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Abstract

The behavior of single-surface nuclear wavefunctions in the vicinity of the conical intersection at the equilateral triangle
conformations of homonuclear triatomic systems is examined analytically by using spherical coordinates which are obtained
from the usual D normal mode ones. They are described by a set of three quantum numbers and shown to approach zero3h

at the conical intersection, irrespective of whether the so-called geometric phase effects are taken into consideration. q 2000
Elsevier Science B.V. All rights reserved.

1. Introduction

In recent years, there has been considerable inter-
est in molecular vibronic dynamics which requires
the consideration of two or more Born–Oppenheimer
Ž . Ž . w xBO potential energy surfaces PES 1–4 . In par-
ticular, recent interest has focused on the so-called
conical intersections. The simplest systems exhibit-
ing such an intersection are those formed by three

2 w x w xidentical S atoms, i.e., H 5,6 , Li 7–9 , Na3 3 3
w x10 , etcetera. For these systems, symmetry consider-
ations force the conical intersection to occur at D3h

geometries; the behavior of the corresponding BO
energies and the derivative coupling has been exam-

w xined by Mead and co-workers 2,4 . In particular,
w xMead 2 has proved that single-surface nuclear

wavefunctions for such a system must approach zero
w xat the conical intersection 2 , a finding which may

) Corresponding author. Fax: q351-39-27703; e-mail:
varandas@qtvsl.uc.pt

have implications on the behavior of the derivative
w xcoupling terms at the conical intersection 2 . How-

ever, Mead’s demonstration is based on a two-di-
Ž .mensional 2D model analysis, a limitation which

has been removed in the present work while using a
relatively straightforward formalism.

Related to conical intersections are subtle compli-
cations arising in the adiabatic treatment of the nu-
clear motion, which are known as geometric phase
Ž . w x ŽGP effects 11 also often called Bohm–Aharonov

w x w x.effects 2 or Berry’s phase effects 12,2 . Such
complications stem in molecular dynamics from two

w xtopological theorems due to Longuet-Higgins 13
Ž .which state 1 that on going once around any closed
Ž .path on the adiabatic PES that contains the conical

intersection the electronic wavefunction changes sign
Ž .and 2 that if a real adiabatic electronic wavefunc-

tion changes sign when a polyatomic traverses a
one-dimensional closed loop on a 2D surface in the
Ž .3Ny6 -dimensional nuclear configuration space,
then the corresponding electronic state must become

0009-2614r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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discontinuous and degenerate with another one at an
odd number of points lying on that surface and
within that loop. Indeed, ab initio electronic structure
calculations have shown such theorems to hold, e.g.,

w xfor LiNaK 14 , a system which has no permutational
symmetry. Since the total electronuclear wavefunc-
tion must be well behaved, one has therefore to take
GP effects into account when carrying out single-
surface calculations. Only in this case will the results
satisfy the proper boundary conditions and hence the
minimum requirement for comparison with experi-
ment. Such an approach has been extensively ex-
plored recently, in particular by Kendrick and Pack
w x15 who have introduced the so-called generalized

ŽBO method for further discussion on this topic, see
w x. w xRefs. 16,17 . Billing and Markovic 18 carried out

similar calculations but using hyperspherical coordi-
nates to include the GP effects; for X molecules3

having a single D conical intersection, GP effects3h

concern only the f hyperangle. A similar approach
w xhas been advocated by us in previous studies 6,8,9,1 .

In this Letter, we discuss in detail the behavior of
the nuclear wavefunctions for X systems in the3

vicinity of the D conical intersection and compare3h

the results with those reported previously by Mead
w x2 from his 2D model system. Section 2 presents a
brief discussion on the reduction of the coupled
equations, while the behavior of the nuclear wave-
functions in the vicinity of the conical interection
will be discussed in Section 3. Conclusions are in
Section 4.

2. Coupled equations and nonadiabatic coupling

Consider the dynamics of an X system in the3

vicinity of the D crossing seam. The conventional3h

coordinates used for this purpose are the normal
Ž . w xcoordinates Q ,Q ,Q 19,20 illustrated in Fig. 1,x y z

Ž .or the corresponding spherical coordinates r,u ,w
which are related to them by

Q sr sin u cos w ,x

Q sr sin u sin w ,y

Q sr cos u . 1Ž .z

Fig. 1. Normal coordinates for a triatomic molecule near equilat-
eral triangle configurations.

Clearly, Q and Q form a basis for the E represen-x y

tation in the D symmetry point group, while Q3h z

spans the corresponding A representation. Overall1

translation and rotation are assumed to have been
removed.

Following the usual procedure, the total molecular
wavefunction can be expanded as

V Q ,r s C Q x r;Q 2Ž . Ž . Ž . Ž .Ý n n
n

where r and Q denote the sets of electronic and
Ž .nuclear coordinates, respectively, and x r;Q is then

n-th member of the orthonormal set of eigenfunc-
ˆ Ž .tions of the electronic Hamiltonian operator H r ,Q ;e

note that such functions form a complete set in r for
any value of the coordinates Q on which they have a
parametric dependence.

Ž .Substitution of Eq. 2 into the full time-indepen-
Ždent Schrodinger equation relativistic effects are¨

.ignored yields

2
"

2y = q2F Q P=qG Q qV Q( ) ( ) ( )½ 52m

C Q sEC Q 3( ) ( ) Ž .
where m is the reduced mass of the three-particle

( )system, C Q denotes a column vector whose com-
Ž .ponents are the nuclear wavefunctions C Q , andn
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( ) ( ) ( )the matrix elements of F Q , G Q and V Q
assume the form

² < :F Q s x r;Q =x r;Q , 4Ž . Ž . Ž . Ž .jk j k

² < 2 :G Q s x r;Q = x r;Q , 5Ž . Ž . Ž . Ž .jk j k

ˆ² < < :V Q s x r;Q H x r;Q , 6Ž . Ž . Ž . Ž .jk j e k

with the integration referring only to the electronic
Ž .degrees of freedom. Note that the set x r;Q mayn

be chosen for convenience. For example, in the
adiabatic representation, they are taken as eigenfunc-

ˆtions of H for every Q, such that the couplinge
Ž .between the different components of C Q is con-n

( ) ( )fined to F Q and G Q ; this is often referred to as
the BO adiabatic approximation. Alternatively, the
system of coupled differential equations can be sim-
plified through the use of a new set of electronic
wavefunctions f r;Q , which are obtained from� 4Ž .m

a unitary transformation of the adiabatic set
x r;Q according to� 4Ž .n

f r;Q s a Q x r;Q . 7Ž . Ž . Ž . Ž .Ým m n n
n

Ž .In principle, the coefficients a Q can be chosenm n

by imposing

² < :f r;Q =f r;Q s0 8Ž . Ž . Ž .m n

for all m and n at any Q. This so-called adiabatic–
w xdiabatic transformation 21 leads to the system of

linear differential equations

² < :=a Q q a Q x r;Q =x r;Q s0 ,Ž . Ž . Ž . Ž .Ým n m s n s
s

9Ž .

the solution of which, as well as the conditions for
having such a solution, has been a matter of discus-

w xsion over the years 22,2,23–25 . In the following,
we will be concerned with just two electronic states,

Ž . Ž . Ž .x r;Q and x r;Q , where q y stands for theq y
Ž .upper lower sheet of the BO potential energy hy-

persurfaces, which are degenerate for rs0.
Ž . w xUsing the coordinates Q ,r,w , one then has 7z

E E cos wysin w E
=s q cos wqsin w qŽ .

EQ Er r Ewz

10Ž .

which, in the vicinity of the conical intersection, may
be reduced to the simplified form

cos wysin w E
=s . 11Ž .

r Ew

w xAs pointed out long ago by Longuet-Higgins 26 ,
for r™0, the electronic wavefunctions satisfy

E 1
x r;Q s. x r;Q 12Ž . Ž . Ž ." .

Ew 2

Ž . Ž . Ž .which, after use of Eqs. 11 and 12 into Eq. 9 ,
leads to

E 1
a Q s. a Q , msx , y , 13Ž . Ž . Ž .m" m.

Ew 2

Ž .where x and y refer to f and f in Eq. 7 . Thus,x y
Ž . Ž .from Eqs. 7 and 13 , a suitable choice of real

orthogonal solutions is

f r;QŽ .x

f r;QŽ .y

x r;QŽ .cos wr2 sin wr2Ž . Ž . q
s .

ysin wr2 cos wr2 x r;QŽ . Ž . Ž .y

14Ž .
Ž .Note that the adiabatic eigenfunctions in Eq. 14 are

not single-valued functions of the nuclear coordi-
nates. However, as pointed out by Mead and Truhlar
w x27,28 , an appropriate choice of single-valued eigen-
functions is

x sx exp i f Q , x sx exp i f Q 15Ž . Ž . Ž .˜ ˜q q y y

Ž .where the function f Q may not be single-valued;
indeed, it may increase by a multiple of 2p on
traversing a closed path around the conical intersec-
tion. Thus, the adiabatic electronic wavefunctions
can be made continuous and single-valued simply by

w xmultiplying them by a phase factor. One gets 27,28

F Q ™F Q q i=f Q , 16( ) ( ) Ž . Ž .
22G Q ™G Q q2iF Q P=fq i= fy =f ,( ) ( ) ( ) Ž .
17Ž .
Ž .which is equivalent to the transformation in Eq. 3

=™=q i=f Q . 18Ž . Ž .
This implies that the solution of the resulting
Schrodinger equation can be obtained by multiplying¨
the original nuclear wavefunctions by a phase factor
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w Ž .xexp yi f Q such as to leave the total wavefunction
unchanged. A convenient choice for X molecules3

Ž .with a D conical intersection is f Q s jwr2,3h

where j is an integer. This approach has been shown
to be particularly convenient when hyperspherical

w xcoordinates are used to include GP effects 18,6,8,9 .
Ž .Note that in general f Q will be a function of all the

w xnuclear degrees of freedom 15 .
w xFinally, it has been shown 3 that in the BO

approximation, the leading term of the nonadiabatic
coupling assumes in the vicinity of the conical inter-
section the form

1 E
Ĉ sG q2 F =s . 19Ž .qy qy qy 2 Ewr

Thus, it can be neglected only if the nuclear wave-
functions depend on r through a power of Õ greater
than 1r2. This is due to the volume element which
makes the integrand of the derivative coupling terms
vary as Ar 2 Õq1. Thus, the condition 2Õq1)2
must be satisfied in order to neglect such coupling
terms. As it will be shown later, such a requirement
can be satisfied in most cases. Considering now

Ž .G and G in Eq. 5 , the leading term of theseqq yy
w xdiagonal matrix elements has been shown 3 to

assume in the vicinity of the conical intersection the
form

1
G sG sy . 20Ž .qq yy 24r

Based on the above considerations, the coupled dif-
Ž .ferential equations in Eq. 3 can be reduced near the

crossing seam to two independent equations referring
to the upper and lower sheets separately, namely

"
2

2y = qG qV C sE C 21Ž .Ž .yy y y y y½ 52m

for the lower sheet, with a similar equation in which
the subscripts y are replaced by q being applicable
to the upper sheet; V is the adiabatic PES for they
lower sheet, and C and E the vibrational wave-y y
function and corresponding vibrational energy, re-

Ž .spectively correspondingly for V , C , and E .q q q
Given their similar forms, we can omit subscripts in
the following discussion, which means that the dis-
cussion is valid both for the upper and lower adia-
batic PESs.

3. Nuclear wavefunctions near the conical inter-
section

In the 3D space spanned by such a system of
spherical coordinates, the Hamiltonian assumes the
form

"
2 1 E E

2Ĥ sy rÕ 2½ ž /2m Er Err

1 1 E E
q sin u2 ž /sin u Eu Eur

1 1 E2

q 2 2 2r sin u Ew

1
y yVV r ,u ,w , 22Ž . Ž .2 54r

2mŽ . Ž .where we have used VV r,u ,w s V r,u ,w .2"

Ž .Thus, the vibrational wave equation, Eq. 21 or its
equivalent for the upper sheet, will be given by

1 E E 1 1 E E
2r q sin u2 2 ž /½ ž /Er Er sin u Eu Eur r

21 1 E 2mE 1
q q y2 2 2 2 2r sin u Ew " 4r

yVV r ,u ,w C r ,u ,w s0 . 23Ž . Ž . Ž .Õ5
Moreover, in the vicinity of the conical intersection,

w xthe potential energy can be shown 3 to assume a
separable form with its leading term depending on r

alone. Separation of variables can then be obtained
by writing the nuclear vibrational wavefunction as

C sR r Q u F w , 24Ž . Ž . Ž . Ž .Õ

Ž .which upon insertion into Eq. 23 leads to

d2
2qm F w s0 , 25Ž . Ž .2½ 5d w

21 d d m
sin u q ly Q u s0 ,Ž .2ž /½ 5sin u du du sin u

26Ž .
1 d d

2r2½ ž /dr drr

l 1
y ´qVV r q q R r s0 , 27Ž . Ž . Ž .2 2 5r 4r
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Ž . 2where ´sy 2mE r" , and we have considered
the bound vibrational states to be defined such that

Ž .´)0. Regarding Eq. 25 , the solutions clearly as-
sume the form

y1r2
F w s 2p exp imw 28Ž . Ž . Ž . Ž .

Ž .where msnq jr2 , ns0,"1,"2, PPP , and js
1 or 0 depending on whether one takes GP effects

Ž . Ž . w xinto consideration GP case or not NGP case 8 .
Note that the quantum number m has a meaning

w xsimilar to n in Ref. 1 where the formalism hasw

been developed in terms of hyperspherical coordi-
w xnates 6 .

Ž .Now considering Eq. 26 , and using jscosu

Ž .y1(j(1 , one gets

2d d
21yj y2jŽ . 2 djdj

2m
q ly Q u s0 . 29Ž . Ž .2ž /1yj

Assuming further that the solutions have the form

Ž < < .m r22Q j s 1yj Õ j 30Ž . Ž . Ž .Ž .
where

`

nÕ j s c j , 31Ž . Ž .Ý n

ns0

Ž . Ž .one obtains, from Eqs. 29 and 30 ,

d2 d
2 < <1yj y2 m q1 jŽ .Ž . 2½ djdj

< < 2q ly m ym Õ j s0 . 32Ž . Ž .Ž . 5
Ž . Ž .Substitution of Eq. 31 into Eq. 32 then leads to

`

nq2 nq1 c y n ny1Ž . Ž . Ž .�Ý nq2
ns0

2 n< < < <q2 m q1 nq m ylqm c j s0 , 33Ž . Ž .4n

which implies

nq2 nq1 cŽ . Ž . nq2

2< < < <s n ny1 q2 m q1 nq m ylqm c .Ž . Ž . n

34Ž .

Assuming next that the polynomials break-off at
k Ž .c j i.e., c s0 , where k is an integer or zero,k kq2

one has

< < < < 2k ky1 q2 m q1 kq m ylqm s0 35Ž . Ž . Ž .

or

< < < <ls kq m kq m q1 . 36Ž . Ž . Ž .

< <Setting now lskq m as an integer, which includes
zero in the NGP case, or a half-integer in the GP
case, one obtains

ls l lq1 . 37Ž . Ž .

Thus, we may think of l as an orbital angular
momentum quantum number; note that l has a mean-

w x Ž .ing similar to n in Ref. 1 . Furthermore, Eq. 29 isu

seen to be the Legendre equation, which has the
well-established associated Legendre polynomials

< m <Ž .P cos u as solutions.l

We now turn to solutions of the radial Schrodi-¨
Ž . Ž .nger equation, Eq. 27 . From this and Eq. 37 , one

gets

1 d d
2r2½ ž /dr drr

l lq1 1Ž .
y ´qVV r q q R rŽ . Ž .2 2 5r 4r

s0 . 38Ž .

Assume then that the potential has in the vicinity of
the conical intersection the general form

k
iVV r s c r 39Ž . Ž .Ý i

is1

where for convenience we have chosen the reference
Žc s0, and c s1 note that such a form is applica-0 2

ble both to the upper and lower sheets of the PES
.after appropriate selection of the sign of c . Note1

also that, for large perimeters associated with equi-
lateral triangle molecular shapes, one must satisfy
the requirement

lim VV r ™0 . 40Ž . Ž .
r™`
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Ž .Thus, when r™`, Eq. 38 assumes the form

d2

y´ R r s0 , 41Ž . Ž .2ž /dr

'Ž .and hence lim R r ™exp " ´ r . As a result,Ž .r ™`

the well-behaved asymptotic solution will be given
by

'lim R r ™exp y ´ r . 42Ž . Ž .Ž .
r™`

Clearly, the nuclear wavefunction decays quicker
Ž < <.with increasing energy E for bound vibrational

states. For resonance states, E will take complex
Ž .values and hence the decay in Eq. 42 will display

an oscillatory behavior. In turn, for scattering states
one has E)0, and hence the nuclear wavefunction
will oscillate.

Ž .In the limit of r™0, Eq. 38 assumes the form

2d 2 d l lq1 1Ž .
q y y R r s0Ž .2 2 2r drdr r 4r

43Ž .

Ž . Ž .since VV r ™0. Eq. 43 has, in the limit of r™0,
a behavior identical to the Bessel equation

2 2d 1 d Õ
q q 1y R r s0 . 44Ž . Ž .2 2ž /r drdr r

Thus, it has the asymptotic solutions

r Õ

lim R r ™ 45Ž . Ž .
Õ2 G Õq1r™0 Ž .

where

1
Õs l lq1 q . 46( Ž . Ž .4

1 3 5Thus, for the NGP case, Õs , , , PPP correspond-2 2 2

ing to ls0,1,2, PPP . In turn for the GP case, one
1 3 5has Õs1,2,3, PPP corresponding to ls , , , PPP .2 2 2

Thus, all values of Õ are greater than 1r2 except for
Õs1r2 in the NGP case. The off-diagonal coupling
term can therefore be removed as pointed out in
Section 2. For ls0, we must therefore consider
such coupling term. Note that the quantum number Õ

w xhas now a meaning similar to n in Ref. 1 .r

Ž .The general solution of Eq. 38 is then up to a
constant factor, given by

Õ'R r sexp y ´ r r F r 47Ž . Ž . Ž .Ž .
Ž . Ž .where, upon substitution of Eq. 47 in Eq. 38 ,

Ž .F r may be shown to satisfy

2d 2 Õq1 dŽ . 'q y2 ´2½ r drdr

'2 Õq1 ´Ž .
y qVV r F r s0 . 48Ž . Ž . Ž .5r

Ž .Consider then the asymptotic behavior of F r . In
the vicinity of the conical intersection r™0, and

Ž .hence Eq. 48 assumes the form

2 'd 2 Õq1 d 2 Õq1 ´Ž . Ž .
q y F r s0 ,Ž .2 r dr rdr

49Ž .

which has the asymptotic solutions

'lim F r ™ F g ´ ,g ,r 50Ž . Ž .Ž .1 1
r™0

'Ž .where F g ´ ,g ,r is the confluent hypergeomet-1 1
Ž . Ž .ric function Kummer’s function with gs2 Õq1 .

Ž .In turn, for r™`, Eq. 48 takes the form
2d d'y2 ´ yVV r F r s0 . 51Ž . Ž . Ž .2 drdr

If one now assumes that

lim VV r ™d )0 52Ž . Ž .q
r™`

where d is taken as a sufficiently small positiveq
Ž .number, the asymptotic solutions of F r will as-

sume the form

'lim F r ™exp ´ y ´qd r . 53Ž . Ž .(ž /q
r™`

Ž .Thus, F r approaches unity both in the limits
r™0 and r™`.

For the GP case, the nuclear wavefunction as-
sumes therefore the form

C r ,u ,wŽ .
Õ < m <'sN exp y ´ r r F r P cos u exp imwŽ . Ž . Ž .Ž . l

54Ž .
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with
1 3 1 3lskq ,kq , PPP ms" ," , PPP . 55Ž .2 2 2 2

In turn, for the NGP case, one has

lskq0,kq1,kq2, PPP ms0,"1, PPP 56Ž .
where, as usual, N is a normalization factor. Thus,
since in the GP case l is a half-integer and Õ is a
positive interger, one gets

lim C r ,u ,w ™0 . 57Ž . Ž .
r™0

Ž .Similarly, for the NGP, one obtains Eq. 57 . In
these cases, the centrifugal potential including that
due to G or G terms prevents the nuclearqq yy
wavefunction from penetrating in the vicinity of the
conical intersection. In fact, this appears to be the
case for the ground state of Li , as shown in Fig. 23

and Fig. 3; these illustrate the corresponding NGP
< < 2and GP nuclear probability densities C , which

have been calculated using hyperspherical coordi-
w xnates 8 . Specifically, they show the four lowest

vibrational states which are labeled by their permuta-
tional symmetries A , A and E in SS permutation1 2 3

group and by the set of vibrational quantum numbers
Ž .Õ ,Õ ,Õ in the C point group, where Õ , Õ , and1 2 3 2 Õ 1 2

Õ are associated to the symmetric stretching, bend-3
w xing, and asymmetric stretching vibrational modes 8 .

Note that the conical intersection is located at the
centre of the plot. Clearly, the nuclear wavefunctions
approach zero at the conical intersection in all cases.
Although in the NGP case with ls0 there is not an
intrinsic centrifugal potential barrier, the potential
due to G or G will play that role by prevent-qq yy

w x Ž .Fig. 2. Triangular plot 29 perspective viewrcontour diagram using hyperspherical coordinates of cross-sections for the nuclear
w x 2 2 2 2probability densities without including GP effects. They refer to a value of Ref. 29 Qsr qr qr s91.74 a , which corresponds toAB BC AC 0

a hyperradius for which the density probability, after averaging over the hyperangles u and f, is maximum; bsb w Q and gsg w Q, and
Ž . Ž .A, B, and C denote the atoms 1, 2, and 3 in Fig. 1 . Note that the conical intersection is located at the centre of the plot. Key for panels: a

Ž . Ž . Ž . Ž . Ž . Ž . Ž .A 0,0,0 ; b one component of the E 0,0,0 state; c one component of E 0,0,1 ; d A 0,0,1 .1 1
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Ž . Ž . Ž . Ž . Ž . Ž . Ž .Fig. 3. As in Fig. 2 but with inclusion of GP effects. Key for panels: a one component of E 0,0,0 ; b A 0,0,0 ; c A 0,0,0 ; d one1 2
Ž .component of E 0,0,1 .

ing the nuclear wavefunction from penetrating in the
vicinity of the conical intersection. However, as we
have mentioned before, the coupling terms corre-

ˆsponding to the operator C have a non-zero valueqy

in this case, and hence a two-state calculation must
be considered.

To conclude, our results may be compared with
w xthe approximate 2D solutions reported by Mead 2 ,

Table 1
X X Ž . Ž . Ž .Comparison of the first lowest values of m ,Õ in Eq. 58 and m,l,Õ in Eq. 54Ž .

w xMead 2 This work
X Xm Õ m l Õ

'y1,y2 2 r2s0.707 "1r2 1r2 1
'0,y3 10 r2s1.581 "1r2,"3r2 3r2 2
'1,y4 26 r2s2.550 "1r2,"3r2,"5r2 5r2 3
'2,y5 50 r2s3.536 "1r2,"3r2,"5r2,"7r2 7r2 4
'3,y6 82 r2s4.528 "1r2,"3r2,"5r2,"7r2,"9r2 9r2 5
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C r ,w sr Õ
X

exp imX
w 58Ž . Ž . Ž .

where

2X X X3 1(Õ s m q q m s0,"1,"2 PPP . 59Ž .Ž .2 4

Clearly, Mead’s asymptotic wavefunction ap-
proaches zero slower than ours probably due to

Žhaving considered only a 2D treatment note also
.that it does not change sign when w™wq2p .

This is illustrated by the values given in Table 1.
Indeed, the rates of decrease differ marginally from

X ŽMead’s ones, especially for large values of Õ de-
w x.noted n in Ref. 2 where these approach our values

of Õ. It seems therefore that the quantum numbers
are exact only in the 3D treatment of the present
work.

4. Closing remarks

We have analyzed the behavior of the nuclear
wavefunction in the vicinity of the conical intersec-
tion which arises at equilateral triangle configura-
tions for homonuclear triatomic systems. It has been
found that, in the vicinity of the equilibrium configu-
ration, the motion of the nuclei can be described by
the quantum numbers n s l and n sm and also byu w

the quantum number n sÕ. The set of quantumr

Ž .numbers n ,n has been shown to take half-integeru w

values in the GP case while assuming integer or zero
values for the NGP one. Moreover, the quantum
number n has been shown to assume integer valuesr

in the GP case while being half-integer in the NGP
case. Since our derivation is more general than the

w xone given by Mead 2 , we have obtained a set of
exact quantum numbers to quantize the motion in
such regions while in his case the quantum number
associated to the r coordinate is only approximate. It
has also been shown that the nuclear wavefunctions
approach zero, both in the NGP and GP cases.
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