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Abstract

By expressing an unknown state in terms of a complete set, a simple scheme for approximate quantization of the continuous vibra-
tional–rotational energy distributions that are obtained from quasi-classical trajectory calculations is suggested. The problem of zero-
point energy leakage is also revisited, and the new method tested on the prototype O + OH and H + D2 reactions.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The quasi-classical trajectory (QCT) method is by far
the most popular tool for studying molecular reaction
dynamics. Although quantum mechanical (QM) effects
are not taken into account (except for the fact that vibra-
tions and rotations of the reagents are quantized at the ini-
tial instant when integrating the equations of motion), one
requires for a detailed comparison with experiment that the
vibrational and rotational states of the products are quan-
tized. The traditional approach consists of quantizing the
rotational and vibrational components of the internal
energy by using the histogram method to obtain approxi-
mate integer rotational and vibrational quantum numbers.
Of course, limiting the statistics to trajectories leading to
true integer vib-rotational actions would be helpless as they
form a set of measure zero. To obtain an improved vibra-
tional–rotational distribution for AB(v, j) + C products,
Bonnet and Rayez [1] (BR) suggested to weight each trajec-
tory by

Ci
vj ¼ expf½ðv� xi

vÞ
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where i is the trajectory number, v and j are the vibrational
and rotational quantum numbers to which the trajectory is
supposed to contribute, xi

v and xi
j are the vibrational and

rotational actions obtained through partition of the inter-
nal energy of the products, and � is an arbitrary parameter
with a value much lower than 1. The corrected state distri-
bution assumes the form P vj ¼

P
iC

i
vj, with all trajectories

taken into account. Since the number of rotational states
usually exceeds by far the vibrational one, BR actually con-
sidered the rotational angular momentum as continuous by
limiting quantization to the vibrational motion. Although
BR rationalized [2] their approach with basis on classical
S-matrix theory in the random-phase approximation, an
alternative rationale would be desirable as the former is
applicable to situations where the density of states is sup-
posedly large and hence favorable to application of the tra-
ditional binning scheme.

In this work, we follow the spirit of the BR proposal (see
also Bañares et al. [3] for an equivalent procedure that has
been employed to study the C(1D) + H2 reaction) but use
an alternative approach which is tested on both indirect
and direct-type prototype reactions, respectively O + OH
and H + D2. In relation to binning, we discuss also the
so-called zero-point energy (ZPE) leakage problem of clas-
sical mechanics which is due to the flow of vibrational
energy (this cannot be smaller than ZPE in QM) into other
degrees of freedom (Ref. [4], and references therein).
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The Letter is structured as follows. Section 2 describes
the method, which is then tested and the results discussed
in Section 3. Section 4 gathers the conclusions.

2. Binning procedure

Rather than using vibrational and rotational quantum
numbers obtained via the traditional histogram binning
procedure, we employ directly the energies obtained from
partition of the internal energy. As it is well known, this
procedure is not error-free due to the non-harmonic nature
of the potential energy surface (PES) which poses a concep-
tual difficulty to the separability of the internal energy.
However, we will follow common wisdom and do not
address this issue but for a comment later.

Consider the two-dimensional (2D) grid of vibrational
vs rotational (Ev vs Er) energies obtained by solving the
Schrödinger equation for the potential curve of the product
diatomic molecule. It defines a 2D-space where the ‘vibra-
tional–rotational state’ ðEv;ErÞ extracted from a QCT tra-
jectory maps into a point. Only by accident will such a
‘classical state’ coincide with a quantum one. It is on the
assignment of this state to the available quantum ones that
we focus in the present work.

Consider now a particle of mass m moving along the x-
dimension. The particle wave-packet assumes the form

Wðx; tÞ ¼
Z þ1

�1
AðjÞ expðijxÞ expð�ixtÞdj ð2Þ

where Ej = �h2j2/2m is the energy associated to the momen-
tum pj = �hj, xj = Ej/�h, and �h is the Planck constant
divided by 2p. The particle can therefore be viewed as a
wave-packet constructed from a broad range of wave num-
bers j = 2p/k so that it becomes highly localized in space.
The degree of such a localization is determined by the spec-
tral function jA(j)j2 that defines the contributing probabil-
ity of the wave number j = 2p/k (or its associated
momentum pj) to the particle wave-packet. Of course,
the wave-packet evolution in time corresponds to the par-
ticle trajectory.

A general form of spectral function is the wave-packet
of minimum width (Gaussian wave-packet):

AðjÞ ¼ exp½�c2ðj� j0Þ2� ð3Þ
where c is a constant. The center of the wave-packet Æx æ at
any time t is given by [5] �hj0t/m, and hence pj0

¼ �hj0 is the
classical momentum of the particle. It is also well known
that the wave-packet spreads in x as time evolves, with
spreading occurring for any wave-packet and even the
shape changing in most wave-packets. However, in the case
of a Gaussian wave-packet, its shape remains Gaussian but
the width increases with time. This spreading may be
thought of as due to the fact that the waves of different fre-
quencies xj move with different velocities, and hence grad-
ually begin to separate as time progresses. We emphasize
the Gaussian shape of the momentum distribution which
is centered at pj0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEj0

p
. It is on a generalization of
this premise that we base our scheme, hereafter called
momentum Gaussian binning (MGB), to quantize the clas-
sical vibrational–rotational energy distribution of the prod-
uct diatomic AB and hence justify the Gaussian weighting
of trajectories in the QCT method.

Consider then the separating AB–C reaction products
in the ith trajectory. They have associated a particle
wave-packet that may be thought of as composed of two
wave-packets. One describes the translational motion of
the system as a whole, the other describes the internal
vibrational–rotational motion of AB. This may itself be
thought of as composed of two Gaussian momentum dis-
tributions as in Eq. (3): one for vibration, the other for
rotation. It is on these distributions that we concentrate
next. To define them, we consider the kinetic energies asso-
ciated to the vibrational and rotational motions. For the
former, the arguments invoked in the preceding paragraph
suggest a Gaussian dependence on the momentum of the
vibrating diatom. Since Ej ¼ ðvþ 1

2
Þ�hxj for a harmonic

oscillator, one then expects a Gaussian dependence in the
displacements ð

ffiffiffi
v
p
�

ffiffiffiffi
vi

0

p
Þ where vi

0�h is the classical vibra-
tional action obtained from trajectory calculations, rather
than a Gaussian dependence in ðv� vi

0Þ as utilized by BR
[1]. In turn, for a rigid rotor, the classical rotational energy
is given by Ej = (Ixj)2/2I, where Jj ¼ Ixj is the angular
momentum and I the moment of inertia. Thus, the MGB
method predicts a Gaussian dependence in the displace-
ments (Jj �Ji

0Þ or, using the well known quantization
rule J ¼ ½jðjþ 1Þ�1=2

�h / j�h, in the displacements ðj� ji
0Þ

where ji
0�h is the classical rotational action obtained from

trajectory i, as prescribed by BR [1].
Let us now denote the wave-packet associated to an

arbitrary trajectory i by Wi
vj. Obviously, if known, such a

wave-packet could be projected into the asymptotic prod-
uct vibrational–rotational states {/ab} to generate the pop-
ulations. One has

Wi
vj ¼

X
ab

ci
ab/ab ð4Þ

and, by considering the vibrational–rotational Hamilto-
nian (H) of the product diatomic

hWi
vjjHjWi

vji ¼
X
ab

W i
abh/abjHj/abi ð5Þ

where W i
ab ¼ ciH

abci
ab, and the basis functions are assumed

to form an orthonormal set. The vibrational–rotational
energy of such a wave-packet may then be expressed as

Ei
vj ¼

X
ab

W i
abEab ð6Þ

where Wi is a 2D probability matrix. Note that Wi cannot
be determined from Ei

vj, as it would imply knowing all
coefficients

ci
ab ¼ h/abjWi

vji ð7Þ

which is obviously impossible due to not knowing the
wave-packet Wi

vj. Some approximate scheme will then be
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mandatory. Following Eq. (3), the weights W i
ab should

reflect a squared Gaussian dependence on the displace-
ments from the square-root of the energy of a given con-
tributing state to the supposedly known classical value
(viewed as the centroid of the relevant quantum distribu-
tion). Assuming separability of the vibrational and rota-
tional degrees of freedom, one gets

W i
ab ¼ W i

aW i
b ð8Þ

where

W i
a ¼

1

qa

ffiffiffi
p
p exp �
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0
@
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A

22
64

3
75 ð9Þ

defines the Gaussian-type vibrational distribution, and a
corresponding expression holds for the b rotational states.
Note that Ea is an average energy separation of two neigh-
boring vibrational states of the basis as obtained from

Ea ¼ ðEaþ1 � Ea�1Þ=2 ð10Þ
such that qa becomes a unitless Gaussian decay parameter.
If a refers to the first (last) vibrational state, Eq. (10) is re-
placed by Ea ¼ 1

2
ðEa � Ea�2Þ, with the plus (minus) sign

applying to the former (latter) case. Corresponding defini-
tions hold for rotation.

Some remarks on the separability of vibrational and
rotational motions and use of simple harmonic oscillator-
rigid rotor formulas are in order at this point. The former
guided on establishing Eq. (9) from Eq. (3), while the latter
helped rationalizing the Gaussian weighting of trajectories
in the QCT method. These bear no limitations whatsoever
on the formalism, with qa and qb acting as fine-tuning
Gaussian-decay parameters for further realism. In fact,
the method compares rigorous QM vibrational and rota-
tional energies with their classical counterparts, and hence
makes no approximation except for treating them as com-
monly done (i.e., separately). This premise could be
released by considering a vector of vib-rotational energies
in Eq. (8) and an adequate replacement for Eq. (9), an
approach that we hope to explore in future work.

Of the Gaussian decay parameters qa and qb, the former
dominates in Eq. (8), and will be considered first. In so
doing, we aim also at an approximate non-active scheme
that accounts for ZPE leakage. For example, if qa = 0.1,
the contribution to the ground-state vibrational population
W i

0 of a trajectory ending with a vibrational energy
Ev ¼ 0:9E0 turns out to be about 48% of the value that
would actually be obtained if E ¼ E0. Similarly, for values
of Ev ¼ 0:5E0 and 0.1E0, the corresponding results would
be 1.6% and 0.006%. Such values appear reasonable when
judged from physical intuition, and so qa has been fixed at
the above value. In turn, the determination of qb was set
from the observation that, for the energy values usually
encountered in chemistry, the rotational spacing is typically
much smaller than the vibrational one. As a result, a more
accentuated Gaussian decay is expected, i.e., qb/qa > 1.
Thus, we have fixed it from the ratio of the averaged
square-root vibrational and rotational spacings, with the
latter estimated by considering all vibrational states. This
led to qb = 0.172 and 0.202 for the O + OH and H + D2

reactions, respectively. Of course, qa and qb could be taken
as adjustable parameters to reproduce any known QM
result, although this approach will not be pursued in the
current work. Other binning details that are specific of
the systems here studied will be deferred to Section 3.

As noted in the Introduction, all trajectories contribute
to all open vib-rotational states, although only a few are
expected to do so in a significant manner. Thus, unlike
other non-active models [6,7], no trajectories are discarded
from the statistical analysis when accounting for ZPE leak-
age. The approach, thereafter referred to as QCT/momen-
tum Gaussian-binning (QCT/MGB or shortly MGB)
method, shows similarities with running wave-packets as
all energetically accessible states of the products receive
some scattering probability. For a given vib-rotational
state, the probability estimated from the classical internal
energy distribution is given by

P ab ¼
XN

i¼1

W i
ab ð11Þ

where the summation is over the whole set of trajectories
(in a total of N) that contribute to the particular set of
products under consideration.

3. Results and discussion

The MGB method here reported has been tested on the
O + OH(v, j) and H + D2(v = 0, j = 0) reactions. All calcu-
lations employed the VENUS96 trajectory code [8], and
reliable double many-body expansion [9] (DMBE) PESs.
With impact parameters optimized to within 0.1a0 or so,
batches of 105 trajectories have been run in both cases, war-
ranting conservation of total energy to better than 1 part in
105. For O + OH(v, j), we have employed method I (i.e., a
single impact parameter) of Ref. [10].

3.1. The O + OH reaction under local thermodynamic

disequilibrium

The hydrogen–oxygen systems play a key role in the
chemistry of Earth’s atmosphere, combustion, and laser
processes [4]. Specifically, the O + OH reaction is the
reverse of the most important reaction in combustion. It
is also a prototype for a barrier-free reaction dominated
by long range forces, with the trajectories being largely
trapped in the involved deep potential well of HO2 as one
expects for an indirect-type reaction. In turn, the quenching
of vibrationally excited OH by oxygen atoms is critical for
establishing the populations of the various vibrational
states and hence for modeling the OH nightglow in the mid-
dle atmosphere [11]. Recently [10], calculations have been
reported of the reaction O + OH(v, j)! O2(v 0, j 0) + H (see



Fig. 1. Panel (a) shows the 2D space defined by the vibrational and
rotational energies of the product O2 in the O + OH (v, j) reaction under
LTD. The ‘pluses’ indicate the ‘exact’ vibrational–rotational states while
the traditional QCT results (all calculated values are shown) are indicated
by the dots. Panel (b) shows a contour plot of iso-probabilities for
the vibrational–rotational states of product O2 as given by PðncÞ ¼
0:000125n2

c ; nc = 1,2,. . . (increasing inwards) indicates the contour
level.
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Ref. [12] for a similar study of the O + HO2 reaction) with
vibrationally hot reactants, aiming at examining the impli-
cations of local thermodynamic disequilibrium (LTD) in
atmospheric modeling.

All calculations employed the DMBE IV [13] PES for
HO2(2A00), with the collision energy (Etr) being selected
from a Maxwell–Boltzmann distribution by using the
cumulative function

GðEtrÞ ¼
1

kBT

� �2 Z Etr

0

E0tr expð�E0tr=kBT ÞdE0tr ð12Þ

where Etr is chosen randomly for each trajectory by solving
G(Etr) � n1 = 0, nk (k = 1–3) is a random number, and kB

the Boltzmann constant. In turn, the OH vibrational (v)
and rotational (j) quantum numbers were sampled from
the cumulative distribution function CðEÞ ¼

Pv;j
n¼0P ðnÞ,

where P(n) may be a pure vibrational distribution or a
rotational distribution for a given v state. To simulate a
(v, j) state, the summation is first allowed to run from the
lowest vibrational level up to the v that satisfies
C(Ev) � n2 = 0 and, by using the v value so obtained, car-
ried up to the rotational state j that satisfies
C(Ej;v) � n3 = 0. Only odd rotational states are allowed,
since OH is considered to belong to Hund’s case (b) [14].

The micropopulations used for the calculations are
those described elsewhere [10]. Assuming OH to belong
to Hund’s case (b), the nuclear rotation quantum number
N for the spin–orbit levels F1 is given by N = J + 1/2. We
use N (denoted j for consistency), and the steady-state rota-
tional distribution [15] that has been obtained from a
molecular simulation involving collisions with cold O2

(see Fig. 2 of Ref. [10]). A simulation based on 5 · 104 tra-
jectories has accurately mimicked the initial steady-state
distribution giving confidence to the results that are
obtained from it.

Since O2 is a Hund’s case (b) molecule where only odd
numbered rotational states are allowed by symmetry, only
odd rotational states are allowed. Similarly, OH(2P)
belongs to Hund’s case (b) for a fast rotating OH, and
hence the rotational quantum number is given by
j = 1,2,3, . . . with the smallest value being j = K = 1 where
K is the associated electronic angular momentum. Tradi-
tionally [10], the above requirements are satisfied by
calculating the rotational state via the expression

j ¼ 1
2
½�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðL

�h Þ
2

q
� and then assigning the final rota-

tional quantum numbers by using j = INT(j) + 1 and
j = 2INT(j/2) + 1 for OH and O2, respectively; L is the
classical angular momentum of the diatomic, and INT( )
implies that only the integer part of the argument is
retained. Note that the final vibrational quantum numbers
(v 0) are traditionally obtained by determining first the clas-
sical angular momentum of the diatomic via semi-classical
quantization followed by rounding-off the calculated real
value to its nearest integer. A binning scheme is then fol-
lowed for the vibrational energy, which is obtained by sub-
tracting the rotational energy from the internal one.
Panel (a) of Fig. 1 shows by the dots the 11588 vibra-
tional–rotational energies associated to the reactive events
occurring under LTD at a temperature of T = 255 K. With
a maximum impact parameter of bmax = 10.8 Å, this yields
a rate constant of k = (36.5 ± 0.3) · 10�12 cm3 s�1 as
obtained from kðT Þ ¼ hviP rpb2

max; Ævæ is the average veloc-
ity, and Pr the reaction probability at the above tempera-
ture. This mimics the result reported elsewhere [10]. Note
that k(T) is identical in both QCT and QCT/MGB meth-
ods, as the binning procedure can affect only the specific
state-to-state rate constants. In turn, panel (a) of Fig. 1
shows by the ‘pluses’ the ‘exact’ vibrational–rotational
energies of all states (up to the highest populated rotational
state in the products) calculated by solving numerically the
Schrödinger equation for the O2 potential energy curve
using the program LEVEL [16]. Two salient features
deserve a comment. First, only by accident does a dot
(QCT vibrational–rotational state) matches a plus sign
(QM vibrational–rotational state). Since high vibrational
excitations are involved, ZPE leakage is small but visible
as many dots lie under the lowest row of pluses in
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Fig. 1a. Superimposed on the grid of exact numerical vibra-
tional–rotational energies, Fig. 1b shows the iso-probabil-
ity contour plot obtained from Eq. (11). The peak is seen
to arise at a vibrational energy of 2347 cm�1, and a rota-
tional energy of 2208 cm�1, which corresponds to the
(v 0 = 1, j 0 = 39) state of the oxygen molecule; see also panel
(b) of Fig. 2.

Panel (a) of Fig. 2 compares the vibrational distribu-
tions obtained from the MGB scheme here proposed with
those obtained from the traditional QCT method. As
expected the results show only small differences, which
may be explained from the large number of populated
vibrational states. Significant differences arise though in
the corresponding vibrationally-specific rotational distribu-
tions. This is illustrated in panel (b) of Fig. 2 which corre-
sponds to the maximum populated vibrational state
(v 0 = 1). This is due to two major factors. First, the number
of populated high-rotational states predicted from the tra-
ditional semi-classical quantization scheme is much larger
than the true number of quantum mechanical rotational
states that are obtained by solving the vibrational–rota-
tional Schrödinger equation. By checking the maximum
rotational state for each of the v 0 = 0–46 vibrational states
calculated for O2, we have found that a total of 47 levels lie
Fig. 2. Panel (a) shows the total vibrational distribution for product O2 in
the O + OH (v 0, j 0) reaction under LTD: dashed line, QCT; solid line,
QCT/MGB. A similar comparison but for the rotational distribution of
the most populated O2 vibrational state (v 0 = 1) is in panel (b).
higher than the highest QM rotational state obtained for
their corresponding v 0 state. For example, one gets
j0max ¼ 241 for v 0 = 0 from the semi-classical analysis, thus
exceeding the maximum rotational quantum number of
j0max ¼ 235 obtained quantum mechanically for the O2

potential curve of the HO2 DMBE IV PES. Similarly,
254 O2 vibrational quantum numbers assigned in tradi-
tional QCT lie above the maximum quantum number of
v 0 = 46. Note that many of the high-rotational states corre-
spond to a physical states that violate the quantum
mechanical ZPE, in a total of 356. It should be emphasized
that the average uncertainty in the rotational energy for the
above 47 missing high-j 0 states amounts to 28%. Besides
being due to the semi-classical nature of the rotational
quantum number assignment, such a result reflects the dif-
ficulty in partitioning the internal energy into its compo-
nents for high energy regimes. Unfortunately, to or
knowledge, no accurate quantum mechanical rotational
distribution is available in DMBE IV (or any other PES)
for comparison. Finally, all the above remarks but one
referring to violation of the ZPE criterion (and this to an
extent of �0.4%) should have no implication in the rate
constants and major conclusions reported elsewhere [10].
Fig. 3. As in Fig. 1 but for the product HD in the H + D2(v 0 = 0, j 0 = 0)
reaction at a collisional energy of 1.85 eV. The ‘pluses’ indicate the ‘exact’
vibrational–rotational states of HD, while the traditional QCT results (all
calculated values are shown) are indicated by the dots. Panel (b) shows iso-
probability contours defined by PðncÞ ¼ 0:002n2

c , where nc = 1,2, . . .
(increasing inwards) indicates the contour level.



A.J.C. Varandas / Chemical Physics Letters 439 (2007) 386–392 391
3.2. H + D2 exchange reaction

The title exchange reaction and other isotopic variants
are popular prototypes of direct collision processes. They
have been widely studied since the early days of reaction
dynamics [17], with very good agreement between calcu-
lated and observed attributes, namely total reaction proba-
bilities, state-to-state integral and differential cross sections,
and thermal rate constant [18–29]. Such advances paralleled
those in the construction of accurate PESs [30–33] for H3.
However, most such studies concentrated at relatively low
energies, and the theoretical ones restricted to the ground
adiabatic PES. For high energies, Pomerantz et al. [34]
reported a disagreement between theory and experiment
in the product rotational distributions for the reaction
H + D2(v = 0, j = 0)! HD(v 0 = 3, j 0) + D. Specifically,
they have observed a warming at high j 0 states in the rota-
tional distributions that could not be explained from accu-
rate quantum calculations on the lowest sheet of the H3 PES
(this shows a conical intersection between the ground and
first-excited electronic states). Recently [35], we have carried
out both single-surface (adiabatic) and two-surface diabatic
quantum mechanical wave-packet calculations of this reac-
tion. Despite being quite accurate, they too largely failed to
support the Pomerantz et al. [34] results. Rather than focus-
ing on this discrepancy, the calculations here reported are
mainly intended to compare the product vibrational–rota-
tional distributions obtained from the QCT/MGB method
from the present work with the accurate quantum wave-
packet ones [35]. Also shown for comparison are the results
from the traditional QCT method and its QCT/VEQMT
[14] (or simply VEQMT) variant, where in its simplest form
all trajectories that form products with a déficit of ZPE con-
tent are discarded from the statistical analysis. Thus, only
the lowest sheet of the popular DMBE PES [31] has been
employed. Of the energies considered in Ref. [35], we have
chosen here the largest, Etr = 1.85 eV.

Shown in panel (a) of Fig. 3 are the results of the 19947
reactive QCT trajectories superimposed on the calculated
Fig. 4. Total product vibrational distribution for the reaction
H + D2(v 0 = 0, j 0 = 0)!HD(v00, j00) + D at a collisional energy of
1.85 eV: dashed line, QCT; dash-dot line, QCT/VEQMT; solid QCT/
MGB.

Fig. 5. Product rotational distributions in the reaction H + D2(v = 0,
j = 0)!HD(v 0, j 0) + D, with panels (a) to (d) for v 0 = 0–3, respectively.
Key: dashed line, QCT; dash-dot line, QCT/VEQMT; solid line, QCT/
MGB. Also shown by the solid dots are the accurate quantum wave-
packet results [35] for v00 = 1–3.
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quantum mechanical grid of vibrational–rotational eigen-
values as obtained for the H2 curve in the H3 DMBE
PES. In turn, Fig. 3b shows the iso-probability contour
plot obtained from the new MGB scheme of the present
work. The notable feature is perhaps the large number of
HD molecules (5737) that end up with a vibrational con-
tent below ZPE. Such trajectories are in the VEQMT
[14] method considered a physical, and discarded from
the statistical analysis. Being a large fraction (29%) of total
number of trajectories run, it is not surprising that
VEQMT leads to significant differences in the vibrational
and rotational distributions shown in Figs. 4 and 5. Also
notable is the good agreement between the MGB results
and the traditional QCT ones. As might be anticipated,
the decrease in total reactive probability for v 0 = 0 due to
ZPE leakage is now significantly smaller than in VEQMT,
with the current MGB results lying somewhere between the
QCT and VEQMT ones. In fact, the number of trajectories
with j 0 P 9 that lack ZPE content amounts to 2362 while
the error in the rotational energy due to the vibrational–
rotational partition scheme is 12.3%. Such a high percent
of high j 0 trajectories that lack ZPE content is largely
due to a flow of vibrational into rotational energy, and
may largely explain the differences observed between
the QCT and MGB rotational distributions for specific
vibrational states. A final remark to note the good agree-
ment between the rotational distributions from the pres-
ent work and the time-dependent quantum mechanical
ones [35] for v 0 = 1, and to a smaller extent for other v 0

states (particularly v 0 = 2, where a warming of higher rota-
tional states is observed in QCT, MGB, and VEQMT, by
increasing order). Except for v 0 = 0 where a significant
reduction is observed, the VEQMT method tends to over-
shoot the accurate quantum distributions due to discarding
a significant fraction of trajectories from the statistical
analysis. Finally, although not shown for brevity, all
methods predict the v 0 = 4 state to be open but with a rel-
ative probability about a factor of eight smaller than for
v 0 = 3.

4. Concluding remarks

We have suggested a simple scheme to ‘quantize’ the
continuous vibrational–rotational energy distributions
obtained from QCT calculations. The new MGB approach
has been applied to the much studied O + OH and H + D2

reactions with promising results. As major features, we
emphasize the following: (a) the qa and qb parameters in
it are fixed a priori without resorting to any fit of dynamics
data; (b) the method accounts approximately for ZPE leak-
age without discarding any of the calculated trajectories
(thus, without disturbing [6] the QCT statistics); (c) by
introducing two cardinal numbers that identify the sets of
vibrational and rotational quantum numbers, one may
conjecture that it is generalizable to reactions with larger
product molecules where the assignment of quantum num-
bers from classical techniques has not been possible thus
far. Clearly, further developments and applications are
required to assess its merit.
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[22] L. Bañares et al., J. Chem. Phys. 108 (1998) 6160.
[23] B.K. Kendrick, J. Chem. Phys. 114 (2001) 8796.
[24] B.D. Bean, J.D. Ayers, F. Fernández-Alonso, R.N. Zare, J. Chem.

Phys. 116 (2002) 6634.
[25] S.C. Althorpe, J. Chem. Phys. 117 (2002) 4623.
[26] S.A. Harich, D. Dai, C.C. Wang, X. Yang, S.D. Chao, R.T. Skodje,

Nature 419 (2002) 281.
[27] S.L. Mielke et al., Phys. Rev. Lett. 91 (2003) 063201.
[28] D.X. Dai, C.C. Wang, S.A. Harich, X.Y. Wang, X.M. Yang, S.D.

Chao, R.T. Skodje, Science 300 (2003) 1730.
[29] F. Ausfelder, A.E. Pomerantz, R.N. Zare, S.C. Althorpe, F.J. Aoiz,
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L. Bañares, J.F. Castillo, J. Chem. Phys. 120 (2004) 3244.
[35] R.F. Lu, T.S. Chu, Y. Zhang, K. Han, A.J.C. Varandas, J.Z.H.

Zhang, J. Chem. Phys. 125 (2006) 133108.


	Trajectory binning scheme and non-active treatment of zero-point energy leakage in quasi-classical dynamics
	Introduction
	Binning procedure
	Results and discussion
	The O+OH reaction under local thermodynamic disequilibrium
	H+D2 exchange reaction

	Concluding remarks
	Acknowledgement
	References


