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Abstract

The majority of wild felids, as well as some domestic cats, have low sperm concentration in their

ejaculates, and a high proportion of abnormal spermatozoa. We have employed several possible semen

quality markers to further characterize cat epididymal sperm. Methods included possible apoptotic

reporters, such as the annexin Vassay to monitor exposure of phosphatidylserine (PS) on the outer leaflet

of the plasma membrane, as well as cell integrity; and the TUNEL assay to quantify DNA breaks. Sperm

surface ubiquitination, another putative marker of sperm quality, was also monitored. The annexin V

assay revealed a high percentage of sperm with PS exposure, and the TUNEL assay pointed to high levels

(13� 12%) of sperm with DNA breaks. Correlations were found between apoptotic markers (but not

ubiquitination) and semen parameters. In parallel to this analysis, cat sperm morphology was evaluated

using the Diff-Quik optical stain, which has been used in human reproduction laboratories. Several types

of abnormalities could be characterized with this method. Remarkably, head staining abnormalities

detected using the Diff-Quik staining method were strongly correlated with, and could accurately predict,

sperm DNA defects detected in the same sample using the TUNEL assay. We therefore suggest that

sperm morphology analysis using Diff-Quik could be used in field conditions to assess sperm status, due

to the simplicity of the procedure and the equipment involved.
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1. Introduction

Most of the 36 wild species of felids are classified as threatened, vulnerable or endangered,

and the domestic cat has been widely used as the main research model for wild felids [1]. It is

known that some domestic cats, and the majority of wild felines, have low sperm

concentration in the ejaculate [2], and a high proportion of abnormal spermatozoa [3]. If the

percentage of abnormal spermatozoa exceeds 60% the ejaculate is considered teratospermic.

Interestingly, although abnormal spermatozoa from teratospermic ejaculates have more

difficulties in penetrating the zona pellucida than normal sperm cells from the same ejaculate

[4,5], cats with a high proportion of abnormal sperm have been used for reproductive

purposes with good results [6].

Many studies have been carried out with feline sperm, including research on the ability

of sperm to respond to osmotic stress and cold-induced damage during cryopreservation [7–

9], characterization of capacitation and acrosomal reaction in different populations of sperm

[10], or the state of sperm DNA [11]. These studies permitted a further understanding of cat

sperm characteristics, and the development of more efficient cryopreservation protocols.

Interestingly, to our knowledge, there have been no studies focusing on feline sperm

programmed cell death (apoptosis), or on the possible use of apoptotic markers to assess

feline sperm quality. Apoptosis is characterized by distinct ultrastructural and biochemical

changes in affected cells, which can be monitored by different biochemical assays. In early

apoptosis the cell loses its plasma membrane asymmetry, and exposes phosphatidylserine

(PS) in the outer leaflet, thus tagging these cells for phagocytosis. In late apoptosis DNA

suffers internucleosomal cleavage by specific endonucleases originating DNA fragments of

approximately 180-base pairs [12]. Annexin V (A), an early apoptosis marker, is a Ca2+-

dependent phospholipid binding-protein that has a high affinity for PS [13]. Together with

markers for cell permeability, such as propidium iodide (PI), this test is able to discriminate

four different populations of spermatozoa: viable sperm (A�/PI�), early apoptosis (A+/

PI�), late apoptosis or early necrosis (A+/PI+), and necrosis (A�/PI+) [12,14]. On the

other hand, the TUNEL (terminal deoxynucleotidyl transferase-mediated dUDP nick-end

labeling) assay detects the endonuclease digestion of DNA into oligonucleosomal

fragments. Namely, it quantifies the incorporation of deoxyuridine triphosphate (dUTP) in

the 30 terminal of single and double-stranded DNA breaks, catalyzed by terminal

deoxynucleotidyl transferase (TdT) [15]. Research carried out in other species has

described correlations between apoptotic alterations and standard semen parameters, with

possible influence in the outcome of Assisted Reproduction Techniques (ART). For

example, working with sub fertile men, Shen et al. [14] found negative correlations between

TUNEL positive cells and late apoptotic cells with both motility and vitality; as well as

positive correlations with abnormal sperm morphology. Furthermore, TUNEL was also

used to study germ cell apoptosis in cats, allowing the identification of different

spermatogenic stages with high apoptotic rates [16]. Other authors have used the SCSA

(Sperm Chromatin Structure Assay) to evaluate DNA fragmentation in ejaculated sperm

from teratospermic and normospermic domestic cats [11]. An increase in DNA

fragmentation in samples from teratospermic males was observed, but it was not

associated with poor fertility or early embryo development, as long as the zona pellucida

was bypassed using assisted sperm injection [11].
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Another assay proposed to monitor sperm quality is the sperm surface ubiquitination

assay [17]. Ubiquitination is a universal mechanism for protein recycling involving tagging

of substrates via the covalent attachment of one or more molecules of ubiquitin. Defective

sperm in the semen from several species (domestic bulls, wild cattle, rhesus monkey,

human and mouse) seem to be strongly ubiquitinated on the cell surface, possibly marking

them for phagocytosis/degradation [17]. Furthermore, besides recognizing TUNEL-

positive spermatozoa, surface ubiquitination seems to detect a wide range of other

abnormalities, and was shown to correlate negatively with sperm count, motility and

normal morphology [18,19].

The common denominator of all the techniques described above is that they are all

elaborate and time consuming, requiring some specialized reagents and equipment, and are

therefore less than adequate for field conditions. On the other hand Diff-Quik is a rapid and

simple staining method that stains the sperm head light blue/violet, the acrosome pale blue,

the tail and midpiece blue or reddish [20]. It can be used to assess sperm morphology in field

conditions using a bright field microscope, and is already used in veterinary clinics to stain

blood smears.

These markers and staining procedures were used in this work to characterize cat

epididymal sperm in an attempt to both test the possible use of apoptotic markers in this

system, and obtain further knowledge on sperm quality and functionality, which could then be

used when discriminating samples for assisted reproductive techniques in wild felids. The

most interesting, and unexpected, result of all was the fact that staining abnormalities revealed

by Diff-Quik could predict results from the TUNEL assay in the same sample, suggesting

Diff-Quik as a possible tool in assessing sperm DNA status, especially in field-work

conditions.

2. Materials and methods

All fluorescent probes were acquired from Molecular Probes (Eugene, OR, USA),

unless stated otherwise. The antibody for the ubiquitin assay (clone KM691) was from

Kamiya Biomedical (Seattle, WA, USA), and the remaining reagents were from Sigma–

Aldrich (St. Louis MO, USA).

Cat testes from 36 males were collected immediately after castration performed

in four veterinary clinics. The epididymides were separated from the testis, minced

and incubated for 30 min in 2 ml of Ham’s F10 medium supplemented with 20 mM

Hepes, 100 UI penicillin/ml and 1 mg bovine serum albumin (BSA)/ml at 37 8C
[3,11,21].

Sperm motility was measured, at the end of the 30 min incubation, in a hemocytometer,

using a bright field microscope with closed diaphragm, to allow an easier assessment. The

motility was divided into four categories: rapid progressive movement, slow progressive

movement, nonprogressive motility and non-motile sperm. Total motility was calculated

adding the first three categories. The sperm was allowed to rest in the hemocytometer until

no movement was detected to determine sperm count.

We observed 200 spermatozoa for each sample in all assays. All images were taken with

a 100� oil immersion objective.
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2.1. Diff-Quik assay

Morphology and staining feature were assessed using a Diff-Quik kit (Medion

Diagnostics, Germany). This kit is composed by a fixative (methanol), an anionic/acidic

dye (eosin) that stains positively charged/basic proteins (red), and a cationic dye

(methylene blue and derivatives) that stains nuclei and negatively charged molecules

(blue). The smears were done using 10 ml of sperm suspension dragged with a coverslip

and allowed to air dry. The slide was immersed in each solution of the staining kit for 1 min

and dipped rapidly in water, air dried and observed in a bright field microscope. The time

needed for each solution is dependent of each observer’s ability to discriminate sperm

structures, and may vary also with different Diff-Quik kits. After establishing these

parameters the Diff-Quik assay is very reproducible.

The staining characteristics were always analyzed within each sample. Spermatozoa

with staining intensities differing from the normal situation (light blue/violet—see

Results) were included in the abnormal staining category. This was done whether the

spermatozoa in question showed a darker blue color, or were more reddish (or a mixture of

both).

2.2. Annexin V assay

The annexin V assay incorporates annexin V conjugated with Alexa Fluor 568 (red

fluorescence), a green-fluorescent nuclear and chromosome counterstain that is

impermeant to live cells (SYTOX green) and Hoechst 33342, a cell-permeant nucleic

acid stain that emits blue fluorescence when bound to double stranded DNA. To carry out

the assay 100 ml of the sperm suspension was centrifuged at 800 � g for 10 min and the

pellet resuspended in 100 ml Hepes buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl2,

pH 7.4). Annexin V (5 ml), SYTOX green (10 ml of a 5 nM solution) and Hoechst 33342

were added to the mixture and incubated for 15 min at room temperature. The suspension

was then centrifuged at 800 � g for 10 min, the pellet mounted on a slide with antifade

(Vectashield, Vector Labs, Burlingame CA, USA) and observed with a Zeiss AxioPlan 2

Fluorescence Microscope.

2.3. TUNEL assay

The APO-BrdU
TM

TUNEL Assay Kit (Molecular Probes) was used to detect

nicked DNA in epididymal sperm of male cats, with some minor modifications. Sperm

were allowed to adhere to poly-L-lysine coated coverslips, which were then fixed

in 2 ml of a 2%(v/v) formaldehyde solution in PBS (200 mg/l KCl; 20 mg/l

KH2PO4; 1150 mg/l Na2HPO4; 8000 mg/l NaCl; 500 mg/l NaN3; pH 7.2) for 1 h at

room temperature. Coverslips were then placed in a permeabilizing solution contai-

ning 1% (v/v) Triton X-100 in PBS for 20 min. To store the samples, coverslips were

placed in blocking solution (100 mM glycine; 1 mg/ml BSA in PBS) and kept at

4 8C.

To carry out the TUNEL assay coverslips were incubated with 50 ml of DNA-

labeling solution [31.25 ml distilled water; 50 ml reaction buffer; 0.75 ml Tdt (terminal
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deoxynucleotidyl transferase); 8 ml BrdUTP] for 1 h at 37 8C in the dark. After a

washing step with Rinse buffer for 10 min they were covered with 100 ml of the anti-

BrdUTP antibody solution (97.5 ml Rinse buffer; 2.5 ml Alexa Fluor 488 dye labeled

anti-BrdUTP antibody) and incubated for 2 h at 37 8C in the dark. Following the

incubation the sample was washed with 0.1% (v/v) Triton X-100 for 30 min. TUNEL

positive cells stain green, while DAPI was used as a DNA counterstain (blue). The

coverslips were mounted with antifade and observed with a Zeiss AxioPlan 2

Fluorescence Microscope. For a negative control the same procedure was applied but

omitting Tdt.

2.4. Ubiquitin assay

Sperm were allowed to adhere to poly-L-lysine coated coverslips, which were then fixed

in 2 ml of a 2% (v/v) formaldehyde solution in PBS for 1 h at room temperature. The

coverslips were stored in blocking solution at 4 8C until used. The primary antibody was

prepared in blocking solution at a 1:400 dilution, placed over the coverslip and incubated at

37 8C for 30 min. The coverslips were then washed in 0.1% (v/v) Triton X-100 in PBS for

30 min and then stained with an appropriate mouse IgM secondary antibody tagged with

Alexa 568 (red) prepared in blocking solution, and incubated at 37 8C, for 20 min in the

dark. The coverslip was washed again in 0.1% (v/v) Triton X-100 in PBS for 30 min,

incubated with DAPI for DNA counterstaining, mounted with antifade and observed with a

Zeiss AxioPlan 2 Fluorescence Microscope. For negative controls the same procedure was

applied omitting the primary antibody.

2.5. Statistical analysis

All variables were checked for normal distribution. Bivariate correlation was evaluated

by calculating the Pearson’s correlation coefficient (r) with a two-tailed significance (P).

Linear regression analysis was performed to establish predictive value of a variable. For the

variable ‘‘age’’, which does not have a normal distribution, a Mann–Whitney test was

performed. All statistical analyses were carried out using the SPSS, version 12.0, software

for Windows (SPSS Inc., Chicago, IL, USA).
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Table 1

Sperm number and motility in the cat epididymis

Sperm

number

(�106)

Sperm displaying

Total

motility

(%)

Progressive

motility (%)

Slow

motility

(%)

Non- progressive

motility (%)

Non-motile

sperm (%)

Mean � S.D. 18 � 10 47 � 16 31 � 19 5 � 4 12 � 9 52 � 16

Maximum 48 72 65 15 33 100

Minimum 3 0 0 0 0 28

n = 36.



3. Results

The values for sperm number and motility are shown in Table 1. The morphology

parameters were quantified using Diff-Quik and standards normally employed for equine

sperm, with slight modifications [36]. Results are shown in Table 2. If several
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Table 2

Sperm morphology and abnormal staining in cat epididymal sperm, assayed with Diff-Quik

Morphology parameter Mean � S.D. Rank

Head abnormalities 46.86 � 12.98 A

Detached head 5.17 � 4.24 2

Narrow head 3.09 � 3.07 1

Elongated head 6.09 � 6.86 1

Pear shaped head 0.46 � 0.95 1

Small head 0.74 � 0.98 1

Double head 0.60 � 0.74 1

Macrocephalic head 2.89 � 3.77 1

Abnormal contour 14.49 � 9.68 1

Abnormal staining& 21.70 � 10.61 1

Midpiece abnormalities 10.74 � 10.00 B

Thin midpiece 1.14 � 6.59 1

Separated fibers 0.03 � 0.17 5

Abnormal neck 0.20 � 0.47 4

Broken neck 0.40 � 0.69 5

Broken midpiece 0.43 � 0.78 5

Double midpiece 0.26 � 0.51 4

Thick midpiece 0.31 � 0.93 3

Short midpiece 0.09 � 0.37 3

Proximal cytoplasmatic residue 1.20 � 1.53 1

Distal cytoplasmatic residue 2.63 � 3.34 2

Bent or double bent midpiece 4.09 � 3.66 2

Tail abnormalities 7.14 � 5.41 C

Bent tail 3.09 � 3.72 3

Double bent tail 0.54 � 0.78 3

Coiled tail 1.57 � 1.72 2

Tail coiled around the head 0.34 � 0.54 2

Thin tail 0.00 � 0.00 3

Broken tail 0.74 � 1.04 3

Coiled end tail 0.57 � 1.36 3

Double tail 0.06 � 0.24 1

Short tail 0.00 � 0.00 3

Detached tail 0.17 � 0.45 2

Acrosome abnormalities 13.74 � 6.88 B

Total abnormalities 78.14 � 8.66

n = 35, except for staining abnormalities (&) where n = 23. The rank varied with origin of defect (testicular or

epididymal), frequency and relevance for the functionality of the spermatozoa, adapting equine standards [36].

The abnormalities were classified first by major location. Thus, head abnormalities (A) were considered more

important than midpiece and acrosome defects (B), which, in turn were deemed more important than tail

abnormalities (C). Inside each area rank varied between 1 (most important) and 5 (least important).



morphological abnormalities were observed in the same spermatozoon, this spermatozoon

was included in the most important abnormal parameter category considering the origin

(testicular or epididymal), relevance or prevalence of the defect (rank shown in Table 2).

The percentage of abnormal cells was quite high (Table 2). Figs. 1 and 2 depict

representative examples of the more typical characteristics found, which are included in the

categories quantified in Table 2. The use of stained smears allowed the detection of a

greater number of head abnormalities, but without altering the recognition of other types of

sperm defects. Notably, using the Diff-Quik stain we determined that, within the same

sample, stronger hues of dark blue/reddish label could be seen on the sperm head in some

cases (Fig. 2a, compare normal sperm (arrowheads) with abnormal staining (arrow)). Thus

we created a staining abnormality parameter, including all spermatozoa with a greater

intensity of blue or red staining, starting with more subtle differences (Fig. 2a, arrow) to

more evident staining differences (Fig. 2c). Increased staining intensities were also

associated with other morphological abnormalities, the most common being cytoplasmatic

residues, giant or abnormal heads or bent midpieces.

Figs. 3–5 show the labeling patterns found with the annexin V, TUNEL and ubiquitin

assays, respectively. The sperm population was divided into four subpopulations,

according to the patterns found with annexin V: viable sperm (A�/S�/H+), early apoptotic

(A+/S�/H+), late apoptotic/early necrotic (A+/S+/H+) and necrotic (A�/S+/H+).

Annexin V labeling was observed in abnormal sperm but also in apparently normal

sperm (Fig. 3). On the other hand, the TUNEL assay only detects sperm with DNA breaks.

In this case the staining obtained was not always homogeneous, and fluorescence could

often be observed exclusively either on the apical or basal portions of the sperm head

(Fig. 4). Finally, ubiquitinated sperm showed very variable fluorescent labelling, but no

signal was ever observed on the sperm head (Fig. 5). Besides abnormal sperm, cells that

were apparently normal also tested positive in this assay. Table 3 shows values of labeled

sperm using all three fluorescence-based assays.
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Fig. 1. Cat sperm morphology using Diff-Quik. (A) Represents a typical normal spermatozoa from cat

epididymis, while (B) and (C) show different types of acrosomal and midpiece abnormalities. (B) (a)–(c)

represent acrosomal vacuolization; (d) shows a large acrosome and (e) a small acrosome; (f) represents a reacting

acrosome with the flattened apical portion; (g)–(i) represents knobbed acrosomes. (C) (a) sperm with proximal

droplet; (b) thin midpiece with a proximal droplet; (c) bent midpiece; (d) double midpiece; (e) bent midpiece with

cytoplasmatic residues; (f) distal droplet. Bars represent 5 mm.



After determining that all assays may be used in cat epididymal sperm, and that labeling

patterns were similar to what has been previously reported in other species, we performed

statistical analysis on our data. Samples were grouped as young males (less than 12

months; n = 11) and adult males (12+ months; n = 20) to analyze the influence of age on

semen parameters. We observed that age influenced the number of TUNEL positive cells

(Mann–Whitney test; P = 0.030) and showed a tendency to influence ubiquitin positive

cells (P = 0.083). Young males had an average of 6.50 � 3.41 (mean � S.D.) of TUNEL

positive cells, while in mature males the value increased to 15.38 � 14.69. When analyzing

the data obtained with the ubiquitin-based assay no correlations between the level of

ubiquitination and other semen parameters or populations defined by the annexin V or

TUNEL assays were found (data not shown).

Table 4 shows the relevant correlations found between some morphology parameters

(Table 2), motility and TUNEL, using all samples. The correlation found between total

motility and midpiece abnormalities (r = �0.481; P = 0.003) as well as between non-
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Fig. 2. Sperm morphology and abnormal staining using Diff-Quik. (a) Represents spermatozoa with different

normal staining patterns (arrowheads), as well as a sperm cell representative of borderline abnormal staining

(arrow); (b) and (c) represent cells with different levels of color intensity (stronger hue when compared with 1A),

but without any other striking alteration; (d) and (e) represent abnormally stained macrocephalic sperm heads; (f)

represents an abnormal stained sperm with acrosome abnormalities in color and shape; (g) represents one of the

most common association seen between staining abnormalities and other abnormalities, a bent midpiece with

cytoplasmatic residues; (h)–(j), (l) and (m) represent other major alterations seen in association with abnormal

staining. Bar represents 5 mm. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)



motile sperm and midpiece abnormalities (r = 0.533; P = 0.001), confirms the capacity of

the Diff-Quik assay to discriminate midpiece and tail abnormalities. Furthermore it reflects

the functional relevance of midpiece defects. The presence of different types of

abnormalities in one spermatozoon, as well as the relation between different types of sperm

abnormalities, could be appreciated by smear observation, and by considering the

correlations found between head abnormalities and midpiece/tail abnormalities

(r = �0.483, P = 0.003 and r = �0.433, P = 0.008, respectively).

There were several correlations found between apoptotic markers, motility and

morphology. Early apoptotic sperm was positively correlated with acrosome abnormalities

(r = 0.360; P = 0.033), while late apoptosis was positively correlated with sperm count

(r = 0.355; P = 0.034). TUNEL was negatively correlated with motility parameters,

especially progressive motility (r = �0.429; P = 0.009, Table 4). The most striking and

unexpected correlation, shown in Fig. 6, was the positive, strong and very significant

correlation between staining abnormalities detected using Diff-Quik (all staining diverging

from the normal staining) and TUNEL positive labeling (r = 0.701; r2 = 0.492; P = 0.000).
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Fig. 3. Annexin V assay. Annexin V (red)/Sytox Green/Hoechst (blue) labeling allowed the characterization of

four distinct populations in each sperm sample: (a) viable sperm (A�/S�/H+); (b) early apoptosis (A+/S�/H+);

(c) late apoptosis (A+/S+/H�) and (d) necrosis (A�/S+/H+). Bar represents 5 mm. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of the article.)



4. Discussion

In this study we first analyzed basic semen parameters (motility, sperm number,

morphology) in cat epididymal sperm. The low motility found in epididymal sperm was

expected since sperm was collected from total epididymis and it is known that the male

gametes only acquire motility in the corpus region [22]. The percentage of normal

sperm (22 � 9%) present in these samples was inferior to that obtained by other

researchers. Using phase contrast microscopy analysis of sperm taken from the cauda

epididymis and ductus deferens, Neubauer et al. [21] quantified 66 � 2% of structurally

normal sperm in a normospermic population, and 11 � 1% in a teratospermic

population. The values obtained here may be explained by the use of Diff-Quik, that

allows assessment to all kinds of abnormalities, especially head abnormalities, which

are more difficult to detect by phase contrast microscopy [23]. Another explanation may

be the use of sperm from the entire epididymis. As Axnér et al. [22] have demonstrated,

there is a decrease in head abnormalities and an increase in tail abnormalities during

epididymal traffic. This is in agreement with a much higher level of head abnormalities

and a lower level of tail abnormalities observed in this work. The use of more restricted

definitions of what constitutes a normal spermatozoon and the creation of another

abnormality category, denominated abnormal staining, may explain the remaining

increased abnormalities.
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Fig. 4. TUNEL assay. The different labeling patterns obtained with the TUNEL assay are shown. (a) No labeling

(DAPI+/TUNEL�). (b) TUNEL-positive cells (green) with different fluorescence intensity labeling (DAPI+/

TUNEL+). DNA (DAPI) is in blue. Bar represents 5 mm. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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Fig. 5. Ubiquitin assay. Different patterns of ubiquitin labeling are shown. (a) Sperm with no labeling. Ubiquitin

positive cells (red) may have different levels of staining, from only midpiece labeling (b) to total tail labeling (c).

DNA (DAPI) is in blue. Bar represents 5 mm. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of the article.)

Table 3

Mean parameters determined with the annexin V assay, TUNEL assay and ubiquitin assay

Annexin V assay (% of marked cells) TUNEL positive

(% of marked cells)

Ubiquitin positive

(% of marked cells)
Viable Early

apoptosis

Late

apoptosis

Necrosis

Mean � S.D. 39 � 12a 4 � 3a 30 � 12a 27 � 10a 13 � 12a 28 � 20b

Maximum 72 14 50 51 68 92

Minimum 14 0 0 11 0 5

a n = 36.
b n = 31.



Although ubiquitin staining detected both altered cells and apparently normal cells, as

has been described [17,24], no correlation between this marker and other semen parameters

was found, in contrast to published literature [19,25]. The lack of correlation may be due to

different result presentation (percentage of ubiquitinated cells instead of fluorescence

median), or to the fact that ubiquitination could be an ongoing process, and we may

therefore be analyzing sperm that were not completely ubiquitinated because they were

isolated from earlier parts of the epididymis. It should also be noted that the percentage of

ubiquitinated sperm cells has been shown to negatively correlate with fertility in stallion

sperm, while, at the same time, having no type of correlation with semen parameters [24].

In this case we have no information on the potential fertilization ability of our samples.
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Fig. 6. Correlation between TUNEL and abnormal staining. The relation between TUNEL positive cells (with

defects in sperm DNA) and abnormal staining is shown, including the linear regression performed on the data.

Table 4

Correlations between motility, morphology and TUNEL

Abnormal midpiece Abnormal acrosome TUNEL+

Total motility r = �0.481 r = 0.470 r = �0.360

P = 0.003 P = 0.004 P = 0.031

Progressive motility r = 0.385 r = 0.338 r = �0.429

P = 0.022 P = 0.022 P = 0.009

Non-motile sperm r = 0.533 r = �0.517 r = 0.364

P = 0.001 P = 0.001 P = 0.029

Shown are the Pearson’s correlation coefficient (r), calculated with a two-tailed significance (P).



The annexin V assay separated the sperm population into four subpopulations. The

number of viable sperm (undamaged plasma membrane) was inferior to the number

observed by Axnér et al. [2] using SYBR-14/propidium iodide and the same sperm

extraction solution. This confirms the superior membrane integrity discriminating

capability of annexin V described by Anzar et al. [12] in bull semen. The positive

correlation found between sperm count and late apoptosis may indicate a diminished

capability of annexin V positive sperm to be eliminated during epididymal traffic, or a

greater difficulty of the epididymal epithelium to support a larger number of spermatozoa.

Acrosomal abnormalities were positively correlated with early apoptosis and negatively

correlated with viable sperm. These abnormalities may mark the cells for apoptosis or, in

alternative, they could represent initial steps of the acrosome reaction. In this case, PS

exposure might be a normal feature of capacitated sperm initiating the acrosome reaction

[26]. In spite of the controversy surrounding PS exposure, the annexin V assay may be a

useful tool to assess sperm plasma membrane integrity. In fact, Anzar et al. [12] applied this

method to evaluate changes in bull sperm following freeze/thaw, and reported an increase

(up to 40%) of annexin V marked cells after cryopreservation. In addition, the use of

superparamagnetic microbeads conjugated with annexin V (MACS) [27] allowed

apoptotic cell sorting, improving motility following cryopreservation-thawing, as well

as cryosurvival rate [28].

In humans, some studies have pointed to a superior abortion rate after intracytoplas-

matic sperm injection (ICSI), and a greater risk of birth defects in children conceived by

both in vitro fertilization (IVF) and ICSI. This may reflect the use of altered sperm, possibly

including structural changes in DNA [29]. The relevance and origin of DNA breaks in

ejaculated sperm is unknown but work in human has raised three possible explanations.

Thus, fragmented DNA may result from topoisomerase II, an enzyme that creates and

ligates nicks during the elongating spermatid phase. Incomplete topoisomerase II activity

could leave unligated nicks that can be detected by the TUNEL assay [30]. The second

hypothesis considers that DNA breaks are the result of DNA cleavage during germinal cell

apoptosis, suggesting that the process of cellular death is not completed, and that these

maturing spermatids escape phagocytosis by the Sertoli cells [31]. Finally, DNA breaks

may result from production of free radicals during ejaculation [32,33].

The presence of DNA breaks in ejaculated cat sperm has been analyzed through SCSA,

and correlated with bad quality (teratospermic) ejaculates, but not with early embryonic

development arrest or failure [11]. We have analyzed DNA breaks using the TUNEL assay,

a marker for late stage apoptosis. A mean of 13 � 12% sperm with fragmented DNA was

found, very similar to what was reported in the normospermic population analyzed by

Penfold et al. (13.8 � 2.4 (mean � S.E.M.)) [11], and in infertile men (15%) [14]. No

correlation was found between TUNEL positive sperm and putative apoptotic sperm

detected by the annexin V assay. This may be explained by a non-apoptotic origin of DNA

breaks (TUNEL positive cells may represent immature sperm that did not complete DNA

packaging) or by a phosphatidylserine exposure by other mechanisms, such as sample

processing or capacitation [33].

Staining abnormalities were detected when comparing sperm from the same sample.

Some of the heads were dark blue and others were reddish, when compared with the

majority of spermatozoa present in the sample (light blue/violet), and were all included in
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the same parameter. The staining abnormalities could be potentially explained by: (a) the

presence of a larger amount of DNA; (b) easier access to the DNA; (c) presence of basic

elements in the nucleus. The larger amount of DNA could be explained by aneuploidy,

while DNA breaks marked by SCSA [11], or less compacted DNA [34], may be responsible

for the easier access to sperm DNA. The reddish color observed in some cases may be due

to basic elements, such as histones or transition proteins, that may not be correctly removed

and that could thus stain with eosin [35]. Furthermore, eosinophily is increased in

degenerated cells. The close correlation and predicting value of staining abnormalities in

relation to TUNEL positivity may indicate that DNA breaks, as part of degenerating/

apoptotic processes or as marker of immature sperm, may be responsible for part of the

staining abnormalities observed. This relation allows a simple assay like Diff-Quik to be

used, not only to characterize sperm morphology, but also to assess sperm functionality in

terms of DNA status. This may be especially useful in the absence of more sophisticated

methodology, such as in field conditions. Since we used epididymal sperm from castrated

males, further studies will have to be carried out to determine if the correlations described

are also found in the ejaculate, and, more importantly, if they relate to fertility, either in

vitro or in vivo. We would expect that low-quality samples (evaluated using this new Diff-

Quik methodology) would be impaired in their fertilization ability.

In conclusion, this work demonstrates the presence of large quantities of apoptotic

sperm in the cat epididymis, which may explain difficulties observed in cryopreservation

and ART and, mainly reveals a new tool, Diff-Quik, for discriminating functional sperm.
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