

Journal of Molecular Structure 550-551 (2000) 365-388

www.elsevier.nl/locate/molstruc

Vibrational analysis and structural implications of H-bonding in isolated and aggregated 2-amino-1-propanol: a study by MI-IR and Raman spectroscopy and molecular orbital calculations $\stackrel{\text{tr}}{\Rightarrow}$

R. Fausto^{a,*}, C. Cacela^b, M.L. Duarte^b

^aDepartamento de Química, Universidade de Coimbra, P-3049 Coimbra, Portugal ^bDepartamento de Química e Bioquímica, CECUL, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Received 13 September 1999; received in revised form 21 October 1999; accepted 21 October 1999

Abstract

Isolated 2-amino-1-propanol (**2AP**) was studied by matrix-isolation infrared spectroscopy (MI-IR) in Ar and Kr and ab initio $6-31G^*$ calculations undertaken at the HF-SCF and MP2 levels of theory. For the first time, five different conformational states of **2AP** could be experimentally observed, which could be correlated with the most stable forms predicted by the calculations. The first and second lowest energy forms correspond to conformers which exhibit a considerably strong intramolecular OH…N hydrogen bond (g'Gg' and gG'g), while the less abundant forms observed in the matrices (gGg', gGt and g'G'g) are characterized by having a weak intramolecular NH…O or OH…N bond. These results were reinforced by infrared solution studies of the compound in tetrachloromethane and tetrachloroethylene. The experimental data obtained for the pure liquid, where OH…N intermolecular hydrogen bonding dominates, indicate that the preferred conformation of the monomeric unit within the aggregates is similar to conformer gGt. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: 2-Amino-1-propanol; Intra and intermolecular hydrogen bonding; Infrared and Raman spectra; Matrix isolation; HF-SCF and MP2 6-31G^{*} ab initio calculations

1. Introduction

Aminoalcohols have been proposed as potential vitrifying agents for long term cryopreservation of biological tissues and organs [1,2]. The vitrifying ability of these compounds, i.e. the property of avoiding ice formation upon lowering the temperature to sub-zero temperatures when they are added to water

in a given proportion, has been suggested to be controlled, at least in part, by different types of *inter* and *intra*molecular hydrogen bonds in which aminoalcohols can be involved [1,2]. In fact, the simultaneous presence of the amino and hydroxyl groups in the same molecule, both able to act as a H-bond donor and acceptor, opens a wide range of possible hydrogen bond interactions, in particular when the groups are close to each other.

The main limiting factor to a detailed study of aminoalcohols, one that justifies the unavailability of extensive structural and spectroscopic data on such molecules, is its tendency to aggregate under normal experimental conditions, as well as their appreciable

^{*} Dedicated to Professor James R. Durig on the occasion of his 65th birthday.

^{*} Corresponding author. Tel.: +351-239-852080; fax: +351-239-827703.

E-mail address: rfausto@gemini.ci.uc.pt (R. Fausto).

^{0022-2860/00/\$ -} see front matter @ 2000 Elsevier Science B.V. All rights reserved. PII: S0022-2860(00)00396-3

degree of hygroscopicity. Matrix-isolation vibrational spectroscopy thus appeared as a very convenient method to study their monomeric forms and the main intramolecular interactions that characterize these forms. Complemented with theoretical results obtained at a convenient level of approximation (6-31G^{*} HF and MP2 ab initio SCF-MO calculations), the results obtained by matrix-isolation spectroscopy on the monomeric species could then be used as a basis to interpret the experimental data obtained in condensed phases and to evaluate the dominant intermolecular interactions that are operating under these conditions.

Very recently, we began a systematic study of aminoalcohols using this method. We started analyzing in detail the conformational isomerism in isolated and liquid 2-aminoethanol (2AE) [3] and, later on, we studied the more complex aminoalcohol 3-amino-1-propanol (3AP) [4]. These studies allowed us to establish that, for the isolated 2AE and 3AP molecules. OH...N and NH...O intramolecular hydrogen bonding may occur, the former being considerably stronger than the latter and being present in the most stable conformers [3,4]. On the contrary, in the liquid phase, the intramolecular NH···O hydrogen bonding was found to play a prominent role in stabilizing the conformations assumed by the monomeric units within the aggregates. Under these conditions, the OH···N intermolecular hydrogen bonding becomes the prevalent interaction [3,4]. It is worth mentioning that, in agreement with the strong intramolecular OH ... N hydrogen bond present in the conformational ground state of 3AP, which reduces its tendency to aggregate, the spectroscopic data obtained for this molecule clearly shows that monomers assuming this conformation are also present in detectable amounts in the pure liquid [4]. In addition, the intramolecular OH···N hydrogen bonding in 2AE is considerably weaker than in **3AP**, and in accordance we did not observe any experimental evidence of the presence of monomeric species in the pure liquid.

In this paper, we present results obtained for 2amino-1-propanol (2AP), following a similar approach to that used in our previous studies on 2AE and 3AP [3,4]. 2AP differs structurally from 2AE by replacement of one of the H atoms of carbon-2 by an electron releasing methyl group. Besides imposing additional steric restrictions, the presence of the extra methyl group is expected to lead to an increase of the basicity of the amino group and, consequently, the O-H···N hydrogen bonding in **2AP** could be anticipated to be stronger than in 2AE. It is, however, considerably more difficult to predict the relative strength of this interaction in 2AP and in 3AP simply by using thumb-rules, since the increased conformational flexibility in 3AP shall certainly lead to a more favorable interaction geometry. This effect may overcome the absence of the methyl substituent in the carbon atom bearing the amine group. Thus, in the present study, we took this issue under consideration. In particular, the presence or not of monomeric forms of 2AP in the liquid phase (which, as mentioned above, is a good measure of the relative importance of the OH ... N intramolecular interaction) is analyzed.

2. Experimental

2AP (D isomer) was obtained commercially spectroscopic grade (Aldrich, purity 99%+) and was used without any additional purification. The sample was handled in a glove box to avoid moisture from air. To undertake the matrix-isolation infrared studies the sample was pre-mixed with Ar (99.999% purity) or Kr (99.998%) under reduced pressure. The gas mixtures (matrix : solute = 1500) thus formed were then sprayed onto the cold KBr window at 12 K. The gas flux was controlled with two Swagelok valves (models BMG and BMRG), which make the connection to an APD cryogenics DMX closed cycle helium refrigeration system whose principal component is a DE-202 Displex expander. The refrigeration system is supported by an APD cryogenics Helium compressor (model HC-2D-1). For the conventional IR spectra a specially designed demountable transmission variable temperature cell with KBr windows, linked to a T48 (Red Lion Controls) temperature controller was used. The IR spectra were obtained using a Mattson (Infinity Series) or a Bomem (MB104) Fourier Transformer spectrometer equipped with a deuterated triglycine sulphide (DTGS) detector and Ge/KBr or Zn/Se optics. Data collection was performed with 1 cm⁻¹ spectral resolution. Solution studies were undertaken at room temperature using CCl₄ (Riedelde-Häen, spectroscopic grade) and Cl₂C=CCl₂ (Merck, purity 99%+) as solvents and covering a concentration range from 2.5×10 to 5.0×10^{-1} M.

Raman spectrum was obtained using a Spex 1403 double monochromator spectrometer (focal length 0.85 m, aperture f/7.8) equipped with holographic gratings with 1800 groove/mm (reference 1800-1SHD). The 514.5 nm Ar⁺ laser, adjusted to provide 220 mW power at the sample, was used as excitation radiation. Detection was effected using a thermoelectrically cooled Hamamatsu R928 photomultiplier. The spectrum was recorded using increments of 1 cm⁻¹ and integration times of 1 s.

Band intensities of matrix-isolation and Raman spectra were obtained from the area of the observed peaks, subjected to previous deconvolution by using the peak fitting module of ORIGIN 4.0 [5].

A simulation of the calculated HF $6-31G^*$ spectrum of isolated **3AP** was performed by gaussian synthesis, from the ab initio frequencies and intensities, using the SYNSPEC program [6].

The ab initio molecular orbital calculations were performed using the 6-31G* basis set [7] with the GAUSSIAN92/DFT program package [8] running on a DEC ALPHA 7000 computer. Molecular geometries were fully optimized by the force gradient method using Berny's algorithm [9] and the standard convergence criteria for the geometry optimization both at the Hartree-Fock and MP2 levels of theory. The HF 6-31G* ab initio calculated vibrational spectra were then used to help interpretation of the spectroscopic results, the calculated wavenumbers being scaled down in order to fit to the experimental values by using a single scale factor (0.89 [10]). Normal coordinates analysis was undertaken using the programs TRANSFORMER, BUILD-G and VIBRAT [11] which are interfaced with GAUSSIAN92.

3. Results and discussion

2AP is characterized by three independent torsional angles which can give rise to conformational isomerism (lp–N–C2–C1, N–C–C–O and C–C–O–H;lp = lone pair). The different stable conformations are obtained by rotation around the C–N, C1–C2 and C–O bonds, and the values of the appropriate dihedral angles are, in all cases, expected to be close to 60, -60 and 180°. This makes the number of total

structures candidate to be a minimum in the potential energy surface of **2AP** equals to 27. To name the conformers, we used three letters, the first referring to the configuration around the C–N bond, the second and third to the configuration around the C1–C2 and C–O bonds, respectively; the letters g/G, g'/G' and t/T indicate dihedral angles close to 60, -60 and 180° , respectively. As C2 is a chyral atom, **2AP** exists in two enantiomeric forms (D and L), but these should have the same intramolecular interactions and give rise to identical vibrational spectra.

To the best of our knowledge, monomeric 2AP has only been studied previously by Ellingsen, Marstokk and Møllendal by microwave spectroscopy [12]. In that study, two conformers were observed for 2AP, each with an intramolecular OH ··· N hydrogen bond. The most stable form has the methyl group approximately anti to the C-O bond, while the second observed conformer has this group in a gauche position relatively to the C-O bond. The OCCN angle was estimated to be $54 \pm 2^{\circ}$ in the conformational ground state and 61.5 \pm 2° in the higher energy form ($\Delta G^{\circ} =$ 2.43 ± 0.71 kJ mol⁻¹ [12]). Higher energy conformers were predicted to have at least energy 2 kJ mol^{-1} above the second more stable form [12]. Further, some relevant structural parameters (e.g. CCC angles and OCCN and OCCC dihedrals) and dipole moments for the two observed conformers, as well as the frequencies of three low frequency vibrational modes of the most stable conformer and one of the second rotamer were also obtained from the microwave data. However, complete structures have not been determined and no further vibrational information could be obtained.

3.1. Molecular structures and energies

In this study, the 27 structures having the appropriate combination of values of the lp-N–C2–C1, N–C–C–O and C–C–O–H dihedral angles were given as input to the minimizing program. After minimization, all but two of these structures converged to the corresponding local minima in both the HF and MP2 potential energy surfaces of **2AP**. The two exceptions (**g**'**Gg** and **gG**'**g**' initial conformations, where considerably strong steric interactions between the hydroxyl group and either the methyl or amino groups were expected to occur) converged to the most stable

Zero-point vibrational energy corrected relative energies (kJ mol⁻¹) of the 25 different stable conformations of 2-amino-1-propanol, calculated at the MP2 and HF 6-31G^{*} levels of theory

Conformer	ΔE	
	MP2	HF
g'Gg'	0.00	0.00
gG′g	0.92	1.62
$\mathbf{g}\mathbf{G}\mathbf{g}'$	9.29	6.97
gGt	9.45	5.76
g'G'g	9.64	8.45
gGg	10.07	7.61
tGg	10.08	8.31
tGt	10.75	7.37
g'G't	11.59	8.85
tG'g'	12.10	10.77
tG't	12.62	9.65
$\mathbf{g}'\mathbf{G}'\mathbf{g}'$	13.18	11.79
tGg′	14.83	12.11
$\mathbf{g}'\mathbf{T}\mathbf{g}'$	14.92	11.01
tTg'	15.03	12.10
gTg′	15.30	10.90
gTt	15.36	9.79
g'Tt	15.55	10.59
tG'g	15.85	14.03
gTg	15.96	11.36
tTg	16.06	13.01
tTt	16.26	11.84
g'Tg	17.39	13.26
gG't	26.25	21.72
g'Gt	27.46	22.37

g'G'g

g'Gg' and gG'g forms, from which they may easily be obtained by internal rotation around the C–C–O–H axis. The relative energies of the 25 calculated minima are shown in Table 1. The five most stable conformers are depicted in Fig. 1 and their calculated geometries, relative energies and predicted populations at room temperature (assuming a Boltzmann distribution) are presented and compared with the available experimental data in Table 2.¹

Considering the sum of Van der Waals radii of (H + N) = 270 pm and (H + O) = 260 pm [13], conformers $\mathbf{g}'\mathbf{G}\mathbf{g}'$, $\mathbf{g}\mathbf{G}'\mathbf{g}$, $\mathbf{g}\mathbf{G}\mathbf{g}'$ and $\mathbf{g}'\mathbf{G}'\mathbf{g}$, with d(OH...N) < 270 pm, and conformer $\mathbf{g}\mathbf{G}\mathbf{t}$, with d(NH...O) < 260 pm, are considered to be stabilized by an $OH\cdots N$ or $NH\cdots O$ intramolecular hydrogen

Fig. 1. The most stable conformers of 2-amino-1-propanol and numbering atom scheme.

bond, respectively. In the first and second more stable conformers ($\mathbf{g}'\mathbf{G}\mathbf{g}'$, $\mathbf{g}\mathbf{G}'\mathbf{g}$), which have nearly the same energy ($\Delta E_{\mathbf{g}\mathbf{G}'\mathbf{g}-\mathbf{g}'\mathbf{G}\mathbf{g}'} = 0.92 \text{ kJ mol}^{-1}$), the d(OH…N) distance is much smaller than the sum of the Van der Waals radii of (H + N) (see Table 2) and the hydrogen bonding is strong. This is certainly the most important intramolecular stabilizing factor acting in these two conformers and justify the fact that they are by far the most stable forms of **2AP**. On the contrary, in the forms $\mathbf{g}\mathbf{G}\mathbf{g}'$ and $\mathbf{g}'\mathbf{G}'\mathbf{g}$, d(OH…N) is closer to the sum of the Van der Waals radii of (H + N). As a result, in these forms the hydrogen bonds are much weaker and the relative energies are considerably higher than in the two lowest energy conformers (the MP2 predicted excess

¹ Complete structural data for the higher energy local minima may be obtained from the corresponding author upon request.

369

Table 2

Experimental and MP2 6-31G^{*} calculated relevant structural and energetic data for the most stable forms of 2-amino-1-propanol (relative energies to the most stable conformer, ΔE , in kJ mol⁻¹; predicted populations, *p* (%), at room temperature, were calculated assuming a Boltzmann distribution (the total pupulation of the remaining conformers is predicted as *p* < 15.3% and *p* < 5.1% at the HF and MP2 levels of theory, respectively); bond lengths and distances in pm; angles in degrees; total dipole moments, μ , in Debye (1 D = 3.33564 × 10⁻³⁰ cm)

	$\mathbf{g}'\mathbf{G}\mathbf{g}'$		$\mathbf{g}\mathbf{G}'\mathbf{g}$		$\mathbf{g}\mathbf{G}\mathbf{g}'$	gGt	$\mathbf{g}'\mathbf{G}'\mathbf{g}$
	Exp. ^a	MP2	Exp. ^a	MP2	MP2	MP2	MP2
ΔE	_	_	2.43 ± 0.71	0.92	9.29	9.45	9.64
ΔE^{b}	-	-		1.62	6.97	5.76	8.45
<i>p</i>		54.0		37.3	1.3	1.2	1.1
p^{b}		49.5		25.8	3.0	4.9	1.6
Bond length							
C1C2		152.6		152.8	152.4	151.5	152.7
C2C3		152.4		152.1	152.1	152.2	152.6
CO		141.7		141.9	142.6	143.2	142.7
CN		147.3		147.4	147.3	146.4	147.6
OH		97.9		97.9	97.4	97.1	97.4
NH7		102.1		101.9	101.9	101.9	102.0
NH8		101.9		102.0	101.9	101.9	101.9
CH9		110.5		109.4	110.0	109.8	109.4
CH10		109.4		110.3	109.4	110.0	109.8
CH11		109.6		110.3	110.2	110.4	109.8
CH12		109.4		109.5	109.5	109.4	109.4
CH13		109.5		109.3	109.4	109.4	109.5
CH14		109.6		109.1	109.4	109.3	109.4
Angles							
CCC	112.4 ± 1.0	112.4	112.4 ± 1.0	111.5	110.8	111.0	111.8
CCO		110.6		110.6	111.5	107.0	110.7
CCN		106.2		106.0	106.9	107.5	106.6
COH		103.2		103.3	104.6	107.8	104.4
CNH7		109.2		110.3	109.8	109.5	108.2
CNH8		110.4		110.0	108.7	107.9	109.8
CCH9		108.8		110.8	108.8	108.6	111.2
CCH10		110.8		109.2	110.7	110.1	109.3
CCH11		107.1		108.5	108.0	106.7	107.9
CCH12		110.9		111.0	111.2	110.5	111.0
CCH13		111.3		110.5	111.0	111.3	111.4
CCH14		110.4		109.7	109.8	109.8	109.4
Dihedrals							
CCCO	180.0 ± 2.0	179.9	-60.0 ± 1.0	62.9	169.4	182.7	73.0
OCCN	-54.0 ± 2.0	53.9	61.5 ± 2.0	-55.6	49.6	63.0	-51.4
CCOH		-39.5		41.1	-69.3	192.1	68.1
CCNH7		78.3		167.9	161.7	188.5	88.3
CCNH8		194.9		-75.0	-83.1	-55.7	203.1
NCCH9		-68.7		185.3	-72.9	-57.1	190.4
NCCH10		173.1		66.9	167.9	183.7	70.6
OCCH11		-59.4		183.1	-71.1	-58.6	193.5
CCCH12		179.4		182.4	176.0	180.4	183.7
CCCH13		59.1		62.7	56.0	60.6	63.1
CCCH14		-60.8		-57.0	-64.1	-60.5	-56.3
COH···N		14.1		15.0	44.3		-42.8
CNH···O						25.9	

	$\mathbf{g}'\mathbf{G}\mathbf{g}'$		$\mathbf{g}\mathbf{G}'\mathbf{g}$		$\mathbf{g}\mathbf{G}\mathbf{g}'$	gGt	$\mathbf{g}'\mathbf{G}'\mathbf{g}$
	Exp. ^a	MP2	Exp. ^a	MP2	MP2	MP2	MP2
d(OH…N) d(NH…O) [°]	211	213.3 325.1	223	216.1 323.7	239.0 261.8	356.9 234.6	236.3 267.3
μ` μ ^ь	3.13 ± 0.05	3.58 3.28	2.88 ± 0.07	3.40 3.13	2.25 1.84	1.11 1.07	2.31 1.95

Table 2 (continued)

^a From Ref. [12]; enantiomeric form S.

^b HF results.

^c Distance between the amine hydrogen atom that stays closer to the oxygen.

energy to the conformational ground state is slightly larger than 9 kJ mol^{-1}).

Amongst all the 25 stable conformations of 2AP, g'Gg', gG'g, gGg' and g'G'g are the only ones exhibiting OH…N intramolecular hydrogen bonds. The fact that these four conformers are the first, second, third and fifth most stable strongly stresses the importance of this interaction. By looking at the spatial positions occupied by the different groups in these conformers (see Fig. 1), it can also be easily realized that the forms $\mathbf{g}\mathbf{G}\mathbf{g}'$ and $\mathbf{g}'\mathbf{G}'\mathbf{g}$ (with the highest energy) are, respectively, related to the lowest energy forms, g'Gg' and gG'g. Like gGg' relatively to g'Gg', $\mathbf{g}'\mathbf{G}'\mathbf{g}$ differs from $\mathbf{g}\mathbf{G}'\mathbf{g}$ as far as the conformation assumed by the amino group is concerned. In fact, in the two lowest energy forms, the orientation of the hydroxyl hydrogen atom towards the lone electron pair of the nitrogen atom is adequate for a strong Hbonding interaction (MP2 calculated C-O-H···N dihedral angles in g'Gg' and gG'g are 14.1 and 15.0° , respectively), while in the higher energy forms the relative orientation of the OH and N groups are far from being optimal (MP2 calculated C-O-H···N dihedral angles in $\mathbf{g}\mathbf{G}\mathbf{g}'$ and $\mathbf{g}'\mathbf{G}'\mathbf{g}$ are 44.3 and -42.8° , respectively).

Using the criteria based on the Van der Waals radii, described above, there are several stable conformations of **2AP** predicted by the calculations to have an NH···O intramolecular hydrogen bond. As predicted by the MP2 calculations, these correspond to the fourth more stable conformer (**gGt**) and to the sixth to the twelfth conformers in the energy scale (see Table 1). Despite the NH···O hydrogen bond being the main responsible factor accounting for the stabilization of these 8 conformers of **2AP** (they immediately follow in energy the conformers which have an OH···N hydrogen bond), it is, however, clear from the calculated $d(NH \cdots O)$ distances in these conformers, as well as from their relative energies that this interaction is, in all cases, considerably weak. As already mentioned, among the five most stable conformers only the **gGt** has this kind of interaction. In accordance to our interpretation, this was found to be the conformer where $d(NH \cdots O)$ attains its minimal value (i.e. where the NH···O hydrogen bond is stronger).

Looking now at the most important repulsive (destabilizing) intramolecular interactions present in the whole set of conformers of **2AP**, the following conclusions may be drawn:

(i) The energy of the two highest energy conformers $(\mathbf{gG't} \text{ and } \mathbf{g'Gt})$ is mainly determined by the presence of the strongly repulsive interaction between the lone electron pairs of the oxygen and nitrogen atoms. This is by far the strongest repulsive interaction that can operate in the studied molecule.

(ii) The OH···H₃C repulsion was found to be operating in the high energy forms \mathbf{gTg} , $\mathbf{g'Tg}$ and \mathbf{tTg} (all of them with an energy 16 kJ mol⁻¹ above that of the conformational ground state), while the less important OH···HC interaction is the main repulsive interaction acting in conformers $\mathbf{g'Tg'}$, $\mathbf{tTg'}$ and $\mathbf{gTg'}$, which have an energy ca. 15 kJ mol⁻¹ above than the lowest energy form.

(iii) Finally, in conformers tGg' and tG'g, that have the same configurations of the N–C–C–O and C– C–O–H axes, like the first and third or the second and fifth most stable conformers, respectively, but different configuration of the lp-N–C2–C1 axis, a repulsion occurs between the hydroxylic hydrogen atom and one of the hydrogen atoms of the amino group. This OH···HN repulsive interaction is the main factor contributing to the relatively high energy of these conformers.

As a summary, it can be stated that the conformational preferences exhibited by 2AP strongly depend on the intramolecular hydrogen bonding. Both OH····N and NH····O types of H-bonds are important stabilizing factors, with the former assuming the most relevant role and being present in four of the five most stable conformers. Further, only the conformer with the strongest NH···O intramolecular hydrogen bonding has a relative energy that places it within the first five conformers in the energy scale. The strongest repulsive intramolecular interaction, which can operate in 2AP, is the one between the lone electron pairs of the oxygen and nitrogen atoms. Other relevant destabilizing intramolecular interactions found to occur in some conformers are the $OH \cdots H_3C$, OH ... HC and OH ... HN repulsions, the first one being the most energetically relevant.

It is also interesting to compare the results obtained at the two levels of theory used. With the notable exception of the second most stable conformer, $\mathbf{gG'g}$, all energies relative to the most stable form are predicted to be larger by the MP2 than by the HF calculations. This result means essentially that the higher level MP2 calculations lead to an additional stabilization of the two most stable conformers. As the most important stabilizing factor in these two forms is the presence of a considerably strong intramolecular hydrogen bond, this result clearly shows the best performance of the MP2 method to rationalize these interactions. Indeed, this is in accordance to previous studies on molecules where intramolecular hydrogen bonding is important [14,15].

The dependence of geometrical parameters (bond lengths and angles) with conformation is also essentially determined by the type and relative importance of the different intramolecular interactions occurring in the various conformers. The MP2 calculated geometries show the usual differences when compared with the HF predictions: bond lengths are systematically longer and angles systematically smaller, a tendency that has been found to improve the general agreement between the theoretical and experimental data [16–18]. However, calculated changes of those parameters with conformation follow the same pattern as predicted by the two methods, though it is also clear from the structural results that the MP2 wavefunction accounts much better for the hydrogen bonding. For instance, the hydrogen bonding distances $d(OH\cdots N)$ (in g'Gg', gG'g, gGg' and g'G'g) and $d(NH\cdots O)$ (e.g. in gGt) are considerably shorter at the MP2 level, while the O-C-C-N and C-C-O-H dihedral angles become smaller in these conformers having an $OH\cdots N$ hydrogen bond, in order to achieve a more favorable geometry for the establishment of the H-bond.

From the structural data presented in Table 2 it is possible to extract the following main conclusions:

(i) The C–O bond length becomes shorter (i.e. the bond becomes stronger) when the OH····N intramolecular hydrogen bond becomes stronger. So, among the five conformers of **2AP** considered now, this bond attains its minimum value in the most stable conformer g'Gg' and reaches its maximum value in form gGt (where the OH····N hydrogen bond does not exist). As expected, the opposite trend occurs for the change of the O–H bond length with conformation, which increases with the strength of the hydrogen bond.

(ii) Relatively to the strength of the NH···O hydrogen bond, the C–N bond length shows a similar behavior to the one exhibited by C–O relatively to the strength of the OH···N hydrogen bonding. Thus, the C–N bond is slightly shorter in conformer **gGt** (146.4 pm) than in the conformers where no NH···O hydrogen bonding occurs (ca. 147.6 pm). In addition, the N–H bond length does not appear to be strongly affected by H-bonding, while it becomes shorter when the position of the hydrogen atom is *trans* with respect to the molecular skeleton. This result follows the general trend previously observed in other primary amines [19,20].

(iii) Among the five conformers of **2AP** considered now, the **gGt** has the shortest C1–C2 bond length. This may be attributed to the fact that this is the only conformer where the hydroxyl group is in a *trans* position [21];

(iv) The valence angles are generally similar in all

Table 3 MP2/6-31G^{*} calculated Mülliken atomic charges (units of electron; $1e^{-} = -1.6 \times 10^{-19}$ C) for the most stable forms of 2-amino-1-propanol

	$\mathbf{g}'\mathbf{G}\mathbf{g}'$	$\mathbf{g}\mathbf{G}'\mathbf{g}$	$\mathbf{g}\mathbf{G}\mathbf{g}'$	gGt	$\mathbf{g}'\mathbf{G}'\mathbf{g}$
C1	0.051	0.033	0.033	0.017	0.020
C2	-0.028	-0.024	0.006	0.006	-0.001
C3	-0.490	-0.481	-0.504	-0.481	-0.494
O4	-0.766	-0.762	-0.758	-0.759	-0.757
N5	-0.870	-0.874	-0.870	-0.848	-0.866
H6	0.469	0.467	0.448	0.441	0.450
H7	0.335	0.347	0.340	0.328	0.337
H8	0.347	0.341	0.342	0.359	0.341
H9	0.124	0.162	0.145	0.155	0.162
H10	0.161	0.134	0.162	0.143	0.153
H11	0.179	0.147	0.154	0.151	0.160
H12	0.163	0.151	0.161	0.160	0.155
H13	0.169	0.165	0.168	0.155	0.161
H14	0.154	0.193	0.175	0.172	0.179

the conformers having the OH···N hydrogen bonds. However, this is not the case with conformer **gGt**, which exhibits some angles that are considerably different than those occurring in the remaining conformers. In particular, the C–C–N and C–O–H angles become much smaller (107.5 vs. \approx 106.0° and 107.8 vs. 103.2–104.3°, respectively), while the C–C–O angle increases (107.0 vs. >110.6°). These differences can easily be correlated with the different type of hydrogen bonding occurring in this conformer and with the different conformation assumed by the hydroxyl group (*trans* in **gGt** vs. *gauche* in the other forms).

3.2. Dipole moments and atomic charges

Both the MP2 and HF predicted dipole moments slightly overestimate the experimental ones (see Table 2), the relative values obtained for the two experimentally studied conformers being very well reproduced by the calculations: $\Delta \mu_{g'Gg'-gG'g} = 0.15$ Debye (exp. [4]), 0.16 Debye (HF) and 0.18 Debye (MP2). This result clearly indicates that the electron distribution is calculated at both levels of theory used with enough accuracy to enable prediction of some conformationally related changes in molecular properties using either the MP2 or HF wavefunction. This is the case, for instance, of

Mülliken atomic charges (Table 3), which are almost equal, as calculated at both MP2 or HF levels.²

The most relevant changes in the atomic charges with conformation occur for the hydrogen atoms involved in the establishment of the intramolecular hydrogen bonds (i.e. the hydroxylic hydrogen in conformers g'Gg', gG'g, gGg' and g'G'g, and the H8 amine hydrogen atom in gGt). The charge on the hydroxylic hydrogen correlates with the strength of the OH···N hydrogen bond, the stronger the hydrogen bond, the more positive the charge of this hydrogen atom (ca. 0.47e in $\mathbf{g}'\mathbf{G}\mathbf{g}'$ and $\mathbf{g}\mathbf{G}'\mathbf{g}$, $\approx 0.45e$ in $\mathbf{g}\mathbf{G}\mathbf{g}'$ and $\mathbf{g}'\mathbf{G}'\mathbf{g}$, and 0.44*e* in $\mathbf{g}\mathbf{G}\mathbf{t}$). On the contrary, the charge on the amine hydrogen atom which is involved in the NH···O hydrogen bond in gGt (H8) is considerably more positive than those of the remaining amine hydrogen atoms which do not participate in this kind of interaction (0.36e vs. 0.33 - 0.34e).

It is also interesting to note that the dipole moment of the conformer **gGt** is much smaller than those of the remaining forms. This result has important spectroscopic consequences as it will be pointed out later on.

3.3. Gas phase and matrix-isolation infrared spectra

No spectroscopic vibrational data have been previously reported for **2AP**, except for the gas phase [12,22]. As mentioned before, in their microwave structural study [12], Ellingsen, Marstokk and Møllendal (with no intentions of undertaking a detailed vibrational study of **2AP**) identified a few low frequency (n < 250 cm) vibrations of the two conformers they were able to detect (g'Gg' and gG'g). These results fully agree with the results of our calculations, as we shall point out later on. As for Ref. [22], the gas phase spectrum was not even assigned.

In the infrared spectra of the matrix-isolated compound presented in Fig. 2 (Ar and Kr matrices) bands due to five different conformers of **2AP** were observed. Tables 4–8 show the calculated wavenumbers and infrared and Raman intensities of the vibrational bands for the five lowest energy conformers of

² HF Mülliken atomic charges for all conformers studied are available from the corresponding author upon request.

Fig. 2. Low temperature (12 K) infrared spectra of 2-amino-1-propanol isolated in: (a) Kr; (b) Ar; and (c) calculated vibrational spectrum, obtained by gaussian synthesis (constant half band width assumed) using the results presented in Table 9, and shown in an arbitrary scale.

ν	$I^{ m ir}$	I ^R	PED ^{a,b}	Assignment ^b
4061	78.6	37.1	νOH(100)	νOH
3808	1.6	67.1	$\nu \mathrm{NH}_2 \mathrm{as.}(96)$	$\nu NH_2 as.$
3719	0.5	80.5	$\nu \rm NH_2 s.(96)$	$\nu NH_2 s.$
3271	100.3	120.0	ν CH ₂ as.(47)+ ν CH ₂ s.(23)+ ν CH ₃ as.'(16)	$\nu CH_2 as.$
3262	32.0	56.0	$\nu CH_3 as.'(82)$	$\nu CH_3 as.'$
3254	40.4	12.3	$\nu CH_3 as.(69)$	$\nu CH_3 as.$
3227	17.3	95.7	$\nu CH(81) + \nu CH_3 as.(15)$	νCH
3193	30.2	112.8	$\nu CH_{3}s.(96)$	$\nu CH_3 s.$
3149	72.4	76.7	$\nu CH_2 s(62) + \nu CH_2 as.(36)$	$\nu CH_2 s.$
1833	38.0	6.1	$\delta \mathrm{NH}_2(73) + \omega \mathrm{NH}_2(22)$	δNH_2
1668	0.4	11.3	δCH ₂ (92)	δCH_2
1643	6.2	8.9	$\delta CH_3 as.'(60) + \delta CH_3 as. (20)$	δCH ₃ as.'
1640	3.6	13.9	$\delta CH_3 as.(66) + \delta CH_3 as.'(24)$	δCH ₃ as.
1597	70.1	1.5	$\omega CH_2(50) + \delta COH(17)$	ωCH_2
1566	4.8	2.8	$\delta CH_3 s.(66) + \delta CH(12)$	δCH ₃ s.
1551	10.8	9.0	$\delta CH(44) + \delta CH_3 s.(18)$	δCH
1507	37.0	12.5	$\delta \text{COH}(29) + \text{twCH}_2(23) + \gamma \text{CH}(15) + \omega \text{CH}_2(13)$	δCOH
1458	6.9	2.0	$\gamma CH(44) + \omega CH_2(20)$	γCH
1412	15.8	4.7	$\gamma \mathrm{NH}_2(20) + \mathrm{twCH}_2(19) + \delta \mathrm{COH}(13)$	γNH_2
1300	17.5	3.8	$twCH_2(30) + \delta COH(13)$	twCH ₂
1290	17.7	1.5	$\gamma CH'_{3}(25) + \nu CN(17) + \nu CCas.(13)$	νCN
1219	113.1	6.1	$\nu \text{CO}(63) + \delta \text{COH}(13)$	νCO
1191	57.4	2.8	ν CN(21)+ ν CCas.(19)+ ν CCs.(18)+ ν CO(13)	ν CCas.
1125	3.1	2.1	$\gamma NH_2(38) + \gamma CH_3(19) + \gamma CH(15) + \gamma CH_2(13)$	γCH_3
1024	10.0	7.0	$\gamma CH_{3}'(48) + \nu CN(17)$	$\gamma CH_3'$
1008	2.9	3.8	$\gamma CH_2(38) + \nu CCas.(18) + \gamma CH_3(15)$	γCH_2
984	146.2	1.3	$\omega \mathrm{NH}_2(50) + \delta \mathrm{NH}_2(13)$	ωNH_2
898	27.6	10.3	$\nu CCs.(36) + \nu CN(25) + \gamma CH_3(12)$	$\nu CCs.$
564	93.1	2.7	$\delta OCC(27) + \tau HOCC(27) + \delta CCNs.(14) + \nu CCs.(12)$	δΟСС
537	96.0	3.6	τ HOCC(51)+ δ CCNs.(16)	auHOCC
488	3.0	0.6	$\delta CCNas.(44) + \tau HOCC(18)$	δ CCNas.
392	6.7	0.9	$\delta CCNs.(44) + \delta CCC(24) + \gamma CH_3'(12)$	δ CCNs.
300	11.5	1.2	τ CCNH(72)+ τ HOCC(13)	τ CCNH
284	2.4	0.1	$\delta CCC(42) + \delta OCC(30) + \delta CCNs.$ (11)	δССС
253	0.2	0.01	<i>τ</i> CCCH(88)	auCCCH
169	5.4	0.04	$\tau OCCN(78) + \tau HOCC(15)$	auOCCN

HF 6-31G^{*} calculated wavenumbers and infrared (ir) and Raman (R) intensities as well as calculated Potential Energies Distributions (PEDs) for form $\mathbf{g'Gg'}$; of 2-amino-1-propanol (wavenumbers (ν) in cm⁻¹; intensities (I) in km mol⁻¹)

^a Only PED values larger than 10% are shown in this table.

^b Abbreviations: ν , stretching; δ , bending; γ , rocking; ω , wagging; τ , torsion; tw, twisting.

2AP predicted by the ab initio calculations (g'Gg', gG'g, gGg', gGg', gGf and g'G'g), together with the Potential Energy Distributions (PEDs). The theoretical data, subjected to the usual scaling procedure, (see Section 2) fit nicely to the experimental observations, as can be noticed by comparing the experimental with the simulated spectra also shown in Fig. 2. A detailed assignment of the matrix-isolated and gas phase spectra is presented in Table 9. Note that in the high

temperature gas phase spectrum, where bands are much broader than in the matrix isolation spectra and extensive overlapping occurs, only bands due to the three most stable conformers $(\mathbf{g}'\mathbf{G}\mathbf{g}', \mathbf{g}\mathbf{G}'\mathbf{g})$ and $\mathbf{g}\mathbf{G}\mathbf{g}'$ could be unequivocally observed.

As it could be anticipated, bands owing to the conformational ground state (g'Gg') dominate the spectrum in the low temperature matrices. The absence of significant contribution of dimers (or

HF 6-31G^{*} calculated wavenumbers and infrared (ir) and Raman (R) intensities as well as calculated Potential Energies Distributions (PEDs) for form $\mathbf{gG'g}$ of 2-amino-1-propanol (wavenumbers (ν) in cm⁻¹; intensities (I) in km mol⁻¹)

ν	$I^{ m ir}$	I^{R}	PED ^{a,b}	Assignment ^b
4063	70.7	35.2	vOH(100)	νOH
3812	1.1	69.5	$\nu \mathrm{NH}_2 \mathrm{as.}(99)$	νNH_2 as.
3729	0.7	100.4	$\nu \rm NH_2 s.(99)$	$\nu \mathrm{NH}_2 \mathrm{s}.$
3301	31.4	49.6	$\nu CH_3 as.(93)$	$\nu CH_3 as.$
3269	80.4	109.9	ν CH ₂ as.(50) + ν CH ₂ s.(27) + ν CH ₃ as. ['] (19)	$\nu CH_2 as.$
3261	14.1	33.0	$\nu CH_3 as.'(74) + \nu CH_2 as.(14)$	$\nu CH_3 as.'$
3206	30.3	115.7	$\nu CH_3 s.(90)$	$\nu CH_3 s.$
3164	144.7	108.6	$\nu CH_2 s.(52) + \nu CH_2 as.(31) + \delta CH_2(15)$	$\nu CH_2 s.$
3138	50.8	76.8	ν CH(81)+ ν CH ₂ s.(12)	νCH
1837	46.4	5.7	$\delta \mathrm{NH}_2(73) + \omega \mathrm{NH}_2 \ (23)$	δNH_2
1670	0.3	7.8	$\delta CH_2(90)$	δCH_2
1645	3.1	11.0	$\delta CH_3 as.'$ (84)	$\delta CH_3 as.'$
1639	6.3	18.0	$\delta CH_3 as.$ (86)	δCH₃as.
1586	49.5	3.0	$\omega CH_2(47) + \delta CH_3 s.(23)$	ωCH_2
1582	33.4	1.8	$\delta CH_3 s.(22) + \nu CCas.(18) + \gamma CH(14) \delta COH(12)$	γCH
1540	2.9	3.1	$\delta CH_3 s.(46) + \gamma CH(24) + \omega CH_2(12)$	$\delta CH_3 s.$
1517	13.4	7.8	$\delta CH(53) + \delta CCNas.$ (19)	δCH
1488	27.0	5.1	$\delta \text{COH}(29) + \omega \text{CH}_2(18) + \text{twCH}_2(18)$	δCOH
1388	1.6	14.1	$\gamma \mathrm{NH}_2(27) + \gamma \mathrm{CH}(25) + \mathrm{tw} \mathrm{CH}_2(19)$	$\gamma \mathrm{NH}_2$
1326	53.5	4.6	$twCH_2(30) + \delta COH(16) + \delta CH(13)$	twCH ₂
1271	8.0	3.0	$\nu \text{CO}(25) + \gamma \text{CH}_2(18)$	νCO
1211	56.0	2.0	$\nu \text{CO}(31) + \delta \text{COH}(15) + \nu \text{CN}(12)$	νCN
1161	38.1	5.0	$\gamma NH_2(25) + \gamma CH_3(22) + \nu CO(15)$	γCH_3
1095	7.1	5.3	$\gamma CH_3'(37) + \gamma NH_2(12) + \nu CN(12) + \nu CCas.(12)$	$\gamma CH_3'$
1055	18.7	5.9	$\gamma CH_2(27) + \nu CN(18) + \omega NH_2(13)$	γCH_2
1024	12.0	5.8	$\nu CCas.(37) + \gamma CH_2(23) + \gamma CH_3'(17)$	ν CCas.
979	136.0	2.6	$\omega \text{NH}_2(45) + \delta \text{NH}_2(12) + \gamma \text{CH}_3(12) + \nu \text{CN}(11)$	$\omega \mathrm{NH}_2$
864	4.3	12.9	$\nu \text{CCs.}(65) + \nu \text{CN}(15)$	$\nu CCs.$
704	29.3	1.0	$\delta OCC(32) + \delta CCNas.(16) + \gamma CH_3(11)$	δ CCNas.
541	185.0	2.5	auHOCC(85)	auHOCC
441	0.4	0.6	$\delta CCNs.(58)$	δCCNs.
404	10.7	0.4	$\delta CCC(51) + \delta CCNas.(19)$	δCCC
316	6.6	0.5	τ CCNH(62)+ τ HOCC(14)	auCCNH
288	6.2	0.7	τ CCNH(32)+ δ OCC(31)+ δ CCC (16)	δΟСС
244	3.6	0.1	<i>τ</i> CCCH(77)	auCCCH
163	5.6	0.1	$\tau OCCN(72) + \tau HOCC(15)$	auOCCN

^a Only PED values larger than 10% are shown in this table.

^b Abbreviations: ν , stretching; δ , bending; γ , rocking; ω , wagging; τ , torsion; tw, twisting.

higher order aggregates) to the observed spectra was confirmed by comparison with spectra obtained using low matrix/solute ratios (the most intense band of aggregated species, which is not observed at all, should be present around 3260 cm^{-1}). Most of the bands expected for conformers **gG'g**, **gGg'**, **gGt** and **g'G'g** could also be observed both in argon and krypton. Some of the bands, in particular those ascribable to the hydroxyl and amine groups (see Table 9), appear as doublets due to matrix site effects (in Ar, the OH stretching of conformer $\mathbf{g}'\mathbf{G}\mathbf{g}'$ gives rise to a triplet). An estimation of the relative populations of the observed conformers in Ar and Kr can be obtained by comparing the calculated and observed intensities in the corresponding spectra. As band intensities were not found to change upon annealing of the matrices up to 30K, the conformational composition measured by this way must be similar to that of the initial gaseous mixture, which was kept at 298 K. Considering all the possible bands for each conformer, population ratios

ν	$I^{ m ir}$	I^{R}	PED ^{a,b}	Assignment ^b	
4110	49.5	47.7	νOH(100)	νOH	
3813	1.3	65.7	$\nu NH_2 as.(100)$	$\nu NH_2 as.$	
3734	0.7	93.9	$\nu NH_2 s.(100)$	$\nu NH_2 s.$	
3278	100.1	100.1	$\nu CH_3 as.(43) + \nu CH_2 as.(39)$	$\nu CH_2 as.$	
3268	8.0	28.9	$\nu CH_3 as.(47) + \nu CH_2 as.(39)$	$\nu CH_3 as.$	
3261	45.3	62.7	$\nu CH_3 as.'(89)$	$\nu CH_3 as.'$	
3204	55.3	161.5	$\nu CH_3 s.(61) + \nu CH_2 s.(30)$	$\nu CH_3 s.$	
3198	36.4	9.1	ν CH ₂ s.(50)+ ν CH ₃ s.(37)+ ν CH ₂ as.(11)	$\nu CH_2 s.$	
3151	56.4	108.7	vCH(96)	νCH	
1839	44.2	5.2	$\delta \mathrm{NH}_2(74) + \omega \mathrm{NH}_2(22)$	$\delta \mathrm{NH}_2$	
1654	2.4	13.2	$\delta CH_2(90)$	δCH_2	
1648	1.7	10.5	$\delta CH_3 as.'$ (63) + $\delta CH_3 as.$ (21)	$\delta CH_3 as.'$	
1639	3.6	12.5	$\delta CH_3 as. (66) + \delta CH_3 as.' (19)$	δCH_3 as.	
1590	10.4	1.0	$\omega CH_2(45) + \gamma CH(14)$	ωCH_2	
1566	23.7	2.2	$\delta CH_3 s.(70)$	δCH ₃ s.	
1538	16.6	10.1	$\delta CH(42) + twCH_2(18) + \delta CCNas.(19)$	δCH	
1527	34.7	5.4	$\delta COH(35) + twCH_2(20) + \delta CH$ (18)	twCH ₂	
1488	8.8	2.7	$\omega CH_2(37) + \gamma CH(33)$	γ CH	
1375	4.1	11.3	$\gamma \text{NH}_2(38) + \gamma \text{CH}(22) + \text{twCH}_2(11)$	γNH_2	
1344	21.6	2.9	$twCH_2(31) + \delta COH(20) + \gamma CH_3(11)$	γCH_3	
1282	10.5	5.5	$\nu CN(24) + \nu CCs.(19) + \gamma CH_3'(16) + \delta CCC(11)$	νCN	
1213	39.5	6.2	νCO(55)	νCO	
1189	110.0	2.3	$\nu CO(31) + \delta COH(21)$	δCOH	
1107	2.3	5.0	$\nu CCas.(31) + \gamma NH_2(25) + \gamma CH_3'(17)$	ν CCas.	
1047	31.3	5.5	$\gamma CH_3'(26) + \omega NH_2(24) + \nu CCas.(23)$	$\gamma CH_3'$	
1014	10.6	2.0	$\gamma CH_2(30) + \gamma CH_3(24) + \nu CCas.(11)$	γCH_2	
984	113.3	2.3	ωNH_2 (36) + $\gamma \text{CH}_2(16) + \nu \text{CN}(10)$	ωNH_2	
900	11.2	9.5	$\nu CCs.(35) + \nu CN(27) + \gamma CH_3$ (13)	$\nu CCs.$	
550	18.6	3.1	$\delta OCC(37) + \delta CCNs.(26) + \nu CCs.(11)$	δΟСС	
502	16.9	1.3	δ CCNas.(44)+ τ HOCC(13)	δ CCNas.	
490	96.3	1.5	τ HOCC(67)+ τ CCNH(12)	τ HOCC	
393	0.04	0.4	$\delta CCNs.(47) + \delta CCC(27) + \gamma CH_3'(10)$	δCCNs.	
278	7.6	0.1	$\delta CCC(41) + \delta OCC(36)$	δССС	
259	6.2	0.2	<i>τ</i> CCCH(85)	τ CCCH	
205	98.1	2.2	τ CCNH(61)+ τ HOCC(28)	auCCNH	
134	24.2	0.4	τ OCCNH(53)+ τ HOCC(26)+ τ CCNH(12)	auOCCN	

HF 6-31G^{*} calculated wavenumbers and infrared (ir) and Raman (R) intensities as well as calculated Potential Energies Distributions (PEDs) for form $\mathbf{gGg'}$; of 2-amino-1-propanol (wavenumbers (ν) in cm⁻¹; intensities (I) in km mol⁻¹)

^a Only PED values larger than 10% are shown in this table.

^b Abbreviations: ν , stretching; δ , bending; γ , rocking; ω , wagging; τ , torsion; tw, twisting.

(g'Gg': gG'g: gGg': gGt: g'G'g) in Ar and Kr were calculated, being 1:0.44:0.36:0.10:0.09 and 1:0.32:0.24:0.08:0.10, respectively. From these results, the following conclusions can be drawn:

(i) The experimentally observed relative populations of the two most stable conformers agree very well with the previous value obtained by microwave spectroscopy ($p_{gG'g/pg'Gg'} = 0.34$ [12]) and fairly well with the calculated values (HF: 0.49; MP2: 0.67), despite the fact that the calculations seem to underestimate in some extent the population of the most stable conformer.

(ii) The population of the most stable conformer (with the largest dipole moment) increases in the Kr matrix. This result agrees with the well known tendency for stabilization of more polar species in krypton, due to the higher polarizability of this

376

Table 6

270

249

163

IR I^{ir} PED^{a,b} Assignment^b ν 4122 53.2 107.6 vOH(100) νOH 3.3 64.3 vNH2as.(99) $\nu NH_2as.$ 2819 99.3 3733 2.7 vNH₂s.(99) $\nu NH_{2}S.$ 57.2 vCH₃as.(96) 3276 58.4 vCH₃as 3260 53.2 73.0 vCH₃as.'(97) $\nu CH_3 as'$. 3230 70.9 31.8 vCH₂as.(93) vCH2as. 3204 41.0 151.1 vCH₃s.(93) vCH₃s. 3187 49.4 47.8 vCH₂s.(89) vCH₂s. 3140 63.5 107.3 vCH(97) νCH 1834 47.9 5.5 $\delta \mathrm{NH}_2(74) + \omega \mathrm{NH}_2(22)$ δNH₂ 1668 5.4 10.4 δCH₂(93) δCH_2 0.9 7.5 δCH3as.' (65) δCH₃as.' 1648 δCH3as. (81) 1642 4015.4 δCH₃as. $\omega CH_2(44) + \delta CH_3 as.'(19)$ 1616 0.3 4.2 ωCH_2 1570 7.1 1.5 δCH₃s.(71) δCH₃s. $\delta CH(48) + \delta CCNas.(18)$ δCH 1538 21.6 8.9 1.8 γ CH(35)+ δ CH₃s.(17)+ γ NH₂(12) γCH 1515 4.122 18.1 $twCH_2(63) + \gamma NH_2(13)$ twCH₂ 1411 5.2 $\delta COH(37) + \omega CH_2(17)$ δCOH 1381 63.3 $\gamma NH_2(28) + \gamma CH(20) + tw CH_2(13)$ 1358 10.4 2.6 γNH_2 1269 14.5 3.4 ν CN(30)+ γ CH₂(22)+ δ CH(12) νCN δ COH(26) + ν CCs.(15) + γ CH₃(13) 1226 78.3 3.4 γCH_3 1193 61.5 8.0 vCO(83) νCO 4.0 ν CCas.(28)+ γ NH₂(26)+ γ CH₃['](21) vCCas. 1119 1.3 1037 2.0 2.2 $\gamma CH_2(31) + \gamma CH_3(22) + \nu CCas.(17) + \gamma CH(11)$ γCH_2 1036 9.4 5.4 $\gamma CH_2'(26) + \nu CCas.(23) + \nu CN(12) + \omega NH_2(11)$ γCH_3 162.3 ωNH_2 986 3.4 ωNH_2 (46) + $\delta \text{NH}_2(13) + \nu \text{CN}(12)$ 10.4 $\nu CCs.(39) + \nu CN(20) + \gamma CH_3$ (15) 903 5.5 vCCs. 541 19.8 2.1 $\delta OCC(31) + \delta CCNs.(25) + \nu CCs.(15)$ δOCC 507 7.4 0.8 δCCNas.(55) δCCNas. 400 6.4 0.5 $\delta CCNs.(43) + \delta CCC(22)$ δCCNs. 343 43.3 2.3 τ CCNH(76) $\tau CCNH$ 282 27.8 0.02 $\delta OCC(33) + \delta CCC(31) + \tau CCNH(12)$ δCCC

HF 6-31G^{*} calculated wavenumbers and infrared (ir) and Raman (R) intensities as well as calculated Potential Energies Distributions (PEDs) for form **gGt** of 2-amino-1-propanol (wavenumbers (ν) in cm⁻¹; intensities (*I*) in km mol⁻¹)

^a Only PED values larger than 10% are shown in this table.

2.8

0.05

0.03

136.6

0.5

3.6

^b Abbreviations: ν , stretching; δ , bending; γ , rocking; ω , wagging; τ , torsion; tw, twisting.

 $\tau HOCC(83)$

τCCCH(85)

 $\tau OCCN(92)$

atom when compared with argon, and it also seems to indicate that partial isomerization of the solute takes place during the deposition process.

(iii) in the case of some low intensity bands ascribed to the less stable observed conformers, extensive overlapping makes the band deconvolution process used to determine intensities extremely difficult. Taking these difficulties into account, the agreement between experimental and predicted populations for conformers \mathbf{gGt} and $\mathbf{g'G'g}$ may be considered reasonable (calculated relative populations to the most stable conformer are: HF 0.08, 0.02; MP2: 0.02, 0.01). On the contrary, the experimentally observed population of form $\mathbf{gGg'}$ is much higher than the predicted values (calculated relative populations to the most stable conformer: HF 0.05; MP2: 0.02). This result seems to indicate that the calculations considerably overestimate the energy

 $\tau HOCC$

 τ CCCH

 $\tau OCCN$

ν	I ^{ir}	I ^R	PED ^{a,b}	Assignment ^b	
4105	50.6	47.4	νOH(100)	νOH	
3809	1.3	64.1	$\nu \mathrm{NH}_2 \mathrm{as.}(98)$	$\nu NH_2 as.$	
3726	0.5	77.0	$\nu \rm NH_2 s.(98)$	$\nu NH_2 s.$	
3276	77.2	101.6	ν CH ₂ as.(68)+ ν CH ₂ s.(14)+ ν CH ₃ as.(12)	$\nu CH_2 as.$	
3271	43.4	24.8	$\nu CH_3 as.(84) + \nu CH_2 as.(12)$	$\nu CH_3 as.$	
3256	37.0	57.7	$\nu CH_3 as.'(94)$	$\nu CH_3 as.'$	
3222	80.1	166.0	$\nu CH_2 s.(43) + \nu CH(42)$	$\nu CH_2 s.$	
3202	24.1	56.9	$\nu CH(47) + \nu CH_{2}S.(40)$	νCH	
3197	29.4	79.5	$\nu CH_3 s.(92)$	$\nu CH_3 s.$	
1836	33.9	5.4	$\delta NH_2(74) + \omega NH_2(22)$	δNH_2	
1660	0.4	7.4	$\delta CH_2(85)$	δCH_2	
1647	3.6	8.2	$\delta CH_3 as.'(77)$	$\delta CH_3 as.'$	
1637	4.9	20.1	$\delta CH_3 as.(76)$	$\delta CH_3 as.$	
1574	23.7	3.4	$\delta CH_3 s.(37) + \omega CH_2(37)$	$\delta CH_3 s.$	
1555	34.4	1.0	$\omega CH_2(38) + \delta CH_3 s.(24)$	ωCH_2	
1547	5.9	5.6	$\delta CH(38) + \delta CH_3 s.(20) + \gamma NH_2(12)$	δCH	
1528	15.0	8.3	$\delta COH(31) + twCH_2(29)$	δCOH	
1489	12.3	7.0	γCH(53)	γCH	
1376	10.3	4.1	$\gamma NH_2(26) + twCH_2(20) + \nu CN(13)$	γNH_2	
1335	15.4	3.6	twCH ₂ (25)+ δ COH(15)+ ν CCas.(11)	twCH ₂	
1278	20.7	4.7	$\nu CO(25) + \gamma CH_3'(11)$	$\gamma CH_3'$	
1192	68.6	2.8	$\delta \text{COH}(23) + \nu \text{CCas.}(14) + \gamma \text{CH}_2(13) + \nu \text{CN}(11)$	ν CCas.	
1159	48.4	4.5	$\nu \text{CO}(46) + \gamma \text{NH}_2(20) + \gamma \text{CH}(11)$	νCO	
1096	24.5	6.9	$\nu CN(31) + \gamma CH_3'(21) + \gamma CH_3(16)$	νCN	
1040	18.4	5.1	$\gamma CH_3(27) + \gamma CH_3'(17)$	γCH_3	
1005	12.5	3.5	$\gamma CH_2(45) + \nu CCas.(21)$	γCH_2	
1000	148.2	2.2	$\omega \text{NH}_2(48) + \delta \text{NH}_2(13) + \nu \text{CN}(12)$	ωNH_2	
861	6.9	13.9	ν CCs.(69)+ ν CN(15)	$\nu CCs.$	
690	14.4	1.0	$\delta OCC(33) + \delta CCNas.(19) + \gamma CH_3(12)$	δ CCNas.	
503	124.1	1.7	auHOCC(82)	auHOCC	
448	9.3	1.5	$\delta CCNs.(60)$	δ CCNs.	
397	3.8	0.1	δ CCC(58)+ δ CCNas.(18)	δССС	
301	2.0	0.2	$\delta OCC(35) + \tau CCCH(28) + \delta CCNas.(16)$	δΟСС	
254	4.1	0.1	τ CCCH(57)+ δ OCC(15)+ δ CCC(14)	auCCCH	
201	102.0	2.7	τ CCNH(58)+ τ HOCC(33)	auCCNH	
131	12.3	0.03	$\tau OCCN(70) + \tau HOCC(16)$	auOCCN	

HF 6-31G^{*} calculated wavenumbers and infrared (ir) and Raman (R) intensities as well as calculated Potential Energies Distributions (PEDs) for form $\mathbf{g'}\mathbf{G'}\mathbf{g}$ of 2-amino-1-propanol (wavenumbers (ν) in cm⁻¹; intensities (I) in km mol⁻¹)

^a Only PED values larger than 10% are shown in this table.

^b Abbreviations: ν , stretching; δ , bending; γ , rocking; ω , wagging; τ , torsion; tw, twisting.

of conformer \mathbf{gGg}' , though we cannot discard a possible minor contribution to the deviation found between the experimental and calculated results due to the uncertainty in measuring some experimental intensities (e.g. bands ascribed to this conformer in the complex CH stretching spectral region—see Table 9).

(iv) Very interestingly, and in agreement with ii), the relative population of the less polar of the

observed conformers (\mathbf{gGt}) decreases when going from the argon to the krypton matrix in such a way that it becomes slightly less populated that form $\mathbf{g'G'g}$.

In spite of the impossibility of presenting here a detailed discussion of the band assignments, some specific spectral regions deserve further comments:

Fig. 3. OH and NH₂ stretching regions of the infrared spectra of 2-amino-1-propanol isolated in a) Kr, b) Ar.

3.3.1. OH stretching region

The analysis of this spectral region is, as usually, complicated by the presence of bands due to isolated monomeric molecules of water. It was, however, possible to assign unequivocally the OH stretching vibration, ν OH, originated in each of the five observed conformers of **2AP**. It is worth mentioning that in all cases ν OH is red shifted in krypton, in agreement with relative polarity of the argon and krypton matrices (see Table 9 and Fig. 3). In the gas

phase spectrum only two bands assigned to the ν OH vibration are observed, the lowest frequency band containing contributions of conformers g'Gg' (main component) and gG'g, and the less intense highest frequency band being ascribable, essentially, to the gGg' form, though it must possess also minor contributions from conformers gGt and g'G'g. As expected, the frequencies of these bands are slightly higher than the corresponding ones observed in the matrices.

In Fig. 4, a correlation between the observed

Fig. 4. Plot of experimental frequencies (ν OH, Ar matrix ir spectra) vs. calculated d(OH…N) distances for the most stable conformers of **2AE** (ν), **2AP** (ν) and **3AP** (σ) using: (a) MP2; and (b) HF calculated d(OH…N) distances.

frequency of the ν OH mode (in argon) and the calculated $d(OH \cdots N)$ distance is shown for the most stable conformers of 2AE, 2AP and 3AP. These data includes results previously obtained for 2AE and **3AP** [3,4]. Both HF and MP2 levels of theory predict a good linear correlation between the calculated $d(OH \cdots N)$ distance and the observed νOH stretching vibration for all conformers exhibiting an OH ··· ·N intramolecular hydrogen bond: the shorter the $d(OH \cdots N)$ distance — i.e. the stronger the hydrogen bonding—, the lower the ν OH stretching frequencies. In addition, νOH appears nearly at the same frequency in all those conformers that do not have the OH group participating in the OH ··· N intramolecular hydrogen-bonding interaction. It is interesting to note that a similar general correlation between the calculated O-H bond lengths for the three aminoalcohols and ν OH could not be found. Instead, in this case, three different straight lines are necessary to fit the experimental data, one for each compound (as it could be expected, all conformers belonging to a given molecule follow approximately these relationships, despite they have or not the hydroxyl group participating in hydrogen bonding). The absolute value of the slope of each individual ν OH vs. d(O-H) straight line increases in the order 2AE < 2AP < 3**AP**. This result can be correlated with the progressive strengthening of the intramolecular OH···N hydrogen bond in these compounds, as it is also indicated by the relative values of the ν OH frequencies for the most stable conformers, having the strongest OH ···· N hydrogen bond, of each molecule (**3AP**: 3415 cm^{-1} ; **2AP**: 3525 cm^{-1} ; **2AE**: 3549 cm^{-1} — see Table 9 and Refs. [3,4]).

The assignments of the ν OH bands in the matrix isolated **2AP** spectra are reinforced by the solution

380

Fig. 5. Infrared OH stretching region of some CCl₄ solutions of 2-amino-1-propanol.

studies in tetrachloromethane and *trans*-1,2-dichloroethylene, being qualitatively similar in both solvents. The data obtained in CCl₄ solution are presented in Fig. 5, where ν OH bands due to the different conformers and aggregated species are clearly indicated. For very low concentrations of **2AP**, besides the bands due to the NH₂ symmetric and asymmetric stretching modes, appearing, respectively, at 3399 cm⁻¹ and 3363 cm⁻¹, the spectra show a relatively broad band centered at 3509 cm⁻¹ due to the conformers **g**'**Gg**' and **gG**'**g**, which have a strong OH…N intramolecular hydrogen bond, and three narrower bands, at higher frequencies (3624, 3642 and 3672 cm⁻¹), ascribable, respectively, to the two conformers which have a relatively weak OH···N intramolecular hydrogen bond ($\mathbf{g'G'g}$ and $\mathbf{gGg'}$) and to conformer \mathbf{gGt} , where the OH group is not involved in the OH···N interaction. Note that all bands observed in the solution spectra are red shifted by ca. 20–30 cm⁻¹ with respect to the correspondent bands observed in the matrices, a result that agrees with the relative polarity of the environment. Upon raising the concentration, the bands due to the different monomeric species strongly decrease their intensity, while a very broad band with maxima at 3275 and 3194 cm⁻¹, ascribable to the ν OH vibration of aggregated species containing an OH…N intermolecular hydrogen bond, start to dominate the spectra.

3.3.2. NH₂ wagging vibrations

The two most intense infrared bands of 2AP predicted by the calculations correspond to the ν C-O and ωNH_2 vibrations of the most stable conformer (see Table 9). Based on their intensities, these two modes can be unequivocally assigned to the doublet at 1065 and 1063 cm^{-1} and to the band at 794 cm^{-1} , respectively (in argon). However, the calculations predict that the wagging vibration should occur at a higher frequency (calculated value: 875 cm^{-1}), the relative error in the theoretical value being clearly larger for this mode than for all other vibrations. A similar situation happens for the ωNH_2 vibration of conformer $\mathbf{g}\mathbf{G}'\mathbf{g}$, which is also a conformer having a strong OH···N intramolecular hydrogen bond. On the contrary, the agreement between the calculated and experimental frequencies for this mode in the remaining observed conformers is much better, despite a general overestimation of the calculated frequencies can be noticed. (see Table 9). It is well known that ab initio calculations carried out at the level of theory used here cannot account for some subtle effects associated with hydrogen bonding [14,23]. So, the involvement of the nitrogen atom in the OH···N intramolecular hydrogen bond, where it acts exclusively as hydrogen bond acceptor, seems to contribute, at least in part, to red shift the frequency of the ωNH_2 . A possible explanation for this is to consider that, when the amine group is involved in a strong OH···N intramolecular hydrogen bond, the nitrogen lone electron pair becomes more concentrated along the direction of this bond, and this electronic migration opens up more space for the wagging vibration of the amine hydrogen atoms to occur, thus reducing the force constant associated with this coordinate and, consequently, red shifting their frequency.

3.3.3. Low frequency vibrations

The spectral region below 400 cm^{-1} was not experimentally investigated in this study, but the calculations predicted frequencies of the vibrations,

which should give, rise to bands in this region. As mentioned above, some of the low frequency modes of conformers g'Gg' and gG'g were reported by Ellingsen, Marstokk and Møllendal [12], who also proposed their assignments. The results of the ab initio calculations presented now confirm the assignments made by those authors. Thus, for the conformational ground state, the frequencies of the τ OCCN and τ CCCH modes (199 ± 49 and 126 ± 10 cm⁻¹) obtained from the microwave spectra of 2AP [12], may be compared with the corresponding theoretical (scaled) frequencies: 225 and 150 cm^{-1} . In addition, the third lowest frequency mode of this conformer, as proposed by Ellingsen et al. [12], corresponds to a bending mode (δ CCC – see Table 4). For conformer $\mathbf{g}\mathbf{G}'\mathbf{g}$, the observed and calculated frequencies of the τ OCCN and τ CCCH modes are, respectively, 144 ± 26 and 225 \pm 26 cm⁻¹ [12], and 145 and 217 cm⁻¹.

3.4. Temperature variation infrared studies (annealing of the matrices)

The results of Barnes [24,25] indicate that energy barrier heights higher than 10–12 kJ mol⁻¹ are needed in order to avoid establishment of a conformational thermal equilibrium for a substance in a matrix annealed to ca. 30 K. Thus, both argon and krypton matrices were annealed to about this temperature, in order to search for any substantial reorganization of relative band intensities. Within the range of temperatures covered, no evidence was found of conformer isomerization, indicating that energy barriers separating the different observed conformers are higher than $10-12 \text{ kJ mol}^{-1}$, in agreement with previous data on 2AE [13]. On the contrary, bands due to aggregates can be observed in the spectra above 30 K, the transformation of monomeric species to aggregates being caused by loosening of the lattice of the matrices. The aggregation was found to be more extensive in krypton than in argon, a result that seems to indicate that a more significant matrix reorganization is required to enable diffusion of the solute molecules in the case of the argon matrix (this, in turn, is possibly determined by the smaller size of the argon when compared with the krypton atoms; i.e. in order to enable effective diffusion of the molecules of the solute, a greater number of argon than krypton atoms must undertake positional changes).

Fig. 6. Room temperature liquid phase infrared (upper) and Raman (bottom) spectra of 2-amino-1-propanol.

5	
e,	
P	
6	

amino-1-propanol (wavenumbers in cm⁻¹; calculated wavenumbers were scaled by 0.89. MIS experimental intensities are normalized (to 1000) integrated intensities which were measured after deconvolution. Calculated intensities were fitted to Ar experimental normalized integrated intensities (experimental bands assigned to more than one vibration were excluded from the fitting procedure). To obtain ab initio intensities (km mol⁻¹) the values presented in the table should be multiplied by 2.5, 5.7, 7.0, 26.2 and 27.7 for those bands Gas phase [22] and low temperature matrix isolation infrared vibrational spectra, and calculated wavenumbers and intensities for the most populated conformational states of 2-

384

ascribed to IC	rm 1, 11, 1	II, III af	id v, respect	пуетуј													
Assignment ^c	Gas phi	ase ^a	MIS ^c				Calcula	ted	Assignment ^c	Gas ph	ase ^a	MIS ^c				Calcula	ted
			Ar		Kr							Ar		Kr			
	٨	Ι	λ	I	λ	I	А	Ι		А	Ι	λ	I	ν	I	А	Ι
VI HO4			3691	1.1	3683	3.7	3668	2.0	δCH ₂ III			1476	1.5	1476	0.01	1472	0.3
III HO4	3674	ш	3671	2.4	3659	0.3	3657	7.1	δCH_2	1457	ш	1474	3.2	1472	4.3	1485	0.2
$V HO_{1}$			3654	0.1	3650	0.2	3653	1.8	δCH ₃ as.' III			1465	1.4	1465	0.5	1467	0.2
11 HO			3542	15.2	3537	6.1	3616	12.4	δCH ₃ as.' II			1461	3.1	1461	3.8	1464	0.5
			3539^{b}	18.5	3531^{b}	19.0			δCH ₃ as.'	1457	ш	1458	10.6	1456	6.4	1462	2.5
			3534^{b}	1.7					δCH ₃ as.	1457	ш	1454	5.2	1452	4.3	1460	1.4
нОч	3579	ш	3529	11.0	3524	9.6	3614	31.5	δCH ₃ as. II			1440	1.1	1437	0.4	1459	1.1
			3523^{b}	26.9	3516^{b}	31.4			δCH ₃ as. III			1438	1.5	1439	0.002	1458	0.5
$\nu NH_2 as. II$	3417	M	3421	5.5	3409	3.1	3393	0.2	$\omega CH_2 IV$			1427	5.9	1425	0.2	1438	0.01
			3417^{b}	2.5	3406^{b}	3.1			$\omega \mathrm{CH}_2$	1387	ш	1423	6.6	1421	6.0	1421	28.1
$\nu \mathrm{NH}_2\mathrm{as.}$	3405	M	3404	4.5	3400	2.8	3389	0.6				1419^{b}	12.6				
			$3401^{\rm b}$	0.2	3398^{b}	2.8											
$\nu \rm NH_{2S}.$	n.o.		n.o.		n.o.		3310	0.2	$\omega \mathrm{CH}_2 \mathrm{III}$			1413	7.8	1416	6.5	1415	1.5
$\nu CH_{3aS.}$ II			2995	1.8	2986	4.6	2938	5.5	$\omega \mathrm{CH}_2 \mathrm{II}$			1409	15.9	1414	10.8	1412	8.7
νCH_{2as} . III			2991	2.7	2981	0.001	2917	14.4	γ CH II			1403	11.2	1405	19.8	1408	5.8
νCH_{3as} . IV			2978	15.1	2976	4.7	2916	2.2	δCH ₃ s. IV			1403	0.6	1398	4.3	1398	0.3
$\nu \mathrm{CH}_{2}\mathrm{as.}$	2966	SV	2975	32.7	2968	48.9	2911	40.2	δCH ₃ s. III			1399	7.6	1395	5.3	1394	3.4
νCH_{3as} . III			2971	18.4	2963	25.4	2909	1.2	δCH ₃ s.	1387	ш	1392	4.7	1391	3.1	1394	1.9
$\nu CH_{2as. II}$			2967	31.6	2959	18.8	2910	14.1	$\omega CH_2 V$			1384	1.9	1383	2.4	1384	1.2
$\nu CH_{3as.}'$	2966	VS	2952	2.4	2945	5.3	2903	12.8	δCH	1387	ш	1381	3.4	1379	6.5	1381	4.3
νCH ₃ as.' II			2945	3.4	2935	11.5	2903	2.5	δCH ₃ s. II			1373	0.6	1371	2.0	1371	0.5
$\nu CH_{3aS.}$ ' III			2938	6.5	2948	0.05	2902	6.5	δCH III			1373	3.0	1366	0.4	1369	2.4
νCH_{3aS} .	2933	VS	2936	11.3	2931	5.8	2896	16.2	δCH II			1364	0.6	1363	0.2	1350	2.3
			2929^{b}	8.3	2924^{b}	5.4			twCH ₂ III			1364	1.2	1363	0.3	1359	5.0
νCH_{2as} . IV			2913	4.8	2910	9.6	2874	2.7	§CH IV			1362	0.8	1359	0.3	1369	0.8
νCH	2933	SV	2908	6.7	2900	11.2	2872	6.9	γ CH IV			1355	0.8	1357	1.0	1349	0.2
νCH ₃ s. II			2887	10.5	2894	3.7	2853	5.3	δСОН	1344	sh	1342	12.0	1339	7.9	1341	14.8
<i>ν</i> CH ₃ s. III			2882	11.3	2887	3.4	2852	8.0	γ CH V			1335	3.8	1333	1.3	1325	0.4
νCH_{3S} .	2879	sh	2880	13.3	2878	13.6	2842	12.1	γ CH III			1327	1.5	1318	4.9	1324	1.3
νCH ₂ S. III			2874	11.3	2871	10.5	2846	5.2	δCOH II			1323	3.1	1322	2.8	1324	4.7
νCH_{2S} . II			2866	10.5	2866	6.7	2816	25.3	γ CH	1344	sh	1316	6.8	1315	3.1	1298	2.8
<i>▶</i> CH III			2860	22.3	2861	9.7	2805	8.1	$\gamma \mathrm{NH}_2$	1240	νw	1264	9.3	1261	4.6	1256	6.3
νCH_{2S} .	2879	sh	2855	22.6	2852	29.5	2803	29.0						1259^{b}	3.8		

R. Fausto et al. / Journal of Molecular Structure 550-551 (2000) 365-388

Table 9 (cont	inued)																
$Assignment^{c}$	Gas ph	ase ^a	MIS ^c				Calculi	ated	Assignment ^c	Gas p.	hase ^a	MIS ^c				Calcula	ted
			Ar		Kr							Ar		Kr			
	λ	Ι	λ	Ι	λ	I	λ	Ι		А	Ι	λ	I	А	I	У	I
<i>ν</i> CH IV			2822	3.6	2816	0.3	2795	2.4	twCH ₂ IV			1255	5.1	1255	1.8	1255	0.1
µCH II	2786	sh	2802	0.1	2806	1.9	2793	8.9	$\gamma \mathrm{NH}_2 \mathrm{II}$			1244	1.8	1241	1.4	1236	0.3
$\delta \mathrm{NH}_2$	1622	ш	1619	10.9	1616	11.2	1631	15.2						1247^{b}	1.2		
$\delta CH_2 II$			1481	0.3	1479	0.01	1487	0.1	δCOH IV			1239	0.01	1230	0.04	1229	2.4
$\gamma NH_2 V$			1224	0.2	1220	0.9	1225	0.4	$\gamma \mathrm{CH}_2 \mathrm{III}$			908	1.8	904	10.0	902	1.5
$\gamma \rm NH_2 III$			1216	0.2	1216	2.5	1224	0.6	$\gamma \mathrm{CH}_2$	937	M	899	1.8	894	12.8	897	1.2
$\gamma NH_2 IV$			1205	0.5	1197	0.9	1208	0.4				895 ^b	2.6				
$\gamma CH_3 III$			1188	1.6	1192	0.2	1196	3.1	$\gamma \mathrm{CH}_2 \mathrm{V}$			884	0.4	894	4.2	895	0.4
twCH ₂ II			1186	4.4	1186	9.9	1180	9.4	$\omega NH_2 V$			875	0.5	889	10.5	890	5.4
twCH ₂ V			1182	2.2	1180	1.5	1188	0.6	$\omega NH_2 IV$			839	1.8	840	0.004	878	6.2
$twCH_2$	1191	νw	1177	5.8	1174	4.4	1157	7.0	$\omega \mathrm{NH}_2 \mathrm{III}$			836	8.1	833	10.1	876	16.3
VCN	1145	M	1162	3.6	1158	3.7	1148	7.1	νCCs. IV			828	1.3	826	1.7	804	0.2
			1158 ^b	11.9	1155 ^b	9.1											
VCN III			1151	2.7	1151	1.0	1141	1.5	νCCs. III			822	10.2	821	1.3	801	1.6
$\gamma { m CH}_3^{\prime} { m V}$			1141	0.8	1142	0.2	1138	0.8	$\omega \mathrm{NH}_2 \mathrm{II}$			810	27.3	814	4.9	871	23.8
₽CO II			1138	2.4	1140	1.9	1131	1.4						808^{b}	20.1		
					1136^{b}	0.2			$\nu CCs.$	788	s	802	4.7	800	0.2	799	11.1
VCN IV			1131	0.01	1132	0.3	1130	0.6				4667	10.0	$797^{\rm p}$	17.6		
$\gamma CH_3 IV$			1100	2.7	1096	5.5	1091	3.0	$\omega \mathrm{NH}_2$	788	s	794	45.2	793	54.8	875	58.6
νCO III			1092	2.3	1090	2.8	1079	5.7	νCCs. II			788	5.7	786	2.2	769	0.8
VCN II			1087	6.9	1084	6.1	1078	9.8	$\nu CCs. V$			775	0.02	780	0.5	766	0.3
$\nu CCas.$	1047	vs	1078	3.2	1075	15.0	1060	23.0	δCCNas. II	653	w	640	8.2	641	7.7	626	5.1
			1074°	5.2					δCCNas. V			631	0.2	627	0.04	614	0.5
٧CO	1047	NS	1065	36.1	1061	64.5	1085	45.3				625 ^b	4.8	625 ^b	3.3		
			$1063^{\rm b}$	66.1	1056^{b}	30.4			SOCC			530	14.8	522	2.5	502	37.3
§COH III			1053	25.4	1049	9.4	1058	15.8				521^{b}	10.8	518^{b}	18.2		
νCO IV			1047	0.9	1042	7.2	1062	2.3				518^{b}	6.9	515^{b}	4.1		
$\nu CCas. V$			1034	4.5	1035	1.4	1061	2.5	τ HOCC II			490	26.4	487	20.5	482	32.4
			1032^{b}	2.8	1030^{b}	2.1			80CC III			487	9.8	485	32.8	489	2.7
$\gamma CH_3 II$			1024	6.6	1027	2.5	1033	6.7	<i>SOCC IV</i>			482	3.1	482	0.9	481	0.8
					1024^{b}	3.3			τ HOCC			478	18.8	474	25.0	478	38.5
νCO V			1020	0.7	1019	2.3	1032	1.8	7HOCC Ⅲ			468	11.8	466	18.7	436	13.8
$\gamma \mathrm{CH}_3$	1047	NS	1014	1.5	1011	0.7	1001	1.2	δCCNas.			464	T.7	463	1.0	434	1.2
			1010^{b}	1.3	1006^{b}	0.004			δCCNas. III			452	1.1	450	6.5	447	2.4
$\nu CCas. IV$			<i>L</i> 66	0.04	966	0.4	966	0.1	SCCNas. IV			448	0.5	454	0.9	452	0.3
<i>ν</i> CCas. III			989	0.8	991	1.3	985	0.3	τ HOCC V			439	0.01	443	0.01	447	4.5
$\gamma CH_3' II$			987	3.7	987	9.7	975	1.2				436°	7.1				
VCN V			974	0.02	973	1.9	975	0.9	SCCC V			416	3.2	412	1.6	398	0.3

R. Fausto et al. / Journal of Molecular Structure 550-551 (2000) 365-388

385

Assignment ^c	Gas phase ⁴	a	MIS ^c				Calculat	ted	Assignment ^c	Gas ph	ase ^a	MIS ^c				Calcula	ted
			Ar		Kr							Ar		Kr			
	ν I		٨	1	A	I	А	I		٨	I	л	I	Α	Ι	А	Ι
γCH_3 ' III			962	1.3	968	4.3	931	4.5	δCCNs. II			406	1.1	405	1.1	393	0.1
$\gamma CH_3 V$			954	3.1	096	5.2	925	0.7				404^{b}	1.4				
$\gamma \mathrm{CH}_2 \mathrm{II}$			950	7.1	953	8.5	939	3.3	δCCNs.							349	2.7
					950^{b}	6.6			↑ CCNH							267	4.6
$\gamma { m CH}_2 ~{ m IV}$			945	0.8	947	4.2	923	0.1	sccc							253	1.0
$\gamma CH_3'$ IV			937	0.4	937	2.2	922	0.4	τ CCCH							225	0.1
νCCas. II			931	3.9	929	5.7	911	2.1	TOCCN							150	2.2
$\gamma { m CH_3}'$	937 v	N	921	8.8	922	6.9	911	4.0									
					919^{b}	11.0											
^a Enontionio	rio form C. S	a ano io oo	ant of hon	de to oth	margane an	ore then for	o oso I oso	om ula	and an and an ob	atribution	from th	ic form to t	total	intoncitioc	to overage	ad Most	of time
bands ascribed	to form I a	ulso cor	ntain minor	· contrib	utions from	other con	formers.	, ma		IIODDOIDI				CONTRIIONI	nndvn er e	CU. 191051	01 01110,
^b Site splitti	1g.																

Comparison of the infrared (ir) and Raman (R) spectra of pure liquid with the calculated spectra of form **gGt** (see text) (wavenumbers, ν , in cm⁻¹; calculated wavenumbers were scaled by 0.89. Infrared experimental intensities (*I*) presented as qualitative relative intensities; infrared ab initio intensities in km mol⁻¹. Raman experimental intensities are normalized (to 1000) integrated intensities which were measured after deconvolution; Raman calculated intensities were fitted to Raman experimental normalized integrated intensities (experimental bands assigned to more than one vibration were excluded from the fitting procedure). To obtain Raman ab initio intensities (km mol⁻¹) the values presented in the table should be multiplied by 1.74)

Infrared		Raman		Calculated			Assignment ^a
ν	$I^{\rm ir}$	ν	I^{R}	ν	$I^{ m ir}$	I^{R}	
3348	vs	3365	37.8	3399	3.3	37.0	$\nu NH_2 as.$
3282	VS	3301	80.3	3322	2.7	57.1	$\nu NH_2 s.$
3174	VS	3191	27.1	3668 ^b	53.2	61.9	νOH
2963	vs	2977	35.6	2916	57.2	33.6	$\nu CH_3 as.$
2928	vs	2941	175.7	∫ 2902	53.2	42.0	$\nu CH_3 as.$
2906	vs			2874	70.9	18.3	$\nu CH_2 as.$
	c			(2851	41.0	86.9	$\nu CH_3 s.$
2874	{vs	2884	299.9-	2836	49.4	27.5	$\nu CH_2 s.$
	ι			L 2795	63.5	61.7	νCH
1595	s	1606	20.4	1632	47.9	3.2	δNH_2
				1485	5.4	6.0	δCH_2
				(1467	0.9	4.3	δCH_3 as.
1459	s	1469	43.8-	1461	4.0	8.9	δCH_3 as.
				L 1438	0.3	2.4	ωCH_2
1377	s	1393	13.1	1398	7.1	0.9	δCH ₃ s.
1353	m	1372	16.2	1369	21.6	5.1	δCH
1312	m	1324	8.4	1349	4.1	1.0	γCH
1262	m	1273	19.5	1255	2.2	10.4	twCH ₂
		(1229	9.8	1229	63.3	3.0	δCOH
1215	m	{1202	3.8	1208	10.4	1.5	γNH_2
1147	s	l_{1158}	14.8	1130	14.5	2.0	νCN
1120	s	1131	14.9	1091	78.3	2.0	γCH_3
1058	vs	1068	20.2	1062	61.5	4.6	νCO
989	m	1042	14.3	996	1.3	2.3	ν CCas.
972	sh	1002	7.9	923	2.0	1.3	γCH_2
935	sh	0.11	22.4	(922	9.4	3.1	γCH_3
915	m	941	32.4	878	162.3	2.0	ωNH_2
832	s	845	51.5	804	5.5	6.0	$\nu CCs.$
520	m	527		240	136.6	1.6	τ HOCC
		485	7.8	481	19.8	1.2	δΟСС
		455	7.1	452	7.4	0.5	δ CCNas.
		201	87	∫ 356	6.4	0.3	δCCNs.
		391	0.7	1 305	43.4	1.3	τ CCNH
		292	6.0	251 ^b	27.8	0.01	γCCC
				222	0.5	0.03	τ CCCH
				145	3.6	0.02	τOCCN

^a Abbreviations: ν , stretching; δ , bending; γ , rocking; ω , wagging; τ , torsion; tw, twisting.

^b As it is usually observed [25], when the OH group participates in H-bonding, the wavenumber of ν OH decrease while that of τ HOCC increase relatively to the isolated molecule situation.

386

Table 9 (continued)

^c Abbreviations: II, form gG'g; III, form gGg'; IV, form g'G'g; ν, stretching; δ, bending; γ, rocking; ω, wagging; τ, torsion; tw, twisting; n.o., non observed.

As expected, the frequencies of the most intense bands of the aggregated species – ascribable to ν OH, ν C–O, ω NH₂ and τ HOCC – were found to be shifted relatively to the monomeric species by ca. -400, -10, 100 and 80 cm⁻¹, i.e. ν OH and ν C–O are red shifted in the aggregates whereas ω NH₂ and τ HOCC increase their frequency in these species [26].

3.5. Liquid phase infrared and Raman spectra

Fig. 6 shows the infrared and Raman spectra of liquid **2AP**. The proposed assignments are presented in Table 10.

Most of the bands of the spectra of the aggregates can be fairly well assigned taking as reference the calculated spectra of the monomeric form gGt, which shows that this is the preferred conformation assumed by the monomeric units within aggregates. The intramolecular NH···O the hydrogen bond exhibited by this conformer (the lowest energy form with an intramolecular $NH \cdots O$ hydrogen bond in isolated **2AP**) makes the hydroxyl group more acidic and the amino group more basic, and then activates both OH and NH₂ groups in order to establish the OH..N intermolecular hydrogen bonding, the dominant intermolecular interaction present in the aggregated species. The importance of this intermolecular hydrogen bonding in liquid 2AP is also reflected in the frequencies of the bands assigned to $\nu O-H$, which strongly decreases when compared with those of the free monomeric species, and to τ HOCC, which increases when the OH group is involved in the intermolecular H-bonding [26] (see also Tables 9 and 10). These results are in agreement with the conclusions of our previous studies on 2AE and 3AP, where conformations structurally similar to form gGt of 2AP were also found to be the preferred configurations assumed by the monomeric units within the aggregates, in the liquid phase [3,4].

As for **2AE** [3], and contrarily to what was found for **3AP** [4], temperature variation studies carried out on the pure liquid show that there are no detectable amounts of free monomeric molecules in the pure liquid **2AP**. As mentioned in Section 1, the presence of the extra methyl group is expected to increase the basicity of the amino group and, consequently, the O– H···N hydrogen bonding in 2AP could be anticipated to be stronger than in 2AE. This tendency was clearly confirmed in this study, whether by looking at the structural or the spectroscopic results (e.g. $d(OH \cdots N)$ distances and νOH). However, the strength of this interaction in 2AP was found to be weaker than in **3AP**, and the liquid state results discussed now clearly show that it is not strong enough to enable free monomeric forms of 2AP to be present in significant quantities in this phase. This different behavior of 2AP and 3AP can be correlated with the increased conformational flexibility in 3AP that leads to a more favorable interaction geometry for the establishment of a sufficiently stronger intramolecular OH ··· N hydrogen bond that can be partially preserved in the liquid phase. These results also agree with a previous theoretical work on aminoalcohols, carried out using the 4-31G basis set, and indicating that the strength of the intramolecular OH…N interaction in linear aminoalcohols should increase with ring size [27].

Further, there is spectroscopic evidence that a minor amount, but still spectroscopically detectable quantity, of monomeric units assumes within the aggregates a completely different conformation. This gives rise, for instance, to the low intensity infrared bands at 797 and 641 cm⁻¹ (with corresponding Raman bands at 807 and 649 cm^{-1}). These frequencies are similar to those of the ν C-C and δ CCN vibrations of the conformers having a gauche C-C-C-O axis (e.g. gG'g: 778 and 640 cm^{-1} , and $\mathbf{g}'\mathbf{G}'\mathbf{g}$: 775 and 631 cm^{-1} ; see Fig. 1 and Table 9), while in the conformers where this axis is *trans*, these two modes give rise to bands that occur, respectively, at higher $(800-830 \text{ cm}^{-1})$; see Table 9) and lower (ca. 450 cm^{-1}) frequencies. Thus, the results seem to indicate that the second most stable conformation assumed by the monomeric units within the aggregates in the liquid phase is in all possibility one having a gauche C-C-C-O axis. Though the following assignment should still be seen as tentative, we propose that, since such structure should have its hydroxyl group participating in a intermolecular hydrogen bonding (what excludes forms $\mathbf{g}\mathbf{G}'\mathbf{g}$ and $\mathbf{g}'\mathbf{G}\mathbf{g}'$), and considering the relative structures of the different conformers presented in Table 1, the best candidate is a structure close to form $\mathbf{g}'\mathbf{G}'\mathbf{t}$.

Acknowledgements

The authors wish to thank Dr João Cecílio for his technical help. This work was funded by the PRAXIS XXI (QUI/2/2.1/412/94) research programme, also partially funded by FEDER. C. Cacela acknowledges a PhD grant (GGPXXI/BD/3873/96) from Fundação para a Ciência e Tecnologia, Lisbon.

References

- [1] R.L. Sutton, Chem. Britain (1991) 432.
- [2] The Biophysics of organ Cryopreservation, in: D.E. Pegg, A.M. Karow Jr. (Eds.), Plenum Press, New York, 1987.
- [3] C.F.C.P. Silva, M.L.T.S. Duarte, R. Fausto, J. Mol. Struct. 482/483 (1999) 591.
- [4] C. Cacela, M.L. Duarte, R. Fausto, Spectrochim. Acta (2000) (in press).
- [5] Microcal origin (Version 4.0), copyright[®], 1991–1995 Microcal software, Inc..
- [6] K.K. Irikura, SYNSPEC, Physical and Chemical Properties Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, 1995.
- [7] W.J. Hehre, R. Ditchefield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257.
- [8] M.J. Frisch, G.W. Trucks, H.B. Schelegel, P.M.W. Gill, B.G. Johson, M.W. Wong, J.B. Foresman, M.A. Robb, M. Head-Gordon, E.S. Replogle, R. Gomperts, J.L. Andres, K. Ragha-vachari, J.S. Binkley, C. Gonzalez, R.L. Martin, D.J. Defrees, J. Baker, J.J.P. Stewart, J.A. Pople, GAUSSIAN92/DFT (Revision G.2), Gaussian Inc., Pittsburgh, PA, 1993.
- [9] H.B. Schlegel, PhD thesis, Queen's University, Kingston, Ontario, Canada, 1975.
- [10] D.J. Defrees, A.D. McLean, J. Chem. Phys. 82 (1985) 333.

- [11] M.D.G. Faria, R.Fausto, TRANSFORMER, BUILD-G and VIBRAT (version 1.0), Departamento de Química, Universidade de Coimbra, Portugal, 1990.
- [12] B.H. Ellingsen, K.-M. Marstoll, H. Møllendal, J. Mol. Struct. 48 (1978) 9.
- [13] M. Räsänen, A. Aspiala, L. Homanen, J. Murto, J. Mol. Struct. 96 (1982) 81.
- [14] A. Kulbida, M.N. Ramos, M. Rasanen, J. Nieminen, O. Schrems, R. Fausto, J. Chem. Soc. Faraday Trans. 91 (1995) 1571.
- [15] S.G. Stepanian, I.D. Reva, E.D. Radchenko, M.T.S. Rosado, M.L.T.S. Duarte, R. Fausto, L. Adamowicz, J. Phys. Chem. A 102 (1998) 1041.
- [16] R. Ditchfield, K. Seidman, Chem. Phys. Lett. 54 (1978) 57.
- [17] D.J. Defrees, B.A. Levi, S.K. Pollack, W.J. Hehre, J.S. Binkley, J.A. Pople, J. Am. Chem. Soc. 101 (1979) 4085.
- [18] F.P.S.C. Gil, R. Fausto, A.M. Amorim da Costa, J.J.C. Teixeira-Dias, J. Chem. Soc. Faraday Trans. 90 (1994) 689.
- [19] S.J. Lee, B.J. Mhin, S.J. Cho, J.Y. Lee, K.S. Kim, J. Phys. Chem. 98 (1994) 1129.
- [20] L.A.E. Batista de Carvalho, J.J.C. Teixeira-Dias, R. Fausto, Struct. Chem. 1 (1990) 533.
- [21] J.J.C. Teixeira-Dias, R. Fausto, J. Mol. Struct. 144 (1986) 199.
- [22] EPA Vapor Phase Library (CAS 156-87-6), Galactic Industries Corp., 395 Main ST. Salem, NH 03079, USA, 1994.
- [23] M.T. Rosado, M.L.T.S. Duarte, R. Fausto, Phosph. Sulf. Silic. 116 (1996) 153.
- [24] A.J. Barnes, in: A.J. Barnes, W.J. Orville-Thomas, A. Müller, R. Gaufrès (Eds.), Matrix Isolation Spectroscopy, Reidel, Dordrecht, 1981, p. 531.
- [25] A.J. Barnes, G.C. White, Proceedings of the 12th European Congress on Molecular Spectroscopy, Elsevier, Amsterdam, 1976, p. 373.
- [26] R. Fausto, J. Mol. Struct. 377 (1996) 181.
- [27] A.-M. Kelterer, M. Flock, M. Ramek, J. Mol. Struct. (Theochem.) 276 (1992) 61.

388