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Abstract

Techniques based on agglomerative hierarchical clustering constitute one of the most frequent approaches in unsupervised clustering. Some are
based on the single linkage methodology, which has been shown to produce good results with sets of clusters of various sizes and shapes.
However, the application of this type of algorithms in a wide variety of fields has posed a number of problems, such as the sensitivity to outliers
and fluctuations in the density of data points. Additionally, these algorithms do not usually allow for automatic clustering.

In this work we propose a method to improve single linkage hierarchical cluster analysis (HCA), so as to circumvent most of these problems
and attain the performance of most sophisticated new approaches. This completely automated method is based on a self-consistent outlier
reduction approach, followed by the building-up of a descriptive function. This, in turn, allows to define natural clusters. Finally, the discarded
objects may be optionally assigned to these clusters.

The validation of the method is carried out by employing widely used data sets available from literature and others for specific purposes created
by the authors. Our method is shown to be very efficient in a large variety of situations.
© 2007 Elsevier B.V. All rights reserved.
Keywords: Clustering; Unsupervised pattern recognition; Hierarchical cluster analysis; Single linkage; Outlier removal
1. Introduction

Pattern recognition is a primary conceptual activity of the
human being. Even without our awareness, clustering on the
information that is conveyed to us is constant. This clustering
activity is frequently based on a few selected properties and is not
exempt from personal prejudice. Naturally, when objects are
defined by a significant number of properties which are or have
been made quantitative, and it is intended to obtain exempt results
(natural clusters), the use of mathematical tools is mandatory.
Actually, mathematical tools cannot be completely exempt. Firstly,
because many algorithms rely on options made by the user. Also,
because algorithms introduce some propensity for certain types of
solution.
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Identifying natural patterns in data is one of the most
important goals of chemometrics. Specifically, clustering
techniques are almost indispensable as a tool for data mining.

These techniques are often divided into unsupervised and
supervised methodologies. In the former, information stems
from the data and there are no pre-classified groups. Hierarchical
cluster analysis usually produces a dendrogram, or other type of
tree diagrams, as final output [1–3]. Each association level of the
dendrogram represents a partitioning of the data set into a
specific number of clusters [1]. Based on the dendrogram, it is
possible to additionally define the number of clusters, but this
step is often based on common sense relying on the
representation of the data structure. In cases for which the data
set is analyzed to produce a simple partitioning of the objects,
resulting in a set of clusters, the technique is considered non-
hierarchical [1]. In contrast, supervised methodologies involve
classifying samples into predefined structures. Typically, there is
a set of labelled objects (training set) that is used to establish
decision rules so as to classify new objects [4].

In this work we propose an automated approach to find natural
clusters, based on a new representation that highlights weak
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associations between groups. This representation is intended to
complement the information provided by the dendrogram and, if
the sole purpose is to separate data in an appropriate number of
groups, it may even replace the dendrogram.

Situations in which data contain some amount of outliers or
less characteristic data are difficult to tackle with most
clustering algorithms. The data structure becomes less defined
and the number of groups that are formed may be either too low
or too high, depending on the actual situation and algorithm.

Identification and removal of outliers, in a preliminary step, is
suggested via a self-consistent technique in which system
properties are used to make an automatic specification of the
necessary parameters. Additionally, the possibility of merging
these initially discarded data in the formed clusters is left open.
This final step is especially important when, rather than outliers,
objects that are discarded correspond to less characteristic zones
in the clusters.

The algorithm proposed in this work was applied to a variety of
data sets, and results compared with those obtained by other
algorithms. These include ROCK [5], CURE [6], DBSCAN [7],
CHAMELEON [8] and FAÇADE [9]. We note that such algo-
rithms were proposed as adequate approaches for finding clusters
of different sizes, shapes, and densities in the presence of outliers.

ROCK combines, from a conceptual point of view, nearest-
neighbor, relocation, and hierarchical agglomerative methods
[1,5]. In this algorithm, cluster similarity is based on the number
of points from different clusters that have neighbors in common
[5,10]. The same authors developed another algorithm denoted
as CURE that combines centroid and single linkage approaches
by choosing more than one representative point from each
cluster [1,6]. At each step of the algorithm, the two clusters with
the closest pair of representative points (one in each cluster) are
merged [6,10].

The CHAMELEON algorithm explores dynamicmodeling in
hierarchical methodology. In its clustering process, two clusters
are merged if the respective inter-connectivity and proximity are
highly related to the intra-cluster counter part [8,10].

A different approach is presented by the DBSCAN algorithm.
It makes use of two external parameters, the minimum number of
points in the neighborhood of a point, and the radius that defines
this neighborhood. Choosing the appropriate parameters, it is
then possible to identify objects located in high and low density
zones. Neighboring objects in high density zones define clusters
[7,10].

FAÇADEwas proposed recently and is initiated by an outlier-
eliminating process. Subsequently, the data is compressed,
preserving original spatial patterns with a smaller number of data
points. In this approach, the algorithm constructs a neighbor-
hood graph, in which each sub-graph is regarded as a group. The
clustering information of the compressed data is projected onto
the original data. Finally, the groups are merged hierarchically
according to the connections between each two groups [9].

2. Some concepts

There is a generic idea about what is cluster analysis and
what is a cluster, which has not significantly changed in the last
two decades. ‘Cluster analysis is the term applied to a number of
techniques that seek to divide a set of objects into several groups
so that objects within the same group are more similar to each
other than objects in different groups’ [11]. In this context
cluster is each one of the groups of similar objects.

However, this definition of cluster, which is clearly directed
for well separated clusters [2], is not universal. In fact, it is not
necessary in many situations that all objects belonging to a
group be similar to each other [4]. Instead, it is necessary that
these objects present a high connectivity among them.
Connectivity is a concept that will be explored below in more
detail, in the context of outlier identification. It can be regarded
as the property that arises from the existence of a set of nearby
objects, which allows to associate objects in a sequential mode.
Thus, more dissimilar objects belonging to the same cluster can
be joined by an uninterrupted chain of nearest objects.

A more general definition of clustering can thus be simply ‘a
data analysis technique that, when applied to a set of
heterogeneous items, identifies homogeneous subgroups as
defined by a given model or measure of similarity’ [1].

Cluster analysis is thus often based on the concept of similarity.
The easiest and most intuitive way to mathematically define the
similarity between two objects is based on the Euclidean distance
[12] which will be used, without loss of generality, in this work.
However, it is well-known that the Euclidian distance may not be
totally adequate for high dimensional systems [2,13,14]. In those
cases, similarity measures based on other quantities can be
employed. We note that, in chemistry-related applications, the
correlation coefficient is also a very common choice, minimizing
scale effects (see, e.g., [15]).

Avery important issue in cluster analysis (and one of the most
difficult [1,16]) is to establish the number of clusters present in a
data set. Since the classical semi-automatic method where a user
selects and extracts manually each cluster guided by a visual
inspection of a dendrogram, there has been a number of pro-
posals for more automatic procedures [16–21].

One way to approach this problem is resorting to natural
clusters i.e., clusters that are clearly (and intuitively) defined by
data [1]. This type of clusters arises in situations for which inter-
cluster separations are significantly higher than those found
within each cluster. Also, intra-cluster separations must be close
to homogeneous.

More complicated situations arise when clusters are well
defined but at different levels of resolution. In this case, there
are clusters with a much smaller inter-group separation, even
though significantly higher than the corresponding intra-group
separation. The closest groups are not natural clusters. They can
be regarded as sub-clusters belonging to a larger group, of
which they form some internal structure. These levels of
resolution pose additional problems when trying to design
automatic ways to define the number of natural clusters, and this
difficulty is clearly present in HCA. Dendrograms are often an
illustration of the existence of different levels of resolution,
suggesting different possible clustering solutions.

A frequent approach consists in forming clusters whenever
the inter-group separations are distinct enough from the intra-
group distances, even if it corresponds to induce a pronounced
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heterogeneity in inter-group division. In this case, the tendency
is to go into the fine structure of clusters, often causing an
excessive division of data and a simultaneous identification of
clusters and sub-clusters, ignoring the different resolution levels
in the system.

This conceptual view of clustering is reflected, for instance,
in some recently proposed algorithms for automatic cluster
extraction [18,19,21]. These methodologies are based on
reachability plots, originally produced from results obtained
via the OPTICS algorithm [3,22,23], which provide more
descriptive representations than dendrograms. Such representa-
tions combine information given by density analysis and
selective linkage techniques, as a way to improve the HCA.

The method presented in this work intends to explore a
slightly different concept. The idea is that the identification of
groups should derive from an external global view of all the
system comprising the relevant set of objects and inter-object
space. The first set of groups must be constrained by a correct
degree of homogeneity in inter-cluster separation, aiming at
recovering ‘natural clusters’ at this resolution level. This
methodology allows to, in subsequent and iterative steps,
subject the identified clusters (each now constituting a new
whole system) to an internal identification. A similar procedure
may be followed in most hierarchical algorithms.

3. Hierarchical cluster analysis

The techniques proposed in this work are based on hierarchical
cluster analysis. In what follows, we provide a brief introduction
to this methodology.

HCA is a method for finding the underlying structure of
objects through an iterative process that associates (agglomerative
methods) or dissociates (divisive methods) object by object, and
that is halted when all objects have been processed [2]. The
agglomerative procedure starts with each object in a separate
cluster and then combines the clusters sequentially, reducing the
number of clusters at each step until all objects belong to only one
cluster. The divisive methods start with all of the objects in one
cluster, and then proceed to their partition into smaller clusters
until there is one object per cluster [1,11]. This means that for N
objects, the process involves N−1 clustering steps.

In HCA there are two important choices when defining a
method: the type of similarity measure between objects and/or
groups, and the linkage technique [11].

The first task is to determine a numerical value for the
similarity between objects, constructing a similarity matrix. The
most popular ways to determine the similarity between objects
use the Euclidean distance and the correlation coefficient, but
there are many alternatives for similarity indicators [12,24].

The next step is to group or ungroup the objects. The most
common approach is an agglomerative technique, whereby
single objects are gradually connected to each other in groups.
The first connection corresponds necessarily to the most similar
pair of objects. Once the first group is formed, it is necessary to
define the similarity between the new group and the remaining
objects [24]. This step requires a new choice among a variety of
available techniques. Some of the most used linkage algorithms
are complete-linkage (or furthest-neighbor), single linkage (or
nearest-neighbor), average-linkage (between groups and within
groups), centroid method and Ward′s-linkage [1,12,25].

In this work, single linkage is the underlying technique. When
a new group is formed, the corresponding distance to any other
group is the minimal Euclidean distance of all possible distances
between each object of the former group and each object of the
latter.

Once the similarity measure and the linkage method are
defined, the agglomeration of objects and groups in each step of
the process follows the order of larger similarity [24]. The
structure obtained by hierarchical clustering is often presented
in the form of a dendrogram where each linkage step in the
clustering process is represented by a connection line [1,25].

The application of different methods, which may involve
different similarity measures, different linkage techniques, etc.,
leads to dendrograms with different structures. Apparently, a
good approach would be to use different methods of cluster
analysis and compare the results, but due to an excessive wealth
of options it is frequently more convenient to use well founded a
priori choices.

It is widely accepted that the average-linkage, centroid and
Ward′s methods are sensitive to the shape and size of clusters.
Thus, they can easily fail when clusters have complicated forms
departing from the hyperspherical shape [1]. Complete-linkage
is not strongly affected by outliers, but can break large clusters,
and has trouble with convex shapes [2]. The single linkage
methodology, on the other hand, displays total insensibility to
shape and size of clusters [1]. However, there are also
shortcomings associated with single linkage, which is the
sensitivity to the presence of outliers and the difficulty in
dealing with severe differences in the density of clusters.

It is apparent that each method has its own limitations and
scope of application. We show in this work how to considerably
improve agglomerative HCA based on single linkage. This
improvement uses two new analysis tools. One of these tools is
aimed at the self-consistent identification of outliers in data and
its consequent remotion. The other consists in a representation
of the data structure, complementary to the dendrogram,
through a descriptive function that stresses low connectivities
among objects, defining potential zones of cluster division, and
pinpoints the inhomogeneity present. Most of all, the number of
clusters arises naturally in our method.

4. Computational procedure

This section deals with the algorithm for the modified HCA
proposed in this work. The algorithm comprises three tasks: (i)
outlier-removal, (ii) identification of groups (including building
the descriptive function, and establishing the clusters), and (iii)
classification of the objects discarded in the first step.

4.1. Removal of outliers

Identification of outliers is a relatively new concept in cluster
analysis. The presence of outliers may have different con-
sequences in different algorithms, and we will focus on the



Fig. 1. Original data set (A) and descriptive function (B) for the example
outlined in Tables 1 and 2.
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methodology used in this work. Specifically, in the single
linkage approach, outliers promote both an excess of divisions
prompted by the existence of isolated objects or small groups of
objects, and under-divisions due to ‘bridges’ of outliers
connecting what would otherwise be ‘natural clusters’ [2].

Outliers can be viewed as objects or small groups of objects
located in low density zones, contrasting with the denser intra-
cluster structure. In a similar view, but a slightly different
perspective, outliers can be regarded as objects with low
connectivity in opposition to higher connectivity in the intra-
cluster region.

To identify low connectivity zones we use a D-dimensional
target of a specific hyperradius. The center of the target is fixed
in each object and the number of nearest-neighbors enclosed in
this target establishes the connectivity of that object, ci. If this
procedure is repeated for every object, potential zones of outliers
are pinpointed. This is not a new concept to identify outliers and
it was previously proposed with density algorithms [14].
However, in these methods, it is necessary to provide external
parameters to define the size of the target and the lower limit for
density, below which an object is regarded as an outlier [9,14].
To avoid external parameters, we use some characteristics of the
system and an iterative algorithm for removal of outliers that
converges to a data set with more homogeneous connectivity.
The internal parameters are established on the basis of the
average nearest-neighbor distance of all objects (first parameter)
and the average connectivity for all objects (second parameter).
The latter depends on the previous parameter. In a convergence
process, these parameters are automatically adjusted each time
an elimination process is carried out, until the characteristics of
the system stabilize i.e., there are no significant connectivity
variations from object to object.

In practice, the convergence process is split in two. In the
first one, the radius of the target is taken as 4d̄ j, where d̄ j is the
average nearest-neighbor distance previous to iteration j. In the
second, a smaller multiplier is used, and the radius is 2d̄ j.

In both processes, points with a connectivity lower than 1/3 of
the average value for connectivity, c̄ j, are discarded in each
iteration. The value of d̄j is recalculated and the process repeated,
until the number of objects discarded is zero. The rationale for two
convergence processes is simple. In the first one the objective is to
remove both scattered objects or small groups and thin bridges of
noise linking ‘natural clusters’. However, the use of a 4d̄j
radius has a consequence, related to the fact that a larger target
is less sensitive to outliers present close to the boundaries of
the clusters. The second iterative process overcomes this difficulty.

The identification of outliers may be summarised as follows:

Set iteration counter j=1
Repeat until number of discarded objects=0

Calculate d̄ j

Set R=4d̄ j

Calculate c̄ j (R)
Discard objects i if cib1/3c̄ j (R)
Increase j

followed by a new process in which R=2d̄ j.
The use of the average nearest-neighbor distance as system
metric is one of the strongest points in our method. Firstly,
because the average value reflects the presence of non-
characteristic values, which then allows to converge the internal
parameters so as to obtain more homogeneous intra-cluster zones.
Moreover, it is very important to stress that the specific values of
the multipliers used to define the dimensions of the target are not
critical. As the procedure relies on an overall comparison of the
connectivity values for all objects (to eliminate those with lower
connectivity values), the tendency is to obtain similar results for a
large range of multipliers. Naturally, it is not possible to use
targets so small that the connectivity is zero for most of the objects
in the system. This confines the choice to values higher than one,
corresponding to radii above the average nearest-neighbor
distance. Also, large targets tend to establish overlapping regions
around contiguous objects and not produce an adequate
characterisation of the system. As a conclusion, the choice of
low values, although larger than unity, is appropriate for most
cases. The choice of these values is even less critical given the fact
that the classification procedure proposed for the discarded
objects (see below) corrects most of the incorrect assumptions
from this preliminary treatment.

It was referred that objects with a connectivity lower than 1/3
of the average value are discarded. This value was obtained



Table 2
Analysis of the final association vector and distances to build the descriptive
function

Pair of consecutive
objects

Distance for linkage steps
where both objects participate

Value of descriptive
function

3, 1 d3, d6 d3
2

1, 2 d1, d3, d6 d1
2

2, 4 d6 d6
2

4, 5 d4, d6 d4
2

5, 7 d5, d6 d5
2

7, 6 d2, d5, d6 d2
2

Table 1
Schematic description of the association process in the classification algorithm
proposed in this work

Linkage step Association vector block Nearest-neighbor distance

1 1, 2 d1
2 7, 6 d2
3 3, 1, 2 d3
4 4, 5 d4
5 4, 5, 7, 6 d5
6 3, 1, 2, 4, 5, 7, 6 d6
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from an extensive battery of tests that have shown the procedure
to attain a degree of intra-cluster homogeneity that clearly
facilitates clustering.

4.2. Main clustering step

The first step of the algorithm corresponds, as usual when
resorting to single linkage, to the calculation of the nearest-
neighbor Euclidean distance matrix. The minimal Euclidian
distance (major similarity) is used to associate the first two
objects. This association methodology will pursue associating
objects with objects, objects with groups of objects, or groups
with groups of objects and is halted when all objects are
associated in just one vector. For each association step we
preserve the similarity value and the index of the objects that
constitute the new cluster. This is the data required to construct the
proposed descriptive function.

Let us clarify the order of the objects present in the final
association vector. When two objects are first associated, they
are always placed in consecutive positions. When an additional
object or group is further associated into an existing structure,
being either a single object or a formed grouped, it will appear in
the vector immediately before or after the original group. This
implies that, during the hierarchical association procedure, a
formed block suffers no changes in subsequent association steps.

In a second phase, looking at each pair of consecutive
objects, i, i+1, of this association vector we calculate the value
of the descriptive function, DFi,i+1. This corresponds to the
squared minimal distance measure of all linkage steps in which
both objects participate,

DFi;iþ1 ¼ d2i;iþ1: ð1Þ

The mathematical function given by DFi,i+1 for each pair of
sequential objects in the association vector will produce
localised higher peaks, corresponding to a high probability of
inter-cluster separation, and low value regions indicating a high
probability of intra-cluster association. The use of a squared
distance is intended to emphasise inter-cluster separations.

The presented descriptive function is obviously not the only
possible, but is one of the simplest that can be used to produce
results of quality comparable to themost sophisticated approaches.

To separate data into clusters, it is necessary that we
recognise peaks corresponding to the mentioned separations.
For this, we simply identify values of DFi,i+1 based on a
modified outlier scheme for the corresponding distributions, as
extracted from the overall system. Thus, an inter-cluster
separation DFsep is found in the descriptive function for

DFsepN6� ðQ3−Q1Þ ð2Þ

where Q1 and Q3 are the upper limits of the first and third
quartile of the distribution of values in the descriptive function.
The above equation further emphasises the usual definition of
severe outlier. We note that the use of a single cut-line for the
whole system corresponds to the concept of an overall assess-
ment of cluster structure, as discussed in Section 2.

To illustrate the procedure we use a simple example based in
the small data set of Fig. 1(A), for which the association steps
are depicted in Table 1. This table describes the growth of the
association vector, and its last element of the second column
displays the final form of this vector. Analysis of the vector, and
the building-up of the respective descriptive function [shown in
Fig. 1(B) together with the separation line from Eq. (2)] is
schematically presented in Table 2.

The order of the objects in the final association vector does not
apparently retain any relevant information on the system
structure. We use the first pair of consecutive objects (3 and 1)
in the example to explain how the structural information is still
present.When this pair of objects is analysed, the information that
is extracted does not correspond to the Euclidean distance of the
pair, but rather to the distance in which these two objects were
first associated in the same group, d3. This distance is, in fact, that
between objects 2 and 3 following a nearest-neighbor scheme.
This means that using the association vector and the information
contained in Table 1, obtained during the associative process, it is
possible to recover relevant structural information on the system
and build-up the descriptive function. It should be stressed that the
proposed method places objects from the same group contigu-
ously in the descriptive function, separated by the higher peaks,
without any reorganisation of the final association vector. This
placement corresponds, simply, to one of the possible orderings
for which a dendrogram would be built without line crossings. It
also further clarifies that each value of DFj, j+1 can be directly
extracted from the dendrogram organised as stated above.

4.3. Classification of the discarded objects

An optional final step after identifying ‘natural clusters’ is
the classification of the initially discarded objects. In the pre-
treatment for cleaning outliers, some scattered data points are
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identified as outliers and therefore eliminated so as to improve
the main clustering process. However, these data may not be
necessarily outliers. These can, for instance, stem from a
‘dilution’ phenomenon in which boundary objects have a larger
scatter, when compared to more characteristic objects closer to
the center of the cluster.

In such cases, a scheme based on supervised pattern recog-
nition is usually adequate. A simple K-nearest-neighbor ap-
proach (see [24]) has shown to produce good results in the
examples studied in the scope of this work.

5. Results and discussion

The algorithm described in the previous section has been applied to
a variety of systems. In Fig. 2 we present the results obtained with a two
dimensional set of objects created by the authors. This relatively simple
set comprises clusters with different number of objects. It includes non-
challenging circular shapes, but also concentric circular crowns, which
represent an additional difficulty for several clustering algorithms.
Scattered outlier points were superimposed on the underlying data.

The system was previously subject to the ‘outlier-removal’ process.
As can be seen in panels (A) and (B) the denser zones have remained
essentially untouched, while the scattered and less densely distributed
Fig. 2. Original data set (A), and result of the cleaning procedure (B), the correspond
what follows arbitrary labels are assigned to identified clusters. This set is characterise
comprises clusters surrounded by other clusters and a significant amount of outliers
objects have been discarded. After this filtering, the system gives rise to
the descriptive function shown in panel (C). The threshold defined in
Eq. (2) is also depicted. The seven clusters defined by the identified
peaks are represented in panel (D). It can be seen that the algorithm is
not affected by the size of the clusters. Concentric, but clearly separated
motifs are recognised as different clusters, unlike what would be
expected from a centroid method.

Fig. 3 presents a data set [26] that has been used to test a variety of
clustering algorithms. It comprises dense areas of varying shapes and
sizes. There are clearly scattered objects, but also stripes of outliers
(disposed horizontally and vertically) connecting what visually impacts
as clusters. Once again, the removal process acts essentially in the inter-
cluster region, cleaning both scattered objects and the thin ‘bridges’
that connect the clusters [see panels (A) and (B)]. Panel (C) represents
the nearest-neighbor distributions for the original system and after
cleaning the data, respectively. It is seen that, although the overall
appearance of the distribution remains unaltered, the longer distance
tail significantly differs in these two systems.

If we look at the corresponding descriptive function in Fig. 4, we
see that there is a dominant peak, coexisting with a set of much smaller
ones. These apparently small peaks, in turn, contrast very markedly
with the intra-cluster background (note the insert in this panel). The
separation, as assessed from the visual interpretation [panel (B)] seems
to underdivide the set of three clusters comprising the external contour
ing descriptive function (C), and the overall classification result (D). In this and
d by dense areas of varying shapes (circles and circular crowns) and sizes. It also
. Results pertain to the algorithm depicted in this work.
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of an oval plus the two inserted circles. One of these circles is
considered as associated to the external oval. In a sense, this fact results
simply from the fact that the density of the bridging points is high
enough to promote the connection between the two clusters. Also, these
two clusters are very close. The direct use of the CURE algorithm [6]
Fig. 3. Procedure for the cleaning of outliers in a set commonly used in the
literature: clusters differ in size and shape and scattered points coexist with
horizontal and vertical thin connecting structures. Panel (A) represents the
original data structure, (B) the data set without outliers, and (C) the
corresponding nearest-neighbor distributions. Key: ○, including outliers;
●, after the respective removal.

Fig. 4. Descriptive function (A) and resulting clusters (B) for the set of Fig. 3
using the procedure from this work.
on the set with outliers, met with serious difficulties, irrespective of the
choice of parameters [8,27]. A similar situation was encountered [8,26]
with the ROCK algorithm [5]. In both cases the algorithms tend to
produce an excessive number of clusters, although for ROCK other
choices of parameters have led to some degree of underdivision [27].
The CHAMELEON [8] and FAÇADE [9] algorithms have divided the
system adequately [8,27]. CHAMELEON has been used directly in the
original system, originating some spurious groups. The FAÇADE
algorithm has a similar behavior in the presence of outliers, but yielded
the correct division when these are removed. Finally, the DBSCAN
algorithm [7] may produce very good results, but requires an appro-
priate choice of parameters [8,27]. In fact, the final results are similar to
those obtained using the algorithm proposed in this work, but minor
changes in the values of parameters may significantly affect the
analysis [27]. Application of other algorithms to the data set depicted in
Fig. 3(A) can be found in Ref. [27].

In Fig. 5 a system with denser connecting bridges is presented [26].
The removal of scattered points is adequate, and the six large groups
are clearly defined in the descriptive function of panel (A). Also, panel
(B) shows the main clustering results and the partitioning of objects
discarded in the previous step. They are ascribed to larger clusters in a
sensible way. The CURE algorithm [6] is very dependent on the choice
of external parameters [8]. Generally, the tendency is to produce an
excessive number of clusters. This behavior results from the inter-
penetrating clusters. At the same time, it is not strongly affected by the



Fig. 5. Same as Fig. 2, for another set commonly used in the literature, in which
clusters depart from spherical shape and interpenetrate. Strong connecting
bridges are visible in conjunction with a large amount of scattered points.

Fig. 6. Data consisting of three overlapping clusters, each one significantly less
dense in the periphery. Panel (A) depicts the descriptive function, and panel (B)
the final classification using the algorithm proposed in this work.
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presence of outliers. ROCK [5], in the other hand, is not adapted to
divide this data set [8,26]. Once again, the more sophisticated
CHAMELEON [8] follows what should be expected from the visual
judgement. Some of the connecting bridges and scattered points are
considered as individual clusters, but even these choices are
appropriate [8]. A similar behavior is found for FAÇADE [9].

In Chemistry, we are often faced with small data sets (see, e.g. [28]),
characterised by less well defined structures, which may induce a
certain degree of overlap that directly results from a gradual variation
of underlying factors. In Fig. 6 we approach this type of problem with
simulated data comprising three slightly overlapping clusters. Each one
possesses a well defined core of objects, but the characteristics become
less and less marked as we travel towards the periphery. The algorithm
presented here has formed the clusters in a very adequate manner, in
spite of the fact that there was no a priori suggestion on the number of
clusters. In such data sets, the algorithm for removal of outliers has a
different purpose. It clears the areas with more scattered, i.e., less
characteristic objects, emphasising the central core and thus the inter-
group separations. Note, as well, the relevance of the classification
procedure that allocates the discarded objects, clearly not outliers, to
the groups previously formed.

The final example illustrates, thus, one of the remaining difficulties
of major automatic cluster extraction algorithms, which is the recog-
nition of patterns with overlapping structures that gradually evolve
from a well defined cluster to another, through a set of objects with
intermediate characteristics. This type of problem further justifies the
use of a pre-treatment step. Also, it clearly improves the efficiency of
algorithms based on the evaluation of local peaks used in some
methodologies [19] and that usually face some problems with slowly
declining peaks.

Despite any similarity that seems to exist between the descriptive
function presented in this work and the reachability plots [18,19,22,23],
there is a very different information represented in each one of them.
Firstly, we are not representing a characteristic value of each object. We
are instead representing a value that establishes the ”propensity” for two
objects to belong to the same cluster. Our representation does not also
include any information concerning density, using solely that obtainable
from a single linkage association technique.

The descriptive function can also be directly used upon data sets not
subjected to the procedure for the removal of outliers. In Fig. 7
we present the descriptive function corresponding to the data set of
Fig. 3(A), without previously removing outliers. It contrasts with its
counterpart in Fig. 4(A), being less well defined. Weaker associations
are, however, still clearly marked.

All data sets presented in this work are two dimensional, so that the
solution may be assessed through visual inspection. It should be



Fig. 7. Aspect of the descriptive function corresponding to the data set of
Fig. 3(A), without removing the outliers.
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remarked that we have conducted successful tests on a number of
higher dimensional sets (see, e.g., Ref. [29]).

6. Conclusion

In this work we have proposed to use information usually
obtained in common HCA procedures in order to identify
‘natural clusters’, without resorting to external parameters. In
fact, the procedure described here is completely automated and
attains a degree of reliability comparable to the most
sophisticated approaches. It complements the information
usually obtained from HCA, often summarised in a dendro-
gram, with a descriptive function that leads to the number of
‘natural clusters’ and the corresponding separation. This feature
is obviously absent in classical HCA. The methodology
presented also includes two additional steps. A previous one,
in which outliers are removed, which may be applied in a
variety of other filtering applications, and an optional
classification after the main clustering analysis, that allows to
enlarge the clusters with the whole set of objects.

The algorithm presented has been applied to a variety of data
sets. The behavior was almost flawless in most of them, with an
adequate recognition of the ‘natural clusters’.

The descriptive function has shown to be very adequate in
the visualisation of large data sets, for which dendrograms
become extremely cumbersome.

It was also specifically employed in sets comprising
‘diluting’ clusters, i.e., clusters that possess scattered objects in
their periphery. Recognition has been very satisfactory, in
spite of the significant degree of overlap between adjacent
clusters.
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