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Abstract

A single-valued double many-body expansion potential energy surface (DMBE I) recently obtained for the ground
electronic state of the sulfur dioxide molecule by fitting correlated ab initio energies suitably corrected by scaling the
dynamical correlation energy is now refined by fitting simultaneously available spectroscopic levels up to 6886 cm−1

above the minimum. The topographical features of the novel potential energy surface (DMBE II) are examined in
detail, and the method is emphasized as a robust route to fit together state-of-the-art theoretical calculations and
spectroscopic measurements using a single fully dimensional potential form. © 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Sulfur containing molecules are well known to
play an important role in environmental chem-
istry. In particular, sulfur dioxide is known to be
one of the major air pollutants released to the
atmosphere as a result of volcanic eruptions and
fuel combustion in human activities. It con-
tributes to the generation of smog and constitutes
a serious health hazard for the respiratory system
[1]. It is also a major source of acid rain after its

oxidation and reaction with water in the atmo-
sphere. Yet, its role in the combustion of sulfur
containing materials [2], atmospheric photochem-
istry [1], and dynamics remains ubiquitous. It
comes therefore as no surprise that SO2 has been
the subject of intense study. Of special relevance
here is its rovibrational spectroscopy, which has
been extensively investigated, both experimentally
[3–10] and theoretically [11–14]. Clearly, the ex-
perimental rovibrational work goes back almost
fifty years ago [3], with the more recent studies
being perhaps those of Yamanouchi and cowork-
ers [7,8] who have identified a large number of
highly excited vibrational levels between 17300
and 22500 cm−1 and assigned many of such levels
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using a Dunham-type expansion. One should also
mention that studies on the predissociation mech-
anism of the title molecule have been reported
[15,16]. In addition, the SO2 molecule has pro-
vided an important prototype system for the
study of vibration–rotation interactions and the
onset of classical chaos [17–19], while offering
also a testing ground for work on normal to local
mode transitions and quantum stochasticity [12].

From the point of view of ab initio electronic
structure calculations, studies have been reported
both for the ground and excited states of the title
molecule [15,20–26]. However, the only realistic
global function for the title system which stems
from a least-squares fit to accurate ab initio data
is the DMBE I potential energy surface reported
recently by the present authors and Sabı́n [27]
using the double many-body expansion [28,29]
method. In fact, several analytical representations
of the ground state SO2 potential energy surface
have been suggested but they all stem mostly from
fits to rovibrational spectroscopic data [14,30–34].
Indeed, only two potential functions have been
constructed for SO2 from fits to ab initio energies
[35,36]. Furthermore, one of those remains un-
published and is valid only over limited ranges of
the molecule configurational space (see Refs.
[19,37])

The adiabatic potential energy surface of
ground state SO2 shows [20,24], similar to O3,
four minima. The one lying lowest in energy
corresponds to the equilibrium C2� structure of
SO2. Considerably higher in energy lie two other
equivalent minima corresponding to superoxide
SOO structures. These refer to species having Cs

symmetry, and are related through permutation of
the two oxygen atoms. All these three minima lie
on the same (1A �, 1A1) potential energy surface.
The fourth minimum is associated with a ring
structure of C2� symmetry in which the OO dis-
tance is smaller than the SO ones [20,24], being
the analog of the cyclic isomeric structure of O3.
Such a minimum belongs to another electronic
state of the same symmetry (1A �, 1A1) which is
known to cross the previous one, although its
exact locus has not been determined thus far.

The paper has the following structure. In Sec-
tion 2, we survey briefly the ab initio energies used

for the calibration procedure, and which have
been previously employed to construct the SO2

DMBE I potential energy surface [27]. A brief
description of the DMBE formalism is then pre-
sented in Section 3, while the technical details
concerning the multiproperty least-squares fitting
procedure are in Section 4. Besides the ab initio
energies mentioned above, the fitted data include
many accurately measured experimental vibra-
tional levels for SO2. Moreover, since no rota-
tional data is employed and the ab initio
equilibrium geometry has an error outside the
bounds reported for the experimental one, the
objective function has been constructed such as to
reproduce the latter. The results, including a dis-
cussion on the major topographical features of the
SO2 DMBE II potential energy surface so ob-
tained are presented in Section 5. Moreover, a
comparison with some of the most popular poten-
tial functions previously for the title system will
then be also reported. Some concluding remarks
are in Section 6.

2. Ab initio energies

The starting point to construct the DMBE II
potential energy surface reported in this work is
that reported elsewhere [27] from a fit to ab initio
energies (582 points in all) calculated at the
CASPT2 [38] (complete active space second-order
perturbation theory) level using a FVCAS [39]
(full valence complete active space) reference wave
function [all calculations employed the aug-cc-
pVTZ (AVTZ) basis set of Dunning [40,41], and
have been carried out using the MOLPRO [42]
package in Cs symmetry]. Suffice it to say here
that the bulk of the calculated points refer to
O–SO Jacobi coordinates defined by 2.506�RSO/
a0�3.306, 2.0�rO–SO/a0�6.0, and 0���180°,
with some extra energies being calculated for en-
ergies in the vicinity of the local minima and
S–O2 interactions (except when comparing with
spectroscopic data where the energy will be ex-
pressed in cm−1, atomic units will be employed
throughout the paper); Rb SO is the bond distance
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SO vector pointing from the O to the S atoms,
r� O–SO is the vector connecting the other O atom to
the center of mass of the SO diatomic, and cos�=
(Rb SO·r� O–SO/�RSOrO–SO�). Due to convergence prob-
lems near the crossing of the two 1A � surfaces, and
the expected [38] loss of quality of the CASPT2
method in these regions, some calculated points
close to the crossing seam have been discarded
from the fitting procedure. Furthermore, to cor-
rect for the complete basis set limit and truncation
of the CI expansion in the CASPT2 calculations,
all calculated energies have been scaled using the
DMBE-SEC [43] method.

3. The DMBE formalism: a brief survey

According to the DMBE [28] method, the sin-
gle-valued SO2 potential energy surface assumes
the form

V(R)= �
3

i=1

Vi
(2)(Ri)+VEHF

(3) (R)

+Vdc
(3)(R)+V elec

(3) (R) (1)

where Vi
(2)=VEHF,i

(2) +Vdc,i
(2) ; the upper index de-

notes as usual the rank of the n-body energy term,
while the subscripts EHF, dc, and elec indicate
the extended Hartree–Fock, dynamical correla-
tion, and electrostatic components of the interac-
tion energy. In turn, R denotes the set of all three
bond distances. To represent the two-body energy
terms, we have employed the EHFACE2U [44]
(extended Hartree–Fock approximate correlation
energy model with inclusion of the united-atom
limit) model potential; for completeness, its form
is summarized in Appendix A.

The three-body dynamical correlation energy
has in turn been expressed as [45]

Vdc
(3)= �

3

i=1

�
n

fi(R)�n(ri)Cn
(i )(Ri,�i)r i

−n (2)

where i labels the A–BC type channel associated
with each atom–diatom interaction, Ri�RBC is the
diatomic internuclear distance, ri=rA–BC is the
separation of atom A from the center of mass of
the diatomic BC, and �i is the angle formed by
these two vectors. Furthermore, Cn

(i )(Ri,�i) de-
notes the relevant atom–diatom long-range dis-

persion coefficient, �n(ri) the associated dispersion
damping function [46–48] (Appendix A), and
fi(R) a switching function [45]. A convenient form
for this is [45]

fi=
1
2

{1− tanh[��si−sj−sk)]} (3)

where si=Ri−Ri,ref with Ri,ref being a convenient
reference geometry; similar expressions apply to sj

and sk, and to the other channels. For the coordi-
nates, we have used the long-range approxima-
tions [27]

ri=
AjRj+AkRk

Aj+Ak

(4)

cos �i=
1
2
�(Rk−Rj(Rk+Rj)

Ri

+
Ak−Aj

Ak+Aj

Ri
n
/ri (5)

where Ai are parameters with values numerically
equivalent to the atomic masses in SO2. Note that
such parameters are invariant to isotopic substitu-
tion, as the potential energy surface must be
mass-independent in the Born–Oppenheimer
sense. Note further that, for Ai=Aj, these expres-
sions reduce to those reported elsewhere [28]. The
atom–diatom dispersion coefficients assume their
usual form [49]

Cn
(i )(Ri,�i)=�

L

Cn
L(Ri)PL(cos �i) (6)

where PL(cos �i) are Legendre polynomials. As in
Ref. [27], only the coefficients C6

0, C6
2, C8

0, C8
2,and

C10
0 have been used in the Legendre expansion of

Eq. (6).
The three-body electrostatic energy in SO2 has

been approximated by

V elec
(3) = �

3

i=1

fi(R)[C4Ri,ri)ADQ(�a,i,�i,�ab,i)r i
−4

+C5(Ri,ri)AQQ(�a,i,�i,�ab,i)r i
−5] (7)

where fi(R), Ri, ri, and �i have the meaning as-
signed above, while �a,i is the angle that defines
the atomic quadrupole orientation, and �ab,i is the
corresponding dihedral angle. The coefficients
C4(Ri,ri) and C5(Ri,ri) for the ith atom–diatom
channel (for convenience, we include the associ-
ated damping functions) assume the form



A.J.C. Varandas, S.P.J. Rodrigues / Spectrochimica Acta Part A 58 (2002) 629–647632

C4(Ri,ri)=
3
2

QADBC(Ri)�4(ri)

C5(Ri,ri)=
3
4

QAQBC(Ri)�5(ri) (8)

where DBC(Ri) and QBC(Ri) are the electric perma-
nent dipole and quadrupole moments of diatomic
BC, respectively, and QA is the quadrupole mo-
ment of atom A. In turn, the angular variations of
ADQ and AQQ are given by [50]

ADQ(�a,�,�ab)

=cos �(3 cos2 �a−1)

+2 sin �a sin � cos �a cos �ab (9)

AQQ(�a,�,�ab)

=1−5 cos2 �a−5 cos2 �+17 cos2 �a cos2 �

+2 sin2 �a sin2 � cos2 �ab

+16 sin �a sin � cos �a cos � cos �ab (10)

To eliminate the angle �a, [27], we have em-
ployed the classical-optimized-quadrupole (COQ)
model [51–55] developed in our group. All coeffi-
cients in the above expressions assume the numer-
ical values reported in Ref. [27] with the reader
being referred to this work for details.

Thus, in the present work, only the coefficients
of the three-body extended Hartree–Fock energy
term need to be optimized to fit the experimental
frequencies, the derivatives at the minimum, and
the ab initio energy points. Following Ref. [27],
VEHF

(3) assumed the following distributed multino-
mial form [56]

VEHF
(3) =P�(R1,R2,R3) �

3

i=1

{1− tanh[� i
�(Ri−Ri,ref

� )]}

+P�(R1,R2,R3)

�
3

i=1

{1− tanh[� i
�(Ri−Ri,ref

� )]} (11)

where

P�(R1,R2,R3)

=c1+c2Q1+c3Q3+c4Q1
2+c5S2a

2 +c6Q1Q3

+c7S2b
2 +C8Q1

3+c9Q1S2a
2 +c10S3

3+c11Q1
2Q3

+c12Q1S2b
2 +c13Q3S2a

2 +c14Q1
4+c15Q1

2S2a
2

+c16S2a
4 +c17Q1S3

3+c18Q1
3Q3+c19Q1

2S2b
2

+c20Q1Q3S2a
2 +c21Q3S3

3+c22S2a
2 S2b

2 +c23Q1
5

+c24Q1
3S2a

2 +c25Q1S2a
4 +c26Q1

2S3
3+c27S2a

2 S3
3

+c28Q1
4Q3+c29Q1

3S2b
2 +c30Q1

2Q3S2a
2

+c31Q1Q3S3
3+c32Q1S2a

2 S2b
2 +c33Q3S2a

4

+c34S2b
2 S3

3+c35Q1
6+c36Q1

4S2a
2 +c37Q1

22S2A
4

+c38Q1
3S3

3+c39Q1S2a
2 S3

3+c40S2a
6 +c41S3

6

+c42Q1
5Q3+c43Q1

4S2b
2

+c44Q1
3Q3S2a

2 +c45Q1
2Q3S3

3+c46Q1
2S2a

2 S2b
2

+c47Q1Q3S2a
4 +c48Q1S2b

2 S3
3+c49Q3S2a

2 S3
3

+c50S2a
4 S2b

2 (12)

is a sixth-order polynomial in symmetry coordi-
nates and P�(R1,R2,R3) is a similar fifth-order
polynomial with coefficients c51–c84 (i.e. c51 will
be the coefficient corresponding to c1 in Eq. (12),
and so on up to c84 which will correspond to c34).
As usual, the linear symmetry coordinates have
been defined as [28,57]

�
�
�
�
�

Q1

Q2

Q3

�
�
�
�
�

=

�
�
�
�
�

�1/3 �1/3 �1/3
�1/2 −�1/2 0

−�1/6 −�1/6 �2/3

�
�
�
�
�

�
�
�
�
�

R1

R2

R3

�
�
�
�
�
(13)

with S2a
2 +Q2

2+Q3
2, S2b

2 =Q2
2−Q3

2, and S3
3=

Q3
3−3Q2

2Q3. The complete set of parameters
amounts to 84 linear coefficients ci, four non-lin-
ear coefficients � i

�,�, and four reference geometries
Ri,ref

�,� . Their optimal numerical values are given in
Table 4. Note that we have kept the non-linear
parameters fixed at the optimum values obtained
for DMBE I. In fact, no significant changes with
respect to the values reported for DMBE I are
expected since the spectroscopic data refers to
regions of the potential energy surface where the
range term in VEHF

(3) should have little influence.
Of course, a small tuning of such parameters can
always be carried out for further improvement of
the root mean-squared deviation (rmsd). How-
ever, being time consuming, such a strategy was
not judged to be warranted prior to a test on
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reaction dynamics studies of the potential energy
surface so obtained, where such details may play a
prominent role.

4. The least-squares fit: technical details

Our multiproperty least-squares fitting program
uses the routine LMDER of the MINPACK [58]
package, which is an improved version [59] of the
Levenberg–Marquardt method. For the objective
function, we have employed the form

F= �
N

i=1

wi {V [R(i )]−Vi
ab}2

+ �
M

�=1

w�(E �
calc−E �

exp)2

+ �
L

i=1

wi
�dV [R(I)]

dRi

−
dVi

dRi

�2

(14)

which involves N=1474 energy points Vi
ab (582

FVCAS/PT2 energies plus, as in Ref. [27], 855
long-range points generated with the sum of the
two-body energies with the dispersion and electro-
static energies for rO–SO�7.0a0 and 32 short-range
repulsive points generated using only the two body
energies for diatomic bond distances RAB�1a0 to
warrant the correct behavior at large and short
distances respectively), M=125 vibrational fre-
quencies E �

exp, and L=3 first-derivatives of the
potential at the global minimum (dVi/dRi). Thus,
wi, w�, and w

i
are the least-squares weights for the

various sets of fitted data. For the ab initio ener-
gies, we have kept essentially identical to those
used for DMBE I (wi=1 for points with E/Eh,
w=103 for 21 points around the three minima,
and w=102 for all the other points). In turn, the
weights w� are indicated for each individual vibra-
tional frequency in Table 1, while the w̄i ones are
chosen sufficiently large (w̄i=104) to reproduce
the experimental equilibrium geometry of the open
isomer within its reported error bounds.

The 125 fitted vibrational frequencies chosen to
calibrate DMBE II consist of 31 observed experi-
mental frequencies [3,4,6,10,60–66] and 84 values
taken from the Dunham expansion of Ya-
manouchi et al. [8], covering a range of energies up
to 6886 cm−1. As noted in the previous paragraph,

the weights employed on the global least-squares
fit are indicated in column seven of Table 1 for all
fitted vibrational levels, and have been assigned
roughly according to the estimated uncertainties
discussed in the literature [6,8,10]. An exception is
the fundamental bending level, which carried an
extra weight to improve the convergence of the
least-squares fitting procedure.

At each step of the iterative fitting process (this
involves typically 20 iterations or so) the lowest
150 vibrational levels (calculated for J=0) of the
potential energy function have then been calcu-
lated using Radau coordinates as implemented in
the DVR3D program suite [67]. This employs a
discrete variable representation (DVR) for each
coordinate based on the approach of Tennyson
and Sutcliffe [68]. For the radial coordinates, the
number of the DVR grid points (based on Morse
oscillator-like functions) have been set to 40 with
the variational Morse parameters being optimized
and set to re=3.20a0, De=0.19Eh, and 	e=
0.006Eh. For the bending coordinate, the number
of grid DVR points (based on associated Legendre
polynomials) have been set to 120. According to
the DVR3D methodology [67], the calculation was
then set up as a series of diagonalizations using the
order r2�r1��. An energy cut-off of −60000
cm−1 (the potential well of SO2 DMBE II is
−90670 cm−1) has been employed for the calcula-
tion of the 1D states, and the maximum dimension
of the 2D problems kept 1000 to obtain the final
Hamiltonian matrix of dimension N=1500. Based
on comparisons with calculations employing larger
Hamiltonian matrices and more functions per co-
ordinate, the first 150 calculated vibrational levels
up to about 7500 cm−1 are seen from the insert in
Fig. 1 (the errors are obtained by subtracting the
vibrational energies used in the present work em-
ploying the larger grid from those based on the
smaller one) to be converged within 0.02 cm−1 or
better. Moreover, Fig. 1 shows that the error
remains smaller than 0.1 cm−1 for all calculated
levels of relevance for the present work (Table 2).

Using the Hellmann–Feynman theorem, the
derivatives of the energy levels with respect to the
parameters of the potential energy surface have
been calculated as expectation values of the poten-
tial derivatives [69]. Thus,
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Table 1
Calculated vibrational energies (in cm−1) for SO2 and corresponding experimental values

Initial Init.-exp. Fit Fit-exp. Exp. [3,4,6–8,10,60–66] w�/104(n1,n2,n3)

517.8 −0.1 517.9 100(0 1 0) 513.5 −4.4
1034.8 −0.3 1035.1−3.0 201032.1(0 2 0)
1151.6 −0.2 1151.7(1 0 0) 201197.1 45.4
1362.0 −0.1 1362.1−79.7 20(0 0 1) 1282.4

(0 3 0) 1551.31555.2 −0.5 1551.7 103.5
1667.0 0.6 1666.342.1 10(1 1 0) 1708.4
1875.2 −0.6 1875.8(0 1 1) 101791.9 −83.9
2067.2 0.4 2066.915.1 10(0 4 0) 2082.0

44.22224.5 2181.2 0.8 2180.3 10(1 2 0)
2294.7 −1.1 2295.885.4 102381.2(2 0 0)

−82.22306.7 2387.9 −1.0 2388.9 10(0 2 1)
(1 0 1) 2499.42466.5 −0.4 2499.9 10−33.4

2582.7 0.4 2582.329.5 102611.8(0 5 0)
2694.4 0.8 2693.6(1 3 0) 102744.7 51.1
2713.7 0.3 2713.4−144.5 10(0 0 2) 2568.9

83.82891.0 2807.9 0.8 2807.2 10(2 1 0)
3010.3 0.0 3010.3−36.5 52973.8(1 1 1)

48.53144.1 3097.7 2.1 3095.6 1(0 6 0)
3206.8 1.0 3205.8(1 4 0) 13268.3 62.5
3222.4 0.1 3222.3−148.0 5(0 1 2) 3074.3
3319.6 1.5 3318.1(2 2 0) 13405.1 87.0
3412.2 −0.8 3413.0−63.9 1(0 4 1) 3349.1

122.83554.0 3430.1 −1.1 3431.2 5(3 0 0)
3520.3 0.1 3520.2−34.1 13486.1(1 2 1)

69.43678.3 3612.1 3.3 3608.9 1(0 7 0)
7.63637.4 3628.3 −1.5 3629.8 5(2 0 1)

3718.3 1.0 3717.477.2 1(1 5 0) 3794.6
3730.8 −0.2 3730.9(0 2 2) 53585.2 −145.7
3829.8 1.8 3828.194.6 1(2 3 0) 3922.7

−98.13739.0 3836.7 −0.3 3837.1 5(1 0 2)
3923.9 0.1 3923.8−48.4 13875.4(0 5 1)

122.94062.8 3941.4 1.5 3939.9 2(3 1 0)
4029.5 0.1 4029.4(1 3 1) 104002.6 −26.8
4054.9 0.9 4054.0−196.1 10(0 0 3) 3857.9
4125.9 4.6 4121.3(0 8 0) 14214.0 92.7
4137.1 0.2 4137.06.2 1(2 1 1) 4143.2

95.14323.2 4229.2 1.0 4228.1 1(1 6 0)
4238.9 −2.6 4241.5−140.7 24100.8(0 3 2)

100.74443.4 4338.8 −3.9 4342.7 2(2 4 0)
4343.3 −1.0(1 1 2) 4344.34242.3 1−102.0
4435.2 1.3 4433.9−29.7 14404.2(0 6 1)
4450.7 3.8 4446.9(3 2 0) 24575.1 128.2
4538.0 0.4 4537.6−15.1 1(1 4 1) 4522.5

156.84716.9 4558.4 −1.7 4560.1 2(4 0 0)
4559.1 −1.0 4560.1−200.9 14359.2(0 1 3)

117.84750.7 4638.9 5.9 4632.9 1(0 9 0)
4644.6 1.1(2 2 1) 4643.54653.4 19.9
4739.2 1.1 4738.1115.5 1(1 7 0) 4853.6
4746.9 −1.3 4748.3(0 4 2) 14620.2 −128.1
4749.2 −2.0 4751.245.3 2(3 0 1) 4796.5

(2 5 0) 121.0 4846.8 1.2 4845.6 14966.6
4849.1 0.9 4848.1 2(1 2 2) −97.34750.8
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Table 1 (Continued)

Init.-exp. Fit Fit-exp.Initial Exp. [3,4,6–8,10,60–66](n1,n2,n3) w�/104

−8.2 4946.1 2.8 4943.3(0 7 1) 14935.1
−58.2 4951.1 −2.84895.6 4953.8(2 0 2) 1
135.5 4958.2 3.0(3 3 0) 4955.15090.6 1

0.1 5045.9 0.75045.3 5045.2(1 5 1) 1
(0 2 3) −198.84866.1 5063.2 −1.7 5064.9 1

158.2 5068.0 1.35224.9 5066.7(4 1 0) 1
18.0 5150.9 1.6(2 3 1) 5149.35167.3 1

144.2 5150.9 7.15288.0 5143.8(0 10 0) 1
5013.1(1 0 3) −152.5 5163.4 −2.2 5165.6 1

137.9 5248.3 1.05385.2 5247.3(1 8 0) 1
5142.9(0 5 2) −112.3 5254.8 −0.4 5255.2 1

45.6 5256.3 0.6 5255.6(3 1 1) 15301.2
138.7 5353.6 0.55491.8 5353.1(2 6 0) 1

−91.4 5354.2 −0.6(1 3 2) 5354.95263.5 1
−235.9 5385.5 1.35148.2 5384.2(0 0 4) 1
−59.3 5455.7 −1.2(2 1 2) 5456.85397.5 1

15.7 5456.4 4.55467.6 5451.9(0 8 1) 1
147.5 5464.1 3.0(3 4 0) 5461.15608.6 1

18.4 5553.1 1.15570.4 5552.0(1 6 1) 1
5377.9(0 3 3) −191.2 5567.2 −1.9 5569.1 1

164.8 5575.1 4.05735.8 5571.0(4 2 0) 1
29.9 5656.1 1.7(2 4 1) 5654.45684.3 1

171.7 5661.8 8.05825.5 5653.8(0 11 0) 1
5512.4(1 1 3) −155.2 5665.6 −2.1 5667.6 1

187.9 5680.0 −2.95870.8 5682.9(5 0 0) 1
5917.7(1 9 0) 162.0 5756.5 0.8 5755.7 1

(3 2 1) 50.75809.7 5761.4 2.5 5759.0 1
−93.1 5762.4 1.05668.3 5761.4(0 6 2) 1
−79.3 5858.9 −0.2(1 4 2) 5859.15779.8 1

158.6 5859.5 −0.46018.5 5859.9(2 7 0) 1
79.6 5862.8 −2.8(4 0 1) 5865.65945.2 1

−240.2 5885.2 −0.35645.2 5885.4(0 1 4) 1
−55.3 5959.1 −0.1(2 2 2) 5959.25903.9 1

41.3 5966.1 6.36001.1 5959.8(0 9 1) 1
6128.8(3 5 0) 162.6 5968.5 2.3 5966.2 1

−21.1 6057.3 −4.26040.4 6061.5(3 0 2) 1
39.3 6059.7 1.6(1 7 1) 6058.16097.4 1

−179.0 6071.2 −1.45893.6 6072.6(0 4 3) 1
6249.2(4 3 0) 174.6 6079.9 5.3 6074.6 1

45.2 6160.4 1.76203.9 6158.7(2 5 1) 1
6017.1(1 2 3) −152.1 6167.2 −1.9 6169.1 1

(0 12 0) 6362.6 199.7 6171.5 8.5 6162.9 1
193.4 6188.0 3.16378.3 6184.9(5 1 0) 1

−113.2 6263.0 −5.0(2 0 3) 6268.06154.8 1
59.9 6265.0 3.56321.4 6261.5(3 3 1) 1

6450.7(1 10 0) 187.5 6263.6 0.3 6263.2 1
−71.0 6269.7 2.86195.8 6266.8(0 7 2) 1

6299.1(1 5 2) −63.6 6363.1 0.4 6362.7 1
180.5 6364.2(2 8 0) −1.66546.3 6365.8 1

82.8 6368.1 1.76449.2 6366.4(4 1 1) 1
−238.0 6384.9 −1.2(0 2 4) 6386.16148.1 1
−46.7 6461.4 0.66414.2 6460.9(2 3 2) 1

(3 6 0) 6650.7 180.1 6471.6 1.1 6470.6 1
68.4 6474.9 8.06535.3 6466.9(0 10 1) 1



A.J.C. Varandas, S.P.J. Rodrigues / Spectrochimica Acta Part A 58 (2002) 629–647636

Table 1 (Continued)

(n1,n2,n3) Initial Init.-exp. Fit Fit-exp. Exp. [3,4,6–8,10,60–66] w�/104

−194.7 6479.2 −3.3 6482.5 1(1 0 4) 6287.8
−20.0 6560.1 −1.16541.2 6561.2(3 1 2) 1

62.3 6565.5 2.1(1 8 1) 6563.46625.7 1
−162.8 6575.1 −0.46412.7 6575.5(0 5 3) 1

187.4 6582.9 5.5 6577.4 1(4 4 0) 6764.8
63.2 6663.8 1.56725.5 6662.3(2 6 1) 1

−143.9 6668.4 −1.5(1 3 3) 6670.06526.1 1
227.7 6679.6 8.36899.0 6671.3(013 0) 1
201.8 6693.0 6.9(5 2 0) 6686.16887.9 1

−264.0 6705.2 2.86438.4 6702.4(0 0 5) 1
−114.0 6763.4 −3.4(2 1 3) 6766.86652.8 1

72.4 6767.2 3.86835.7 6763.3(3 4 1) 1
6983.7(1 11 0) 213.8 6769.4 −0.5 6769.9 1

−46.7 6776.5 4.96724.9 6771.6(0 8 2) 1
220.1 6795.4 −1.3(6 0 0) 6796.67016.7 1

−44.7 6866.7 1.26820.8 6865.5(1 6 2) 1
7074.8(2 9 0) 203.9 6867.8 −3.1 6870.9 1

89.6 6871.2 4.76956.1 6866.5(4 2 1) 1
6655.9(0 3 4) −230.3 6884.7 −1.5 6886.2 1

123.5 2.9rmsd

�En

�ci

=
�

n
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�ci

	
n
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using the wave functions calculated at the grid
points. To identify the various vibrational levels,
we have used the method of Menou and Lefor-
estier [70]. According to their method, the vibra-
tional quantum numbers for the title non-linear
molecule are assigned automatically and calcu-
lated by using

ni=
1
2
��n ��Qi

2�n�
�0��Qi

2�0�
−1

�
(16)

where �Qi
2=Qi

2−�Qi�2, with Qi denoting the
ith normal mode eigenvector calculated at the
equilibrium geometry. Such an automatic proce-
dure has been of great help on the rather tedious
but essential task of carrying out the assignment
of the vibrational levels at each iterative step
along the least-squares fitting procedure. Needless
to say, such a task would be overwhelming if
carried out non-automatically. However, care is
required on such an assignment, especially if one
departs from a potential function with a vibra-
tional spectrum far different from the experimen-
tal one. Moreover, the highest overtone levels can
become cumbersome to identify even through an

eye-inspection, and hence an efficient assignment
tool is essential for success in the implementation
of the present least-squares approach. Even
though the Menou–Leforestier [70] assignment
scheme has been found useful for molecules as
floppy as ground-state Li3 [71], such an automatic
method is in principle expected to be valid only
for nearly harmonic spectra and well converged
wave functions, and thus the quality of the assign-
ment must be counterchecked and monitored.
This has been done here by checking the assigned
levels against the Dunham expansion
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and occasionally also through eye-inspection of
sample wave function plots. Except for a few
levels above the 150 working ones calculated for
use in the least-squares fitting procedure of the
present work (i.e. up to 7500 cm−1 or so), no
assignment problems have been encountered. For
higher energies, some incorrect assignments oc-
curred, although part of the problems encoun-
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Fig. 1. Convergence test for the vibrational calculations carried out in the present work. The errors compare calculations based on
different sizes of grids for the radial (N and nr) and bending (n�) coordinates.

tered with those few high-energy levels could still
be overcome by using an iterative procedure similar
to that recommended in Ref. [70]. Basically, the
procedure that we have used to assign automati-
cally the 500 levels consisted of fitting the first 150
levels assigned to a Dunham expansion, which was
then used to check and/or eventually reassign the
higher levels. Specifically, if for the same quantum
numbers the difference between the calculated and
Dunham predicted energies for a given level was
less than a threshold of 20 cm−1 or if the quantum
numbers differed by a maximum of an unity each
(with the difference in energy between the calcu-
lated level and that predicted from the Dunham
expansion being less than the above threshold), the
Dunham quantum numbers were accepted and the
level would go to the group of the assigned ones.
Once all levels have been considered, the Dunham
expansion has been recalculated to check the qual-
ity of the assignment. In this way (i.e. after one
iteration) only eight of the original 500 levels could
not be properly assigned. Those failing to satisfy
the above criteria correspond to high bending
levels. Perhaps, they could all have been assigned
by continuing the iterative process, although this
was not deemed necessary in the present work.

For illustrative purposes, we show in Fig. 2
sample vibrational wave functions corresponding
to the (2 3 2) and (3 8 2) levels. As seen from their
nodal structures, the assignment has been correctly
done through the above automatic procedure. It
should be noted at this stage that an equivalent
automatic procedure based on a perturbational
approach has been suggested by Ma and Guo [12].
Although their method is especially valuable when
the wave function is not explicitly calculated, it may
turn out to be computationally more demanding,
and hence it has not been used here. We should also
emphasize that we have started the least-squares

Table 2
Stratified root mean squared deviations between the calculated
SO2 DMBE potential energy surface and ab initio energies

Number rmsdEnergy
(kcal mol−1) (kcal mol−1)of points

2025 0.92
4057 1.13
6089 1.69

3.00118 80
3.11157 100
2.97120240

1365 200 2.25
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Fig. 2. Contour plots of the vibrational wave functions for the
levels (2 3 2) and (3 8 2) with energies 6451.4 and 10042.3
cm−1, respectively. Shown by the solid dark lines are the
positive contours, while the thin lines indicate negative con-
tours. Clearly, the nodal structure corroborates the assignment
made using the automatic Menou–Leforestier [68] procedure
employed in the present work.

largest error after convergence is 8.5 cm−1, which
is observed for the (0 12 0) level. Indeed, as already
noted above, bending overtones and their combina-
tions with other modes tend to display the largest
deviations (at least up to 7500 cm−1 or so), a fact
already noted by Zúñiga et al. [14]. This led these
authors to make a detailed selection of the input
data prior to the fitting procedure. Rather then
following their approach, we have chosen to test the
robustness of our multiproperty fitting technique
by including all levels up to about 6900 cm−1, in
a total of 125. Thus, besides truly observed levels,
we have included some levels determined from the
Dunham-type expansion derived by Yamanouchi
et al. [8]. In fact, an extra least-squares fit has been
carried out which employed as input data only the
vibrational levels pre-selected by Zúñiga et al. [14]
for their own fit. Since these results add little to
those based on the 125 levels, we concentrate only
on the latter (DMBE II) in the remaining of this
paper.

5. Results and discussion

Table 3 reports all identified stationary points on
the final SO2 DMBE II potential energy surface.
Following Ref. [27], these have been found by using
a Newton–Raphson type method in which the
starting guess point was chosen randomly. A total
of 2×104 trials in Cartesian coordinates has been
employed. Clearly, the geometry, energy and har-
monic frequencies of the global minimum (which is
the open SO2 isomer) are well known experimen-
tally, and are shown to be well reproduced by the
final DMBE II potential energy surface. The ring
(denoted r-SO2 in the Table 3) and superoxide
isomers have only been studied using ab initio
methods. The agreement with the latter is fairly
good, and even somewhat improved in relation to
DMBE I when judged from the energetics point of
view (see Table 2). The same comment applies to
the transition state TS7, which is seen to be in good
agreement with the prediction of the Morse-cosine
expansion by Zúñiga et al. [14]. In fact, their saddle
point for linear OSO structures underestimates TS7
in DMBE II by only 0.5 kcal mol−1. All other
topographical features reported in Table 3 afford

fitting procedure using the set of parameters re-
ported in Ref. [27] for the coefficients in Eq. (11).
The calculated deviations at the initial and final
iterative steps are reported in Table 1. Clearly,
significant improvements are observed along the
least-squares fitting procedure. For example, while
the maximum deviation observed originally for the
(0 0 5) level reaches −264 cm−1, such a dis-
crepancy has been reduced to only −2.8 cm−1

after convergence has been reached (this was
achieved after 28 iterations). A significant improve-
ment is also observed for the rmsd: it was originally
123.5 cm−1, a value which was reduced to only 2.9
cm−1 for the final SO2 DMBE II potential energy
surface. Fig. 3 shows a scatter plot of the differences
between the calculated and experimental vibra-
tional energies as a function of the energy measured
with respect to the zero-point energy of the equi-
librium SO2 potential well. Also shown in the insert
of this figure are the errors found for the progres-
sions (n1 0 0), (0 n2 0), and (0 0 n3). Clearly, the
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a comparison only with those reported for the SO2

DMBE I potential energy surface. For simplicity,
these have not been included in Table 3, since the
two SO2 DMBE functions are rather similar topo-
graphically. In fact, the only novel feature of
DMBE II which is not observed in DMBE I is the
appearance of a further transition state (TS6). This
results from the splitting of TS4 (in DMBE I) into
two transition states in DMBE II (TS4 and TS6)
which have a very small maximum (the height of
this is only a few tenths of a mEh, i.e. less than 0.1
kcal mol−1) separating them.

Fig. 4 shows the C2� bending potential of the SO2

DMBE II potential energy surface with the SO
bond distances optimized at each value of the
valence angle. Also included for comparison, are
the corresponding curves referring to the many-
body expansion potential of Carter et al. [31], and
the DMBE I potential energy surface reported by
the authors and Sabı́n [27]. Moreover, we have
included the optimum bending curves for the
Morse-cosine potential expansion of Zúñiga et al.
[14]. In addition, we indicate by the horizontal line
segments the calculated energy levels based on the
SO2 DMBE II potential energy surface from the

present work. Perhaps, the most important feature
to note comes from the comparison of the DMBE
I and DMBE II SO2 optimized bending curves.
Although small, significant deviations are observed
nearly at the bottom of the well. Such deviations
are perhaps less important when one moves to high
energies above the potential barrier for lineariza-
tion. The other relevant feature concerns the shape
of the reported curves. Although showing signifi-
cant deviations both for angles smaller and larger
than the equilibrium value, it is interesting to note
that the Carter et al. [31] many-body expansion
curve has a shape similar to the DMBE II one,
especially having in mind that only force field
information referring to the stable SO2 C2� species
has essentially been used to calibrate the former.
Addressing now the Dunham expansion, we ob-
serve strong deviations for levels above 104 cm−1

or so. This may suggest that such type of expan-
sions should perhaps be viewed with caution when
used to fit highly excited vibrational levels no
matter how good the final fit can be. In fact, strong
anharmonicities will be present, and one wonders
if a good fit of the vibrational energies may mean
more than that when referring to the assignment of

Fig. 3. Scatter plot of the errors between the calculated and experimental vibrational energy levels as a function of energy. Shown
by the solid circles are the fitted levels, while the non-fitted ones are indicated by the open circles. The insert shows the errors
obtained for the various progressions. These are indicated with different symbols: (n1 0 0), squares; (0 n2 0), triangles; (0 0 n3),
diamonds. The overtone combinations are indicated with circles.



A.J.C. Varandas, S.P.J. Rodrigues / Spectrochimica Acta Part A 58 (2002) 629–647640

Table 3
Stationary points of the SO2 DMBE potential energy surface. Harmonic frequencies are in cm−1, and �E in kcal mol−1. Available
experimental and theoretical data are given in parentheses

Feature R1/a0 R2/a0 R3/a0 	OSO (°) E/Eh �E 	1 	2 	3

2.704 4.667 119.3SO2 −0.41322.704 259.3a 1169 522 1381
(2.704)b (4.667)b (119.3)b(2.704)b (259.3)c (1168)d (522)d (1382)d

3.189r-SO2 3.189 2.758 51.2 −0.2402 108.6e 881 1039 874
(3.194)f (2.835)f (52.8)f(3.194)f (104.0)f (739)f (1088)f (805)f

4.723 2.460 27.9 −0.22993.089 115.0eSOO 1075 619 591
(3.079)f (4.821)f (2.483)f (26.5)f (112.8)f (1384)f (525)f (929)f

6.658 4.776 38.1 −0.2159O···OS −10.6g2.804 1055 118 289
4.620 2.178 27.3 −0.22364.620 −20.1hS···O2 450 1836 139

3.915TS1 4.842 2.225 26.9 −0.2221 −19.2h 1665 524 222i
3.977 2.659 41.9TS2 −0.19373.115 −1.3h 1156 747i 673
3.174 3.247 61.5 −0.22753.174 −22.5hTS3 1000 830i 735

2.832TS4 5.109 4.815 67.8 −0.2025 −2.2g 1001 170 310i
5.230 3.409 36.8 −0.2044TS5 −3.4g2.840 1041 393 472i
6.178 5.919 71.4 −0.20262.820 −2.2gTS6 1073 240i 91

2.758TS7 2.758 5.517 180 −0.3310 51.6e 872 531i 1477
(2.731)i (5.462)i (180)i (52.1)i(2.731)i

a Atomization energy.
b Experimental geometry [83].
c Experimental atomization energy; see Ref. [25].
d Experimental harmonic frequencies from Ref. [10].
e Energy referred to the open SO2 isomer.
f Ab initio results with the energy referred to the open SO2 isomer [24].
g Energy referred to the channel O+SO (−0.1990 Eh).
h Energy referred to the channel S+O2 (−0.1916 Eh)
i Ref. [14]; energy referred to the open SO2 isomer.

the vibrational levels. A final comment goes to the
Morse-cosine potential expansion of Zúñiga et al.
[14]. If one ignores angles shorter than about 80°
where the potential extrapolates erroneously, it is
significant to observe that it performs well in
predicting the barrier for C2� linearization of SO2.

Perhaps a more suggestive illustration of the
topography of the SO2 DMBE II potential energy
surface can be seen from Figs. 5 and 6. The former
shows a contour plot for an oxygen atom moving
around a SO diatomic, whose center of mass is kept
fixed at the origin, while Fig. 6 shows a similar plot
but for S moving around O2. Also shown in Fig.
5 by the solid dots are the ab initio energies used
in the multiproperty least-squares fitting procedure.
Note that rays of points have been calculated points
for several values of the SO bond distance, al-
though only one such set is visible in the plot of Fig.
5 as the points for the various rays overlap each
other. Also visible from this plot are the minima

associated to various structures. On the left is the
minimum corresponding to the open SO2 molecule,
while on the right (from bottom to top) are the
minima associated to the superoxide and SO···O
structures. In turn, for x�1a0 and y�2.5a0, is the
minimum associated to the ring SO2 species. Visible
in Fig. 6 are the two symmetrical minima corre-
sponding to the superoxide structure, and for x=0
the ring SO2 one. Just above this minimum one
finds a maximum which is perhaps an artifact of the
representation as it may correspond to a crossing
of an excited repulsive potential energy surface with
the 21A1 one at C2� geometries. Note that the 21A1

surface (which contains the ring-SO2 structure)
shows a further, well established [15,23] crossing
with the X� 1A1 potential energy surface at shorter
distances. Of course, all become of A � symmetry for
Cs geometries (i.e. the ring-SO2 species will appear
in the lowest A � surface). To our knowledge, no ab
initio calculations have been carried out thus far
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close to the intersection of the repulsive 1A � surface
with 21A � occurs, which might help to clarify this
issue. This will hopefully be addressed in future
work. Also visible from both Figs. 5 and 6 the fact
that both the S+O2�SO+O reaction is pre-
dicted to occur without an energy barrier, at least
along favorable directions for the atom attacking
the diatomic. Moreover, Figs. 5 and 6 allow also
a direct comparison with those reported elsewhere
[27] for DMBE I, from which it is seen that only
small topographical alterations resulted from the
inclusion of vibrational levels into the fitting proce-
dure. Perhaps, the most salient difference refers to
the plot in Fig. 6 which shows a slightly narrower
entrance channel for insertion of the S atom into
O2, and hence may have consequences on the
dynamics of the reaction S+O2�SO+O. How-
ever, since this narrowing is accompanied in
DMBE II by a more pronounced decrease in energy
when leading to the S···O2 structure (see Fig. 7), it
is difficult to say a priori how such changes
influence the dynamics attributes. Note that very
few ab initio points have been calculated in this
region, as it lies close to the crossing seam where

difficulties are expected with the FVCAS/PT2
method. In general terms, we may then say that the
DMBE I and DMBE II potential energy surfaces
show generally similar topographies, which sup-
ports the good quality of the DMBE I [27] starting
function. It also gives credit to the accuracy of the
FVCAS/PT2 points [27] on which the latter has
been based upon. Furthermore, it supports the
observation [14,72] that the coefficients obtained
from a fit to reliable ab initio data may offer the
ideal starting point for any fitting strategy aiming
at potential energy surfaces with spectroscopic
accuracy.

A further comparison of the various potentials
reported for the title system is provided in the 1D
plot of Fig. 8. It shows the variation of the potential
energy along the OS–O dissociation coordinate (
)
for the process SO2�SO+O; the 	OSO valence
angle has been kept fixed at its equilibrium value
of 119.3° while the unbroken SO bond distance has
been optimized at each 
 value. The notable
feature, though not unexpected, is the fact that both
the Kauppi and Halonen [34] and the Morse-cosine
expansion of Zúñiga et al. [14] dissociate incor-

Fig. 4. The bending potential of SO2, maintaining C2� symmetry, for optimum values of the S
O bond lengths. The solid dark line
indicates the DMBE II potential energy surface from the present work, while DMBE I [27] is indicated by the solid thin line. Also
shown are the curves for the Carter et al. [31] many-body expansion potential energy surface (small-dash line), and for the
Kauppi–Halonen [34] (dotted line) and Morse-cosine [14] (long-dash line) expansions. The horizontal line segments show the
calculated vibrational level for DMBE II, while the arrow indicates the highest energy level considered for the fitting procedure.
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Fig. 5. Contour plot of DMBE II potential energy surface for an oxygen atom moving around a partially relaxed SO molecule
(2.6988�RSO/a0�3.2289) whose center of mass is kept at the origin. Contours start at Emin= −0.4141 Eh, and are equally spaced
by �E=0.01 Eh. Shown by the solid dots are the calculated ab initio energies.

rectly, with the latter describing somewhat better
the dissociation curve at the asymptotic limit.
Significant differences are also observed over the
region 3.2�
/a0�4.7 between the Carter et al.
[31] many-body expansion and DMBE II curves,
although they both dissociate correctly. In turn,
except at intermediates values of 
 (�5a0) the
SO2 DMBE I curve is seen to agree nicely with
DMBE II, as implied from the discussion above.

Panels (a) to (c) of Fig. 9 show the minimum
energy paths (in the steepest descent sense) that
connect the various saddle-points and minima in
the SO2 DMBE II potential energy surface. As
usual, the asymptotic regions of these plots have
been calculated by starting with the atom far
away from the diatomic. For the S+O2 channel,
all angles where the potential is attractive lead to
the TS1 saddle-point. For the O+SO channel
two possibilities can occur: for angles where the
oxygen atom moves toward the sulfur atom (i.e.
for O+SO configurations) the path goes directly
to the global minimum. Instead, when the oxygen
atom faces the other oxygen atom (i.e. for O+OS
configurations), the path goes through the SO···O
minimum. The connection between the other min-
ima and the saddle-points can also be seen on
these plots, except for the saddle-point TS7 which
occurs for linear geometries with D�h symmetry.
Clearly, a comparison of these plots with those

reported elsewhere [27] for the SO2 DMBE I
potential energy surface show only small differ-
ences. The most visible is perhaps that referring to
the S···O2 van der Waals well, which in DMBE II
lies closer in energy to the superoxide SOO struc-
ture. In both cases though, the S···O2 and SOO
minima are separated from each other by only a
small energy barrier (TS1).

6. Concluding remarks

We have been showing over the years [28,29]
that the DMBE method can provide a reliable
tool for representing the potential energy surfaces
of polyatomic molecules over the entire molecular
configurational space. In this paper, the method
has been used for the first time to construct a
single-valued function for SO2 which reaches near
spectroscopic accuracy at regions in the vicinity of
the equilibrium molecular geometry while fitting
simultaneously a large number of correlated ab
initio energies covering an energy range of more
than 200 kcal mol−1. For this, we have used our
recently proposed distributed n-body polynomial
approach to express the extended Hartree–Fock
part of the molecular energy, with the coefficients
appearing in each polynomial being determined
from a multiproperty fit to accurate DMBE-SEC
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Fig. 6. Contour plot of DMBE II potential energy surface for a sulfur atom moving around a partially relaxed O2 molecule
(2.1838�RSO/a0�2.9839) whose center of mass is kept fixed at the origin. Contours start at Emin= −0.2389 Eh and �E=0.005
Eh. The dashed line represents the energy of dissociation to S+O2.

energies and vibrational energy levels (Table 4).
These have been calculated along the iterative
least-squares procedure by using the DVR3D pro-
gram suite as a system call derived by the master
least-squares fitting code. Clearly, since we have
adopted a single-valued formalism for the represen-
tation, no attempt was made to accurately model
important topological features such as those asso-
ciated with crossing seams of electronic states of the
same symmetry and spin multiplicity. However, the
reported single-valued DMBE II potential energy
surface should be reliable for regions away from
such a seam, and often even relatively close to it.
A more careful examination of this issue will
hopefully be done in future work. Thus, although
it has recently become clear that interpolating
techniques [73,74] of various sorts can offer a
reliable route to construct semi-numerical type
potential energy surfaces for small polyatomic
systems from accurate ab initio data, it remains to
be shown how such approaches can be used in
multiproperty fits such as the one described in the
present work. Indeed, besides providing the poten-
tial energy surface in a compact physically moti-
vated form, the present approach can readily be
extended for larger polyatomic systems (Ref. [75],
and references therein) for which such interpolation
techniques can hardly be expected to be computa-
tionally affordable. A final comment concerns the

energy-switching (ES) method developed by one of
us [45], which has since been successfully used to
construct global functions with spectroscopic accu-
racy for various triatomic [45,76–78] and te-
tratomic [79] systems. One may argue that such an
ES scheme may have the advantage of achieving the
goal aimed at in the present work at perhaps a

Fig. 7. Optimized potential curve for C2� approach of an S
atom to O2: dashed line, DMBE I; solid line, DMBE II. For
each value of the atom–diatom separation the O2 bond dis-
tance is allowed to relax as in Fig. 6 such as to minimize the
energy. The r-SO2 and S···O2 structures are also indicated.
Having in mind that the ‘maximum’ separating them should
rather be a crossing, it becomes apparent that such species lie
on different adiabatic potential energy surfaces of the same
symmetry.
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Fig. 8. Potential energy alone the OS–O dislocation coordi-
nate for the process SO2�SO+O; the 	OSO valence angle
has been kept fixed at its equilibrium value of 119.3° while the
unbroken SO bond distance is optimized at each value of the
OS–O dissociating coordinate. Key for lines as in Fig. 4.

Vdc= − �
n=6,8,10

Cn�n(R)R−n (A1)

and the damping dispersion functions are written
as [46–48]

�n(R)=
�

1−exp
�

−An

R



−Bn

R2


2

�nn

(A2)

with An and Bn being the auxiliary functions [47]
An=�0n

−�1 and Bn=�0 exp(−�1n); �0=
16.36606, �1=0.70172, �0=17.19338, and �1=
0.09574 are universal parameters (dimensionless)
for all isotropic interactions. In turn, the scaling
parameter is defined by 
= (5.5+1.25R0), where
R0=2(�rX

2 �1/2+�rY
2 �1/2) with �rX

2 �(�rY
2 �) being

the expectation value of the squared radii for the
outermost electrons in atom X(Y) [81].

much lower cost. Indeed, it is even fair to say that
the ES method may generally be more efficient since
different forms and sets of coefficients are used to
construct different parts of the potential energy
surface at distinct energy regimes, which are then
merged together to achieve a global analytic form.
Of course, the DMBE II potential energy surface
reported in the current work has the merit of
compactness, since it uses the same physically
motivated formalism to represent the whole poten-
tial energy surface. Thus, it will be interesting to
compare how an ES potential energy surface for the
title molecule performs when compared with
DMBE II, especially in studying the dynamics of
the reaction S+O2�SO+O reaction.
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Appendix A. The EHFACE2U model for
diatomics

The EHFACE2U model assumes the general
form [44,80] V=VEHF+Vdc, where

Fig. 9. Minimum energy paths connecting the most significant
stationary points of the DMBE II potential energy surface and
the various dissociation channels.
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Table 4
Numerical values of the extended Hartree–Fock energy (Eq. (11)) in atomic units

�2
�=0.75�1

�=�2
�=0.69

�2
�=1.00�1

�=�2
�=1.35

R1,ref
� =R2,ref

� =2.7 R1,ref
� =4.6

R1,ref
� =2.8R1,ref

� =R2,ref
� =3.1

C2=273.68290084C1=−250.27731763 C3=−149.66418978
C5=22.26082986C4=−127.72186396 C6=133.62249462

C9=−14.46158221C8=32.20511930C7=23.68214853
C10=−1.54865790 C12=−16.30599007C11=−48.16647238

C15=3.51672485C14=−4.58829205C13=−1.38649237
C17=0.86477531C16=0.78625232 C18=8.74340065

C21=0.52159989C19=4.22563726 C20=−0.86037233
C24=−0.37801980C23=0.34864013C22=−1.75162940

C26=−0.15168344C25=−0.26799825 C27=0.00443123
C29=−0.49247797C28=−0.80000778 C30=0.34768133

C33=0.07858827C32=0.55651304C31=−0.14847560
C35=−0.01100878C34=0.08351093 C36=0.01514881
C38=0.00832060C37=0.02104020 C39=0.00475602

C42=0.02944578C41=0.00042789C40=0.01288784
C45=0.01093405C43=0.02158879 C44=−0.02724018
C48=−0.01485497C47=−0.01956493C46=−0.04028152

C50=−0.02221950C49=−0.01982732 C51=221.56795057
C54=103.98462384C52=−236.89044091 C53=137.30197251
C57=−23.93658338C56=−114.63489734C55=−16.41409970

C59=9.97100685C58=−23.23778521 C60=3.25411113
C63=1.45833493C61=36.65136398 C62=14.34751974
C66=1.01268997C65=−1.97058231C64=2.63006006

C68=−5.29094332C67=−1.19016602 C69=−2.92056020
C72=1.01557894C70=−0.15293764 C71=0.86214940
C75=−0.12833028C74=0.12577867C73=−0.12034889

C77=−0.15310871C76=0.10378730 C78=0.29022464
C79=0.20263507 C80=−0.01610854 C81=−0.16566627

C84=−0.07104151C83=0.45925352C82=−0.17586035

In turn, the VEHF component of the potential is
written as [44]

VEHF= −DR−1�1+ �
N

i=1

air i�exp[−�(r)r ]

+V exc
asym(R)�exc(R) (A3)

where �(r)=�0[1+�1 tanh(�2r)], r=R−Rm is the
displacement from the equilibrium geometry, and
D, ai(i=1−N) and �i (i=0–2) are parameters
usually determined from a least-squares fitting
procedure to RKR and/or other available data.
Moreover, V exc

asym is the asymptotic exchange en-
ergy. For the numerical coefficients of relevance
in the present work, see Refs. [27,56,82].
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