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Abstract

An electrochemical impedance study of the corrosion of Tytin dental amalgam was carried out in electrolytes similar to artificial

saliva with or without lactic acid, and in standard inorganic artificial saliva with higher ionic concentration. Spectra were recorded in

the presence and absence of dissolved oxygen to show the importance of the formation of oxide film and the adsorption of the

organic component, as well as the exposed surface microstructure. The data, supported by open circuit potential and polarisation

curve experiments, obtained in the presence and absence of dissolved oxygen are interpreted in the light of possible corrosion

mechanisms.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The corrosion and wear resistance of dental amal-

gams has been of much interest in recent years as a result

of increased concern regarding toxicity arising from

amalgam particles and corrosion products in the oral

cavity. A further concern results from the possible re-

lease of mercury and mercury vapour [1–4] as well as the

effect that mercury can have on antioxidant activity [5]
and neurotoxicological effects [6].

A number of factors can influence the rate of corro-

sion. These include acidity of the contacting medium

and temperature, which can both undergo sharp varia-

tions in a short period of time in the oral cavity, as well

as the effective potential of the amalgam [7,8]. For these

reasons, a full understanding of the electrochemical and

corrosion behaviour of the amalgams can be of much
benefit in taking appropriate measures to reduce amal-

gam corrosion as well as ensuring complete amalgama-

tion such that there is no free mercury that can be

vapourised.
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Dental amalgam is formed by the rapid reaction of
liquid mercury with a powder alloy containing princi-

pally silver (40–70%), tin (15–30%) and copper (10–

30%). Mercury diffuses into the alloy particles and reacts

with silver, tin and copper, forming various compounds.

The exact compounds formed depend on the chemical

composition of the powder and on particle shape (which

can be spherical or irregular) but are mainly phases of

the systems Sn–Hg, Ag–Hg, with Ag–Cu and Ag–Sn
phases remaining from the reactants. For the currently

used, high copper amalgams, the main reaction is [9]

c-Ag3SnþAg–CuþHg

! c1-Ag2Hg3 þ c2-Sn7Hgþ c-Ag3SnþAg–Cu: ð1Þ

The Sn–Hg phase, which has a relatively low corrosion

resistance, then undergoes further reaction, according to

c2-Sn7HgþAg–Cu ! g0-Cu6Sn5 þ c1-Ag2Hg3: ð2Þ
The microstructure of the dental amalgam is complex,
consisting of new microphases, as produced in the re-

actions above, and the remains of the powder alloy

particles, within the c1-Ag2Hg3 matrix phase, as exem-

plified by Dispersalloy� [10].

For this reason, and in order to understand better

the role of the various phases, individual phases have
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recently been fabricated metallurgically following stan-

dard recommendations [11] and investigated by elec-

trochemical and surface analysis techniques in 0.9%

sodium chloride. The immersion time was varied and the

influence of applied potential investigated by electro-
chemical impedance and electrochemical noise tech-

niques. These studies showed clearly that some of the

phases undergo corrosion more easily than others and

that in 0.9% sodium chloride the c1-Ag2Hg3 phase is

clearly that which is most affected. Comparison has been

made with the corrosion behaviour of dental amalgams

[10,12,13]. Proper correlation of the behaviour with that

of real, complex dental amalgams where grain boundary
effects, voids, and so forth are additional factors, re-

mains a challenge.

Some comparisons of the corrosion rates of different

amalgams have been made in the literature using mainly

open circuit potential measurements, polarisation curves

and cyclic voltammetry [14–16]. The effect of the bathing

solution on corrosion rate has not been extensively in-

vestigated and, with the rare exception of [17], has only
recently begun to be studied [18,19]. There are large

numbers of possible solutions, which have been used to

simulate body fluids in these studies, particularly those

similar to saliva and to physiological serum. This variety

has been recognised and compiled [20,21], but it does

make comparisons between results in the literature in

different bathing solutions difficult.

Electrochemical impedance spectroscopy (EIS) can
be particularly powerful for helping in the interpretation

of the electrochemical behaviour of complex interfacial

processes and complex materials, and has already been

applied to the investigation and analysis of the processes

occurring at the surface of individual amalgam phases

[10,12]. In this study EIS has been used to investigate the

electrochemical behaviour of Tytin� FC amalgam in

different bathing solutions. Tytin� is a high-copper
amalgam, the powder alloy consisting of spherical par-

ticles. After mixing with mercury, it has a mercury-to-

alloy ratio of approximately 43% by weight. The bathing

solutions employed were the artificial saliva used in

previous studies [19], the concentration of the organic

component, lactic acid, being varied, and a standard

solution, AFNOR S90-701 [22], which has a higher ionic

concentration but no organic component.
2. Experimental

2.1. Electrodes and instrumentation

Tytin� FC dental amalgam (KerrDental, USA) in

two-part plastic capsules separated by a membrane, one
part with mercury and the other with the powder alloy,

were mixed in a mechanical vibrator after squeezing the

capsule to break the membrane. The powder alloy
composition of Tytin� is 59% silver, 28% tin and 13%

copper, with a mercury-to-alloy ratio of approximately

43%. It was immediately cast into cylinder-shaped pieces

of diameter �0.6 cm and depth �3 mm.

Amalgam pieces were made into electrodes in the
following way. A copper wire was fixed to one face of the

sample with flash-dry silver paint (SPI). When dry, this

face, together with the edges, was covered with a layer of

Araldite� (Ciba-Geigy, Switzerland) epoxy-resin adhe-

sive and dried again for at least 24 h, leaving just one face

exposed. Surface preparation consisted of polishing with

dry SiC paper down to 1200 grit and then with alumina

foil of 25, 3, and 0.3 lm particle size until a smooth
mirror-like finish was obtained. The metallic surface was

polished with alumina foil as necessary between experi-

ments. The exposed electrode area was 0.28 cm2.

A three-electrode system used for the electrochemical

experiments included an AgjAgClj3 M KCl electrode as

the reference and a Pt foil auxiliary electrode.

Experiments were carried out using an Autolab

PGSTAT 10 with a FRA2 module (Ecochemie,
Netherlands) controlled by FRA 4.7 software for im-

pedance measurements and GPES 4.7 software for

open circuit potential and polarisation curve mea-

surements. FRA and GPES software was used also

for data analysis. Impedance spectra were recorded at

the open circuit potential from 65 kHz down to 0.1

Hz, five steps per frequency decade with a sinusoidal

perturbation of 5 mV rms.
2.2. Bathing solutions

Two types of bathing solution were employed: an

artificial saliva as used previously [19], with varying

concentrations of lactic acid (in order to investigate the

importance of the organic compound (lactic acid) in

artificial saliva) and AFNOR S90-701 standard solution
[22].

Preparation of 1 l of each of the solutions in which

the electrodes were immersed was as follows:

1. Artificial saliva (AS) contains 1.5 g KCl, 1.5 g

NaHCO3, 0.5 g NaH2PO4, 0.5 g KSCN and, under

standard conditions, 0.9 g lactic acid. The amount

of lactic acid was varied from 0 up to 1.5 g l�1 in steps

of 0.3 g l�1.
2. AFNOR standard S90-701 [21] (designated as AF-

NOR in this paper) contains 0.26 g Na2HPO4, 6.7 g

NaCl, 0.33 g KSCN, 0.2 g KH2PO4, 1.5 g NaHCO3

and 1.2 g KCl.

The corresponding molar concentrations are given in

Table 1.

All solutions were prepared using Milli-Q ultrapure

water of resistivity >18 MX cm and analytical grade
reagents. The laboratory temperature was 25� 1 �C in

all experiments.



Table 1

Concentrations of dental amalgam bathing solution components

Component Concentration (mM)

Artificial saliva AFNOR S90/071

Cl� 20.0 130.8

HCO�
3 17.9 5.95

SCN� 5.15 3.40

HPO�
4 /H2PO

2�
4 4.17 3.30

Naþ 22.0 124.3

Kþ 25.3 21.0

Lactic acid 4.95 –
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Fig. 1. Variation of open circuit potential with time for Tytin dental

amalgam immersed in (a) artificial saliva and (b) AFNOR solution:

(——–) aerated solution, (- - - - -) deaerated solution.
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3. Results and discussion

Electrochemical impedance measurements can lead to

an improved understanding of the processes that take

place at the amalgam electrode surface as well as the

influence of surface oxide. This strategy has previously

been used for single phases [10,13]. An additional factor,

which can be probed by EIS, relates to differences in the

exposed microphase structure and grain boundaries

between samples of dental amalgam. This can lead to
some variation in the electrochemical results obtained,

which was recently recognised in the evaluation of a

proposed potentiostatic corrosion test [23]. Thus, since

one of the most important processes is the formation of

oxide on the surface, experiments were carried out in the

presence and absence of oxygen and also on different

amalgam samples.

3.1. Open circuit potential and polarisation curves

In Fig. 1 is shown the variation of open circuit po-

tential (ocp) with time, from which several deductions

can be made. The first is that the initial potential in

artificial saliva is more negative ()0.28 V vs. AgjAgCl)

than that in AFNOR ()0.17 V vs. AgjAgCl). This could

be due to the mixed potential resulting from the ionic
constitution of the solutions (see Table 1). Secondly, in

the absence of oxygen, there is an initial variation of the

potential in a negative direction, before oxide formation

commences, typical of active corrosion. The steady-state

open circuit potentials are very similar for AS and

AFNOR solutions – )0.05 V in the presence of oxygen

and )0.13 V vs. AgjAgCl in its absence. This may ap-

pear surprising given the different constitutions of the
bathing solutions. However, their pH is the same and

this suggests that the surface oxide film, once formed,

must have a very similar composition. It should be no-

ted, however, that the steady-state potential varies with

pH and in the case of artificial saliva, there is evidence of

adsorption of lactic acid molecules at lower pH imped-

ing oxide formation [19].

The polarisation curves, Fig. 2, show that corrosion
currents do not differ significantly between the two

bathing solutions and the currents are generally higher
in the absence of oxygen, particularly at potentials

corresponding to anodic polarisation. The current peak

appearing at 0.2 V vs. AgjAgCl, particularly in AF-

NOR, is probably due to tin oxide formation and has

been noted previously with amalgams [10]. Currents are
also higher in AFNOR as expected because of its higher

chloride concentration. In the zone of the corrosion

potential, the differences between the various experi-

mental conditions are less accentuated.

As a result of these experimental data, it was decided

to record spectra at the ocp and only after a minimum

immersion time of 4 h.

3.2. Impedance spectra in artificial saliva

Most impedance results to be presented and discussed

derive from the same sample of dental amalgam. Each

of these experiments was carried out three times to en-

sure reproducibility, after polishing to expose a fresh,

non-oxidised surface each time. To bring out the fact

that the behaviour depends on the sample, as mentioned
above, results of experiments carried out in artificial

saliva with different amounts of lactic acid from 0 up to



Fig. 2. Polarisation curves for Tytin dental amalgam after 4 h im-

mersion in (a) artificial saliva and (b) AFNOR solution: (——–) aer-

ated solution, (- - - - -) deaerated solution. Scan rate 2 mV s�1.

Fig. 3. Impedance spectra for Tytin dental amalgam immersed in ar-

tificial saliva with varying concentrations of lactic acid from 0 up to 1.5

g l�1.
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1.5 g l�1 in aerated solution are shown for two different

samples in Figs. 3 and 4. Various samples were tested
and Fig. 4 represents an extreme case of differences be-

tween samples. Apart from this, it becomes clear that the

Bode representation of the spectra is more appropriate

for visualisation of the experimental results.

Fig. 5 shows spectra from the same sample as de-

picted in Fig. 3 in the absence of oxygen. There is a

significant reduction in the absolute values of the im-

pedance on removal of oxygen from the solution. Also,
the relative influence of lactic acid on the spectra is

noticeably more in the presence of dissolved oxygen. It

has been shown recently that lactic acid itself can in-

fluence the rate of corrosion in the initial stages through

adsorption on the surface, in this way impeding oxide

formation [19].

Fitting of the impedance spectra was done with an

equivalent circuit using a series combination of the cell
resistance, RX, with two RC parallel combinations, each

composed of a resistance, R, and a constant phase ele-

ment (CPE) modelled by the FRA software as a non-
ideal capacitor according to CPE ¼ fðCixÞag�1
. The

CPE was found to be necessary because of the micro-
scopic roughness of the electrode, expressed through the

exponent a. This is the same model that was found to be

appropriate in corrosion studies of the individual phases

[13]. The physical meaning given to the circuit is asso-

ciation with the oxidejmetal interface (R1CPE1) and with

the oxide layer formed on the surface (R2CPE2). Other

combinations of resistances and capacitances were tried,

in particular two RCPE elements in parallel, to model
the corrosion of different phases exposed to solution at

the amalgam surface – none of these were found to give

a satisfactory fit.

The values of the adjusted parameters are given in

Table 2.

In aerated solution, there is some evidence for a

maximum value of charge transfer resistance ðR1Þ with

0.9 g l�1 lactic acid, although, in the absence of oxygen,
this does not occur and the values are, on average,

slightly lower, consistent with the indirect effect of a

thinner oxide film on the surface. Capacitance values



Fig. 4. Impedance spectra for a second sample of Tytin dental amal-

gam immersed in artificial saliva with varying concentrations of lactic

acid from 0 up to 1.5 g l�1.

Fig. 5. Impedance spectra for Tytin dental amalgam immersed in de-

aerated artificial saliva with varying concentrations of lactic acid from

0 up to 1.5 g l�1.
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associated with the charge transfer process are around

12–16 lF cm�2 in the presence and absence of oxygen,

values similar to individual phases, and the corre-

sponding roughness exponents are more or less constant

at around 0.88, both in the presence and absence of

oxygen. The characteristics of the oxide film are reflected

in the values of R2, which are significantly less in the
absence of oxygen, whereas the values of C2 and

roughness exponent remain similar, being slightly large

for the thicker oxide film, suggesting that some

smoothing of the surface occurs. The cell resistance is

around 25 cm2 for all concentrations of lactic acid both

in aerated and deaerated solution.

3.3. Impedance spectra in AFNOR

Some impedance spectra for AFNOR are presented

in Fig. 6. In this case, with fixed chemical composition,

the variation of the impedance over time is also shown

in the presence of dissolved oxygen; and for 4 h im-

mersion in the absence of oxygen. At long immersion

times (more than 48 h), the difference between behaviour
in solutions with and without oxygen removal becomes

smaller, as expected, owing to the trace of dissolved

oxygen still remaining (data not shown). The same oc-
curs in artificial saliva at long immersion times.

As can be seen, the forms of the impedance spectra

appear different from those in artificial saliva and at low

frequency tend towards a straight line that is almost 45�
in the complex plane representation. This tendency has

been noted in studies performed in 0.9% sodium chlo-

ride solution [16]. Therefore, fitting with an electrical

equivalent circuit including a Warburg impedance was
tried. However, using the same two RCPE in series

model as for artificial saliva was found to give a better

fit. The results of the fitting are shown in Table 3.

It can be seen that the values of the two resistances R1

and R2 decrease with increasing immersion time until a

steady state is reached after 24–48 h; values are smaller

after 4 h immersion in the absence of oxygen, as would be

expected. The values of capacitance decrease slightly with
time but the roughness exponents remain the same for

24 h and longer exposures. Nevertheless, the capacitance



Table 2

Equivalent circuit analysis of impedance spectra in artificial saliva (data from Figs. 3 and 5)

Artificial saliva [Lactic acid] (g l�1) R (X cm2) R1 (kX cm2) C1 (lF cm�2) a1 R2 (kX cm2) C2 (lF cm�2) a2

Aerated 0.0 25.0 5.3 16.0 0.87 41.7 27.6 0.91

0.3 29.6 5.7 12.5 0.87 40.7 28.6 0.91

0.6 23.8 6.2 12.5 0.88 54.7 21.9 0.91

0.9 30.9 7.5 13.8 0.88 71.5 25.1 0.93

1.2 25.5 5.9 13.7 0.88 43.9 23.6 0.91

1.5 28.5 5.5 14.0 0.87 42.8 24.9 0.91

Deaerated 0.0 19.7 4.5 12.7 0.87 25.4 29.0 0.88

0.3 24.9 4.7 13.6 0.89 30.2 27.3 0.90

0.6 25.4 4.4 14.6 0.89 28.0 27.1 0.90

0.9 32.0 4.6 13.2 0.88 28.7 27.5 0.90

1.2 26.7 4.6 12.2 0.87 29.3 26.2 0.89

1.5 29.1 4.7 14.1 0.87 28.6 29.8 0.90
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values are higher in deaerated solution, different behav-

iour from that which occurs in artificial saliva.

3.4. Discussion and comparative remarks

Impedance spectra bring out a number of aspects

related to dental amalgam characterisation with respect
Fig. 6. Impedance spectra for Tytin dental amalgam immersed in

AFNOR solution for various periods of time.
to the influence of sample surface composition and mi-

crostructure, and composition of bathing solution.

Significant effects in the decrease of the impedance

magnitude, and thence increase of the corrosion rate, in
the absence of dissolved oxygen are seen for both elec-

trolytes. This is much clearer than from other electro-

chemical techniques such as polarisation curves. For

high copper amalgams the unstable corrosion-prone Sn–

Hg phase should be present only in small amounts and

most corrosion occurs from the Ag–Hg matrix phase. In

the presence of oxygen, there is a tendency for oxide

films to form rapidly on the surface, and this is less easy
when dissolved oxygen is removed and only trace

quantities remain. There is some dealloying of Ag–Hg,

due to mercury oxidation, which then becomes less with

time. Interestingly this has little effect, nor does the

amount of lactate present in solution, on the measured

interfacial capacity in artificial saliva, see Table 2. The

surface roughness is unaffected as would be expected.

However, in AFNOR S90-071, although the corro-
sion process appears to show some diffusion limitations,

i.e. the rates of the surface processes are no longer solely

rate-determining, modelling is better achieved by the

two-interface model used above for artificial saliva.

Between 4 and 24 h immersion time, the surface becomes

slightly rougher (the roughness exponent decreases),

which may reflect the formation of loose surface oxide

films or of hydroxychloride films, as previously sug-
gested [16], and then reaches steady state behaviour.

In artificial saliva a noticeable increase in the cell

resistance occurs when lactic acid is present. This in-

crease is similar in the presence and absence of oxygen.

It implies that parts of the amalgam surface are be-

coming blocked, although not sufficiently to influence

the charge transfer resistance, and that corrosion occurs

predominantly on other areas of the exposed surface.
Taking into account these observations, the conclusion

is reached that lactate adsorbs mainly on those micro-

phases not undergoing corrosion, i.e. on Ag–Cu or Cu–

Sn phases. Even so, in deaerated solution, results



Table 3

Equivalent circuit analysis of impedance spectra in AFNOR solution (data mainly from Fig. 6)

Artificial saliva Immersion time (h) R (cm2) R1 (k cm2) C1 (lF cm�2) a1 R2 (k cm2) C2 (lF cm�2) a2

Aerated 4 8.1 2.58 14.6 0.86 30.4 23.6 0.87

24 9.7 2.56 9.6 0.81 18.1 21.1 0.83

48 9.3 2.04 10.0 0.82 20.3 16.7 0.83

96 8.1 2.09 9.3 0.82 16.8 17.4 0.83

Deaerated 4 7.0 1.95 17.8 0.86 14.3 38.4 0.87
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suggest that there is less competition with any oxide

formation and that the blocking is more effective.

The time variation of impedance parameters in AF-

NOR solution shows corrosion increasing after the ini-

tial period and up to 24 h immersion, with a consequent

decrease in charge transfer resistance and interfacial

capacity. Solution deaeration again leads to more active

corrosion. This has been seen before [24] and a possible
explanation is corrosion of copper from Cu6Sn5, thence

exposing Ag2Hg3 grains, leading to release of some

mercury by oxidation. The ionic strength is approxi-

mately three times greater and there is no organic

component to ameliorate the influence of ionic concen-

tration. Even without lactate, the charge transfer resis-

tance in artificial saliva is higher.

Comparing the 4 h immersion period with and
without dissolved oxygen for AFNOR with the results

for artificial saliva, it can be seen that in the former case

the influence of oxygen concentration is much larger.

Regarding mercury release, it was found that this

reached a steady state after 25 h [1] and this corrobo-

rates results in this work concerning the time variation

of the impedance spectra. Indeed, it was found that

mercury release is less from Tytin than from other
commercial amalgams [7], mercury representing the

more dangerous of the possible ionic species resulting

from corrosion, and is present in higher amounts in

solution [25].

Comparing these artificial body fluids with test solu-

tions containing only chloride ion [16], there is a lower

rate of corrosion. This demonstrates that even though

the chloride ion is one of the most aggressive ions in
these solutions, the other constituents are also determi-

nant in the corrosion behaviour, even for Tytin�, which

is one of the amalgams leading to lower corrosion rates

[1]. Impedance spectra are particularly useful for dem-

onstrating these different contributions.
4. Conclusions

This work has shown, particularly through electro-

chemical impedance spectroscopy, that the observed

corrosion behaviour of Tytin� dental amalgam can be

dependent on the bathing solution composition as well
as on sample identity and exposed surface microstruc-

ture. The data obtained in the presence and in the ab-

sence of dissolved oxygen have been interpreted in the

light of possible corrosion mechanisms, oxide formation

and surface adsorption.
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