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a b s t r a c t

12-Carboxamido- and 12-carboxyl-11-spirostenes were synthesized from the correspond-

ing 12-iodo-11-ene derivative in palladium-catalyzed carbonylation reactions under mild

reaction conditions. The synthesis of the iodo-alkene substrate is based on the transfor-

mation of the 12-keto derivative (hecogenin) to hydrazone, which was treated with iodine

in the presence of a base (1,1,3,3-tetramethyl guanidine). While various 12-carboxamides

were synthesized in moderate to high yields by using simple alkyl/arylamines or amino acid

methylesters as N-nucleophiles, low yields can be achieved with alcohols as O-nucleophiles.

The homogeneous carbonylation reactions tolerate the 3-hydroxy substituent and the

spiroacetal moiety.

© 2006 Elsevier Inc. All rights reserved.
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In the present paper, we report on the efficient synthe-
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alladium-catalyst

arbonylation

. Introduction

he homogeneous catalytic functionalization of various
keletons, among them biologically important ones, is an
fficient method for the synthesis of new derivatives [1–3].
here is an increasing interest in developing new strategies

o introduce functional groups into specific positions of the
teroidal nuclei in order to modify their biological properties.
ransition metal catalyzed reactions are versatile tools both
or the construction of the steroid framework from easily
vailable building blocks and for the functionalization of the

teroidal skeleton [4].

The ester and carboxamide functionalities (especially at
he distinguished position-17 or 3 of an estrene [5–8] or
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androstane skeleton [9–11]) proved to be efficient moieties in
pharmacologically important derivatives and can be obtained
in palladium-catalyzed reactions. Although the functionaliza-
tion of the A and D ring of the steroidal skeleton is straight-
forward also in other homogeneous catalytic reactions (cross-
coupling, dihydroxylation, hydroformylation, etc.) [4], to the
best of our knowledge, no examples for the carbonylation reac-
tions or any other carbon-carbon bond forming reactions at
the sterically hindered positions (C-11 and C-12) of the C-ring
are known.
sis of steroids possessing 12-carboxamido-11-ene moiety in
palladium-catalyzed carbonylation of an ‘iodo-vinyl’ substrate
bearing 12-iodo-11-ene functionality. The application of the
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dx.doi.org/10.1016/j.steroids.2006.05.019


( 2 0
876 s t e r o i d s 7 1

easily accessible iodo-alkenes [12,13] as substrates provides
an approach for the synthesis of 12-functionalized steroids of
potential practical importance.

2. Experimental

PPh3 and 1,1,3,3-tetramethylguanidine (TMG) were purchased
from Aldrich. Hecogenin was obtained from the Gedeon
Richter Pharmaceutical Work Ltd., Commercial Et3N, pri-
mary and secondary amines (Aldrich) were used without fur-
ther purification. Toluene, DMF, and the alcohols were dried
according to standard procedures.

The steroidal 12-iodo-11-ene (3) was synthesized according
to an analogous method [13] by using the 12-keto derivative
(1). It was converted into the corresponding hydrazone (2) that
was treated with iodine in the presence of TMG resulting in 3.
Owing to differences to the previously published methods, a
detailed description of the synthesis will be given below.

The 1H and 13C NMR spectra were recorded on a VARIAN
INOVA 400 spectrometer at 400 and 100.58 MHz, respectively.
The chemical shifts are given as ı values (ppm), with tetram-
ethylsilane as the internal standard. TLC analyses were carried
out by using Merck TLC sheets (Silica gel 60 F254) and chloro-
form as well as chloroform/ethanol (19/1) as eluents.

Mass spectra were recorded on a Finnigan MAT 95 magnetic
sector instrument equipped with a FAB ion source. The Cs+ ion
gun was used at 20 keV and the matrix was glycerol.

2.1. Synthesis of 3ˇ-hydroxy-12-iodo-5˛,25R-
spirost-11-ene (3)

Hecogenin (1) (4 g, 9.29 mmol), freshly distilled hydrazine
hydrate (98%, 40.24 g, 0.81 mol) and barium oxide (40 mg) in
ethylene glycol (150 ml) were heated for 4 days at 160 ◦C.
After completion of the reaction the mixture was poured onto
water and extracted with dichloromethane. Then the organic
phase was dried over sodium sulfate, and evaporated to give
hecogenin-hydrazone (2). The product was used in the next
step without further purification.

To a stirred solution of iodine (6.08 g, 23.92 mmol) in ether
(80 ml) 1,1,3,3-tetramethylguanidin (TMG, 9.27 g, 80.48 mmol)
was added slowly and cooled by iced water bath dur-
ing the addition. The solution of hecogenin-hydrazone (4 g,
8.99 mmol) in ether (20 ml) was added dropwise at room tem-
perature. After the addition was completed, the mixture was
stirred for an hour. Then the solvent was evaporated and the
residue was heated at 90 ◦C under argon atmosphere for 2 h.
The mixture was poured onto water and extracted with ether.
The combined organic layer was washed with 1N aqueous
HCl, water, 5% aqueous NaHCO3, water, saturated aqueous
Na2S2O3 and water again, dried on sodium sulfate and evapo-
rated. Purification by column chromatography (silicagel, ben-
zene/ethyl acetate (7:3)) gave pure 3 as a white solid. Yield:
2.55 g (52.5%).

2.2. General procedure for the hydroxycarbonylation

reaction (synthesis of 4)

A mixture of 3 (300 mg, 0.55 mmol), palladium(II) acetate
(5.6 mg, 0.025 mmol), and triphenylphosphine (13.1 mg,
0 6 ) 875–879

0.05 mmol) were dissolved in a mixture of 10 ml aqueous
DMF (containing 1% water) and triethylamine (0.5 ml) under
argon. The atmosphere was changed to carbon monoxide
(1 bar), and the reaction was conducted at 50 ◦C for 6 h. (The
composition of the reaction mixture was checked by TLC.) The
solvent was evaporated to dryness, and the rest was dissolved
in 10 ml chloroform. It was washed with 15 ml portions of
water (twice), 5% hydrochloric acid and brine. The organic
layer was separated, dried on sodium sulfate and evaporated.
The chromatography (silicagel, ethanol/chloroform = 1/19)
resulted in the 12-carboxyl derivative (4). Yield: 0.11 g (44%).

2.3. General procedure for the aminocarbonylation
reaction

A mixture of 3 (300 mg, 0.55 mmol), palladium(II) acetate
(5.6 mg, 0.025 mmol), and triphenylphosphine (13.1 mg,
0.05 mmol) were dissolved in 10 ml DMF under argon. Triethy-
lamine (0.5 ml) and tert-butylamine (0.293 ml, 27 mmol) or an
other N-nucleophile were added. (The alanine and proline
methylester as N-nucleophile were used as hydrochloride
salt and were measured into the reaction vessel together
with the catalyst.) The atmosphere was changed to carbon
monoxide (1 bar), and the reaction was conducted at 50 ◦C for
6 h. The composition of the reaction mixture was checked
by TLC. The solvent was evaporated to dryness, and the rest
was dissolved in 10 ml chloroform. It was washed with 15 ml
portions of water (twice), 5% hydrochloric acid, saturated
sodium hydrocarbonate and brine. The organic layer was
separated, dried on sodium sulfate and evaporated. The
chromatography (silicagel, ethyl acetate/chloroform = 1/1)
resulted in the target 12-tert-butyl-carboxamido derivative (7)
or the corresponding amide derivative.

2.4. Analytical and spectroscopic data of compounds

2.4.1. 3ˇ-Hydroxy-12-iodo-5˛,25R-spirost-11-ene (3)
1H NMR (CDCl3, 400 MHz): 6.16 (br s, 1H, 11-CH); 4.45 (dq, 2.0 Hz,
7.5 Hz, 1H, 16-CH); 3.58 (m, 1H, 3-CH); 3.45 (br dd, 10.9 Hz,
1.8 Hz, 1H, 26-CHaHb); 3.35 (t, 10.9 Hz, 1H, 26-CHaHb); 0.90–2.2
(m, 23H, skeleton protons); 1.25 (d, 6.8 Hz, 21-CH3); 0.96 (s, 3H,
18-CH3); 0.79 (s, 3H, 19-CH3); 0.78 (d, 6.3 Hz, 3H, 27-CH3); 13C
NMR (100.58 MHz, CDCl3): 137.6 (11-C); 111.0 (12-C); 108.7 (22-
C); 79.5; 71.0; 66.9; 61.2; 60.7; 54.5; 51.7; 44.3; 41.6; 37.8; 36.1;
35.9; 33.2; 31.8; 31.4; 31.2; 30.3; 30.2; 28.8; 19.0; 17.0; 15.8; 13.0;
MS (m/z): 541 (M + H)+, 523, 481, 413, 397. Analysis calculated for
C27H41IO3 (M = 540.53): C, 60.00; H, 7.65. Found: C, 60.11; H, 7.52.
Rf = 0.53 (CHCl3); Rf = 0.59 (CHCl3/EtOH = 19/1); m.p. = 98–100 ◦C
(as obtained after column chromatography).

2.4.2. 3ˇ-Hydroxy-12-carboxyl-5˛,25R-spirost-11-ene (4)
1H NMR (CDCl3, 400 MHz): 6.90 (br s, 1H, 11-CH); 4.48 (dq, 7.6 Hz,
2.7 Hz, 1H, 16-CH); 3.62 (m, 1H, 3-CH); 3.45 (br d, 10.3 Hz, 1H,
26-CHaHb); 3.35 (t, 10.3 Hz, 1H, 26-CHaHb); 0.90–2.2 (m, 23H,
skeleton protons); 1.09 (s, 3H, 18-CH3); 1.00 (d, 7.3 Hz, 21-CH3);
0.79 (s, 3H, 19-CH ); 0.78 (d, 6.3 Hz, 3H, 27-CH ); 13C NMR
3 3

(100.58 MHz, CDCl3): 171.0 (COOH); 141.4 (11-C); 120.0 (12-C);
109.0 (22-C); 80.0; 71.3; 67.1; 60.2; 57.7; 54.4; 45.0; 43.5; 38.2;
36.5; 36.3; 33.1; 32.2; 31.4; 30.8; 30.5; 30.2; 29.9; 29.2; 29.1; 19.3;
17.3; 15.0; 13.6. Analysis calculated for C28H42O5 (M = 458.64): C,
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3.33; H, 9.23. Found: C, 73.15; H, 9.02. Rf = 0.38 (CHCl3); Rf = 0.44
CHCl3/EtOH = 19/1); m.p. = 165 ◦C (as obtained after column
hromatography).

.4.3. 3ˇ-Hydroxy-12-tert-butyl-carboxamido-5˛,25R-
pirost-11-ene (7)
H NMR (CDCl3, 400 MHz): 5.78 (br s, 1H, 11-CH); 5.36 (br s,
H, NH); 4.42 (dq, 7.6 Hz, 2.7 Hz, 1H, 16-CH); 3.60 (m, 1H, 3-
H); 3.45 (br d, 11.0 Hz, 1H, 26-CHaHb); 3.35 (t, 11.0 Hz, 1H,
6-CHaHb); 0.90–2.2 (m, 23H, skeleton protons); 1.32 (s, 9H,
Bu); 1.20 (s, 3H, 18-CH3); 0.98 (d, 7.1 Hz, 21-CH3); 0.78 (s, 3H,
9-CH3); 0.76 (d, 6.3 Hz, 3H, 27-CH3). 13C NMR (100.58 MHz,
DCl3): 170.4 (CON); 147.9 (11-C); 127.6 (12-C); 109.2 (22-C); 80.7;
1.0; 66.8; 58.7; 56.8; 53.8; 51.0; 45.3; 44.8; 42.4; 38.0; 36.1; 36.0;
3.2; 31.5; 31.2; 30.8; 30.2; 30.1; 29.5; 29.0; 28.8; 20.3; 17.1; 14.2;
3.2. MS (m/z): 514 (M + H)+, 496, 458, 441, 423, 370. Analy-
is calculated for C32H51NO4 (M = 513.76): C, 74.81; H, 10.01;
, 2.73. Found: C, 75.02; H, 10.23; N, 2.88. Rf = 0.48 (CHCl3);

f = 0.53 (CHCl3/EtOH = 19/1); m.p. = 252–255 ◦C (recrystallyzed
rom ethanol).

.4.4. 3ˇ-Hydroxy-12-phenyl-carboxamido-5˛,25R-
pirost-11-ene (8)
H NMR (CDCl3, 400 MHz): 7.25–7.38 (m, 5H, Ph); 6.25 (br s, 1H,
H); 6.03 (br s, 1H, 11-H); 4.40 (dq, 7.6 Hz, 2.7 Hz, 1H, 16-CH);
.60 (m, 1H, 3-CH); 3.42 (br d, 11.2 Hz, 1H, 26-CHaHb); 3.37 (t,
1.0 Hz, 1H, 26-CHaHb); 0.90-2.2 (m, 23H, skeleton protons); 1.00
s, 3H, 18-CH3); 0.96 (d, 7.3 Hz, 21-CH3); 0.80 (s, 3H, 19-CH3);
.76 (d, 6.3 Hz, 3H, 27-CH3). 13C NMR (100.58 MHz, CDCl3): 170.6
COOH); 139.2 (11-C); 129.0; 128.8; 122.9; 120.1 (12-C); 119.9;
09.2 (22-C); 80.8; 71.1; 71.0; 66.8; 62.2; 56.3; 54.3; 44.8; 41.7;
0.0; 37.7; 37.5; 37.0; 35.6; 35.2; 35.0; 32.6; 31.8; 31.4; 30.2; 28.8;
7.1; 14.4; 13.9; MS (m/z): 534 (M + H)+, 516, 441, 423. Analy-
is calculated for C34H47NO4 (M = 533.75): C, 76.51; H, 8.88; N,
.62. Found: C, 76.30; H, 8.94; N, 2.50. Rf = 0.49 (CHCl3); Rf = 0.56
CHCl3/EtOH = 19/1); m.p. = 260–262 ◦C (as obtained after col-
mn chromatography).

.4.5. 3ˇ-Hydroxy-12-(N,N-diethyl-carboxamido)-5˛,25R-
pirost-11-ene (9)
H NMR (CDCl3, 400 MHz): 5.48 (br s, 1H, 11-CH); 4.42 (dq,
.0 Hz, 2.1 Hz, 1H, 16-CH); 3.60 (m, 1H, 3-CH); 3.20–3.45 (m,
H, 26-CH2 + N(CH2CH3)2); 0.90–2.2 (m, 29H, skeleton pro-
ons + N(CH2CH3)2); 1.17 (s, 3H, 18-CH3); 0.88 (d, 7.1 Hz, 21-
H3); 0.80 (s, 3H, 19-CH3); 0.76 (d, 6.5 Hz, 3H, 27-CH3). 13C NMR

100.58 MHz, CDCl3): 171.8 (CON); 143.8 (11-C); 125.3 (12-C);
09.5 (22-C); 81.0; 71.3; 67.1; 57.8; 56.9; 53.9; 45.6; 45.1; 42.5;
2.0; 38.2; 36.3; 33.7; 31.6; 31.5; 31.1; 30.5; 29.3; 29.0; 21.2; 17.3;
4.2; 13.5; 12.8. MS (m/z): 514 (M + H)+, 496, 441, 423, 370. Anal-
sis calculated for C32H51NO4 (M = 513.76): C, 74.81; H, 10.01;
, 2.73. Found: C, 75.02; H, 10.23; N, 2.88. Rf = 0.46 (CHCl3);

f = 0.55 (CHCl3/EtOH = 19/1); m.p. = 212–213 ◦C (recrystallyzed
rom ethanol).

.4.6. 3ˇ-Hydroxy-12-N,N-(1′,5′-pentadiyl)carboxamido-
˛,25R-spirost-11-ene (10)

H NMR (CDCl3, 400 MHz): 5.39 (br s, 1H, 11-CH); 4.38 (br q,
.7 Hz, 1H, 16-CH); 3.20–3.50 (m, 7H, 3-CH, 26-CH2; N(CH2)2);
.90–2.2 (m, 29H, skeleton protons + (CH2)3); 0.80 (d, 6.8 Hz, 21-
H3); 0.77 (s, 3H, 18-CH3); 0.72 (s, 3H, 19-CH3); 0.70 (d, 6.3 Hz,
6 ) 875–879 877

3H, 27-CH3). 13C NMR (100.58 MHz, CDCl3): 170.4 (CON); 142.9
(11-C); 128.3 (12-C); 109.3 (22-C); 80.7; 70.8; 66.8; 56.7; 53.5;
47.1; 46.7; 45.2; 44.8; 41.6; 40.5; 37.9; 36.1; 33.4; 31.2; 31.1;
30.8; 30.1; 29.1; 28.7; 26.5; 26.3; 25.2; 25.0; 24.6; 20.7; 17.2; 13.9;
13.2. MS (m/z): 526 (M + H)+, 508, 441, 382, 344. Analysis cal-
culated for C33H51NO4 (M = 525.77): C, 75.39; H, 9.78; N, 2.66.
Found: C, 75.26; H, 9.59; N, 2.54. Rf = 0.37 (CHCl3); Rf = 0.45
(CHCl3/EtOH = 19/1); m.p. = 192–195 ◦C (as obtained after col-
umn chromatography).

2.4.7. 3ˇ-Hydroxy-12-N,N-(1′,5′-3-oxapentadiyl)
carboxamido-5˛,25R-spirost-11-ene (11)
1H NMR (CDCl3, 400 MHz): 5.46 (br s, 1H, 11-CH); 4.42 (br q,
6.9 Hz, 1H, 16-CH); 3.50–3.70 (m, 9H, 3-CH, N(CH2CH2)2O); 3.42
(br d, 11.0 Hz, 1H, 26-CHaHb); 3.35 (t, 11.0 Hz, 1H, 26-CHaHb);
0.90–2.2 (m, 23H, skeleton protons); 1.20 (s, 3H, 18-CH3); 0.92
(d, 7.1 Hz, 21-CH3); 0.80 (s, 3H, 19-CH3); 0.78 (d, 6.5 Hz, 3H, 27-
CH3). 13C NMR (100.58 MHz, CDCl3): 170.7 (CON); 142.6 (11-C);
126.8 (12-C); 109.6 (22-C); 81.0; 71.3; 67.1; 57.7; 57.1; 53.9; 45.5;
45.1; 41.9; 38.2; 36.4; 33.7; 31.5; 31.1; 30.4; 29.3; 29.0; 21.0; 17.3;
14.4; 13.6. MS (m/z): 528 (M + H)+, 510, 441, 423, 384. Analy-
sis calculated for C32H49NO5 (M = 527.74): C, 72.83; H, 9.36; N,
2.65. Found: C, 72.59; H, 9.50; N, 2.57. Rf = 0.38 (CHCl3); Rf = 0.48
(CHCl3/EtOH = 19/1); m.p. = 205–206 ◦C (as obtained after col-
umn chromatography).

2.4.8. 3ˇ-Hydroxy-12-(1′-methoxycarbonyl-ethyl)-
carboxamido-5˛,25R-spirost-11-ene (12)
1H NMR (CDCl3, 400 MHz): 6.13 (d, 7.7 Hz, 1H, NH); 5.92 (br
s, 1H, 11-CH); 4.51 (qi, 7.3 Hz, 1H, CHCOO); 4.40 (br q, 7.8 Hz,
1H, 16-CH); 3.70 (s, 3H, OCH3); 3.56 (m, 1H, 3-CH); 3.40 (br d,
10.9 Hz, 1H, 26-CHaHb); 3.30 (t, 10.9 Hz, 1H, 26-CHaHb); 0.90–2.2
(m, 23H, skeleton protons); 1.38 (d, 7.1 Hz, 3H, CHCH3); 1.18
(s, 3H, 18-CH3); 0.89 (d, 6.8 Hz, 21-CH3); 0.73 (s, 3H, 19-CH3);
0.70 (d, 6.5 Hz, 3H, 27-CH3). 13C NMR (100.58 MHz, CDCl3): 173.8
(COO); 169.9 (CON); 145.9 (11-C); 128.9 (12-C); 109.2 (22-C); 80.7;
71.0; 66.8; 58.7; 56.9; 53.7; 52.4; 48.7; 47.6; 45.2; 44.8; 42.3; 37.9;
36.1; 33.2; 31.5; 31.2; 30.7; 30.2; 30.0; 29.0; 28.8; 20.0; 18.7; 17.1;
14.2; 13.2. MS (m/z): 544 (M + H)+; 526, 441, 400, 390. Analy-
sis calculated for C32H49NO6 (M = 543.74): C, 70.69; H, 9.08; N,
2.58. Found: C, 70.51; H, 9.30; N, 2.37. Rf = 0.43 (CHCl3); Rf = 0.48
(CHCl3/EtOH = 19/1); m.p. = 207–209 ◦C (as obtained after col-
umn chromatography).

2.4.9. 3ˇ-Hydroxy-12-(1′′-methoxycarbonyl-1′,4′-
butadiyl)-carboxamido-5˛,25R-spirost-11-ene (13)
1H NMR (CDCl3, 400 MHz): 5.68 (br s, 1H, 11-CH); 4.40–4.55
(m, 2H, 16-CH + NCH); 3.70 (s, 3H, OCH3); 3.50–3.65 (m, 3H, 3-
CH + NCH2); 3.42 (br d, 10.7 Hz, 1H, 26-CHaHb); 3.35 (t, 10.7 Hz,
1H, 26-CHaHb); 0.90–2.2 (m, 27H, skeleton protons + (CH2)2);
1.20 (s, 3H, 18-CH3); 0.82 (d, 6.8 Hz, 21-CH3); 0.78 (s, 3H, 19-
CH3); 0.76 (d, 6.3 Hz, 3H, 27-CH3). 13C NMR (100.58 MHz, CDCl3):
170.2 (CON); 143.8 (11-C); 127.1 (12-C); 109.3 (22-C); 80.7; 71.1;
66.8; 58.5; 58.1; 57.8; 56.9; 53.9; 52.3; 52.2; 49.6; 47.2; 45.4; 44.8;
41.5; 37.9; 36.2; 36.0; 33.3; 31.3; 31.2; 30.8; 30.2; 30.1; 29.4; 29.2;
29.0; 28.7; 25.3; 24.5; 20.3; 17.1; 14.2; 13.3. MS (m/z): 570 (M + H)+,

552, 441, 423. Analysis calculated for C33H51NO5 (M = 569.78): C,
71.67; H, 9.02; N, 2.46. Found: C, 71.78; H, 9.19; N, 2.30. Rf = 0.36
(CHCl3); Rf = 0.40 (CHCl3/EtOH = 19/1); m.p. = 215–218 ◦C (recrys-
tallyzed from ethanol).
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Table 1 – Yields of the aminocarbonylation of 3

Product Yielda (isolated yieldb), %

7 >99 (92)
8 55 (36)
9 95 (88)

10 96 (64)
11 93 (78)
12 >99 (90)
13 92 (60)
878 s t e r o i d s 7 1

3. Results and discussion

As a part of our ongoing interest in the homogeneous catalytic
functionalization of steroids, the introduction of a functional
group into position-12 was carried out. The 12-iodo-11-ene
derivative, obtained by the transformation of the 12-keto-
functionality of hecogenin (1) via its hydrazone (2), was chosen
as model compound for carbonylation reactions (Fig. 1). The
12-iodo-11-ene derivative (3�-hydroxy-12-iodo-5�.25R-spi-
rost-11-ene, 3) was reacted with carbon monoxide and
various primary and secondary amines as N-nucleophiles
(tert-butylamine, aniline, diethylamine, pyperidine, morpho-
line, methyl alaninate or methyl prolinate) or O-nucleophiles
(methanol or ethanol) in DMF in the presence of palladium—
phosphine ‘in situ’ catalysts. (The ‘in situ’ formation of highly
active coordinatively unsaturated Pd(0) catalysts with mono-
and bidentate phosphines has been published before [14].)
The corresponding 12-carboxamido-11-ene derivatives (3�-
hydroxy-12-N-tert-butyl-carboxamido-5�.25R-spirost-11-ene
(7), 3�-hydroxy-12-N-phenyl-carboxamido-5�.25R-spirost-11-
ene (8), 3�-hydroxy-12-N,N-diethyl-carboxamido-5�.25R-spi-
rost-11-ene (9), 3�-hydroxy-12-N,N-(1′,5′-pentadiyl)carboxa-
mido-5�.25R-spirost-11-ene (10), 3�-hydroxy-12-N,N-(1′,5′-3-
oxapentadiyl)carboxamido-5�.25R-spirost-11-ene (11), 3�-hy-

droxy-12-N-(1′-methoxycarbonyl-ethyl)-carboxamido-5�.
25R-spirost-11-ene (12), 3�-hydroxy-12-N,N-(1′ ′-methoxycar-
bonyl-1′,4′-butadiyl)-carboxamido-5�.25R-spirost-11-ene (13))
were synthesized in moderate to good yields depending on

Fig. 1 – Synthesis of 12-substituted spirostanes in carbo
a Yields determined by 1H NMR on the reaction mixture.
b Yields obtained after chromatography.

the structure of the amine (Table 1). The lowest yield was
obtained with the less basic aniline (35%), while the high-
est with tert-butyl-amine and methyl alaninate (92 and 90%,
respectively). The application of secondary amines (piperidine
and methyl prolinate) resulted in slightly lower yields.

The formation of the carboxamides can be explained by the
following reaction mechanism (Fig. 2). The palladium-alkenyl
intermediate, which is formed in the oxidative addition of the
‘iodo-vinyl’ substrate onto the “in situ” formed palladium(0)
species, insert carbon monoxide resulting in a palladium-acyl-
complex. The highly reactive acyl intermediate undergoes

aminolysis with the primary or secondary amine yielding the
corresponding carboxamide in the product-forming step.

Using alcohols (methanol, ethanol) as nucleophiles instead
of the amines, ester functionality can be introduced into the

nylation reactions of 12-iodo-11-ene derivative (2).
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ig. 2 – A simplified mechanistic representation of the
atalytic steps of aminocarbonylation.

teroidal skeleton. Carrying out the alkoxycarbonylation reac-
ion with 3 under similar conditions as the aminocarbonyla-
ion reaction, low conversions towards esters (12% and 10%
or methyl and ethyl ester, respectively) have been obtained
nd their isolation as pure substance for full characterization
ailed. (The methyl and ethyl esters (5 and 6, respectively) have
een detected by HPLC–MS only.)

Surprisingly, in the presence of alcohols 12-carboxylic acid
erivative (4) has been obtained and isolated in yields up
o 60% depending on the reaction conditions. (It has to be
oted that carboxylic acids can be synthesized not only via
he corresponding esters by hydrolysis but also in direct
ydroxycarbonylation [10,15–17].) Similar steroidal acid (17-
arboxy-5�-androstane) formation was already observed as
n unexpected side-reaction with enol-sulfonates [18] and
odoalkenes [19]. In the latter case it was clarified that the
orresponding carboxylic acids were produced via the pri-
ary formation of carboxylic anhydrides under carbonyla-

ion conditions in the presence of the water impurity of the
olvent.

As a summary it can be stated, that under appropri-
te reaction conditions conjugated unsaturated steroidal 12-
arboxamides can be synthesized in yields of practical interest
n palladium catalyzed carbonylation reaction of easily avail-
ble iodoalkenes as substrates. The strength of the homoge-
eous carbonylation reaction was shown by the fact that even
ne of the hindered positions (position 12) can be functional-

zed in moderate to good yields without any side reactions of
he further functionalities.

cknowledgements

K thanks the Hungarian National Science Foundation (OTKA

044800) for the financial support. This publication was also
upported by the Hungarian Research and Technology Fund,
s well as by the ‘Instituto de Cooperacao Cientifica e Tech-
ológica’ in the framework of the Hungarian-Portuguese Inter-
overnmental Cooperation (P-5/03).
6 ) 875–879 879

e f e r e n c e s

[1] Cornils B, Herrmann WA, editors. Applied homogeneous
catalysis with organometallic compounds. Weinheim:
Wiley-VCH; 1996.

[2] Beller M, Bolm C, editors. Transition metals for organic
synthesis, vols. I–II. Weinheim: Wiley-VCH; 1998.

[3] Omae I. Applications of organometallic compounds. New
York: Wiley; 1998.
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