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Abstract

Tributyltin is a potent biocide mainly used in marine antifouling paints. Owing to its widespread distribution in coast areas and
its high toxicity to aquatic organisms, the use of this compound is generally restricted and under government regulation. Despite of
that, it persists in the aquatic environment. Organotins used in industry have also been detected in terrestrial environments. The
persistence and high lipophilicity explain bioaccumulation. The role of bacteria in recycling organic matter prompted us to study
the interaction of tributyltin with two ubiquitous bacilli, B. stearothermophilus and B. subtilis, proposed as biological indicators
of pollutants with ecological impact. These bacteria have been used as suitable models for the study of toxicity mechanisms of unse-
lective lipophilic compounds (e.g., DDT and endosulfan). Drug effects on growth parameters, oxygen consumption and membrane
organization were assessed. Bacteria growth in a liquid complex medium was disturbed by concentrations of TBT as low as 25 nM
(8 pg LY, close to the concentration in polluted environments. The respiratory activity is affected by TBT in both microorganisms.
Membrane organization, assessed by fluorescence polarization of two fluidity probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and a
propionic acid derivative (DPH-PA), was also perturbed by the xenobiotic. Alterations on growth, oxygen consumption and physi-
cal properties of membrane lipids are stronger in B. stearothermophilus as compared to B. subtilis. A putative relationship between
growth inhibition and respiratory activity impairment induced by TBT and its effects on the physical behaviour of bacterial
membrane lipids is suggested.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction tous distribution on aquatic environments (White
et al., 1999; Riidel, 2003). Furthermore, industrial utili-

Toxicological concerns of TBT emerged from its use zation in preservation of wood, cotton textiles, paper,
as a biocide in antifouling paints, leading to its ubiqui- leather and paints (White et al., 1999) contributes for

the presence of organotin compounds in terrestrial envi-
ronments (White et al., 1999; Huang and Matzner,

2004).
Abbreviations: TBT, tributyltin; NADH, nicotinamide adenine Reports of TBT toxicity to organisms belonging to
dinucleotide,  reduced form; TMPD, N,N.N'.N'-tetramethyl-p- the five taxonomic kingdoms have been reported (White
phenylenediamine. et al., 1999; White and Tobin, 2004; Smith et al., 2003;
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effects. However, the molecular mechanisms underlying
the toxicity of TBT are far from full understanding.
Due to the high lipophilicity of TBT (log K, between
2.3 and 4.4, depending on physico-chemical conditions;
(Riidel, 2003), biological membranes have been consid-
ered putative targets for its action (White et al., 1999;
Gadd, 2000).

Microorganisms have been used as powerful tools to
assess in vitro the toxicity of several environmental pol-
lutants, namely polycyclic aromatic hydrocarbons,
industrial solvents and agrochemicals (Sikkema et al.,
1995). On the other hand, data of the toxic effects on
microorganisms (the basic levels of organization of soil
and aquatic communities) may be used to define upper
limits for concentration of pollutants and to predict
environmental toxicity risks. B. stearothermophilus has
been used as a suitable model for the toxicity assessment
of drugs (Luxo et al., 2000; Rosa et al., 2000; Monteiro
et al., 2003) and pesticides (Donato et al., 1997; Martins
et al., 2003). Growth, cell viability and oxygen consump-
tion have proved to be sensitive biological parameters to
assess chemical toxicity of lipophilic xenobiotics, often
associated with disturbance of the membrane lipid orga-
nization. This study aims to collect data of similar stud-
ies with TBT to establish and further develop B.
stearothermophilus as a bacterial model for screening
tests of chemical toxicity, and also to compare the
relative sensibility to xenobiotics of two philogenetically
related organisms with distinct living conditions (B. sub-
tilis, a mesophile and B. stearothermophilus, a thermo-
phile). The choice of these bacteria was also motivated
because data of TBT action on organisms of terrestrial
environment are scarce. The effects of TBT on growth,
oxygen consumption and in the physical behaviour of
bacterial lipid membranes of the two species of Bacillus
will be studied.

2. Materials and methods
2.1. Chemicals

Tributyltin chloride (TBT), 1,6-diphenyl-1,3,5-hexa-
triene (DPH) and 1,6-diphenyl-1,3,5-hexatriene pro-
pionic acid (DPH-PA) were obtained from Sigma
Chemical co.

2.2. Cultures

The strains of B. stearothermophilus and B. subtilis
(ATCC 6051) and the conditions for their maintenance
and growth have been described previously (Jurado
et al., 1987). TBT from concentrated ethanolic solu-
tions, was added to the growth medium (diluted L-
Broth) in order to obtain concentrations from 25 to
500 nM. Growth was measured by turbidimetry at

610 nm in a Bausch & Lomb Spectronic 21 spectro-
photometer.

2.3. Oxygen consumption

Obtainment of protoplasts, protein quantification,
and monitoring of oxygen consumption were described
elsewhere (Donato et al., 1997). Shortly, protoplasts
were obtained by treatment of cells collected at the mid-
dle of exponential growth phase. Protein was quantified
by the biuret method using serum bovine albumin for
calibration. A Clark oxygen electrode was used to mea-
sure the oxygen consumption at 37 and 40 °C for B. sub-
tilis and B. stearothermophilus, respectively. TBT was
added to the protoplasts (0.5 mg protein) 4 min before
the substrate (either NADH 10mM or ascorbate
10 mM/TMPD 600 uM). Oxygen consumption is
expressed as % of the control, corresponding to 0 nM
TBT (the solvent DMSO had no effects at the used
volumes).

2.4. Lipid analysis

Cells grown up to the beginning of the stationary
phase were harvested by low-speed centrifugation and
washed three times with buffer (10 mM Tris—Cl, pH
7.0). The lipids were extracted by the Bligh and Dyer
method (1959) and quantified by measuring the amount
of inorganic phosphate (Bartlett, 1959) after hydrolysis
of the extracts at 180°C in 70% HCIO, (Bottcher
et al., 1961). The polar lipids were isolated by prepara-
tive thin layer chromatography, as previously described
(Jurado et al., 1991).

2.5. Liposomes

Aliquots from lipid solutions in CHCI; (polar lipid
extract) containing 1.34 mg of lipid were evaporated to
dryness on a rotary evaporator. The dry residues were
hydrated under N, atmosphere at 55 °C by gentle shak-
ing with 5 ml of 50 mM KCIl and 10 mM Tris-maleate
(pH 7.0) and multilamellar vesicles were obtained. Then,
the suspensions were vortexed for 1 min to disperse
aggregates.

2.6. Fluorimetric measurements

The fluidity probes DPH and DPH-PA in dimethyl-
formamide were injected (few pl) into liposomes suspen-
sions (345 pM in phospholipid), as previously described
(Antunes-Madeira et al., 1994) to give a lipid/probe
molar ratio of 400. The mixture was vigorously vortexed
for 10s, and then TBT was added from concentrated
ethanolic solutions. The mixture was incubated at 55
or 37 °C (respectively for B. stearothermophilus or B.
subtilis) in the dark, for a period of 18-20 h to reach
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equilibrium. Control samples received equivalent vol-
umes of dim-ethylformamide and ethanol. Added sol-
vent volumes (few pl) had negligible effects on
measurements.

The fluorimetric measurements were performed with
a Perkin—Elmer spectrofluorimeter, model MPF-66,
with a thermostated cell holder. The excitation was set
at 336 nm and the emission at 450 nm (5 nm excitation
and 6 nm band pass).

All fluorescence measurements were corrected for the
contribution of light scattering by using appropriate
blanks without added probes. The degree of fluorescence
polarization (P) was calculated according to Shinitzky
and Barenholz (1978) from the equation:

_IH -Gl
_[\\+G1L

where I and I, are the intensities of the light emitted
with its polarization plane parallel (||) and perpendicular
(L) to that of exciting beam. G is the correction factor
for instrument polarization, given by the ratio of the
vertically to the horizontally polarized emission compo-
nents when the excitation light is polarized in the hori-
zontal plane.

3. Results

3.1. Effect of TBT on the growth of B. stearothermophilus
and B. subtilis

B. stearothermophilus and B. subtilis were grown at 65
and 37 °C, respectively (i.e. in optimal temperature
ranges) in a complex medium (diluted L-Broth) with
an endogenous concentration of 0.115 uM Ca** (Jurado
et al., 1987). To this basal medium, TBT was added
from a concentrated ethanolic solution to obtain con-
centrations ranging from 25 to 500 nM; control cultures
were grown in a medium without TBT but with the sol-

vent (ethanol). The solvent by itself has no effect on
growth. Concentration-dependent alterations of growth
were induced by TBT in the two bacilli (Table 1).
Increasing concentrations of TBT added to the growth
medium (in the range of 25-500 nM) increasingly inhib-
ited growth (Fig. 1 and Table 1). However, in the range
of 25-150 nM TBT, the growth parameters were differ-
ently affected in the two species of Bacillus. In B. stearo-
thermophilus, the main parameter affected by TBT was
the maximal cell density reached in the stationary phase,
which showed a progressive decrease with increasing
concentrations of the compound. The specific growth
rate was not significantly altered in the range of 25—
100 nM TBT, but showed a drastic decrease with the
addition of concentrations above 150 nM TBT. In con-
trast, the maximal cell density of cultures of B. subtilis
showed a slight decrease (7%) by the addition of TBT
(in the range of 25-150 nM), whereas the specific growth
rate progressively decreased as TBT concentration in-
creased in the same range. At concentrations above
150 nM TBT, a significant decrease of the bacterial yield
was also noticed. In both species, effects of TBT on the
lag time were not detected.

3.2. Effect of TBT on the oxygen consumption of
B. stearothermophilus and B. subtilis protoplasts

Protoplasts prepared from cells of B. stearothermo-
philus and B. subtilis grown in the basal medium, in
the optimal temperature ranges (65 and 37 °C, respec-
tively), were used to assess the effect of TBT on the oxy-
gen consumption rate. The respiratory activity was
measured at 40 °C for B. stearothermophilus and 37 °C
for B. subtilis, and the protoplasts were incubated
during 4 min with the desired TBT concentration prior
to the addition of the respiratory substrate. The
oxygen consumption promoted by the addition of
NADH to protoplasts of both bacteria decreased with
increasing TBT concentrations (Fig. 2). This effect is

Table 1

Specific growth rate, and maximum cell density of cultures of B. stearothermophilus and B. subtilis grown in media with different concentrations of

TBT

TBT (nM) Specific growth rate (h™')* Maximum cell density (% of control)*
Stearothermophilus Subtilis Stearothermophilus Subtilis

0 2.361 £ 0.129 (7) 1.209 £ 0.114 (5) 100 100

25 2.447 £ 0.163 (4)™* 0.975 £ 0.080 (3)" 948 +1.2 (4)" 94.1 +3.3 (3)™

50 2.295 + 0.096 (4)™s- 0.960 + 0.030 (3)"" 81.0 4 4.0 (4)""00° 91.3 + 3.0 (4)™sns

100 2.103 + 0.080 (4)""* 0.826 + 0.008 (3)"" 63.5 4 2.9 (5)"0° 90.9 + 5.9 (7)™

150 1.339 4 0.120 (5)""-0° 0.725 4 0.056 (3)"""s 54.1 +2.9 (6)""00° 93.4 + 2.8 (3)msns

250 0.808 = 0.022 (3)"""00° 0.670 +0.113 (3)"" 20.7 4 2.1 (5)""00° 66.6 + 13.2 (3)""0°

500 n.d. 0.508 + 0.065 (3)"" n.d. 4504 11.3 (3)""°

@ Results are means + standard deviation of at least three independent experiments and comparisons were performed using Tukey’s multiple
comparison test, for the following paired observations: cultures grown with different concentrations of TBT vs control cultures (n.s. not significant,

sk

“p<0.05 " p<0.01;

p <0.001) and cultures grown with 50, 100, 150, 250 and 500 nM TBT vs cultures grown with 25, 50, 100, 150 and 250 nM
TBT, respectively (n.s. not significant, °p < 0.05; °°p <0.01, °°°p <0.001).



946 J.D. Martins et al. | Toxicology in Vitro 19 (2005) 943-949

B
=
o
3
a
(o]

0.01 T T T

0 1 2 3

Time (h)

Fig. 1. TBT effects on the growth of B. stearothermophilus at 65 °C.
Cells were grown in a basal medium (dilute L-Broth) without TBT (H)
and with 50 nM (O), 100 nM (V), 150 nM (OJ) and 250 nM () TBT.
The results are typical of at least three independent experiments.
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Fig. 2. TBT effects on the oxygen consumption rate of B. stearother-
mophilus (grey and listed bars) and B. subtilis (white bars) protoplasts
after 4 min of incubation at 40 and 37 °C, respectively, expressed as %
of the control (protoplasts incubated for 4 min without xenobiotic, in
the presence of a few microliters of dimethylsulfoxide, the TBT
solvent); 10 mM NADH (grey and white bars) or 10 mM ascorbate—
600 uM TMPD (listed bars) was used as respiratory substrate. Results
are means =+ standard deviation of at least three independent exper-
iments and comparisons were performed using Tukey’s multiple
comparison test, for the following paired observations: protoplasts
with 5, 10, 25 and 50 uM TBT vs control protoplasts (n.s., not
significant; "~ p <0.01; "7 p <0.001); protoplasts with 10, 25 and
50 uM TBT vs protoplasts with 5, 10 and 25 uM TBT, respectively
(n.s., not significant; °p <0.05; °°p <0.01; °°°p <0.001); protoplasts
of B. stearothermophilus with 5, 10, 25 and 50 uM TBT vs protoplasts
of B. subtilis with the same TBT concentrations (results are statistically
different with p <0.001 for 10 and 25 uM TBT and n.s. for 5 and
50 uM TBT; in sake of clarity, symbols were not shown in figure).

significantly higher (p <0.001) in protoplasts of B.
stearothermophilus as compared with B. subtilis, except
for the extreme TBT concentrations. TBT did not have
any effect when ascorbate/TMPD supported the respira-
tory rate of B. stearothermophilus protoplasts (Fig. 2).
This substrate is not suitable for B. subtilis protoplasts
owing to a different terminal oxidase, probably a quinol
oxidase instead of a standard cytochrome oxidase (Lau-
raeus and Wikstrom, 1993). As expected, the oxygen
consumption supported by NADH or ascorbate-TMPD

was completely impaired by the addition of KCN
(1 mM), as consequence of complete inhibition of termi-
nal oxidase.

3.3. Physical effects of TBT on bilayers of
B. stearothermophilus and B. subtilis polar lipids

To investigate if TBT toxic action on bacteria could
result from perturbations of membrane lipid organiza-
tion, fluorescence polarization measurements were per-
formed using DPH and DPH-PA as fluidity probes,
incorporated in liposomes prepared with the polar lipids
of B. stearothermophilus and B. subtilis (grown at 65 and
37 °C, respectively). The rotational motions of the
probes that result in depolarization of fluorescence are
tightly coupled to acyl chain orientational fluctuations
(Lentz et al., 1976) and, consequently, reflect the degree
of molecular packing of the lipids in the probe bilayer
environment. Thus the term fluidity, opposite to struc-
tural membrane order, will be used here in an opera-
tional sense and defined as being directly proportional
to the reciprocal of fluorescence polarization. Monitor-
ing of TBT induced disturbance in lipid packing across
the bilayer thickness was achieved by the use of DPH,
buried in the hydrophobic core of the bilayer (Shinitzky
and Barenholz, 1978), and DPH-PA, anchored close to
the lipid—water interphase because of its charged propi-
onic group (Trotter and Storch, 1989). As shown in
Fig. 3, temperature-dependent DPH and DPH-PA fluo-
rescence polarization exhibits a sharp decrease over a
range of about 20 °C. This indicates a broad transition
from the gel to liquid-crystalline phase undergone by
the bilayers prepared with the mixtures of bacterial
polar lipids. Identical results were previously obtained
with dispersions of the polar lipids of B. stearothermo-
philus by DSC and spectrofluorimetry, using different
fluorescent probes, and have been explained by the
heterogeneous composition of the lipid preparations
(Jurado et al., 1991). Comparing the polarization values
detected in the same preparation by the two probes at
the same temperature, it is evident an increase of order
from the core of the bilayer, monitored by DPH, to
the outer regions, where DPH-PA distributes, in agree-
ment with classical reports (Tilley et al., 1979).

At temperatures below the phase transition, i.e. up to
20 °C for B. stearothermophilus lipid preparations and
up to 10 °C for B. subtilis, the fluorescence polarization
of DPH and DPH-PA decreases with increasing concen-
trations of TBT (in the range of 1:12 to 1:4 TBT:lipid
molar ratio), as shown in Fig. 3. This reflects an increase
of fluidity induced by TBT across the bilayer thickness.
However, the decrease of order induced by the same
TBT concentration (e.g., 1:6 TBT:lipid molar ratio) is
much more significant in the outer regions of the bilayer,
monitored by DPH-PA, than in the hydrophobic core,
monitored by DPH. The thermograms of membrane
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Fig. 3. Thermograms of fluorescence polarization (P) of DPH (A and B) and DPH-PA (C and D) in liposomes prepared with the polar lipids of cells
of B. stearothermophilus (A and C) and B. subtilis (B and D) grown in the basal medium, at 65 and 37 °C, respectively. Liposomes were incubated
without (M) or with 1:12 (O), 1:6 (V) and 1:4 (O) TBT:lipid molar ratio. The thermotropic profiles are typical assays of at least three independent
experiments. Polarization values are means of three readings of fluorescence intensities, for the same assay, and error bars (SD) are not represented

since, for most points, they are encompassed by the size of the symbols.

preparations of both bacteria show that the addition of
TBT also induced a concentration-dependent decrease
of fluorescence polarization along the phase transition
temperature range, that is when ordered and disordered
lipid domains coexist. This effect was also more appar-
ent in the outer membrane regions, as reported by
DPH-PA. In the fluid phase (above 40 °C for B. stearo-
thermophilus lipid dispersions and above 28 °C for B.
subtilis), TBT differently affected the lipid membranes
of the two bacilli species. It induced a disordering effect
in the outer regions of B. stearothermophilus lipid bilay-
ers but had no effect on B. subtilis membrane lipids.
Additionally, when a concentration-dependent effect
was detected in both bacteria, the lipids from B. stearo-
thermophilus showed consistently an increased suscepti-
bility to TBT, i.e. a higher perturbation for the same
TBT concentration. This effect is highly reproducible
and its actual significance can be better assessed com-
paring the increase of disorder induced isothermally by
TBT to that resulting from a decrease of temperature.
For example, at 13 °C, P detected by DPH-PA in B. ste-
arothermophilus lipid bilayers (Fig. 3C) decreases from
0.424 to 0.357 with the addition of TBT 1:6 (drug:lipid
molar ratio). An identical decrease of P is induced in
control liposomes by a decrease of 13.3°C. As was
shown, the physical impact of TBT interaction with

membranes clearly depends on the lipid phase and on
the lipid composition.

4. Discussion

The wide range of organisms, bacteria included, af-
fected by the toxic effects of TBT (White et al., 1999; Al-
zieu, 2000; Petersen and Gustavson, 2000; Qun-Fang
et al., 2002; Smith et al., 2003; Jensen et al., 2004; White
and Tobin, 2004) suggests that molecular cell compo-
nents common to all living systems, namely biomem-
branes, may constitute the main target of this
lipophilic xenobiotic. Prokaryotic cells are particularly
useful to study the molecular toxicity of membrane-
active compounds, offering advantage over eukaryotic
cells owing to the simple membrane organization. Our
experience with the use of a strain of B. stearothermophi-
lus as a model to evaluate the toxicity of lipophilic drugs
(Luxo et al., 2000; Rosa et al., 2000; Monteiro et al.,
2003) and pollutants (Donato et al., 1997, Martins
et al., 2003) prompted us to use this bacterium to further
elucidate the membrane mediated toxic effects of TBT.
Growth of B. stearothermophilus is very sensitive to
xenobiotics inducing membrane perturbations and
growth inhibition reasonably correlates with other
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bioindicators of chemical stress in eukaryotic cells, e.g.,
impairment of respiratory activity of rat liver mitochon-
dria (Donato et al.,, 1997). A mesophilic species (B.
subtilis) has been also used here as a model for toxicity
assessment, to obtain additional information by
combined experimental data.

A growth inhibition, as a function of TBT concentra-
tion added to the culture medium, occurs with both bac-
teria, although with different sensitivities. The amount
of growth of cultures of B. stearothermophilus was more
depressed by the addition of TBT, as compared with B.
subtilis. Thus, the maximum cell density decreased to
20.7% of the control, in cultures of B. stearothermophilus
for 250 nM TBT and to 66.6%, in cultures of B. subtilis
for the same concentration of TBT. A concentration-
dependent inhibitory effect on the oxygen consumption
supported by NADH in protoplasts of both bacteria
was also detected. This effect was significantly greater,
in the range of 5-25 uM, in protoplasts of B. stearother-
mophilus, as compared with B. subtilis. Since the oxygen
consumption elicited by ascorbate-TMPD revealed
insensitive to the addition of TBT in B. stearothermophi-
lus protoplasts, we concluded that TBT interacts with
the respiratory system of this bacterium at level(s) pre-
ceding the terminal oxidase segment. The same conclu-
sion is open for B. subtilis, since ascorbate-TMPD is
not suitable as substrate for the terminal oxidase, puta-
tively a quinol oxidase, at variance with a cytochrome ¢
oxidase in B. stearothermophilus (Lauraeus and Wik-
strom, 1993). This is related with the absence of the
cytochrome c bridge of the respiratory system in B. sub-
tilis grown in a rich glucose medium (Lauraeus and
Wikstrom, 1993). Although further studies to individu-
ally assess the enzymatic activities of the respiratory
complexes are needed to elucidate TBT effects on the
bioenergetics of these two species of Bacillus, data sug-
gest that perturbations of the respiratory activity may
underlie the impairment of bacterial growth, as sug-
gested for other microorganisms (Gadd, 2000) and in
agreement with results obtained with mitochondria
(Stockdale et al., 1970; Gogvadze et al., 2002).

Lipid bilayer structure and dynamics play a pivotal
role for membrane proper functioning, as a selective
barrier and a matrix for enzymes (Bloom et al., 1991).
Thus, the cytotoxic effects of a variety of drugs and pol-
lutants are suggested to result from their incorporation
into the lipid bilayer and a consequence of the ability
to affect and modulate lipid membrane physical proper-
ties (Sikkema et al., 1995). In this toxicological context,
physical studies with dispersions of bacterial polar lipids
were performed to elucidate TBT effects on the mem-
brane lipid organization, putatively related with TBT in-
duced impairment of growth and respiratory activity of
the bacteria. The different physical effects promoted by
TBT on membranes prepared with the polar lipids of
B. stearothermophilus and B. subtilis may reflect differ-

ences in the membrane lipid composition of the two spe-
cies of Bacillus. (Bishop et al., 1977; Minnikin and
Goodfellow, 1981; Martins et al., 1990; Jurado et al.,
1991; Klein et al., 1999) and are in accordance with stud-
ies with model membranes prepared with different syn-
thetic lipids (Ambrosini et al., 1991; Chicano et al.,
2001). In spite of the differences in the thermotropic pro-
files, most relevant is the general disordering effect in-
duced by TBT on both bacterial lipid preparations,
mainly affecting the interfacial region of the bilayer
monitored by DPH-PA, in accordance with previous
studies performed with phosphatidylcholine liposomes
(Ambrosini et al., 1991; Chicano et al., 2001) suggesting
that organotin compounds are located in the upper part
of the phospholipid bilayer (Chicano et al., 2001).

At present, it is not possible to provide a full explana-
tion for the different effects of TBT on B. stearothermo-
philus and B. subtilis, but consistent perturbations on
growth, respiration and membrane physical properties
are detected in both species, although the effects are gen-
erally stronger in B. stearothermophilus. This supports
the idea that B. stearothermophilus is a good tool to
model toxicity studies with the advantage of a rapid
growth performed at temperatures that avoid contami-
nation with other species. Since TBT effects on mem-
branes depend on the lipid composition, it may be
useful to identify strategies that can improve bacterial
resistance to the toxic effects of TBT in the perspective
of using microorganisms in bioremediation.

References

Alzieu, C., 2000. Impact of tributyltin on marine invertebrates.
Ecotoxicology 9, 71-76.

Ambrosini, A., Bertoli, E., Tanfani, F., Zolese, G., 1991. Effect of the
fungicides tributyltin acetate and tributyltin chloride on multila-
mellar liposomes: fluorescence studies. Chemistry and Physics of
Lipids 59, 189-197.

Antunes-Madeira, M.C., Videira, R.A., Madeira, V.M.C., 1994.
Effects of parathion on membrane organization and its implica-
tions for the mechanisms of toxicity. Biochimica et Biophysica
Acta 1190, 149-154.

Bartlett, G.R., 1959. Phosphorus assay in column chromatography.
Journal of Biological Chemistry 234, 466-468.

Bishop, D.G., Op Den Kamp, J.A.F., Van Deenen, L.L.M., 1977. The
distribution of lipids in the protoplast membranes of Bacillus
subtilis. European Journal of Biochemistry 80, 381-391.

Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction
and purification. Canadian Journal of Biochemistry and Physiol-
ogy 37, 911-917.

Bloom, M., Evans, E., Mouritsen, O.G., 1991. Physical properties of
the fluid lipid-bilayer component of cell membranes: a perspective.
Quarterly Reviews of Biophysics 24, 293-397.

Bottcher, C.J.F., van Gent, C.M., Pries, C., 1961. A rapid and sensitive
submicro phosphorus determination. Analytica Chimica Acta 24,
203-204.

Chicano, J.J., Ortiz, A., Teruel, J.A., Aranda, F.J., 2001. Organotin
compounds alter the physical organization of phosphatidylcholine
membranes. Biochemica et Biophysica Acta 1510, 330-341.



J.D. Martins et al. | Toxicology in Vitro 19 (2005) 943-949 949

Donato, M.M., Jurado, A.S., Antunes-Madeira, M.C., Madeira,
V.M.C., 1997. Bacillus stearothermophilus as a model to evaluate
membrane toxicity of a lipophilic environmental pollutant (DDT).
Archives of Environmental Contamination and Toxicology 33,
109-116.

Gadd, G.M., 2000. Microbial interactions with tributyltin compounds:
detoxification, accumulation and environmental fate. The Science
of the Total Environment 258, 119-127.

Gogvadze, V., Stridh, H., Orrenius, S., Cotgreave, 1., 2002. Tributyl
causes cytochrome c¢ release from isolated mitochondria by two
discrete mechanisms. Biochemical and Biophysical Research Com-
munications 292, 904-908.

Huang, J.H., Matzner, E., 2004. Degradation of organotin compounds
in organic and mineral forest soils. Journal of Plant Nutrition and
Soil Science 167, 33-38.

Jensen, H.F., Holmer, M., Dahllof, 1., 2004. Effects of tributyltin on
the seagrass Ruppia maritime. Marine Pollution Bulletin. Available
from: <www.sciencedirect.com>.

Jurado, A.S., Santana, A.C., Costa, M.S., Madeira, V.M.C., 1987.
Influence of divalent cations on the growth and morphology of
Bacillus stearothermophilus. Journal of General Microbiology 133,
507-513.

Jurado, A.S., Pinheiro, T.J.T., Madeira, V.M.C., 1991. Physical
studies on membrane-lipids of Bacillus stearothermophilus. Tem-
perature and calcium effects. Archives of Biochemistry and
Biophysics 289, 167-179.

Jurkiewicz, M., Averill-Bates, D.A., Marion, M., Denizeau, F., 2004.
Involvement of mitochondrial and death receptor pathways in
tributyltin-induced apoptosis in rat hepatocytes. Biochimica et
Biophysica Acta 1693, 15-27.

Klein, W., Weber, M.H.W., Marahiel, M.A., 1999. Cold shock
response of Bacillus subtilis: isoleucine-dependent switch in the
fatty acid branching pattern for membrane adaptation to low
temperatures. Journal of Bacteriology 181 (17), 5341-5349.

Lauraeus, M., Wikstrom, M., 1993. The terminal quinol oxidases of
Bacillus subtilis have different energy conservation properties. The
Journal of Biological chemistry 268, 11470-11473.

Lentz, B.R., Barenholz, Y., Thompson, T.E., 1976. Fluorescence
depolarisation studies of phase transitions and fluidity in phospho-
lipid bilayers. 1. Single component phosphatidylcholine liposomes.
Biochemistry 15, 4521-4528.

Luxo, C., Jurado, A.S., Madeira, V.M.C., 2000. Toxicity assessment of
tamoxifen by means of a bacterial model. Applied Biochemistry
and Biotechnology 87, 219-232.

Martins, L.O., Jurado, A.S., Madeira, V.M.C., 1990. Biochimica et
Biophysica Acta 1045, 17-20.

Martins, J.D., Monteiro, J.P., Antunes-Madeira, M.C., Jurado, A.S.,
Madeira, V.M.C., 2003. Use of B. stearothermophilus as a model to
evaluate toxicity of the lipophilic environmental pollutant endo-
sulfan. Toxicology in Vitro 17, 595-601.

Minnikin, D.E., Goodfellow, M., 1981. The Aerobic Endospore-
Forming Bacteria: Special Publications of the Society for General
Microbiology. Academic Press, London, New York, Toronto,
Sidney, San Francisco (Chapter 4).

Monteiro, J.P., Martins, J.D., Luxo, P.C., Jurado, A.S., Madeira,
V.M.C., 2003. Molecular mechanisms of the metabolite 4-hydroxy-
tamoxifen of the anticancer drug tamoxifen: use of a model
microorganism. Toxicology in Vitro 17, 629-634.

Petersen, S., Gustavson, K., 2000. Direct toxic effects of TBT on
natural enclosed phytoplankton at ambient TBT concentrations of
coastal waters. Ecotoxicology 9, 273-285.

Qun-Fang, Z., Gui-Bin, J., Ji-Yan, L., 2002. Effects of sublethal levels
of tributyltin chloride in a new toxicity test organism: the Chinese
rare minnow (Gobiocypris rarus). Archives of Environmental
Contamination and Toxicology 42, 332-337.

Rosa, S.M.L.J., Antunes-Madeira, M.C., Jurado, A.S., Madeira,
V.M.C., 2000. Amiodarone interactions with membrane lipids and
growth of Bacillus stearothermophilus used as a model. Applied
Biochemistry and Biotechnology 87, 165-175.

Riidel, H., 2003. Case study: bioavailability of tin and tin compounds.
Ecotoxicology and Environmental Safety 56, 180-189.

Schulte-Oehlmann, U., Oehlmann, J., Fioroni, P., Bauer, B., 1997.
Imposex and reproductive failure in Hydrobia ulvae (Gastropoda:
Prosobranchia). Marine Biology 128, 257-266.

Shinitzky, M., Barenholz, Y., 1978. Fluidity parameters of lipid
regions determined by fluorescence polarization. Biochimica et
Biophysica Acta 515, 367-394.

Sikkema, J., de Bont, J.A.M., Poolman, B., 1995. Mechanisms of
membrane toxicity of hydrocarbons. Microbiological Reviews 59,
201-222.

Smith, L.D., Negri, A.P., Philipp, E., Webster, N.S., Heyward, A.J.,
2003. The effects of antifoulant-paint-contaminated sediments on
coral recruits and branchlets. Marine Biology 143, 651-657.

Stockdale, M., Dawson, A.P., Selwyn, M.J., 1970. Effects of trialkyltin
and triphenyltin compounds on mitochondrial respiration. Euro-
pean Journal of Biochemistry 15, 342-351.

Tilley, L., Thulborn, K.R., Sawyer, W.H., 1979. An assessment of the
fluidity gradient of the lipid bilayer as determined by a set of n-(9-
anthroloxy) fatty acids (n=2,6,9,12,16). Journal of Biological
Chemistry 254, 2592-2594.

Trotter, P.J., Storch, J., 1989. 3-[p-(6-phenyl)-1,3,5-hexatrienyl]phe-
nylpropionic acid (PA-DPH): characterization as a fluorescent
membrane probe and binding to fatty acid binding proteins.
Biochimica et Biophysica Acta 982, 131-139.

White, J.S., Tobin, J.M., 2004. Inorganic tin and organotin interac-
tions with Candida maltosa. Applied Microbiology and Biotech-
nology 63, 445-451.

White, J.S., Tobin, J.M., Cooney, J.J., 1999. Organotin compounds
and their interactions with microorganisms. Canadian Journal of
Microbiology 45, 541-554.


http://www.sciencedirect.com

	Comparative study of tributyltin toxicity on two bacteria of the genus Bacillus
	Introduction
	Materials and methods
	Chemicals
	Cultures
	Oxygen consumption
	Lipid analysis
	Liposomes
	Fluorimetric measurements

	Results
	Effect of TBT on the growth of B. stearothermophilus�and B. subtilis
	Effect of TBT on the oxygen consumption of�B. stearothermophilus and B. subtilis protoplasts
	Physical effects of TBT on bilayers of�B. stearothermophilus and B. subtilis polar lipids

	Discussion
	References


