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Three Ecopath with Ecosim models were constructed to represent the eutrophication gra-

dient along the south arm of the Mondego estuary (Portugal). Sampling was conducted in
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three areas representative of different environmental situations along the gradient: (a) a

non-eutrophic area (Zostera noltii meadows), (b) an intermediate eutrophic area (macro-

phyte absent, although residual roots can still be found in the sediment, and the occasional

formation of abundant macroalgae mats) and (c) a strongly eutrophic area (macrophyte

community totally absent for at least a decade and strong, regularly occurring, blooms of

Ulva spp.). Field, laboratory and literature information were used to construct the models, as

well as empirical ecological knowledge gained from years of work on this system. Approxi-

mately 76 trophic groups (e.g. Phytoplankton and Zooplankton species), species and genera

were included. These species were grouped into 43, 36 and 34 model groups for Zostera sp.

meadows, intermediate eutrophic area and strongly eutrophic area, respectively. The groups

were arranged by trophic similarity and habitat preferences; special distinction is given to

macrofauna. Biomass, production, consumption, and diet are among the parameters used

to describe each group. The sum of consumptions, exports, respiration, production, flow to

detritus, total system throughput and annual rate of net primary production was always

higher in the Zostera sp. meadows, followed by the strongly eutrophic area and, finally, by

the intermediate eutrophic area.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Ecology can be defined as the scientific study of the relation-
ships between organisms and their environment; and, in gen-
eral, can be approached from two directions: (1) via reduction-
ism, wherein each relationship is considered by itself and the
results are assembled afterwards; and (2) via holism, whereby
the system is considered in its entirety and a search is under-
taken to reveal properties at the system level (Jørgensen, 2002).

∗ Corresponding author.
E-mail address: jpatricio@ci.uc.pt (J. Patrı́cio).

Previous studies have shown that an ecosystem consists of
so many interacting components that it becomes impossible
ever to understand how it functions by examining the com-
ponent relationships in isolation (Likens, 1985; Allen, 1988).
Often, when individual components of ecosystems are stud-
ied via reductionism, the reconstructed ensemble will behave
differently than the sum of the parts.

To obviate such problems, since no system can understand
itself, the way it can be understood is to develop simplified
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models which have enough of the characteristics of the origi-
nal system to resemble reality, but at the same time are simple
enough to be understood (Brown, 2004). In fact, one might
attempt to describe at least part of the reality of ecosystems
structure by developing mass-balance models that represent
a static description or a ‘snapshot’ of the trophic flows in the
ecosystem (Christensen, 1994). Such snapshots can be readily
compared and therefore, used to explore the evolution of a sys-
tem through a series of stages or stable states (Christensen and
Pauly, 1993). The study of trophic webs has a number of poten-
tial advantages, including the likely prediction of negative
effects in cascade caused by anthropogenic impacts in ecosys-
tems, and a greater understanding of ecosystem management
(Cohen et al., 1993). Assessment of ecosystem health, conser-
vation of living resources and biodiversity could be advanced
if the consequences of trophic web modification were pre-
dictable (Arias-González et al., 2004). If a trophic network is
defined as a model of energy and material flow between organ-
isms via predation processes, then the adjustment (increase
or decrease) of elements from the intricate food web and the
changes produced in the community structure by this process
should produce a disruption in the trophic structure.

From this viewpoint, the main goal of this paper was to
construct mass balanced models of the food web in three areas
along an eutrophication gradient in the south arm of the Mon-
dego estuary (Portugal), a small and well described temperate
intertidal estuary (Marques et al., 1997, 2003; Pardal et al., 2000,

2. Material and methods

2.1. Study area

The Mondego estuary, located on the western coast of Por-
tugal, consists of two arms, northern and southern (Fig. 1),
with very different hydrological characteristics. The northern
arm is deeper, while the southern arm is silted up, especially
in upstream areas, which causes most of the freshwater dis-
charge to flow through the northern arm. This siltation diverts
most of the freshwater discharge into the northern arm. Con-
sequently, the water circulation in the southern arm is depen-
dent mainly on tidal flushing and on a relatively small input
of freshwater from the Pranto River, the flow of which is con-
trolled artificially by a sluice.

Macroalgal blooms of Ulva spp. have regularly been
observed in the Mondego over the last 20 years (Flindt et al.,
1997; Marques et al., 1997, 2003; Lillebø et al., 1999; Pardal et al.,
2000, 2004; Martins et al., 2001; Dolbeth et al., 2003; Cardoso
et al., 2004). Nevertheless, such macroalgal blooms may not
occur in exceptionally rainy years. This is most probably due
to the resulting long periods during which salinity remains
below the tolerance limit of macroalgae, coupled with a limi-
tation of phosphorous induced by a heavy nitrogen discharge
from the Pranto River (Martins et al., 2001).

Sampling was conducted in three areas in the southern
arm of the Mondego estuary that represent different environ-
2004; Cardoso et al., 2004; Ferreira et al., 2004; Neto, 2004),
using the “Ecopath with Ecosim” software package. This work
was a first study of the Mondego estuary using a mass-balance
model of trophic interactions.
Fig. 1 – Mondego estuary: location of the sampling st
mental situations along a spatial gradient of eutrophication
(Marques et al., 1997, 2003; Lillebø et al., 1999; Pardal et al.,
2000, 2004; Dolbeth et al., 2003; Cardoso et al., 2004; Neto,
2004) (Fig. 1): (a) a non-eutrophic area (Zostera noltii Hornem
ations along a spatial gradient of eutrophication.
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beds), (b) an intermediate eutrophic area (Z. noltii absent,
although residual roots can still be found in the sediment, and
the occasional formation of abundant macroalgae mats) and
(c) a strongly eutrophic area (macrophyte community totally
absent for at least a decade and strong, regularly occurring,
blooms of Ulva spp.).

2.2. Methods

Food webs of the ecosystem in the three areas were con-
structed using the “Ecopath with Ecosim” software package,
which assists the user in casting a balanced carbon budget
for each trophic group. The core routine of Ecopath/Ecosim
centres on the Ecopath program of Polovina (1984), which was
extended to apply to non-steady-state systems (Christensen et
al., 2004). It no longer assumes a steady state but instead calcu-
lates parameters on the assumption of mass balance over an
arbitrary period—usually 1 year. Scores of applications of Eco-
path with Ecosim can be found at: http://www.ecopath.org/,
along with the freely distributed software and documentation.
Although the formulations and basic concepts are accessible
in these venues, the general approach is summarised here.
When applied, Ecopath derives model parameters on the basis
of two master equations. The first equation, describes how the
production term for each group can be split in components (Eq.
(1)). More specifically, it says that the net production of a func-
tional group equals the sum of (1) the total mass (or energy)
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distinguishes Ecopath modelling as an ‘energy continuity’
approach rather than a strictly ‘steady-state’ approach. Con-
servation of energy (continuity) is assumed for every identified
component of the ecosystem, and the whole system. This
basic constraint enables representation of changes in popu-
lations (i.e., functional groups) when expressed in dynamic
form.

2.2.1. Sampling program and laboratory treatment
Chlorophyll a, detritus, macroalgae, macrophytes and macro-
fauna were sampled fortnightly (February 1993–January 1994),
during low tide, at each of the three areas. All biological mate-
rials were identified and separated into the lowest possible
taxa (for more details concerning the technical procedures
see Pardal et al., 2000, 2004). Between March 1996 and Jan-
uary 1997, monthly samples of epiphytes attached to Z. noltii
were separated from their substrate, dried and weighed. Zoo-
plankton was collected monthly from sub-surface waters at
each sampling site from April 1995 to April 1996, using 200
and 335 �m mesh nets (Azeiteiro et al., 1999). Data on fish
were taken monthly from January 1991 to December 1992. The
captured fish were identified and weighed (wet weight), and
the dominant species in the stomach contents were analysed
(Jorge et al., 2002). Finally, wading birds were counted from
January 1996 to January 1998 at fortnight-tide and monthly
low water to provide an accurate census across the three
areas (Lopes et al., 2002). Seagulls were counted monthly, from
emoved by predators and fisheries, (2) the net biomass accu-
ulation of the group, (3) the net migration of the group’s

iomass, and (4) the mass flowing to detritus:

i × (P/B)i × EEi −
n∑

j=1

Bj × (Q/B)j × DCji − Yi − BAi − Ei = 0 (1)

here Bi and Bj are biomasses of prey (i) and predators (j),
espectively; P/Bi the production/biomass ratio, equivalent to
otal mortality (Z) in most circumstances (Allen, 1971); EEi the
cotrophic efficiency; the fraction of the total production of
group utilised in the system; Yi the fisheries catch per unit

rea and time (i.e., Y = F × B); Q/Bj the food consumption per
nit biomass of j; DCji the fraction of prey i in the average diet
f predator j; BAi the biomass accumulation rate for i; and Ei

s the net migration of i (emigration less immigration).
In this type of models, the energy input and output of

ll living groups must be balanced. The basic Ecopath Eq. (1)
ncludes only the production. When balancing a compartment
n an ecosystem other flows must be considered. Energy bal-
nce is ensured within each group using Eq. (2) (Christensen
t al., 2004):

onsumption=production + respiration + unassimilated food.

(2)

The implied thermodynamic constraints of this equation
nderscore the power of Ecopath models as a focal point for
efinement of ecosystem information. The need to reconcile
nergy production and demand among components of the
ood web narrows the possible ranges of parameter estimates
or particular groups. Inclusion of a biomass accumulation
actor and migration factor in the general Ecopath equation
November 1993 to July 1994.

2.2.2. Compartments
Species of similar size, diets or with identical ecological niche
were grouped. Different numbers of ecosystem compartments
were identified in each situation (Table 1): 43 in the Zostera
sp. meadows, 36 in the intermediate eutrophic area and 34 in
the strongly eutrophic area. Species that were not naturally
present in one of the three areas or whose roles in the trophic
network were unimportant were not taken into account.

2.2.3. Biomass (for data sources see Appendix A)
Chlorophyll a was estimated according to standard procedures
(Strickland and Parsons, 1968) and values were transformed
into Phytoplankton biomass using a conversion factor taken
from Anderson and Williams (1998) and assuming an average
depth of 0.5 m over the sampling area. Epiphytes consisted
only of the material attached to the aerial part of Z. noltii. Plants
and macrofauna were dried at 70 ◦C for 72 h and weighed. The
ash free dry weight (AFDW) of biomass was assessed after
combusting samples for 8 h at 450 ◦C (Pardal et al., 2000, 2004).
The abundance of each Zooplankton taxon was estimated by
multiplying the observed number of that taxon by the average
AFDW of an individual belonging to it. The weights of all taxa
were summed to arrive at the annual average standing stock.

Sixty-two species of fish were observed and grouped
according to their ecological and trophic characteristics. The
biomass corresponding to each group was determined by mul-
tiplying its wet weight by a conversion factor taken from
Jørgensen et al. (1991).

The observed density of each bird species was multiplied
by the average AFDW of an individual belonging to that taxon
(see Appendix A). Although combining bacteria with detritus

http://www.ecopath.org/
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Table 1 – Input data and calculated estimates (in parenthesis) for the three areas (Z, Zostera sp. meadows; I, intermediate
eutrophic area; S, strongly eutrophic area) along the eutrophication gradient

Groups Biomass P/Ba Q/Ba EEa

Z I S Z I S Z I S Z I S

Phytoplankton (A) 0.336 0.324 0.17 185 185 185 – – – 0.772 (0.572) (0.96)
Enteromorpha sp. (A) 1.800 26.975 96.784 3.4 3.4 3.4 – – – 0.996 (0.691) (0.288)
Ulva sp. (A) 0.373 2.504 7.658 3 3 3 – – – 0.957 (0.883) (0.984)
Gracilaria sp. (A) 16.081 2.054 2.322 3 3 3 – – – (0.033) (0.084) (0.044)
Fucus sp. (A) 0.084 0.203 3 3 – – (0.81) (0.533)
Zostera noltii (M) 204.84 2.5 – 0.001
Epiphytes 7.695 180 – 0.149
Zooplankton (0.348) (0.278) (0.234) 22 18 20 (73.33) (90) (100) 0.98 0.95 0.95
Hydrobia ulvae (G) 54.750 4.666 9.745 1.3 4.5 4.5 (6.5) (22.5) (22.5) (0.209) (0.224) (0.092)
Gibulla umbilicallis (G) 0.072 1.76 (8.8) (0.73)
Littorina spp. (G) 2.489 0.525 3 3 (15) (15) (0.082) (0.468)
Melita palmata (Am) (0.109) (0.181) 0.099 7.2 8.38 8.5 (36) (41.88) (42.5) 0.95 0.95 (0.973)
Ampithoe valida (Am) (0.236) (0.179) 0.145 5.8 4.8 4.9 (29) (24) (24.5) 0.95 0.95 (0.87)
Echinogammarus marinus (My) 0.002 6.3 (31.5) (0.844)
Corophium multisetosum (Am) 0.002 10 (50) (0.635)
Scrobicularia plana (B) 3.260 7.762 11.347 1.8 1.8 1.8 (9) (9) (9) (0.834) (0.619) (0.319)
Cerastoderma edule (B) 5.221 0.088 0.216 4.8 4.8 4.8 (24) (24) (24) (0.305) (0.859) (0.956)
Modiolus barbatus (B) 0.022 2 (10) (0.446)
Cyathura carinata (I) 0.056 0.343 7. 268 2.03 3.17 3.17 (10.15) (15.85) (15.85) (0.982) (0.331) (0.012)
Idotea chelipes (I) 0.040 0.027 0.02 3.8 3.8 3.8 (19) (19) (19) (0.953) (0.494) (0.41)
Sphaeroma hookeri (I) 0.002 3.8 (19) (0.96)
Carcinus maenas (D) 1.09 0.58 0.419 6.4 6.4 6.4 (32) (32) (32) (0.384) (0.431) (0.511)
Crangon crangon (D) (0.132) (0.317) 0.280 6 6 6 (30) (30) (30) 0.95 0.95 (0.964)
Alkmaria romijni (P) 0.008 0.022 0.114 2.3 2.3 2.3 (11.5) (11.5) (11.5) (0.443) (0.69) (0.804)
Capitella capitata (P) 0.006 0.062 0.038 2.4 1.6 1.6 (12) (8) (8) (0.818) (0.913) (0.943)
Heteromastus filiformis (P) 0.610 2.2 0.192 2.4 2.2 2.2 (12) (11) (11) (0.93) (0.974) (0.778)
Hediste diversicolor (P) (0.866) (0.505) 0.428 5.6 5.4 5.2 (28) (27) (26) 0.95 0.98 (0.981)
Diopatra neapolitana (P) 0.019 6.52 (32.6) (0.914)
Nephtys hombergii (P) 0.052 0.055 4.6 4.6 (23) (23) (0.931) (0.346)
Lumbrineris impatiens (P) 0.130 2.4 (12) (0.734)
Other macrofauna detritivores (P) 0.600 0.893 0.160 2.9 2.4 2.4 (14.5) (12) (129) (0.983) (0.784) (0.919)
Other macrofauna predators (P) 0.355 0.053 0.010 3.43 3.43 3.43 (17.15) (17.15) (17.16) (0.835) (0.822) (0.90)
Oligochaets 0.127 0.031 0.005 2.6 2.6 2.6 (13) (13) (13) (0.948) (0.884) (0.483)
Microalgae and detritus feeders (F) 1.685 0.894 1.1 0.51 0.49 0.51 10.5 10.5 10.5 (0.719) (0.687) (0.821)
Zooplankton consumers (F) (0.335) (0.102) (0.063) 1.3 1 1 7.44 7.44 7.44 0.95 0.95 0.95
Endofauna consumers (F) 0.060 0.06 0.06 0.8 0.77 0.77 3.1 3.1 3.1 (0.79) (0.617) (0.870)
Macrofauna predators (F) 0.314 0.14 0.136 0.54 0.9 0.9 9.66 9.66 9.66 (0.347) (0.771) (0.789)
Trigla lucerna (F) 0.020 1.4 (7) 0.95
Pomatoschistus (F) (0.031) 1.7 (8.5) 0.95
Larus ridibundus (Gu) 0.006 0.006 0.006 0.02 0.15 0.15 0.24 0.24 0.24 (0.000) (0.000) (0.000)
Larus fuscus (Gu) 0.005 0.006 0.006 0.02 0.15 0.15 0.24 0.24 0.24 (0.000) (0.000) (0.000)
Charadrius alexandrinus (W) 0.001 0.001 0.001 0.02 0.15 0.15 0.24 0.24 0.24 (0.000) (0.000) (0.000)
Charadrius hiaticula (W) 0.001 0.001 0.001 0.02 0.15 0.15 0.24 0.24 0.24 (0.000) (0.000) (0.000)
Pluvialis squatarola (W) 0.001 0.002 0.002 0.02 0.15 0.15 0.24 0.24 0.24 (0.000) (0.000) (0.000)
Calidris alpina (W) 0.001 0.005 0.005 0.02 0.15 0.15 0.24 0.24 0.24 (0.000) (0.000) (0.000)
Detritus 527.31 518.76 309.8 – – – – – – (0.184) (0.826) (0.675)

A, macroalgae; M, macrophyte; G, Gastropoda; Am, Amphipoda; B, Bivalvia; I, Isopoda; D, Decapoda; P, Polychaeta; F, fish; Gu, gull; W, wader.
a P, production; B, biomass; Q, consumption; EE, ecotrophic efficiency.

can be problematic using the Ecopath software package, bac-
terial biomass was assigned to the detritus compartment, as
recommended by Christensen and Pauly (1992). Finally, the
amount of organic matter in the sediment was assessed to
be the weight lost after combustion of dry samples for 8 h at
450 ◦C.

2.2.4. Production, consumption and diet composition
Production refers to the increase of living tissue within
a compartment over a given period. Whenever possible,

production/biomass ratios (P/B), previously calculated for
local populations (e.g. Marques et al., 1994; Lillebø et al.,
1999; Pardal et al., 2000; Ferreira et al., 2004), were used.
When this was not feasible, values taken from the litera-
ture (Appendix A) were utilised. Special care was exercised
to identify values coming from similar Portuguese estuarine
systems.

Consumption is the intake of food by a group over a given
interval of time. It was entered into Ecopath as the ratio of
consumption to biomass (Q/B). Q/B values for birds and fish
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were taken from the literature (Appendix A). For the other
heterotrophic compartments, the P/Q ratios were entered into
the program to estimate indirectly the Q/B ratio (Hostens and
Hamerlynck, 1994).

In a trophic model, such as those constructed using the
Ecopath, it is predation that links the different groups into
a system. Consumption for one group becomes mortality
for another, making information on predation paramount
to understand the dynamics of ecosystems. Unfortunately,
quantitative information on diet composition is sparse. Diet
information for almost all the compartments here identified
had to be obtained from the literature (e.g. Hughes, 1969;
Costa, 1982; Pihl, 1985; Zajac, 1986; Sprung, 1994; Ansell et al.,
1999; Azeiteiro et al., 1999; Cunha et al., 2000; Pardal et al., 2000,
see Appendix A). Initially, all prey items of each compartment
of macrofauna and fishes were listed, along with their cor-
responding percentages of occurrence. Each observed dietary
item was then assigned to an ecologically similar species or
group of species as identified in (2) above. Finally, the percent-
age of occurrence in the diet was assumed to be proportional
to the fraction that its biomass comprised of the total biomass
of the group. The diets of wading birds and gulls were obtained
directly from an analysis of their droppings (Moreira, 1995;
Cabral et al., 1999).

2.2.5. Captures
A complete network requires estimates of the rates of export
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cannot be given. However, according to the methodology pro-
posed by Christensen et al. (2004), the following procedures
were followed.

The quality of the data used for each group in the models
was variable. For some, there were empirical estimates avail-
able from samples taken from within the models areas and
time frame (e.g. all macrofauna, macrophytes, macroalgae).
For others it was necessary to use empirical data from other
areas and/or time frames (e.g. fishes, gulls) or less specific
information (e.g. Zooplankton, Phytoplankton). The most reli-
able data were macrofauna biomass and production, contrary
to the majority of studies (e.g. Bundy et al., 2000; Heymans and
Baird, 2000). Data proceeding from the south arm of the Mon-
dego estuary (primary producers, macrofauna, waders and
detritus biomass, as well as P/B ratios calculated from previous
studies at the some location) were left unchanged. Therefore,
greater confidence was placed on them. One exception was
the decapods (Crangon crangon and Carcinus maenas) biomass.
This parameter had to be estimated due to the fact that the
original values were underestimated owing to the sampling
strategy used. This was also true for the majority of the fish
groups’ biomass. Regarding the Zooplankton, due to its com-
plex tidal and seasonal dynamics, it was difficult to estimate
a realistic annual average biomass. Thus, the software has
calculated the missing parameter for the three models. For
subsequent balancing it was necessary to re-evaluate some
compartments’ diet compositions (e.g. C. maenas, C. crangon, H.
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rom the system, including the harvests of economically
mportant species. In the present work, the harvests of the
ivalve Scrobicularia plana and the polychaete Hediste diversi-
olor (the only two species of economic importance on the
ondego estuary) were considered small enough to be neg-

igible.

.2.6. Balancing the models
or each of the three models the software has calculated the
issing parameters. At first none of the models were bal-

nced (e.g. negative flows to detritus, ecotrophic efficiencies
igher than 1 – which indicated that the demand on them was
oo high to be sustainable – and some P/Q = GE values physio-
ogically unrealistic). Given the distinct data and parameters
ource, this situation was predictable in advance. An exhaus-
ive set of guidelines for how a model should be balanced

Table 2 – Summary of ecological statistics/indices for the th

Statistic/indices

Zostera sp. m

Sum of all consumption (g AFDW m−2 yr−1) 694.9
Sum of all exports (g AFDW m−2 yr−1) 1707.5
Sum of all respiration (g AFDW m−2 yr−1) 2322.5
Sum of all flows into detritus (g AFDW m−2 yr−1) 2092.0
Sum of all production (g AFDW m−2 yr−1) 2151
Total system throughput (g AFDW m−2 yr−1) 6817
Net primary production (g AFDW m−2 yr−1) 2014.8
Total primary production/total respiration 0.8
Total biomass/total system throughput 0.0
Total biomass (no detritus) (g AFDW m−2) 304.1
Omnivory index 0.1
diversicolor, Lumbrineris impatiens and some fish groups) since
feeding habits of some organisms are highly labile and mainly
depend on food sources that are available in the ecosystem.
This parameter was poorly known, yet it had a large influence
on the model estimates.

3. Results and discussion

Diagrams showing the trophic flows were constructed, while a
summary of all the final input data and the calculated param-
eters is found in Table 1.

3.1. Summary statistics

Table 2 summarises the ecological statistics and indices for
the three estuarine networks.

estuarine networks

Area

ows Intermediate eutrophic Strongly eutrophic

292.14 521.33
34.01 169.61

297.32 612.67
195.09 522.40
223 494
819 1826
165.58 391.065

0.557 0.638
0.061 0.076

49.91 139.24
0.110 0.202
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The sum of consumptions, exports, respiration, produc-
tion, and flow to detritus was always higher in the Zostera sp.
meadows, followed by the strongly eutrophic area and, finally,
by the intermediate eutrophic area. This is also the conclusion
reached examining the trends for the total throughput (the
sum of all flows: consumption, exports, respiratory flows, and
flows to detritus) at each trophic level: 6817 g AFDW m−2 yr−1

in Z. noltii meadows, 1826 g AFDW m−2 yr−1 in the strongly
eutrophic area and 819 g AFDW m−2 yr−1 in the intermediate
eutrophic area (Table 2). All these results are, partially, explain-
able because the non-eutrophic area model has more groups
than the other models. This higher number of compartments
has an impact on the calculations and increases the TST and
subsequently all the flows such as consumption, production,
etc. Both eutrophic areas presented a similar partitioning of
the total throughput, between 29 and 36% of the total was
due to consumption, approximately 4–9% was exported, about
24–28% flowed into detritus, and around 34–36% was respired
(Fig. 2).

The major difference verified in the non-eutrophic area
concerned a proportionally higher value (25%) due to exports.
What is the explanation for these differences in the break-
down of throughput, with so much more exports and flow
to detritus in the Zostera sp. meadows? It is well known that
macrophytes support two types of food webs; first, an herbiv-
orous web in which herbivorous feed directly on the standing
plant or on the attached epiphytes, and second, a detritivo-

in the Mondego estuary has indicated that years of low pre-
cipitation have been associated with reductions in turnover
rates and with increases in water column stability, salinity
and light penetration (Martins et al., 2001). These changes
in habitat conditions favoured the initiation of macroalgal
blooms, which then served to depress the previously dom-
inant macrophyte communities (Marques et al., 1997, 2003;
Martins et al., 2001; Dolbeth et al., 2003; Cardoso et al.,
2004). In the intermediate and strongly eutrophic areas, pri-
mary production is largely the result of such macroalgal
blooms (Marques et al., 1997). As a consequence, produc-
tion in these two systems appears as a strong pulse dur-
ing the course of the blooms, but remains at very low lev-
els for the rest of the year (Dolbeth et al., 2003). The short
duration of the abundant primary production in these areas
averages over the year to a significantly lower annual rate
of net primary production. Odum (1969) had suggested that
less-impacted systems (e.g. Zostera sp. beds) should exhibit
higher rates of net system production—a fact that is consis-
tent with the results of the current study. In fact, Patrı́cio et
al. (2004), by means of network analysis showed that when
the whole-system properties of the three areas were com-
pared, the measures associated with the area hypothesised
as intermediate in terms of eutrophication symptoms did not
present intermediate conditions at all. Rather, the intermedi-
ate eutrophic area exhibited the lowest ascendency, average
mutual information, total system throughput and develop-
rous web, were some species feed on plant detritus. According
to Enriques et al. (1993), macrophytes are major producers of
organic matter but little of this production enters the grazing
food chain because there is a time lag between the production
and its utilisation.

Therefore, only few animals feed directly on these plants
(their production is usually used after decomposition) and
a big proportion of the production decays to detritus or is
washed way from the production area, being used in other
systems. This fact is consistent with the results of the current
study.

The annual rate of net primary production presented a
similar behaviour, clearly related with the primary produc-
ers dynamic in each of the studied areas. A long-term study

Fig. 2 – Partitioning of throughput among consumption by
predators, exports, flow to detritus and respiration in the
three estuarine areas. ZM, Zostera sp. meadows; IE,
intermediate eutrophic area; SE, strongly eutrophic area.
ment capacity values and the highest figures for redundancy,
cycling index, so to say it appears to be the most disturbed
of the three areas. Moreover, it was suggested that the most
likely explanation appears to be in the highly labile nature
of the intermediate system. Indeed, observations using other
ecological indicators (e.g. Shannon-Wiener, Margalef) have
showed that the communities built around both edges of
the eutrophication gradient (Zostera beds and Ulva sp. domi-
nated areas) represent more stabilised communities. For more
details regarding the eutrophication effects please see Patrı́cio
et al. (2004).

The system omnivory index (SOI) is the average group
omnivory index weighted by the logarithm of the total food
consumption. A group’s omnivory index is calculated as
the variance of the trophic levels of a consumer’s preys
(Christensen and Pauly, 1992). The SOI is a measure of how
the feeding interactions are distributed between trophic lev-
els (Vasconcellos et al., 1997). If a predator has only a prey on
one trophic level its omnivory index will equal zero, while a
large omnivory index indicates that the trophic positions of a
predator’s preys are variable. Heymans (2003), comparing dif-
ferent models of the Newfoundland community, observed that
the reduction of a 50 compartments model to a 30 compart-
ments model reduced the SOI in these systems. According to
the author, this index is dependent on the number of compart-
ments in the model: more compartments would have more
connections and there would be less omnivory when com-
partments are combined and diets consolidated. However, in
this study, the Zostera sp. meadows despite having 43 com-
partments exhibited the lower value for this index. In fact,
this community is the one with more groups, and still had the
lowest SOI, which indicates that it is probably not an effect of
different group size.
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3.2. Transfer efficiency

According to Lindeman (1942), ecosystem components can be
grouped into discrete trophic levels, and transfer efficiencies
estimated. Ecopath, using the trophic aggregation routine cal-
culates the transfer efficiencies as the fraction of total flows
at each trophic level (throughput) that are either exported
or transferred to another trophic level through consumption.
Since Lindeman (1942), it has often been assumed that trophic
transfer efficiencies vary around 10%, so that one-tenth of the
energy that enters a trophic level is transferred to the next
trophic level. Hence, transfer efficiencies are usually greater at
the beginning of the food web compared with higher trophic
levels, because of intrinsic characteristics of organisms at dif-
ferent levels in the food web (Christensen and Pauly, 1993).
Nevertheless, the transfer efficiencies for the three studied
areas (Table 3) suggest a pattern of low herbivore transfer
efficiencies (most of the production does not originate from
the Phytoplankton, but from the macroalgae and macrophytes
whose embodied energy is available for consumers only after
decaying into detritus), higher efficiencies on trophic level 3
and lower efficiencies at the higher levels. This fact has already
been reported in the literature (e.g. Christensen and Pauly,
1993; Baird and Ulanowicz, 1989). Based on the system and
the trophic level specific transfer efficiencies, Christensen and
Pauly (1993) estimated the average transfer efficiency for dif-
ferent systems (as geometric mean, weighted after flow). The
a
t
d

3

T
g
p
w
t
h
T
b
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o
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web, since all productions and losses must be balanced for
each group. A high consumption at the top of the food web
requires high production at all lower levels. The model is par-
ticularly sensitive to some of the groups (e.g. H. diversicolor,
C. crangon, C. maenas, Zooplankton, and Phytoplankton). The
results described above indicate a system for which the avail-
able information contains significant uncertainty. As a conse-
quence, there are several possible versions of the models.

Some other limitations of the model were observed, mainly
associated with the steady-state assumption: high seasonal
variations occurred, especially in the strongly eutrophic area
following the macroalgae bloom event, and these produced
major changes in the trophic structure and production. This
is not reflected in the present models which report average
conditions, but it could have been done by constructing sea-
sonal models for each of the three situations. Moreover, uncer-
tainty and time delays in processes associated with ecosys-
tem dynamics were not considered, which will constrain their
direct use for management purposes. Nevertheless, lack of
historical data and difficulty in measuring some ecosystem
components and processes will likely always plague efforts to
understand trophic structure and interactions. This is not a
problem with Ecopath, but rather with aquatic ecology in gen-
eral (Ludwig et al., 1993).

Lastly, even with all the limitations that this approach
seems to have, why are flux estimates vital to ecosystem sci-
ence? Many hypotheses and concepts about ecosystem func-

rgy
verage efficiencies in the three areas in the south arm of
he Mondego estuary (Table 3) are within the range of those
escribed in the literature for temperate systems (3–7%).

.3. Limitations and strengths of the approach

he uncertainty over the input parameters for some of the
roups at the lower trophic levels (e.g. Zooplankton, Phyto-
lankton) has already been discussed above. However, there
ere also several areas of uncertainty for groups at higher

rophic levels (e.g. gulls, fishes, waders). Weakness in diet data
as been noted in many compartments of the three models.
he present models provided estimates of the contribution
y various predators or groups of predators, but it must be
lear that the diet information for all these predators is inad-
quate for obtaining accurate estimates of their consumption
f minor preys. For example, the information on predation
y many fish groups came largely from personal observations
btained at different sampling stations during a distinct time
rame. These uncertainties are transmitted down the food

Table 3 – Trophic transfer efficiencies (%) (proportion of ene
trophic group for the three estuarine networks

Trophic level

Zostera sp. meadows

2 6.6
3 9.6
4 4.2
5 1.8
6 1.1
7 0.2
tion and food web dynamics focus on the nature of flows of
energy in these systems. For example, previous authors have
proposed a number of ecosystem attributes, and hypothesised
about their relationship to productivity, successional state,
and the level of human disturbance in an ecosystem (Odum,
1969; Ulanowicz and Kay, 1991). Some of these attributes, such
as gross production, community respiration quotients, energy
cycling or feedback loops require estimates of fluxes between
functional groups in their calculation. Patten (1995) showed
that five indices used to describe ecosystems, Ascendency,
Emergy, Eco-Exergy, Indirect Effects, and Maximum Power,
are related through the structure of networks and flows of
energy within the networks. Thus, most of the ‘descriptive
statistics’ for ecosystems include transfers of energy between
groups, and estimating fluxes is as fundamental to ecosys-
tem and food web ecology as estimating demographic rates is
to population ecology. In addition, to simply describe ecosys-
tems or food webs, ecologists can also use this information to
test hypotheses and draw conclusions regarding management
decisions. Just as food webs were summarised and analysed

transferred from one trophic level to the next) for each

Area

Intermediate eutrophic Strongly eutrophic

8.9 3.7
9.0 10.0
5.4 5.8
1.6 2.2
1.5 0.8
0.8 0.0
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for their structural characteristics (Pimm, 1982; Cohen et al.,
1993), ecologists have now begun summarising the patterns of
energy and nutrient flows between functional groups in food
webs and ecosystems.

4. Conclusions

The Ecopath models presented here allowed summarising of
our current knowledge of the biomass, consumption, produc-
tion, food web and trophic flows in the three areas along the
eutrophication gradient in the south arm of the Mondego estu-
ary (Portugal).

These models also highlight data uncertainties allowing
a gap analysis regarding our knowledge on the system (diet
compositions, site-specific P/B, Q/B ratios, ecological role of a
number of abundant species, etc). Unfortunately, uncertain-
ties concern all trophic levels and many constituent groups
of the models, including some parameters regarding those
groups that are regularly surveyed and assessed. Despite this,
Ecopath with Ecosim provided a useful scheme for organising
the communities’ trophic structures.

As a final word, it is important to note that the process of
constructing models such as these is essentially open-ended.

The data available for inputs are constantly being added to and
revised. These models should be considered as a first step.
Doubtless, the three models could be further enhanced, but
these versions embody our closest approximation to the sys-
tem, using the available data. Others are invited to critique the
models structure, the input data, and the assumptions, so that
the models can be improved in the future.
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Appendix A. Models data sources

mete

atio
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Figueroa and Niell (1987), Morrisey (1988)
Compartments Para

Phytoplankton Biomass
C:Chl a r
P/B

Enteromorpha sp. Biomass
Ulva sp. P/B
Gracilaria sp. Biomass

P/B
Fucus Biomass

P/B
Zostera noltii Biomass

P/B

Epiphytes Biomass
P/B

Zooplankton Biomass
P/B

Hydrobia ulvae Biomass
P/B
P/Q
Diet
Gibulla umbilicalis Biomass
P/B
P/Q
Diet

Littorina sp. Total biomas
L. littorea, L. saxatillis P/B of the gro

P/Q of the gro
Diet
r Source

Pardal (1998)
Anderson and Williams (1998)
Wolff et al. (2000)
Pardal (1998)
Anı́bal (1998)
Pardal (1998)
Duarte and Ferreira (1997)
Pardal (1998)
Niell et al. (1996)
Pardal (1998)
Sand-Jensen (1975) and Pérez-Lloréns and
Niell (1993)
Pardal (1998) and Martins et al. (1999)
Wolff et al. (2000)

diet Azeiteiro et al. (1999)
Rosado-Salórzano and Próo (1998)
Pardal (1998)
Lillebø et al. (1999) and Sola (1996)
Hostens and Hamerlynck (1994)
Hootsmans and Vermaat (1985), López-
and Philippart (1995)
Pardal (1998)
Baird and Milne (1981)
Hostens and Hamerlynck (1994)
Parker et al. (1993) and Watson (1985)

s Pardal (1998)
up Baird and Milne (1981)
up Hostens and Hamerlynck (1994)

Orth and Montfrans (1984), Konan et al.
(1992), Parker et al. (1993) and Watson (1985)
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Appendix A (Continued )

Compartments Parameter Source

Melita palmate Biomass Pardal (1998)
Ampithoe valida P/B Pardal (1998)

P/Q Hostens and Hamerlynck (1994)
Diet Sprung (1994), Alonso et al. (1995) and Greze

(1968)
Echinogammarus marinus Biomass Pardal (1998)

P/B and diet Marques and Nogueira (1991)
P/Q Hostens and Hamerlynck (1994)

Corophium multisetosum Biomass Pardal (1998)
P/B Casabianca (1975) and Cunha et al. (2000)
P/Q Hostens and Hamerlynck (1994)
Diet Cunha et al. (2000) and Smith et al. (1996)

Scrobicularia plana Biomass Pardal (1998)
Cerastoderma edule P/B Sprung (1994)
Modiolus barbatus P/Q Hostens and Hamerlynck (1994)

Diet Hughes (1969), Loo (1992) and Prins and
Smaal (1989)

Cyathura carinata Biomass Pardal (1998)
P/B and diet Ferreira et al. (2004) and Pardal (1998)
P/Q Hostens and Hamerlynck (1994)

Idotea chelipes Biomass Pardal (1998)
P/B Sprung (1994)
P/Q Hostens and Hamerlynck (1994)
Diet Nienhuis and Groenendijk (1986) and

S

A

C

H

H

D

N

L

phaeroma hookeri Biomass
P/Q
Diet

mage adspersa Biomass
P/B
P/Q
Diet

apitella capitata Biomass
P/B
P/Q
Diet

eteromastus filiformis Biomass
P/B and di
P/Q

ediste diversicolor Biomassa
P/B
P/Q
Diet

iopatra neapolitana Biomass
P/B
P/Q
Diet

ephtys hombergii Biomass
P/B
P/Q
Diet

umbrineris impatiens Biomass
P/B
P/Q
Diet
Schaffelke et al. (1995)
Pardal (1998)
Hostens and Hamerlynck (1994)
Pardal (1998)
Pardal (1998)
Sprung (1994)
Hostens and Hamerlynck (1994)
Pardal (1998) and Sprung (1994)
Pardal (1998)
Sprung (1994)
Hostens and Hamerlynck (1994)
Tenore (1983) and Tenore and Chesney
(1985)
Pardal (1998)

et Sprung (1994)
Hostens and Hamerlynck (1994)
Pardal (1998)
Abrantes et al. (1999) and Sprung (1994)
Hostens and Hamerlynck (1994)
Nielsen et al. (1995) and Riisgård et al. (1996)
Pardal (1998)
Sprung (1994)
Hostens and Hamerlynck (1994)
Mangum et al. (1968)
Pardal (1998)
Sprung (1994)
Hostens and Hamerlynck (1994)
Beukema (1987) and Oyenekan (1986)
Pardal (1998)
Venier (1997)
Hostens and Hamerlynck (1994)
Petch (1986) and Valderhaug (1985)
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Appendix A (Continued )

Compartments Parameter Source

Other macrofauna detritivores Total biomass Pardal (1998)
Aonides oxycephala, Chaetozone setosa,

Lagis koreni, Polydora ligni, Pygospio elegans,
Streblospio shrubsolii, Haminea hydatis,
Diptera larvae

P/B of the group Sprung (1994)

P/Q of the group Hostens and Hamerlynck (1994)
Diet Dauer et al. (1981), Lambeck and Valentijn

(1987) and Zajac (1986)
Other macrofauna predators Total biomass Pardal (1998)

Nemertini, Glycera convoluta, M. picta, A.
mucosa, P. laminosa

P/B of the group Sprung (1994)

P/Q of the group Hostens and Hamerlynck (1994)
Diet Commito and Ambrose (1985), McDermott

and Roe (1985), Ockelmann and Vahl (1970)
and Thiel and Reise (1993)

Oligochaeta Total biomass Pardal (1998)
Tubificoides benedeni, Oligocheta sp. P/B of the group Sprung (1994)

P/Q of the group Hostens and Hamerlynck (1994)
Diet Giere (1975)

Carcinus maenas Biomass Pardal (1998)
Crangon crangon P/B Sprung (1994)

P/Q Hostens and Hamerlynck (1994)
Diet Ansell et al. (1999), Lee and Seed (1992) and

Pihl (1985)

Microalgae and detritus feeders Total biomas

Mugil cephalus, Chelon labrosus, Liza
aurata, Liza ramada, Alosa fallax, A. alosa

P/B, Q/B grou

Stomach con

DW/WW, C/D
Zooplankton consumers Total biomas

Sardina pilchardus, Syngnathidae,
Engraulis encrasicolus

P/B, Q/B grou

Stomach con

DW/WW, C/D
Endofauna consumers Total biomas

Solea vulgaris, Solea senegalensis,
Platichthys flesus

P/B, Q/B grou

Stomach con

DW/WW, C/D
Macrofauna predators Total biomas

Dicentrarchus labrax, Anguilla anguilla,
Gobius niger, Ciliata mustela, Sparus aurata,
Diplodus sargus, Diplodus vulgaris, Mullus
surmuletus, Atherina boyeri, A. presbyter

P/B, Q/B grou

Stomach con

DW/WW, C/D
Trigla lucerna Biomass

P/B, Q/B
Stomach con

DW/WW, C/D
Pomatoschistus minutus Biomass

P/B, Q/B
s Jorge (unpublished data)
p http://www.fishbase.org

tent Correia et al. (1997), Oliveira and Soares
(1996) and Jørgensen et al. (1991)

W
s Jorge (unpublished data)
p http://www.fishbase.org

tent Convay et al. (1994) and Jorge (unpublished
data)

W Jørgensen et al. (1991)
s Jorge (unpublished data)
p http://www.fishbase.org

tent Costa (1982), Gonçalves (1990) and
Summers (1980)

W Jørgensen et al. (1991)
s Jorge (unpublished data)
p http://www.fishbase.org

tent Correia et al. (1997), Costa (1982), Rebelo
(1993) and Rosecchi (1987)

W Jørgensen et al. (1991)
Jorge (unpublished data)
http://www.fishbase.org

tent Correia et al. (1997), Costa (1982) and Morte
et al. (1997)

W Jørgensen et al. (1991)
Jorge (unpublished data)
http://www.fishbase.org

http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
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Appendix A (Continued )

Compartments Parameter Source

Stomach content Costa (1982) and Jorge (unpublished data)
DW/WW, C/DW Jørgensen et al. (1991)

Larus ridibundus Biomassa Lopes (unpublished data)
Larus fuscus P/B, Q/B http://www.cbl.umces.edu/ãtlss

Diet Moreira (1995)
Av. weight/ind. Cramp and Simmons (1983)
DW/WW, C/DW Jørgensen et al. (1991)

Charadrius alexandrinus Biomass Lopes (unpublished data)
Charadrius hiaticula P/B, Q/B http://www.cbl.umces.edu/ãtlss
Pluvialis squatarola Diet Lopes et al. (1998)
Calidris alpina Av. weight/ind. Zwarts et al. (1990)

DW/WW, C/DW Jørgensen et al. (1991)
Detritus Biomass (O.M in the sediment) Pardal (1998)
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Riisgård, H.U., Poulsen, L., Larsen, P.S., 1996. Phytoplankton
reduction in near-bottom water caused by filter-feeding
Nereis diversicolor—implications for worm growth and
population grazing impact. Mar. Ecol. Prog. Ser. 141, 47–54.
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