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Abstract 

The location of hazardous material incineration facilities is an important problem due 

to the environmental, social, and economic impacts that they impose. The costs associated 

with the facilities and the risks placed on nearby populations are important concerns as are 

the distributions of these costs and risks. This paper introduces a mixed-integer, 

multiobjective programming approach to identify the locations and capacities of such 

facilities. The approach incorporates a Gaussian dispersion model and a multiobjective 

optimization model in a GIS based inter-active decision support system that planners can 

access via the Internet. The proposed approach is demonstrated via a case study in central 

Portugal where the national government has decided to locate a large facility for the 

incineration of hazardous industrial waste. Due to intense local and national opposition, 

construction of the facility has been delayed. The system has been designed so that it can be 

used by decision makers with no special training in dispersion modeling, multiobjective 

programming, or GIS. 

 

Keywords: decision support systems, HAZMAT location modeling, GIS, multiobjective 

modeling 

.
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1. Introduction 

This paper presents a geographical information system (GIS) based inter-active 

decision support system (IDSS) designed to help planners determine the most appropriate 

locations and capacities for incineration facilities for hazardous materials (HAZMAT). The 

system incorporates a Gaussian plume model, to model atmospheric emissions from the 

facilities, and a multiobjective mixed-integer linear programming model to generate 

alternative siting schemes. Users enter data, and user options and preferences into the IDSS 

via tables. The web-based IDSS includes a sophisticated algorithm server that automatically 

constructs the mathematical model, generates the solution, and returns the results to the 

user in a table. A web graphical interface allows the user to conduct “what-if” analysis and 

generate additional solutions to consider. The system is demonstrated with a case study in 

Portugal. 

The analysis of technological and industrial hazards has received a considerable 

amount of attention during the past several decades. In fact, threats to the environment are 

considered much more seriously in policy making at local, regional, national and global 

levels than they were only a few decades ago [3]. The location of HAZMAT facilities is a 

complex and important societal problem as these location decisions impose costs on those 

who provide and use the facilities, and risks on those who are impacted by them. Due to the 

fact that these costs and risks are often quite large, such facilities are often provided by 

governmental entities. In situations where such decisions are not made directly by a 

governmental entity, they are generally highly regulated by them. 

Airborne pollutants are of crucial concern in many HAZMAT location problems, 

especially those involved with incineration. The emissions of atmospheric pollutants, either 

continuous or accidental, impose risks to various people. Mathematical programming has 

been applied to air quality control problems since Teller [52] and Kohn [30] at least. The 

severity of the risk depends on numerous factors such as the locations of the sources of the 

emissions, atmospheric conditions (e.g., wind direction), and the location of the people who 

may be affected. The potential for accidental emissions with very large negative impacts on 

various subsets of the overall population results in real and/or perceived inequity in the 

distribution of the resulting risks. As a consequence, issues associated with environmental 

justice have received considerable attention in recent years from the news media, policy 

makers, environmental activists, and academic researchers [6], [7]. 

The Gaussian dispersion, or Gauss plume, model is the most widely used technique 

for describing the movement and spread of non-reactive pollutants, and for estimating their 
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impact [7], [54], [29]. Gaussian dispersion models have been linked with mathematical 

programming for a long time [2], [26], [27], [21], [22]. ReVelle and Ellis [39], and Cooper 

et al [14], provide excellent surveys of this literature. In spite of this long history, there is a 

continuing need for additional dispersion based modeling approaches [38], [35]. 

In addition, the benefits, costs, and risks of HAZMAT facilities typically are 

dispersed among different individuals. As a consequence, considerable research has been 

dedicated to analyzing such problems. The use of mathematical programming techniques in 

HAZMAT facility location dates back to the late 1970s [10], [13]. A special journal issue 

on the topic appeared in 1995 [5], [18], [34], [55]. Excellent reviews of this literature 

appear in Erkut and Neuman [23], Schilling et al. [48], Murray et al. [36], and 

Moreno-Jiménez and Hodgart [35]. 

Researchers have been interested in multiobjective location problems for over 25 

years [17]. Multi-objective approaches to public facility location [47], [49] and HAZMAT 

location [13] are among the earliest applications. Total risk, the equity of the distribution of 

the risk imposed, and dollar costs associated with the location scheme have been three 

crucial objectives addressed in this literature [34], [55]. Numerous approaches have been 

taken to address the equity of risk [32], [24], [38]. Minimizing the maximum risk imposed 

upon any individual [37], [18], [15] or on any region [36] have been important approaches 

to modeling the equity of risk. 

GIS has been used in facility siting analysis since the 1970’s. However, the 

application of GIS to location analysis has intensified in recent years in terms of application 

areas, and sophistication of interface. This is not surprising given the storage, retrieval, 

analysis, mapping, and visualization capabilities of GIS. GIS can greatly assist the location 

modeling and analysis process by helping to gather, structure, filter, and analyze input data 

and by presenting model outputs in a way that helps decision makers understand their 

spatial consequences. The interested reader is referred to Church [8] for an excellent review 

of this literature. There has been also a growing interest in the use of GIS tools to help 

analyze environmental problems [25]. The use of GIS has great potential to assist in the 

analysis of HAZMAT facility location issues given the spatial nature of the location 

decisions and the risks imposed by them [33], [31], [16], [9], [8], [35], [1]. 

The research presented in this article was generated by a real world HAZMAT 

location problem in Portugal; specifically, the location of incineration facilities for 

HAZMAT. Public reaction to initial proposals suggested that a multiobjective approach 

would be most appropriate. Due to the potential number of options, and the complexity of 

the tradeoffs among the objectives for them, an interactive decision support system (IDSS) 
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was developed to assist the decisions makers in the selection of the most preferred option. 

The proposed IDSS utilizes GIS to integrate a Gaussian plume dispersion model and a 

multiobjective facility location model. 

 The remainder of this article is organized as follows. The motivation for the 

research is given in section 2. The underlying multiobjective facility location model is 

formulated in section 3. Section 4 discusses the proposed approach to the case study, some 

of the system’s capabilities, and preliminary results. A summary is presented in the last 

section. 

 

2. Motivation for the research 

This research was motivated by the location of a facility for the incineration of 

hazardous industrial wastes (HIW) in Portugal. During the past two decades, the Portuguese 

government has addressed the problem of processing HIW produced in the country. A 

special committee consisting of members from six Portuguese universities was appointed to 

gather information about the production of industrial wastes in Portugal. A report on the 

amounts of waste produced by administrative region and by type of industrial source was 

presented [28]. HIW accounts for 25.36 x 104 tons (about 0.9%) of the total industrial waste 

produced in Portugal yearly (29.2 x 106 tons). Approximately 48% of this HIW production 

(12.16 x 104 tons) results from used oils. Other important HIW sources in Portugal are 

organic chemicals (32.4 x 103 tons corresponding to 12.8% of the total) and solvents (28.0 

x 103 tons corresponding to 11.0 % of the total). Figure 1 demonstrates the geographical 

distribution of HIW in Portugal. To date, there are no processing facilities for this waste in 

Portugal. 

Insert Figure 1 about here 

 

To address the issue of HIW processing, a decision was made by the central 

government to establish two co-incineration facilities (at existing cement plants) to process 

this waste. One was to be in the Lisbon and Tagus Valley (TV) region in Otão (south of 

Lisbon near Setúbal), and the other in the Center region in Souselas (about 7 kilometers 

north of Coimbra). This decision created intense debate and strong opposition from 

environmental groups and the public in general. Demonstrations in front of the Parliament 

and the official residence of the Prime Minister were frequent. As expected, the populations 

near the proposed sites were the most active opponents. Souselas is near Coimbra, a city 

with one of the oldest universities in the world (more than 700 years old) and a population 

of about 150,000 people including approximately 20,000 university students. Equity of risk 
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was an important concern to the local population as the Coimbra region produces very little 

HIW as the service sector accounts for about 75% of its economic activity and its industrial 

sector (about 20% of local economic activity) produces very little HIW. 

The central government’s location decisions were based largely on the conviction that 

co-incineration was the most efficient way to process the HIW as filters in the chimneys 

would prevent health risks. The local population and the scientific/engineering community 

were concerned with occasional atmospheric dispersions of pollutants (e.g., dioxins causing 

cancer and other diseases) resulting from an accident or a malfunction in the chimney 

filters. No scientific studies analyzing the impacts associated with extraordinary events 

(e.g., accidents or equipment malfunction) were ever presented to the public by the 

government. 

Due to strong public opposition, construction has not started on either of the two 

proposed HIW incineration facilities. The purpose of this research has been to develop a 

decision support system that will facilitate a multiobjective analysis of the HIW siting 

problem. The underlying multiobjective location model is presented in the next section. 

 
3. Model formulation 

At the core of the decision support system is a multiobjective facility location model. 

The purpose of this model is to identify non-dominated [12], [20] siting schemes for the 

HIW incinerators. The model determines the number of facilities to be opened, their 

locations, and their respective shares of the total HIW to be incinerated. This differs 

somewhat from the government’s initial decision to locate a single plant in the northern half 

of Portugal to process approximately 50% of the total HIW generated in the country. 

However, it was done to determine if the possibility of multiple facilities would result in a 

more preferred option. Minimum and maximum processing loads were included for the 

candidate facilities. The minimum loads reflect the fact that small plants are not economical 

to operate. Maximum loads were established to facilitate the “sharing” of the risk imposed. 

These values are inputs to the model and can be varied to see their impacts on the location 

schemes generated. 

The model includes five objectives. The first two of these minimize facility costs: 

fixed and operating. Two facility cost objectives were included, as these costs will be borne 

primarily by different entities. That is, the fixed costs will be assumed largely by the 

European Community and the operating costs will be paid largely by Portugal. The third 

objective minimizes total risk (measured as average per parish). The last two objectives 

address the equity of the risk imposed. The fourth objective does this by minimizing the 
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maximum average risk imposed on any parish and the fifth objective minimizes the 

maximum risk imposed on any individual. Transportation costs and risks are frequently 

important in HAZMAT facility siting [18], [15]. However, they were not included in this 

research due to time and cost constraints on the analysis and the fact that transportation 

distances are not great and the options are limited given the government’s decision to have 

one facility near Lisbon and one near Coimbra. 

Given the following definitions: 

 yi  binary variable, 1 if the i-th incinerator candidate is opened, 0 otherwise; 

 xi  amount (e.g., ton/day) of waste processed in incinerator i; real variable; 

 M  maximum average impact on the parishes; real variable; 

 T  maximum impact on an individual; real variable; 

 D  total demand (ton/day); real parameter; 

 Ii  investment cost for incinerator i; real parameter; 

 Li  maximum capacity for each incinerator i; real parameter; 

 li  minimum amount of waste required to open incinerator i; real parameter; 

 Ei  processing cost for incinerator i by month, corresponding to the daily processing of 

1 unit (e.g., 1 ton/day); real parameter; 

 N  number of candidate incinerators; integer parameter; 

 nj  number of inhabitants in parish j; integer parameter; 

 P  number of parishes; integer parameter; 

 h  total number of inhabitants in Coimbra region ( h = nj
j =1

P

∑ ); integer parameter; 

 mi  maximum impact on any individual from incinerator i, relative to the processing of 

1 unit of waste (1 ton/day); real parameter; 

 fij  average impact on parish j relative to the processing of 1 unit of waste in the 

incinerator i (e.g., 1 ton/day); real parameter; 

 cik  impact produced by incinerator k relative to the processing of 1 unit (e.g., 1 ton/day) 

on the inhabited point (grid cell) of the maximum impact produced by incinerator i; 

real parameter. 

The underlying multiobjective mathematical model may be formulated as follows. 
 
The five objectives are: 
 

 Min  Iiyi
i=1

N

∑  minimize total investment cost; (1) 
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 Min   Ei xi
i=1

N

∑  minimize total processing cost; (2) 

 Min   
nj fij

h
xi

j =1

P

∑
i=1

N

∑  minimize total impact (measured as average per person); (3) 

 Min   M  minimize max. average impact in the parishes; (4) 

 Min   T minimize max. impact to an individual. (5) 

 
The constraints are: 

 xi    ≤    Liyi   i = 1, …, N  (6) 

 ensures that the maximum capacity for each incinerator i is not exceeded (N constraints); 
 

 xi    ≥    liyi   i = 1, …, N  (7) 

 ensures that the minimum amount of waste required to open incinerator i is assigned 
to incinerator i before it is opened (N constraints); 

 xi
i=1

N

∑    ≥   D  (8) 

 ensures that the total demand, D, is satisfied (1 constraint); 

 fij
i=1

N

∑ xi    ≤   M   j = 1, …, P  (9) 

 records the average impact on individuals in each parish (P constraints); 

 cik xk
k =1

N

∑    ≤   T  , i = 1, …, N  (10) 

 records the maximum impact on any one individual (N constraints). 

 

4. Case study analysis 

Several factors contribute to the complexity of the decisions involved in this analysis. 

First, the underlying science of aerial dispersion and its potential impacts is difficult for 

non-scientists to comprehend. Secondly, facility location problems typically involve a 

multitude of possible solutions. Third, the complexity of the analysis is greatly complicated 

by the inclusion of multiple objectives [12]. 

Interactive decision support systems (IDSS) have been shown to be effective aids in 

analyzing complex, multiobjective location problems [15], [1]. Consequently, a GIS-based 

IDSS was developed to assist governmental agencies and the general public in 

understanding and analyzing the problem at hand. GIS can be a powerful tool in the 

collection, storage, manipulation, and presentation of relevant data for the analysis as well 
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as an important tool to present outputs of the analysis to decision makers in a meaningful 

manner [8], [19]. Various interactive display techniques were included in the IDSS to assist 

the decision makers in understanding the various options and in analyzing the tradeoffs 

among them. 

As noted earlier, the Portuguese government’s initial plan was to locate two HIW 

incineration plants in Portugal: one in the southern half of Portugal at Otão, south of 

Lisbon; and the second in the northern half at Souselas, north of Coimbra. This research 

concentrates on developing a decision support system for analyzing such location decisions. 

To demonstrate the potential for the IDSS approach, the case study focuses on the northern 

facility location. The study assumes that the 50% of Portugal’s total HIW (i.e., 

126.8 x 103ton/year) will be processed north of Coimbra. An additional 12 sites were 

selected as candidate locations in this area. 

The IDSS starts by determining the geographical distribution of the impacts resulting 

from an accident or filter malfunction at each of the potential locations. These were 

evaluated for one unit of pollutant emission using the Gaussian dispersion model presented 

in the Appendix. The model identified the populations affected considering the most 

frequent wind direction in the region (approximately NW-SE, taken from 10 year wind 

records) and average wind speed (9m/s). The atmospheric stability class C of Pasquill-

Gifford was considered [29]. The aim of this analysis was not to model a particular 

pollutant or to measure the absolute levels of exposure. Rather, it was to evaluate who 

would be impacted. 

The spatial distributions or these impacts were calculated over a continuous region 

defined on a digitized map. This resulted in thirteen individual emission concentration 

distributions based upon one unit of HIW processed at each source. These are graphically 

represented in Figure 2. The darker the color in each plume, the higher the concentration. 

Only concentrations above a given threshold are visible. The study region covers 672 km2 

divided into 10 x 10 meter cells. Consequently, Figure 2 represents a 2800 x 2400 matrix of 

cells. The concentrations are evaluated at the centroid of each cell. In the case of an 

accident, it was assumed that the amount of emission from each source would be 

proportional to the quantity of HIW processed at that source. As these quantities are to be 

determined by the analysis, the Gaussian dispersion model generated per unit dispersion 

concentrations. 

 

Insert Figure 2 about here 
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The IDSS uses the multiobjective mixed-integer linear programming (MILP) model 

presented in the previous section to generate non-dominated solutions to the problem. A 

solution consists of a set of opened facility locations and the HIW load assigned to each 

facility. 

Model input (e.g., data, user options and preferences) can be entered and edited via 

four interlinked matrices. For example, Table 1 presents the “Incinerator Input Matrix”. 

The investment cost (Ii in the MILP) and the processing cost (Ei) for each potential facility 

site (i = A, B… M) are entered in the last 2 columns of this table. This matrix can also be 

used to force certain facilities to be opened (or not opened) in a solution by writing “Yes” 

or “No” under “Install” in Column 5 for the appropriate facility. When the user wants the 

system to “decide” if a facility should be opened at a particular location (which corresponds 

to a binary variable in the model), a “?” must be entered in the Install column for that 

facility’s row. Similarly, Column 6 can be used to predetermine load allocations to various 

facilities. These features facilitate “what-if” analyses by the users. In another matrix, the 

user can define objective function weights and/or establish constraints on the objective 

function values to generate additional non-dominated solutions [12], [20]. 

 

Insert Table 1 about here 

 

The user submits the four matrices to the algorithm server via the website. The user 

needs no specialized training in multiobjective mixed-integer linear programming to 

formulate the model or any specialized software to solve it as the integrated web interface 

automatically structures the mathematical model from the user’s tabular input and links the 

resulting model to an online MILP solver to generate the solution. In short, the IDSS 

automatically constructs the mathematical model, calculates the solution, and returns the 

results to the user in a table. In the case presented in this article, the model consists of 5 

objective functions and approximately 200 constraints with over 10,000 entries 

(coefficients, variables, weights, etc.) 

The IDSS employs the weighting method to initially generate ten non-dominated 

solutions to the multiobjective model. This is done to give the planners a general 

understanding of the tradeoffs among the objectives. The first five of these optimize the 

five objectives individually. Very small weights are placed on the other four objectives to 

identify a non-dominated solution. Objective function values for these five solutions are 

presented in columns 2-6 of Table 2 (where individual optimum values: opt1, opt2, opt3, 

opt4, opt5 are highlighted in bold). Objective 1 (investment costs) and Objective 2 
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(processing costs) are expressed in monetary units. Objectives 3, 4 and 5 represent pollutant 

concentrations (all in the same unit: impact/individual). Respectively, these are: average 

over all the inhabitants in the entire region, maximum average over the inhabitants in each 

parish, and the maximum over any individual in the entire region. 

 

Insert Table 2 about here 

 

Solutions 6 to 8 are “compromise” solutions. That is, they are non-dominated 

solutions identified via the weighting method [12], [20] using the following “relative” 

weights: Solution 6, (w1, w2, w3, w4, w5) = (1/5, 1/5, 1/5, 1/5, 1/5); Solution 7, 

(w1, w2, w3, w4, w5) = (1/10, 1/10, 2/10, 3/10, 3/10); and Solution 8, (w1, w2, w3, w4, w5) = 

(1/3, 1/3, 1/3, 0, 0). Solution 6 weights the objectives equally while Solution 7 places a 

higher importance on the impacts on people (objectives 4 and 5). Solution 8 imposes 

additional constraints that limit the maximum values of objectives 4 and 5 to 220 and 420 

respectively and assigns equal weights to the first 3 objectives. That is, it identifies the best 

solution for the first 3 objectives given the constraints on objectives 4 and 5. 

These relative weights were selected to generate an approximation of the set of 

non-dominated solutions. The IDSS editing module, readily permits planners to input other 

weighting schemes based upon their relative preferences among the objectives. 

The initial “relative” weights used by the IDSS and those provided later by the 

decision makers are automatically “scaled” by the IDSS. The actual weights, wi , used by 

the IDSS algorithm server to generate non-dominated solutions are based upon the relative 

weights and the values of opt1, opt2, opt3, opt4, and opt5. Specifically, 

wi = wi

opt j
j =1

5

∑
opti

,            i = 1, …, 5  

The “ideal solution” [56] is a useful benchmark for comparing non-dominated 

solutions. The values of the five objective functions in the ideal solution are those obtained 

when each objective was optimized individually (i.e., opt1, opt2, opt3, opt4, and opt5). The 

objective function values for the ideal solution are given in the row labeled “Ideal Solution” 

in columns 2-6 of Table 2. This solution is not feasible unless a single solution is optimal 

for all of the objectives. The IDSS also identifies the “anti-ideal solution”. The five 



TPIRCSUNAM DETPECCA

ARTICLE IN PRESS

 11

objective function values for this solution are the “worst” (i.e., maximum) values for each 

objective in Solutions 1-5. The objective function values for the “anti-ideal” solution are 

given in the row labeled “Anti-ideal Solution” in columns 2-6 of Table 2. The “ideal” and 

“anti-ideal” solutions are used in BAGAL, a graphical display representing solutions in 

objective space [15]. Solutions 1 through 5 which define the inner and outer boundaries 

(i.e., the ideal and anti-ideal solutions) of the BAGAL are shown in Figure 3. 

Insert Figure 3 about here 

One way to compare non-dominated solutions is to compare their “distances” from 

the ideal solution. The “distance” of each solution from the ideal solution is automatically 

evaluated by the IDSS using two frequently adopted metrics [4], [50]. These metrics are the 

Rectilinear, or Manhattan (L1), distance where L1(x, y) = x1 − y1  + … + xn − yn  and the 

Chebyshev (L∞) distance where L∞ (x, y) = max x1 − y1 , …, xn − yn{ }, x, y ∈ ℜ
n
 (here, 

n = 5 objectives). The distances of each solution from the ideal solution, represented as a 

percentage above the ideal are given in columns “∆ L1 (%)” and “∆ L∞ (%)” of Table 2. 

The IDSS also uses the ideal solution to identify two additional non-dominated 

solutions using goal programming [51] where the “goals” are the ideal solution value for 

each objective. Solution 9 measures the relative (normalized) distances from the goals 

using the L1 metric and solution 10 measures the distances using the L∞ metric. The 

objective function values for these solutions are given in rows “Goal L1 (Norm)” and “Goal 

L∞ (Norm)” of columns 2-6 in Table 2 and their distances to the ideal solution are 

represented in columns “∆ L1 (%)” and “∆ L∞ (%)” of that table. For example, according to 

the data in Table 2, solution #10 would be the preferred solution according to the L∞ metric. 

The IDSS incorporates numerous graphical tools to help planners generate and 

compare non-dominated solutions and to determine if additional solutions might be of 

interest. Although a complete description of the IDSS is beyond the scope of this paper, we 

present two such tools built into the IDSS. First, various output tables can be generated 
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automatically. For example Table 3 shows how many facilities are opened (column 2), the 

load assigned to each opened facility (columns 3-15), the total HIW load for each solution 

generated to date (column 16) and the solutions obtained (column 17) when the facility 

capacity constraints are relaxed (i.e., a single facility can process all of the HIW.) 

Insert Table 3 about here 

The IDSS also generates BAGALS displaying various solutions selected by the user. 

For example, Figure 4 displays Solutions 5 and 8 on the BAGAL. The decision makers can 

readily see that Solution 8 outperforms Solution 5 in terms of Objectives 1, 3, and 4 and is 

worse than Solution 5 in terms of Objectives 2 and 5. Another major advantage of the IDSS 

is that it allows decision makers to conduct “what if” and sensitivity analyses on various 

problem parameters and policy options. For example, Table 1 can be used interactively by 

the decision maker to “modify” the underlying “problem”. The Input Matrix can be used to 

add constraints on various objective function values or to change the relative weights on the 

objectives to generate new non-dominated solutions. 

 
 Insert Figure 4 about here 

 

The earlier analysis assumed that more than one facility could be opened. A single 

facility (i.e., uncapacitated) scenario was run to see how the Souselas location (site K) 

initially selected by the central government ranked vis-à-vis the other 12 potential 

locations. As Table 4 shows, site K is not optimal for any of the 5 objectives and is 

dominated by site D. These solutions and Table 2 can be generated readily by the decision 

maker via straightforward input to the IDSS. 

Insert Table 4 about here 

 

5. Summary and conclusions 
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 The motivation for this research was a central government decision to locate a 

hazardous industrial waste (HIW) incineration facility in central Portugal. Due to the risks 

involved with such a facility, the decision resulted in intense opposition from various 

organizations and individuals at the local, national, and international levels. In response to 

this opposition, this research was undertaken to develop a multiobjective, interactive 

decision support system (IDSS) to help decision makers understand, analyze, and explain 

the extremely complicated decisions involved. The IDSS integrates sophisticated 

techniques from the fields of atmospheric dispersion modeling, facility location modeling, 

geographical information systems (GIS), and multiobjective decision analysis. 

 Model input (e.g., data, user options and preferences) can be entered and edited by 

the users via four interlinked matrices. The web-based IDSS includes a sophisticated 

algorithm server that automatically constructs the linear programming model, calculates the 

solution, and returns the results to the user in a table. The IDSS incorporates numerous 

graphical tools to help planners generate and compare non-dominated solutions and to 

determine if additional solutions might be of interest. The user needs no specialized training 

or software to utilize these features. 

Due to the strong opposition of the population and local governments, co-incineration 

in Souselas has not yet begun. Although it may be too late to ultimately influence the 

HAZMAT location decision that initiated this effort, it is expected that this research will 

provide the structure and tools to analyze future location decision that impose risk on 

various members of the overall population. 

 

6. Authors’ Note 

The motivation for the approach taken in this research was generated, in large part, by 

research conducted by Professor Charles (Chuck) ReVelle over the past 30 years. The 

underlying problem is one of facility location. Chuck was a pioneer in modeling these 
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problems [43], [46], [41], [53], [11] as well as a pioneer in the use of multiobjective 

analysis for public facility location problems [49] and for HAZMAT facility location [13]. 

The modeling of environmental issues was another major concern of his dating back to 

ReVelle et al [40] and including ReVelle and ReVelle [42], [44], [45], ReVelle and Ellis 

[39], and ReVelle [38] among others. The authors are particularly honored that this 

research will appear in a special issue dedicated to the memory of Professor ReVelle as we 

represent three “generations” of his PhD student family (in reverse order of authorship 

which would please him). 
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APPENDIX – The Gaussian diffusion equation 
 
 

 
 
 



TPIRCSUNAM DETPECCA

ARTICLE IN PRESS

 20

 Table 1: Example of “Incinerator Input Matrix” for the IDSS. 
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Table 2 – Summary of the first 10 non-dominated solutions generated by the IDSS 
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Table 3 – Load assigned to each opened facility for each solution generated 
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Table 4 – Objective function values for each of the potential sites serving as the only facility opened 
 
 
 

Facility opened Investment 
Cost Processing Cost Average 

Parish Impact
Max Parish 

Impact 
Max Individual 

Impact 

A  879 000  455 094   23  1 299  3 312
B  596 000  500 256   24   946  1 935
C  623 000  389 088   33   763  2 280
D  545 000  559 314   63   521  3 457
E  785 000  503 730   33  1 254  2 774
F  972 000  378 666   141  2 062  1 566
G  865 000  437 724   152  1 235  3 166
H  761 000  357 822   340  1 156  3 626
I  672 000  343 926   194   808  3 985
J  918 000  528 048   89  1 768  3 704
K  893 000  587 106   178   548  4 049
L  698 000  448 146   85   721  3 537
M  847 000  409 932   18   954  1 977
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Figure 1:  Geographic distribution of HIW in Portugal 
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Figure 2: 13 candidate locations and individual pollutant dispersion plumes normalized for 1 kg of 
emission at each source showing maximum concentration and the decay 
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 Figure 3: BAGAL showing the five solutions that optimize objectives 1-5 and define the 
inner and outer boundaries of the BAGAL 
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Figure 4: BAGAL showing solutions 5 and 8 
 

 
 


