [6], we considered the minimization of
EðzÞ ¼
X
K2C
ðCK � CKðzÞÞ2 þ

X
K2P
ðP K � P KðzÞÞ2; ð17Þ
where
CKðzÞ ¼ e�rðT�tÞ
Z b

a
pzðxÞðx� KÞþdx;

P KðzÞ ¼ e�rðT�tÞ
Z b

a
pzðxÞðK � xÞþdx:
Here, z is a vector of five parameters (c; a1; a2; b1; b2) storing the means and standard deviations of two log-
normals and the weight of their linear combination. In fact, the pdf in this approach takes the form
pzðxÞ ¼ c lognðx; a1; b1Þ þ ð1� cÞlognðx; a2; b2Þ;

lognðx; a; bÞ ¼ 1

x
ffiffiffiffiffiffi
2p
p

b
e
�ðlnðxÞ�aÞ2

2b2 ;

b ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p

and a ¼ lnðStÞ þ lðT � tÞ � 1

2
b2;
where l is the expected return of the underlying asset and r its volatility. The parameters of the lognormals are
obtained by solving the constrained nonlinear least squares problem (LN2) defined by the objective function
(17) and one constraint
min
z

EðzÞ s:t: cea1þ1
2b

2
1 þ ð1� cÞea2þ1

2b
2
2 ¼ Ste

rðT�tÞ: ð18Þ
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Fig. 1. Recovered probability density functions from data generated by a Black–Scholes model using QP, SDP, and LN2 approaches (left
plots). Fitted recovered expected prices for these approaches (right plots).

A.M. Monteiro et al. / European Journal of Operational Research 187 (2008) 525–542 533



534 A.M. Monteiro et al. / European Journal of Operational Research 187 (2008) 525–542
The constraint is equivalent to
Table
Residu

BS dat
cSte
l1ðT�tÞ þ ð1� cÞSte

l2ðT�tÞ ¼ Ste
rðT�tÞ
and it is basically saying that in the absence of arbitrage the estimated forward price of the underlying security
must coincide with its forward price [6].

Our numerical implementation was based on MATLAB’s optimization solver FMINCON. We took into consid-
eration the fact that EðzÞ is nonlinear and nonconvex by scaling the problem appropriately and by paying spe-
cial attention to the initial point provided to FMINCON (in the Black–Scholes data set, for instance, we used the
exact values of the targeted lognormal as initial guesses).

5.2. Black–Scholes data

Our first test was conducted with simulated option prices. We generated Black–Scholes options prices using
the function BLSPRICE provided by the Financial Toolbox of MATLAB. This function computes the value of the
call or put option in agreement with the Black–Scholes formula. To generate the data we must supply the cur-
rent value of the underlying asset, the exercise price, the risk-free interest rate, the time to maturity of the
option, the volatility, and the dividend rate.

The call and put option prices were generated considering 50 as the current price for the underlying asset,
0.1 as the risk-free interest rate, a time to maturity of 0.5, a volatility of 0.2, and no dividend rate. We con-
sidered 20 call options with (equally spaced) strikes varying from 30 to 70. The number of knots was set to 25
and the knots were equally spaced between 20 and 85. The risk-neutral pdf corresponding to the prices gen-
erated from these data is known to be the following lognormal density function:
pðxÞ ¼ lognðx; a; bÞ;
where l ¼ 0:1, r ¼ 0:2, T � t ¼ 0:5, and St ¼ 50. This function is depicted in solid lines in the plots of Fig. 1.
We solved the scaled instances of problems (9) and (16) defined by the Black–Scholes data and the scaling

reported above. We also solved problem (18) for the same data set. The plots of the recovered probability den-
sity functions are depicted in Fig. 1.

In our formulations, the Hessian matrix is theoretically known to be positive semidefinite. However, it is
also highly rank-deficient and, due to round-off errors, it exhibits small negative eigenvalues, around
�10�19. These negative eigenvalues proved to be troublesome for MATLAB’s active set QP. The scaling reduced
significantly the ill-conditioning of this matrix, allowing a relatively accurate eigenvalue computation. We
have modified the Hessian matrix, by adding a multiple n of the identity to the scaled Hessian matrix, using
as coefficient n ¼ jkminj. Under this adjustment, the modified scaled Hessian becomes numerically positive def-
inite. In the SDP approach, this value for n does not guarantee a numerically positive semidefinite matrix, and
had to be increased to n ¼ jkminj103.

It can be seen from the left plots of Fig. 1 that the pdf computed adjusted perfectly well to the lognormal
one, for all the approaches (QP, SDP, and LN2). We also point out that the expected prices of the call options
computed using the recovered risk-neutral pdf adjusted very well to the Black–Scholes prices (see right plots of
Fig. 1). The residuals for these adjustments, computed according to (6) in the QP and SDP cases and accord-
ing to (17) in the LN2 approach, are reported in Table 1.

The order of approximation is almost the same for all approaches. It should be nevertheless stressed how
well the recovered pdf obtained by QP and SDP exhibited the desired lognormality property.

In order to guarantee numerical success of the QP and SDP approaches, the initial and final spline knots
must be chosen within a minimum distance from the first and last strikes. We found that this distance is
around 6% of the amplitude of the vector of strikes. We chose the number of knots not much bigger than
1
als for the price option adjustments (Black–Scholes data)

LN2 QP SDP

a set 2:83� 10�10 2:31� 10�9 4:32� 10�9
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the number of strikes, but the pdf shapes exhibit some robustness when we consider a different number of
knots. In fact, for this Black–Scholes data set, we also obtain a good estimative for the pdf if we consider
+40, +35, +20, or +15 knots. When we consider a logarithmically spaced vector of knots instead of a linearly
spaced one (corresponding to the results reported above), the results remain the same: there is no difference in
the shape of the pdf and the residuals are still very low (2:83� 10�10 for LN2, 2:07� 10�9 for QP, and
1:37� 10�7 for SDP).

5.3. S&P 500 data

The second set of tests were conducted with publicly available market price data. We collected information
related to European call and put options on S&P 500 Index traded in the Chicago Board of Options Exchange
(CBOE) on April 29, 2003 with maturity on May 17 (data set 1), on March 24, 2004 with maturity on April 17
(data set 2), and on March 24, 2004 with maturity on June 20 (data set 3). We chose this market because it is
one of the most dynamic and liquid options markets in the world.

The interest rate was obtained from the Federal Reserve Bank of New York. We considered a Treasury Bill
with time to expiration as close as possible to the time of expiration of the options.

5.3.1. Preprocessing the data

As indicated in Section 2, a risk-neutral probability measure exists if and only if there are no arbitrage
opportunities. It is possible, however, to observe arbitrage opportunities in the prices of illiquid derivative
securities. These prices do not reflect true arbitrage opportunities – once these securities start trading, their
prices will be corrected and arbitrage will not be realized.

Still, in order to have meaningful solutions for the optimization problems that we formulated in the previ-
ous sections, it is necessary to use prices in these optimization models which contain no arbitrage opportuni-
ties. Thus, before solving these problems we need to eliminate prices with arbitrage violations such as absence
of monotonicity. The following theorem establishes necessary and sufficient conditions for the absence of arbi-
trage in the prices of European call options with concurrent expiration dates:

Theorem 2 (Herzel [17]). Let K1 < K2 < � � � < Kn denote the strike prices of European call options written on

the same underlying security with the same maturity, and let Ci denote the current prices of these options. These

securities do not contain any arbitrage opportunities if and only if the prices Ci satisfy the following conditions:

1. Ci > 0; i ¼ 1; . . . ; n.

2. Ci > Ciþ1; i ¼ 1; . . . ; n� 1.

3. The piecewise linear function CðKÞ with break-points at Ki’s and satisfying CðKiÞ ¼ Ci, i ¼ 1; . . . ; n, is strictly

convex in ½K1;Kn�.
Theorem 2 provides us with a simple mechanism to eliminate ‘‘artificial’’ arbitrage opportunities from the
prices we use. In our numerical experiments, after gathering price data for call and put options from the S&P
500 Index, we first eliminated options whose prices were outside the bid-ask interval, and then we generated
call option prices from each one of the put option prices using the put-call parity. In cases where there was
already a call option with a matching strike price, in the event that the price of the traded call option did
not coincide with the price obtained from the put option price using put-call parity, we used the price corre-
sponding to the option with the higher trading volume. After obtaining a fairly large set of call option prices in
this manner, we tested for monotonicity and strict convexity in these call prices as indicated by Theorem 2.
After the prices that violated these conditions had been removed, we formulated and solved the optimization
problems, as outlined in Section 4 for QP and SDP and in Section 5.1 for LN2.

In order to guarantee the quality of the data we collected another piece of information related to the market
options: the trading volume (see [16]). It is known that end-of-day settlement prices can contain options that
are not very liquid and these prices may not reflect the true market prices. Inaccurate prices are usually related
to thinly traded options. In contrast, options with higher volume represent better the ‘‘market sentiment’’ and
the investors expectations. We incorporated the trading volume in our problem formulation by modifying the
objective function of problems (9) and (16) in the following way:
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Fig. 2. Recovered probability density functions from S&P 500 Index data using QP, SDP, and LN2 approaches (left plots). Fitted
recovered expected prices for these approaches (right plots). Data set 1.
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Fig. 3. Recovered probability density functions from S&P 500 Index data using QP, SDP, and LN2 approaches (left plots). Fitted
recovered expected prices for these approaches (right plots). Data set 2.
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Fig. 4. Recovered probability density functions from S&P 500 Index data using QP, SDP, and LN2 approaches (left plots). Fitted
recovered expected prices for these approaches (right plots). Data set 3.
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X
K2C

hK ½CK � CKðyÞ�2 þ
X
K2P

lK ½P K � P KðyÞ�2
(and by modifying the objective function of problem (18) similarly). Here hK is the ratio between the trading
volume for the option CK and the trading volume for all options:
hK ¼
trading volume for CK

trading volume for all call options
:

The weight lK is defined similarly for put options. Note that options with zero volume have a weight equal to
zero.
2
als for the price option adjustments (S&P 500 Index data)

LN2 QP SDP

0 data set 1 0.05549748812 0.04408317006 0.03413501095
0 data set 2 0.02793921868 0.02733846337 0.01450991754
0 data set 3 0.02142219670 0.00834062178 0.00396678133
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5.3.2. Results

The results are presented for the three data sets mentioned before, in a manner similar to the Black–Scholes
case. In the first data set (Fig. 2) the original number of calls and puts was 40 each. After eliminating arbitrage
opportunities we reduced the problem dimension to 24 calls for which we considered 32 knots. In the second
data set (Fig. 3) the original number of calls and puts was 38 each. After eliminating arbitrage opportunities
we reduced the problem dimension to 23 calls for which we considered 28 knots. Finally, in the third data set
(Fig. 4) the original number of calls and puts was 29 each. After eliminating arbitrage opportunities we reduced
the problem dimension to 14 calls for which we considered 29 knots. In the QP and SDP approaches for the S&P
500 data, our experiments have shown that the spline knots must be chosen close to the strike prices and that the
choice of the location of the spline nodes is more sensible than it was in the Black–Scholes simulated data.

The Hessian modification has been done by adding nI to the scaled Hessian matrix, choosing the reference
value n ¼ jkminj for QP and n ¼ jkminj103 for SDP, both adjusted for the Black–Scholes data.

For data sets 1 and 2 the recovered probability density functions obtained by QP and SDP approaches pre-
sented bimodality in the lower tail, a feature which has not been observed in the LN2 approach. When we
consider the expected prices of the call options computed using the recovered risk-neutral pdf, we see that they
adjust well to the S&P500 prices (see Table 2). The fitting for the QP and SDP approaches is always better
than in the LN2 case.

We have observed that the pdf estimated using the QP model and the Hessian modification assumes small
negative values (10�5) at one of the tails of the distribution, roughly between 700 and 735 (Fig. 2), between
1200 and 1223 (Fig. 3), and between 830 and 870 (Fig. 4). As prescribed, the semidefinite optimization model
corrects this behavior and obtains a nonnegative pdf estimate. Moreover, we see from the figures in the table
that the SDP fitting is always better than the QP one.

In order to measure the impact of data containing arbitrage opportunities on our approach and the shape
of the pdf generated, we repeated our tests with market data. This time, for each data set, we use the mean of
bid and ask prices as call prices and did not eliminate prices that may contain arbitrage opportunities. As we
can see from Fig. 5, the shape of the pdfs is similar to the shape of the previous ones (without arbitrage) for the
SDP approach, indicating some robustness in our approach. For data set 3, we found some discrepancies in
the LN2 approach, where the pdf estimated from data containing arbitrage differs significantly from the pdf
estimated with ‘‘clean’’ data.

6. Concluding remarks

We have developed and tested a new way of recovering the risk-neutral probability density function (pdf) of
an underlying asset from its corresponding option prices. Our approach is nonparametric and uses cubic
splines. The core inversion problem is a quadratic programming (QP) problem with a convex objective func-
tion and linear equality constraints.

To guarantee the nonnegativity of the inverted risk-neutral pdf we followed two alternatives. In the first one we
kept the QP structure of the core problem, adding linear inequalities that reflect only the nonnegativity of this pdf
at the spline nodes. The second one extends the nonnegativity requirement to the entire domain of the recovered
pdf by imposing appropriate semidefinite constraints. In the examples tested, we observed that the QP approach
is less sensitive to scaling than the semidefinite programming (SDP) approach. While the simpler QP approach is
generally sufficient to recover an appropriate risk-neutral pdf both with simulated and market data, there are
instances where the solution of the more difficult SDP model is necessary to obtain a nonnegative pdf estimate.

We plan to investigate the numerical estimation of the volatility based on the knowledge of the previously
estimated risk-neutral pdf. Another topic of future research is to consider uncertainty in the data and to study
the robust solution of the corresponding uncertain QP and SDP problems.

Appendix

We recall in this appendix the definition of spline functions. Consider a function f : ½a; b� ! R to be esti-
mated by using its values f ðxsÞ given on a set of points xs, s ¼ 1; . . . ; ns þ 1, called nodes or knots. It is
assumed that x1 ¼ a and xnsþ1 ¼ b.
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Definition 3. A spline function, or spline, is a piecewise polynomial approximation SðxÞ to the function f such
that the approximation agrees with f on each node xs, i.e., SðxsÞ ¼ f ðxsÞ, s ¼ 1; . . . ; ns þ 1. A spline on ½a; b� is
of order q if: (i) its first q � 1 derivatives exist on each interior knot; (ii) the highest degree for the polynomials
defining the spline function is q.

The graph of a spline function S contains the data points ðxs; f ðxsÞÞ. A spline function S is always contin-
uous on ½a; b�. A cubic spline uses cubic polynomials of the form fsðxÞ ¼ asx3 þ bsx

2 þ csxþ ds to estimate the
function in each interval ½xs; xsþ1� for s ¼ 1; . . . ; ns. A cubic spline has order +3 and can therefore be con-
structed in such a way that it has second-order derivatives at each node. For ns þ 1 knots (x1; . . . ; xnsþ1) there
are ns intervals and, therefore, 4ns unknown constants to evaluate. To determine these 4ns parameters we use
the following conditions:
fsðxsÞ ¼ f ðxsÞ; s ¼ 1; . . . ; ns; and

f ns
ðxnsþ1Þ ¼ f ðxnsþ1Þ; ð19Þ

fs�1ðxsÞ ¼ fsðxsÞ; s ¼ 2; . . . ; ns; ð20Þ
f 0s�1ðxsÞ ¼ f 0s ðxsÞ; s ¼ 2; . . . ; ns; ð21Þ
f 00s�1ðxsÞ ¼ f 00s ðxsÞ; s ¼ 2; . . . ; ns; ð22Þ
f 001 ðx1Þ ¼ 0 and f 00ns

ðxnsþ1Þ ¼ 0: ð23Þ
The last condition leads to a so-called natural spline.
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