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HIGHLIGHTS 
• Experimental	characterization	of	membrane	proteins	is	time	consuming	and	expensive.	

• Computational	approaches	are	able	to	provide	solutions	for	experimental	problems.	

• They	rely	mostly	on	molecular	detail	approaches	or	machine-learning	techniques.	

• A	review	on	available	computational	methods	for	membrane	protein	study	is	provided.	
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Abstract 
Background	

Membrane	 proteins	 (MPs)	 play	 diverse	 and	 important	 functions	 in	 living	 organisms.	 They	

constitute	20%	to	30%	of	the	known	bacterial,	archaean	and	eukaryotic	organisms’	genomes.	In	

humans,	 their	 importance	 is	 emphasized	 as	 they	 represent	 50%	 of	 all	 known	 drug	 targets.	

Nevertheless,	experimental	determination	of	their	three-dimensional	(3D)	structure	has	proven	

to	 be	 both	 time	 consuming	 and	 rather	 expensive,	 which	 has	 led	 to	 the	 development	 of	

computational	 algorithms	 to	 complement	 the	 available	 experimental	 methods	 and	 provide	

valuable	insights.	

Scope	of	Review	

This	review	highlights	the	 importance	of	membrane	proteins	and	how	computational	methods	

are	 capable	 of	 overcoming	 challenges	 associated	 with	 their	 experimental	 characterization.	 It	

covers	 various	 MP	 structural	 aspects,	 such	 as	 lipid	 interactions,	 allostery,	 and	 structure	

prediction,	based	on	methods	such	as	Molecular	Dynamics	(MD)	and	Machine-Learning	(ML).	

Major	Conclusions	

Recent	developments	in	algorithms,	tools	and	hybrid	approaches,	together	with	the	increase	in	

both	 computational	 resources	 and	 the	 amount	 of	 available	 data	 have	 resulted	 in	 increasingly	

powerful	and	trustworthy	approaches	to	model	MPs.	

General	Significance	

Even	 though	 MPs	 are	 elementary	 and	 important	 in	 nature,	 the	 determination	 of	 their	 3D	

structure	has	proven	 to	be	a	challenging	endeavor.	Computational	methods	provide	a	 reliable	

alternative	to	experimental	methods.	 In	 this	 review,	we	focus	on	computational	 techniques	to	

determine	the	3D	structure	of	MP	and	characterize	their	binding	interfaces.	We	also	summarize	

the	most	relevant	databases	and	software	programs	available	for	the	study	of	MPs.		
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Graphical Abstract 
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1. Introduction 
Membrane	proteins	(MPs)	have	diverse	functional	roles,	 featuring	 important	functions	such	as	

ion	and	molecule	transport,	immune	system	molecule	recognition	and	energy	transduction	1.	It	

is	therefore	fundamental	to	comprehensively	understand	their	structure	and	structure-function	

relationships.	3D	structures	of	various	MPs	have	been	characterized	 in	recent	years	by	several	

experimental	methods,	such	as	Nuclear	Magnetic	Resonance	 (NMR),	X-ray	crystallography	and	

cryo-electron	microscopy	2.	MPs,	unlike	soluble	proteins,	are	difficult	to	analyze	 in	their	native	

environment,	 due	 to	 their	 insertion	 in	 the	 lipidic	 membrane	 2-3.	 They	 are	 affected	 by	 the	

membrane	and	various	specific	factors,	such	as	cholesterol	content	4	and	hydrophobic	thickness	

of	 the	 lipid	 bilayer	 5,	 but	 also	 influence	 the	 membrane	 structure	 itself	 5a.	 All	 these	 aspects	

contribute	 to	 the	 technical	 experimental	 difficulties	 in	 the	 structural	 characterization	 of	MPs,	

which	explains	their	relatively	 low	number	 in	the	Protein	Data	Bank	(PDB)	6,	despite	their	high	

proportion	in	the	human	proteome	7.	

The	 computational	 prediction	 of	 soluble	 protein	 structure	 can	 be	 considered	 a	 particularly	

advanced	 field,	 both	 in	 terms	 of	 variety	 of	 approaches	 and	 the	 accuracy	 they	 can	 achieve	 8.	

However,	 computational	 prediction	 of	 MPs	 and	 their	 interfaces,	 especially	 when	 studying	
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dimers	or	high-order	oligomers,	 is	still	 in	its	early	days	9.	Current	approaches	are	usually	based	

on	a	combination	of	homology	modeling	10	or	de	novo	protein	structure	determination	11	with	

ML	 algorithms	 12	 to	 predict	 binding	 interfaces	 and/or	 intermolecular	 contacts,	 and	 MD	

simulations	to	refine	the	models	and	study	their	dynamical	properties	13.		

Some	MPs	are	of	particular	interest	for	therapy	assessment	and	drug	targeting	given	their	role	in	

physiological	 processes	 and	 biochemical	 pathways.	 Among	 them	 are	 G-protein	 Coupled	

Receptors	 (GPCRs),	 ion	 channels	 and	 transporters.	 All	 these	 cover	 a	 wide	 array	 of	 functions	

while	maintaining	some	common	traits	among	their	respective	(super)families.	Here,	we	aim	at	

giving	 a	 brief	 overview	of	MP	 and	 the	 experimental	methods	 for	 determining	 their	 structure,	

followed	by	a	comprehensive	assessment	of	known	computational	methods	 for	 the	prediction	

of	MP	 structure	 and	 structure-related	 characteristics,	 such	 as	 topology	 and	 binding	 interface	

prediction.	Lastly,	we	highlight	some	recent	computational	studies	on	key	MPs	and	their	main	

features.	

2. Membrane proteins 
MPs	 have	 been	 defined	 as	 proteins	 associated	 to	 lipid	 domains,	 which	 are	 involved	 in	

communication,	 regulation	and	structural	 coherence.	 In	 fact,	proteins	 that	entirely	or	partially	

span	 the	 membrane	 (intrinsic/Trans-membrane	 (TM)	 proteins),	 as	 well	 as	 proteins	 that	 are	

peripherally	membrane-bound	(peripheral	MPs	–	PMPs),	can	carry	out	these	functions.	Due	to	

the	 high	 amount	 of	 information	 and	 computational	 methods	 for	 MPs,	 we	 focused	 on	 TM	

proteins,	which	will	be	referred	to	as	MPs.	For	readers	 interested	in	PMPs,	specialized	reviews	

can	be	found	covering	this	class	of	membrane	proteins	14,	their	interaction	with	the	membrane	
15	and	the	experimental	and	computational	methods	for	their	study	16.		

Only	 a	 detailed	 understanding	 of	 MP	 structure-function	 relationships	 will	 allow	 the	

understanding	of	common	pathologies	at	a	molecular	 level	and	 the	development	of	 improved	

pharmacological	 procedures	 17,	 18,	 19.	 The	most	 functionally	 relevant	 intrinsic	MPs	are	 typically	

split	 into	 ion	 channels,	membrane	 receptors	 and	 transporters	 1a,	20.	 Ion	 channels	 facilitate	 the	

diffusion	of	 ions	 across	membranes,	 bridging	 the	 intra-	 and	 extracellular	 environments	 across	

the	 hydrophobic	 lipid	 bilayer	 by	 allowing	 hydrophilic	molecules	 and	 ions	 to	 pass	 through	 the	

membrane.	 Ion	 channels	 are	 structurally	modulated	by	 the	 TM	electrochemical	 potential,	 the	

binding	 of	 ligands,	 and	mechanical	 stress	 and/or	 changes	 in	 the	 local	 lipid	 environment	 21.	 In	

some	 cases,	 this	 modulation	 is	 required	 for	 biological	 function	 22.	 Membrane	 receptors,	

comprising	 GPCRs	 as	 well	 as	 olfactory	 receptors	 (ORs)	 and	 nuclear	 receptors	 23,	 play	 roles	 in	
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different	biochemical	and	signaling	pathways,	and	in	triggering	environment,	immune,	hormonal	

and	 neurological	 responses,	 which	 makes	 them	 highly	 interesting	 targets	 for	 therapeutical	

investigation.	 They	 often	 share	 common	 structural	 traits,	 allowing	 for	 their	 classification	 into	

protein	 families	or	 superfamilies.	 Transporters	 span	 the	 cell	membrane	with	 recurring	 specific	

membrane	 topologies,	 energy	 coupling	 mechanisms	 and	 substrate	 specificities.	 They	 are	

capable	 of	 transporting	 molecules	 and	 ions	 across	 the	 membrane,	 triggering	 environment-

driven	responses,	delivering	essential	nutrients	and	disposing	cellular	waste.	

MPs	 as	 defined	 in	 this	 review	 consist	 typically	 of	 several	 domains:	 extracellular	 (typically	

involved	 in	 cell-cell	 signaling	 and/or	 interactions),	 intracellular	 (performing	 a	 wide	 range	 of	

functions	 such	 as	 activating	 signaling	 pathways	 and	 anchoring	 cytoskeletal	 proteins)	 and	

intramembrane	 (such	 as	 pores	 and	 channels)	 24.	 TM	 proteins	 in	 general	 are	 amphipathic,	

meaning	 that	 they	 have	 different	 electronegativity	 and	 hydrophobicity	 profiles	 along	 their	

structure,	 allowing	 them	 to	 be	 both	 in	 contact	with	water	 (hydrophilic	 environment)	 and	 the	

membrane	(hydrophobic	environment).	The	structure	and	function	of	many	TM	proteins	depend	

on	Post	Translational	Modifications	 (PTM)	such	as	phosphorylation	and	glycosylation.	The	 two	

major	 recurrent	 protein	 structure	motifs	 in	MPs	 are	 TM	 α-helices	 25,	 repeatedly	 crossing	 the	

membranes	in	α-helical	bundles	and	β-strands	arranged	into	super-secondary	structures	known	

as	β	-barrels	26.		

3. Experimental structural determination of 
membrane proteins 
Despite	 their	 functional	 importance,	only	4.193	structures	of	membrane	proteins	 (or	 rather	of	

sub-domains)	can	be	found	among	the	131.485	determined	protein	structures	deposited	at	the	

PDB	7	(statistics	from	June	29th	2017)	(Figure	1).	This	means	that	less	than	1%	of	all	determined	

protein	 structures	 belong	 to	 MP	 families.	 This	 number	 includes	 multiple	 submissions	 of	 the	

same	protein	under	a	variety	of	experimental	conditions.	 In	contrast	 to	the	 limited	number	of	

available	 MP	 3D	 structures,	 there	 are	 199.322	 MP	 sequence	 clusters	 according	 to	 UniProt’s	

UniRef	(June	29th	2017).	
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Figure	1.	PDB	entries	by	year	of	deposition	(left)	and	cumulative	number	(right).	The	total	number	of	3D	structures	is	
131.485	as	of	June	29th	2017.	As	is	evident	in	the	left	plot	the	number	of	MP	3D	structures	(yellow)	being	deposited	
every	 year	 has	 plateaued	whereas	 the	 total	 number	 of	 entries	 has	 been	 steadily	 increasing	 since	 the	 early	 1990s.	
Source:	http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100	
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Two	major	 factors	can	explain	 this	discrepancy:	 i)	difficulties	 in	both	expression,	which	can	be	

done	in	several	organisms	27	but	mostly	in	Escherichia	coli	(E.	Coli)	28	and	purification	processes;	

ii)	challenges	associated	with	the	actual	determination	of	the	3D	structure	of	the	purified	MPs	

through	 NMR,	 X-ray	 crystallography	 and	 cryo-electron	 microscopy	 (the	 three	 most	 common	

methods	for	protein	structure	determination).	Concerning	the	first	point,	overexpression	of	MPs	

usually	 leads	 to	cytoplasmic	aggregates	and	changes	 in	 the	cell	metabolism	29.	A	 few	methods	

have	been	devised	to	avoid	cytotoxicity,	such	as	using	and	tuning	E.	coli	strains	that	are	not	as	

affected	 by	 the	 protein	 overexpression	 (a	 well-known	 example	 being	 “Walker	 strains”)	 30.	

Protein	 extraction	 and	purification	 can	 be	 troublesome	 as	well,	 since	 different	 conditions	 can	

lead	 to	different	outcomes	when	 it	 comes	 to	protein	 stability,	 state	and	viability	 for	 structure	

determination	 31	 (these	 conditions	 may	 come	 down	 to	 something	 as	 apparently	 simple	 as	

choosing	the	right	detergent	for	MP	isolation	32).		

3.1.	Structure	determination	

Structures	solved	by	X-ray	crystallography	are	often	the	result	of	a	high	amount	of	time	invested	

in	 fine	 tuning	 the	 best	 possible	 experimental	 conditions.	 After	 establishing	 good	 initial	

crystallization	conditions,	further	optimization	is	required	33,	namely	detergent	addition,	use	of	

different	 3D	 continuous	 lipid	 phases	 (allowing	 the	 protein	 to	 freely	 flow)	 34	 or	 antibody	

fragments	 to	 stabilize	 the	protein	 structure	 35.	 The	 latter	often	 results	 in	more	 stable	 crystals,	

but	 the	MP	 conformation	might	 differ	 from	 its	 native	 state	due	 to	 the	 additional	 interactions	

with	 the	 antibody	 fragments.	 Data	 collection	 and	 analysis	 can	 also	 be	 problematic,	 as	 the	

variability	 of	 crystals	 and	 their	 conditions	 (i.	 e.	 hydrophobic	 protein	 regions	 camouflaged	 by	

hydrophobic	 solvent,	 making	 it	 difficult	 to	 assess	 the	 transmembrane	 MP	 structure)	 might	

prevent	automated	and	stable	data	acquisition	and	processing	33.	Three	noteworthy	examples	to	

illustrate	the	challenges	associated	with	the	experimental	structure	determination	of	MPs	using	

X-ray	crystallography	are	the	aspartate	protease,	which	required	160.000	different	conditions	in	

order	to	achieve	good,	analyzable	crystals	36,	an	engineered	human	β2-adrenergic	GPCR,	which	

took	15	years	to	be	solved	37,	and	the	13	year-long	structure	determination	of	the	membrane-

integral	diacylglycerol	kinase38,	as	noted	by	Leman	et.	al.	in	their	2015	review	paper	9.	

Structure	determination	by	solution	NMR	spectroscopy	has	come	a	long	way	as	well,	but	some	

major	drawbacks	can	still	be	 identified:	The	 low	sensitivity,	the	size	 limitation	and	the	 intrinsic	

motions	of	the	system	under	 investigation.	When	 it	comes	specifically	to	MPs,	more	problems	

can	be	 identified,	such	as	sample	preparation	and	spectral	crowding	39.	Nonetheless,	NMR	has	

proven	 useful	 to	 study	 the	 dynamics	 (e.g.	 relative	 population	 and	 conformation	 of	 different	

states,	 exchange	 rates,	 internal	motions)	 of	MPs	 undergoing	 conformational	 changes,	 such	 as	
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channels,	 transporters	 and	 receptors	 40.	 Recently,	 new	 techniques	 such	 as	 solid	 state	 NMR	

(ssNMR)	have	provided	much	better	results	when	compared	to	liquid	phase	NMR,	as	there	is	no	

molecular	weight	 cap.	 However,	 this	 does	 not	 prevent	 spectral	 crowding.	 Compared	 to	 X-ray	

crystallography,	NMR,	and	in	particular	ssNMR,	has	the	great	advantage	that	is	allows	to	study	

MP	in	an	actual	membrane	environment	and	not	in	a	“detergent	simulation”	of	a	membrane	41.	

MP	 structure	 determination	 has	 also	 been	 conducted	 using	 paramagnetic	 tags,	 a	 technique	

focused	 on	 labelling	 MPs	 so	 that	 they	 can	 later	 be	 analyzed	 with	 NMR	 42	 and/or	 Electron	

Paramagnetic	 resonance	 (EPR)	 43.	 Recently,	 it	 has	 even	 been	 demonstrated	 that	MPs	 can	 be	

studied	by	ss	NMR	in	their	native	cellular	environment	44.	

Cryo-electron	microscopy	(Cryo-EM)	 is	a	 technique	that	has	recently	gained	a	 lot	of	popularity	

among	structural	biologists.	Its	main	aspect	is	the	imaging	of	radiation-sensitive	entities	–	cells,	

viruses	 and	 macromolecules	 –	 under	 cryogenic	 conditions	 using	 a	 transmission	 electron	

microscope	 45.	 It	 offers	 great	 advantages	 over	 X-ray	 crystallography	 as	 it	 does	 not	 require	

crystallization.	 Its	main	drawback	 is	 the	relatively	 low	resolution	 for	membrane	proteins	when	

compared	 to	X-ray	 structures.	 Some	 recent	examples	of	MP	 structures	 solved	by	 cryo-EM	are	

the	 transient	 receptor	 potential	 channel	 1	 at	 3.4	 Å	 46	 and	 the	 chloride	 conducting	 (CLC)	 ion	

channel	 at	 3.7	 Å	 47.	 A	 unified	 database	 for	 protein	 structures	 determined	 through	 cryo-EM	 –	

EMDataBank	–	is	publicly	available	at	http://emdatabank.org/index.html	48.		

3.2.	Interaction	with	the	Lipid	Environment	

When	 considering	 MPs,	 the	 lipid	 environment	 is	 essential	 in	 defining	 their	 structure	 and	

function,	often	significantly	changing	the	proteins’	properties.	While	most	MP	structures	are	not	

easily	 determined,	 it	 is	 useful	 to	 note	 that	 some	MPs	 can	 retain	 their	 structure	 and	 function	

while	in	soluble	form,	which	can	be	tested	through	their	expression	as	fusion	proteins	49.	When	

this	is	not	possible,	detergents	can	be	used	to	solubilize	the	expressed	proteins	50	by	extracting	

them	 from	 the	membrane,	 ideally	 without	 affecting	 their	 structure.	 Distinct	 detergents,	 with	

different	hydrophobicity	properties,	can	be	used	depending	on	the	protein’s	properties	51.	The	

choice	of	the	detergents	can	be	time	and	resource	consuming,	with	no	guaranteed	results	51-52.	

The	 use	 of	 detergents	 leads	 to	 micelle-like	 structure	 formation,	 which	 is	 not	 an	 accurate	

representation	of	the	bilayer	environment	and	can	result	 into	deformations	in	structure.	Some	

approaches	to	overcome	these	problems	include	the	inclusion	of	MPs	in	nanodiscs	–	detergent	

free	membrane-like	 structures	 stabilized	 by	 polymers	 or	 proteins,	which	 allow	 for	 liquid-state	

NMR	studies	53	–	and	the	lipid	cubic	phase	method	54.	The	latter	works	by	isolating	a	biological	

membrane	with	 the	 target	 protein	 and	 solubilizing	 it	 with	 detergent.	 The	 resulting	micelle	 is	
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purified	and	homogenized	with	monoacylglycerol,	and	contains	a	bilayer	with	the	target	protein	
55.	

Membrane	domains,	 such	as	 lipid	 rafts,	 can	 change	 significantly	 the	 structure	and	 function	of	

some	proteins	as	these	domains	have	different	properties	(i.e.	high	glycosphingolipids	content)	
5b,	56.	 In	 lipid	 rafts,	 solvent	 extraction	 can	 be	 less	 effective,	 since	 these	 are	more	 effective	 at	

retaining	MPs	than	other	lipid	membrane	domains.	This	works	either	by	surrounding	the	protein	

with	 a	 tighter	 and	more	ordered	 lipid	packing,	 or	 by	other	mechanisms,	 such	 as	 anchoring	 5c.	

Furthermore,	 even	 when	 not	 considering	 lipid	 rafts	 or	 lipid	 raft-like	 domains,	 other	 lipid	

structures	 and	molecular	 organizations	 (depending	 on	 factors	 such	 as	 temperature,	 pressure,	

lipid	composition	and	other	proteins)	can	influence	the	membrane	structure,	which,	in	turn,	can	

affect	membrane-inserted	proteins.	This	 is	usually	 referred	to	as	 lipid	polymorphism,	 to	which	

distinct	 lipid	 phases	 are	 associated,	 and	which	 has	 been	 observed	 to	 play	 a	 role	 in	 G-protein	

structure	and	function	5d.	

Some	 intrinsic	 protein	 properties	 such	 as	 hydrophobicity,	 van	 der	 Waals	 (vdW)	 interactions,	

prosthetic	groups,	among	others,	can	play	a	major	role	 in	the	 interaction	between	the	protein	

and	 the	 membrane.	 Hydrophobic	 mismatch,	 for	 instance,	 occurs	 when	 the	 thickness	 of	 the	

bilayer’s	hydrophobic	section	does	not	correlate	with	the	length	of	the	hydrophobic	residues	of	

the	membrane,	generating	a	mismatch,	as	characterized	for	example	by	calorimetry	57,	NMR	58	

and	fluorimetry	techniques	5a,	59.	Further	changes	in	the	membrane	can	occur	upon	insertion	and	

formation	of	dimers	or	even	high-order	oligomers,	for	example,	which	contributes	towards	the	

complexity	 of	 MP-membrane	 interactions.	 Other	 relevant	 changes	 are	 the	 insertion	 of	

peripheral	groups	(adding	a	step	to	the	usual	two	step	model	considered	for	MPs’	inclusion	and	

dimerization/oligomerization)	 such	 as	 prosthetic	 groups,	 more	 elaborate	 protein	 folding,	

generation	 of	 new	 binding	 surfaces	 or	 portioning	 of	 space	 away	 from	 the	 lipid.	 This	 can	 be	

studied	through	a	combination	of	kinetic	analysis	and	NMR		5a,	59b,	60.	

3.3.	Oligomerization	

Membrane	proteins	tend	to	form	dimers	(homo-	or	hetero-dimers)	or	higher-order	oligomers	by	

establishing	contacts	between	specific	TM	domains.	TM	Helix	Association	has	been	proposed	to	

occur	 in	 two	 steps	 (although,	 as	 mentioned	 above,	 other	 models	 have	 been	 proposed	 that	

consider	 additional	 steps	 60):	 first	 the	 insertion	 of	 helices	 in	 the	 membrane,	 then	 their	

association	 61.	Methods	 like	 Analytical	 Ultracentrifugation	 (AUC)	 59a,	 Thiol-Sulfide	 Exchange	 62,	

Forster	Resonance	Energy	Transfer	 (FRET)	 5h,	 Steric	Trapping	 5e	 and	Genetic	 Systems	 63	 can	be	

used	to	study	this	phenomenon.	Analytical	Ultracentrifugation	(AUC)	59a	provides	information	on	
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protein	association	strength	and	stability,	by	measuring	sedimentation	velocity	and	equilibrium	

(SV	 and	 SE,	 respectively)	 upon	 centrifugation.	 Thiol-Sulfide	 Exchange	 Method	 62	 enables	 the	

study	 of	 TM	 helix-helix	 association	 in	 a	 membrane-mimicking	 environment.	 This	 method	

promotes	 TM	 association	 by	 disulphide	 crosslinking,	 and	 allows	 the	 detection	 of	 dimer	

interfaces	 64.	 Since	cysteine	 residues	are	 labelled,	and	 the	experiment	 is	 conducted	 in	a	 redox	

environment,	 it	 provides	 information	 on	 TM	 helices	 orientation	 in	 membrane-mimicking	

environments.	FRET	5h	can	be	used	to	report	the	energetics	of	a	system	by	following	the	energy	

transfer	 between	 a	 donor	 and	 an	 acceptor	 molecule,	 which	 in	 turns	 provide	 distance	

information.	When	TM	helices	have	donor	and	acceptor	molecules,	 their	association	distances	

can	 be	 monitored,	 in	 membrane	 mimicking	 environments	 such	 as	 liposomes,	 providing	

information	about	the	conformational	changes	they	induce	in	each	other.	Steric	Trapping	5e	tests	

helix	 interaction	 strength	 by	 competitive	 binding	 with	 monovalent	 streptavidin	 (mSA).	 It	 can	

probe	 different	 levels	 of	 binding	 strength	 by	 using	 mutated	 mSA	 with	 weakened	 interaction	

propensity.	Genetic	 Systems	 63	 can	 inform	about	 TM	helix	 association	by	 introducing	 reporter	

genes.	When	a	dimer	is	formed,	a	DNA-binding	domain	activates	a	reporter	gene,	thus	reporting	

on	 the	dimerization.	As	an	alternative	and	to	complement	experimental	and	 lengthy	structure	

determination	methods,	new,	 less	 time-consuming	computational	approaches	 to	MP	structure	

predictions	have	been	developed	over	the	years,	which	will	be	reviewed	in	the	next	section.	

4. Computational structure prediction of 
MPs 
4.1.	Membrane	protein	structure	prediction	

Even	though	various	computational	methods	have	been	developed	for	the	prediction	of	soluble	

protein	 structures,	 most	 of	 these	 cannot	 be	 directly	 applied	 to	 MPs	 as	 the	 latter	 are	

incorporated	 in	 a	 very	 different	 environment.	 All	 available	 tools	 and	 algorithms	 had	 to	 be	

adapted,	 in	 particular	 the	 “solvent”	 representation	 has	 to	 be	 changed	 to	 create	 or	 mimic	 a	

hydrophobic	layer	within	a	hydrophilic	environment.	The	protocols	were	developed	and	tested	

on	 well-defined	 MP	 databases.	 To	 predict	 MP	 structure,	 it	 can	 be	 helpful	 to	 consider	

cytosolic/extracellular	 partner	 interactions,	 since	 their	 interacting	 motifs	 are	 easier	 to	 study	

than	 those	 responsible	 for	MP-MP	 interaction.	 By	 doing	 so,	 part	 of	 the	 cytosolic/extracellular	

regions	 of	 a	 protein	 can	 be	 determined,	 making	 it	 easier	 to	 identify	 membrane	 spans.	

Experimentally	determined	MP	structures	in	different	conformations	may	also	help	in	achieving	

more	 accurate	 predictions,	 as	 some	 predictions	might	 recreate	 only	 one	 conformation,	 while	
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important	 interactions	 are	 also	 taking	 place	 in	 other	 possible	 conformations.	 Furthermore,	

membrane	lipid	composition	should	be	considered	when	attempting	to	predict	the	structure	of	

a	MP	as	it	affects	the	conformation	and	activation	state	of	membrane-embedded	proteins	65.	

For	the	determination	of	tertiary	structures,	the	most	common	methods	are	de	novo	methods	

and	homology	modelling	66.	De	novo	methods	can	also	make	use	of	already	determined	features	

such	 as	 secondary	 structure,	 or	 TM	 spans	 and	 topology.	 Incorporating	 that	 information	 can	

drastically	 reduce	 the	 computational	 costs,	 which	 nonetheless	 remain	 too	 high	 for	 these	

methods	to	be	routinely	applied	on	most	cases	of	interest.	Sequence-based	homology	modeling	

provides	 the	 best	 results	 within	 a	 reasonable	 time-frame,	 but	 depends	 entirely	 on	 the	

availability	 of	 homologous	 proteins	 with	 resolved	 3D	 structures.	 The	 availability	 (or	 rather	

scarcity)	of	homologues	 is	particularly	relevant	for	MPs	since,	as	was	previously	discussed,	the	

number	of	 unique	MP	3D	 structures	 is	 significantly	 lower	 than	 that	of	 soluble	proteins.	 Some	

methods	have	been	developed	 specifically	 for	membrane	protein	modelling,	 namely	MEMOIR	

(Membrane	 protein	modelling	 pipeline),	 67	 which	 can	model	 the	 3D	 structure	 of	 a	 protein	 of	

known	sequence	provided	there	are	available	homologous	MPs	with	determined	3D	structures,	

and	MEDELLER	68,	which	has	provided	interesting	results	thanks	to	its	tailor-made	MP	structure	

prediction	–	a	sequential	prediction	of	protein	core	and	loops.	MEDELLER	will	not	generate	3D	

coordinates	 for	 regions	 for	 which	 the	 prediction	 is	 uncertain.	 This	 has	 the	 advantage	 of	

rendering	 the	 models	 more	 accurate	 but	 also	 slightly	 more	 incomplete.	 Structural	 homology	

modeling	 (threading)	 can	overcome	 the	 lack	of	homologues	 for	 given	 sequences,	however,	 as	

already	 mentioned,	 the	 small	 number	 of	 experimentally	 available	 MP	 structures	 can	 lead	 to	

insufficient	 sampling.	 An	 example	 of	 a	 pipeline	 using	 threading	 is	 TMFoldWeb	 69,	 a	 web	

implementation	of	 TMFoldRec	 70.	Upon	 topology	prediction,	 systematic	 sequence	 to	 structure	

alignment	 is	 performed,	 resulting	 in	 the	 selection	 of	 several	 templates	 which	 are	 ordered	

according	 to	energy	and	 reliability.	 	Rosetta	has	also	been	widely	applied	 to	MP	prediction	 71.	

The	 main	 improvement	 over	 soluble	 protein	 prediction	 was	 the	 implementation	 of	 a	 new	

membrane-specific	 version	 of	 the	 original	 Rosetta	 energy	 function,	 which	 considers	 the	

membrane	 environment	 as	 an	 additional	 variable	 next	 to	 amino	 acid	 identity,	 inter-residue	

distances	and	density	71.	Rosetta	has	been	used	to	reveal	important	structural	details	in	voltage	

sensor	MPs,	namely	the	K(v)1.2	and	KvAP	channels	72,	and	gain	 insight	 into	voltage-dependent	

gating	 73.	 Recently,	 RosettaMP	was	 developed	 as	 a	 general	 framework	 for	membrane	 protein	

modeling,	featuring	modeling	tools	developed	in	the	past	few	years	74.		

ML	methods	are	becoming	highly	popular	 in	biological	 fields	75,	and	TM	structure	prediction	 is	

no	 exception.	 ML	 is	 a	 general-purpose	 approach	 defined	 as	 the	 automatic	 extraction	 of	
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information	 from	 large	 amounts	 of	 data	 by	 efficient	 algorithms,	 to	 discover	 patterns	 and	

correlations	and	build	predictive	models.	ML	 involves	 the	 creation	of	 algorithms	 that	 improve	

their	own	performance	when	undertaking	a	certain	 task	based	on	 their	own	experience.	They	

should	 be	 fully	 automatic	 and	 off-the-shelf	 methods	 that	 process	 the	 available	 data	 and	

maximize	a	problem-dependent	performance	criterion	76.	They	aim	to	be	statistically	consistent,	

computationally	efficient,	and	simple	to	implement	and	interpret.	The	choice	of	a	ML	algorithm	

for	 a	 specific	 problem	 should	 be	made	 in	 light	 of	 its	 characteristics,	 deep	 familiarity	with	 the	

theoretical	foundations	of	the	field,	data	source	and	prediction	performance	77.		

PsiPred	78	 is	a	broadly	utilized	platform	for	secondary	structure	prediction	that	utilizes	Position	

Specific	 Scoring	 Matrix	 (PSSMs)	 as	 inputs	 to	 an	 Artificial	 Neural	 Network	 (ANN)	 approach.	

However,	 this	 is	 hardly	 specific	 for	 MPs.	 Adding	 hydrophobicity	 scales	 to	 the	 prediction	 of	

secondary	structures,	should	yield	better	results	79.	Initially,	the	utilized	scales	were	focused	on	

ranking	single	amino	acids	or	 small	peptides	 9.	More	 recent	advances	 in	hydrophobicity	 scales	

include	 the	 energy	 of	 amino	 acids	 in	 fully	 folded	 proteins,	 such	 as	 the	 hydrophobicity	 scale	

developed	by	White	and	von	Heijne	80,	which	was	shown	to	deliver	the	best	results	along	with	

scales	such	as	the	Unified	Hydrophobicity	Scale	9.	Other	possible	features	to	take	 into	account	

are	the	regions	of	the	protein	that	actually	face	the	membrane,	cytosolic	or	extracellular	sides,	

and	 which	 are	 the	 motifs	 responsible	 for	 interactions,	 whether	 they	 are	 membrane-protein	

interactions	or	secondary	structure-secondary	structure	interactions	81.		

MP	 topology	 prediction	 by	ML	 techniques	 has	 benefited	 from	 the	 recent	 Big	 Data	 explosion.		

When	 applied	 to	 the	 study	 of	MP,	 these	 techniques	 progressively	 increase	 in	 complexity	 and	

difficulty,	beginning	with	the	prediction	of	secondary	structure,	followed	by	that	of	3D	domains,	

including	 super-secondary	 structures.	 They	are	also	used	 to	predict	 the	TM	protein	 segments,	

nowadays	 often	making	 use	 of	 direct	 residue	 coevolution	 features,	which	 are	 then	 translated	

into	residue-residue	contacts	82,83,	or	to	characterize	proteins	as	MPs	from	genomic	sequences	–	

such	 as	 the	 work	 of	 Gromiha	 and	 Suwa	 for	 outer	 membrane	 proteins	 (OMPs)	 84.	 Predicting	

which	 MP	 regions	 are	 α-helixes	 has	 also	 benefited	 from	 ML	 methods	 85.	 Martelli	 et	 al.	 86	

developed	 in	 2003	 ENSEMBLE,	 a	 topological	 predictor	 for	 all-α	 MPs.	 Their	 method	 can	

determine	how	far	is	an	α-helix	in	the	membrane	through	a	combination	of	two	Hidden	Markov	

Models	 (HMM)	and	one	ANN	 in	what	 is	 known	as	an	ensemble	approach	 that	 combines	both	

methods.	 Although	 the	 individual	 methods	 were	 also	 tested	 separately	 on	 a	 dataset	 of	 59	

known,	 well	 resolved	 MPs,	 the	 final	 approach	 is	 an	 average	 of	 the	 scores	 coming	 from	 the	

different	methods.	With	a	slight	improvement	in	predictive	power,	TMSEG	87	was	developed	in	

2016.	 It	 first	 characterizes	 the	 protein	 as	 soluble	 or	 transmembrane,	 and	 in	 the	 latter	 case	
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predicts	 its	 topology.	Based	on	 sequences	and	PSSM	scores,	 this	method	utilizes	 two	Random	

Forests	(RFs)	and	one	Neural	Network	(NN)	in	a	four	step	process	consisting	of:	i)	a	per-residue	

analysis;	ii)	a	per-protein	analysis;	iii)	a	refinement	method	and,	finally,	iv)	a	topology	prediction	

step.	The	first	three	steps	are	considered	by	the	authors	as	filters	that	categorize	the	protein	as	

soluble	or	TM,	while	the	last	is	the	actual	topology	predictor.	Whereas	the	previously	addressed	

methods	focus	on	α-helices,	BETAWARE	88	has	a	bolder	task:	Detection	of	TM	β-barrel	proteins	

and	topology	assignment.	It	combines	an	extreme	learning	machine,	a	type	of	NN	with	a	single	

hidden	layer	that	assigns	the	weights	between	input	and	hidden	layers	in	a	single	training	step,	

as	one	would	do	with	a	linear	model,	89	to	decide	whether	a	protein	is	a	TM	β-barrel	or	not.	If	

this	is	the	case,	a	Grammatical	Restrained	Hidden	Conditional	Random	Field	90	(GRHCRF)	model	

predicts	 the	 topology	 of	 the	 protein.	 This	 uses	 a	 type	 of	 Conditional	 Random	 Field	 91	 (CRF)	

model.	Such	models	have	become	popular	 in	biological	sequence	analysis	as	methods	that	can	

make	 stepwise	 predictions	 of	 MP	 structure,	 just	 as	 HMMs.	 Other	 tools	 have	 also	 been	

developed	for	the	prediction	of	β-barrels	and	their	membrane	span,	such	as	the	one	by	Ou	et	al.	
92,	which	 uses	 sequence	 information	 and	 a	 Radial	 Basis	 Function	 (RBF)	 network	 –	 an	 artificial	

neural	network	that	uses	radial	basis	functions	as	activating	functions	for	individual	neurons	93.	

TOPCONS	94,	another	method	for	the	identification	of	MP	topology	works	both	as	a	meta-server	

and	 as	 a	 ML	 approach.	 It	 combines	 the	 topology	 profiles	 from	 several	 other	 MP	 prediction	

platforms	 and	 feeds	 these	 outputs	 to	 a	 HMM,	 which	 creates	 a	 final	 output.	 Its	 key	 aspect,	

compared	 to	other	methods,	 is	 its	 ability	 to	distinguish	MPs	 from	 signaling	peptides.	Merging	

several	 of	 the	 previously	 mentioned	 methods,	 MemPype	 95	 is	 a	 Python	 pipeline	 for	 the	

prediction	of	signal	peptides,	based	on	homology	and	other	computational	methods.	

A	few	methods	managed	to	combine	various	sources	of	information	to	predict	TM	α-helices	and	

α-helical	 bundles,	 as	 well	 as	 β-barrels.	 OCTOPUS	 96	 may	 be	 one	 of	 the	 most	 complex	 ML	

approaches	for	TM	α-helical	spans,	as	 it	combines	four	different	ANNs	–	membrane,	 interface,	

loops	 and	 globular	 residues	 –	 through	 a	 HMM.	 HMMs	 consist	 of	 a	 set	 of	 sequential	 states,	

whose	 progress	 is	 dependent	 on	 the	 confirmation	 of	 the	 current	 state	 97.	 TMs	 were	 also	

predicted	using	Support-Vector-Machine	 (SVM)	 -	Memsat-SVM	98.	BOCTOPUS	 99,	developed	by	

the	same	group	as	OCTOPUS,	allows	to	predict	β-barrels.	BOCTOPUS	combines	local	predictions	

through	SVMs	and	a	HMM	to	combine	all	local	SVM	predictions.	

Another	determining	factor	when	predicting	MP	structure	is	the	prediction	of	membrane-facing	

regions	and	interaction	motifs.	LIPS	100	for	example	takes	into	account	hydrophobicity	scales	and	

is	able	 to	predict	 the	orientation	of	helices	and	amino	acids.	PRIMSIPLR	 101	 is	another	method	

that	operates	differently,	namely	through	the	training	of	the	algorithm	with	several	helical	MPs	
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of	known	structure.	To	predict	 interaction	motifs,	some	approaches	for	helical	MPs	have	been	

created,	 such	 as	MemBrain	 102	 –	 a	ML	 trained	 server	 that	 is,	 so	 far,	 possibly	 one	 of	 the	 best	

ranking	systems	of	its	kind.	

Some	 peculiar	MP	 secondary	 structures	 are	 still	 not	 correctly	 predicted	when	 applying	 these	

methods.	 According	 to	 Leman	 et	 al.	 9,	 these	 are	 usually	 re-entrant	 helices	 (sometimes	

mentioned	 as	 “P-loops”),	 half-helices	 (α-helices	 that	 do	 not	 span	 the	 entire	 membrane),	

amphipathic	helices	(α-helices	that	lie	on	the	surface	of	the	membrane,	with	both	hydrophobic	

and	hydrophilic	regions),	TM	helix	kinks	and	β-barrels	whose	composition	 is	made	up	by	more	

than	one	chain.	A	good	example	of	software	able	to	deal	with	more	complex	proteins	is	TMkink	
103,	whose	main	aim	is	to	determine	helix	kinks.	

4.2.	Membrane	Proteins	Databases	

Genome-wide	 annotation,	 relating	 gene	 expression	 with	 protein	 expression	 and	 activity,	 is	 a	

useful	 resource	 that	 underlies	 many	 computational	 studies.	 Regarding	 the	 original	 human	

genome	 sequencing	 project,	 it	 was	 estimated	 that	 around	 20%	 of	 the	 genes	 coded	 for	

membrane	proteins	 104.	 For	MPs	 it	 becomes	 relevant	 to	annotate	not	only	 the	overall	 protein	

associated-genome,	 but	 also	 the	 secondary	 and	 tertiary	 structures	 formed,	 so	 that	 this	

information	 can	 be	 further	 used	 for	 application	 of	 other	 bioinformatics	 methods	 105.	 THGS	

(Transmembrane	Helices	 in	Genome	Sequences)	 106	 is	 an	example	of	 structural	 annotation	 for	

membrane	 proteins,	 focusing	 on	 transmembrane	 helices.	 The	 Membrane	 Protein	 Hub,	 for	

instance,	used	 sequence	annotation	 to	predict	human	α-helical	 transmembrane	proteome	 107.	

Regarding	 β-barrels	 MPs,	 OMPdb	 (Outer	 Membrane	 Protein	 database)	 108	 focuses	 on	 outer-

membrane	proteins	from	Gram-negative	bacteria,	registering	information	on	both	structure	and	

function,	further	organizing	the	entries	by	families,	regarding	evolutionary	information.		

As	previously	discussed,	both	 the	experimental	and	computational	 structural	determination	of	

MPs	 present	 unique	 challenges	 that	 require	 specialized	 approaches.	 Additionally,	 the	

community	 has	 a	 need	 for	 databases	 that	 specialize	 in	 the	 collection,	 validation,	 analysis	 and	

publication	 of	 3D	 MP	 structures.	 Some	 of	 these	 databases	 are	 of	 general	 interest	 as	 their	

purpose	is	curation	and	storage	of	3D	structures.	Examples	include	MPs	of	known	3D	STRUCture	

(mpstruc)	and	MPNMR	(MPs	of	known	structure	determined	by	NMR).	MPs	Molecular	Dynamics	

(MemProtMD)	109	is	a	meta-database	which	emphasizes	analysis	and	presents	the	results	of	MD	

simulations	 of	 some	 of	 the	 proteins	 in	mpstruc.	 Finally,	 there	 are	 even	 databases	 of	 specific	

interest	 such	 as	 the	 G-Protein	 Coupled	 Receptor	 Database	 (GPCRdb)	 110,	 which	 stores	 and	

analyses	data	pertinent	to	GPCRs.	
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Mpstruc	is	the	largest	repository	of	unique	MP	structures.	As	of	June	29th	2017	it	contains	702	

unique	entries.	It	is	a	manually	curated	database	and	its	entries	serve	as	the	foundation	for	the	

identification	 of	 MPs	 in	 the	 PDB.	 Entries	 are	 categorized	 by	 their	 biological	 features,	 their	

novelty	 and	 experimental	 conditions	 under	 which	 the	 structure	 they	 represent	 were	

determined.	More	specifically,	biological	classification	takes	into	account	he	structural	elements	

of	 each	 protein	 and	 the	 way	 they	 are	 inserted	 in	 the	 membrane,	 in	 order	 to	 categorize	 the	

protein	into	one	of	the	following	categories:	i)	Monotopic	MPs;	ii)	β-Barrel	TM	proteins	and	iii)	

α−Helical	TM	proteins.	As	implied	by	its	the	name,	proteins	in	categories	ii)	and	iii)	differ	from	

those	 in	 category	 i)	 since	 ii)	 and	 iii)	 are	 embedded	 in	 the	membrane	whereas	 i)	 has	only	one	

domain	inserted	in	the	membrane.	All	proteins	are	grouped	in	protein	families	regardless	of	the	

category	 they	belong	 to.	As	 for	 the	novelty	 and	experimental	 conditions	of	 an	mpstruc	entry,	

they	are	distributed	across	three	categories:	i)	unique/primary	entries,	ii)	redundant/secondary	

entries,	and	iii)	related	entries.	A	unique	entry	represents	a	protein	that	has	been	identified	as	a	

MP	by	the	curators	of	the	database	and	no	single	structure	of	this	MP	is	available.	The	unique	

entries	 can	 contain	 duplicates	 when	 multiple	 structures	 for	 the	 same	 protein	 from	 different	

organisms	are	available.	 If,	on	the	other	hand,	this	 is	not	the	first	structure	that	 is	solved	for	a	

protein	family	and	organism,	the	entry	will	be	characterized	as	secondary	relative	to	the	unique	

structure.	These	entries	always	represent	proteins	from	the	same	organism	as	an	unique	entry,	

and	 they	 often	 showcase	 the	 structure	 of	 the	 unique	 protein	 under	 different	 experimental	

conditions	or	with	different	binding	partners.	Finally,	 the	related	entries	are	always	associated	

with	 a	 unique	 or	 secondary	 entry	 and	 represent	 the	 structure	 of	 the	 associated	 entry	 under	

different	 experimental	 conditions,	 often	 originating	 from	 the	 same	 publication.	 Figure	 2	

illustrates	 the	 breakdown	 of	 the	 various	 types	 of	 entries	 and	 of	 the	 proteins	 they	 refer	 to.	

Regardless	 of	 the	 entry	 type,	 helical	 proteins	 are	 the	 most	 popular	 type.	 As	 mentioned,	 the	

unique	 entries	 set	 consists	 of	 702	 proteins,	 516	 of	 which	 are	α-Helical,	 139	 β-Barrel	 and	 47	

Monotopic.	
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Figure	 2.	Number	 of	 entries	 in	mpstruc	 (http://blanco.biomol.uci.edu/mpstruc/)	 broken	down	by	 protein	 type	 and	
grouped	by	entry	type.	The	α-Helical	proteins	are,	by	far,	the	most	populated	group	(~78%),	followed	by	the	β-Barrel	
ones	 (~16%)	 and	 the	Monotopic	 ones	 at	 the	bottom	 (~6%).	 The	most	 common	 type	of	 entry	 are	 the	 related	ones	
(~44%),	followed	by	the	uniques	(~31%)	and	the	secondary	(~25%).	

	

PDBTM	 111	 is	 an	 automatically	 constructed	 MP	 database.	 Several	 protein	 structures	 were	

retrieved	from	the	PDB	and	subjected	to	the	TMDET	algorithm	112	for	membrane	prediction.	This	

information	 was	 used	 to	 build	 PDBTM,	 which	 comprises	 to	 date	 3.227	 proteins	 –	 2.848	 α-

proteins	and	366	β-proteins	(accessed	 in	June	29th	of	2017)	–	and	acts	as	a	basic	repository	of	

membrane	proteins	111.	ExTopoDB	113	is	a	comprehensive	database	with	various	information	on	

several	 trans-MPs	 topology.	 The	 topology	 of	 a	 protein	 is	 the	 simplified	 description	 of	 the	

primary	structure	of	a	given	secondary	structure,	as	well	as	the	latter’s	relative	spatial	position	

and	 orientations	 114.	 Another	 related	 database	 is	 the	 Orientations	 of	 Proteins	 in	 Membrane	

(OPM)	 database,	 featuring	 all	 unique	MPs	 or	 in	 the	 case	 of	MP	 families	with	multiple	 solved	

structures,	 one	 representative	 structure	per	 family,	 some	peripheral	 proteins	 and	membrane-

active	 peptides,	 with	 adjustable	 membrane	 thickness	 115.	 The	 MemProtMD	 database	 is	 an	

analytical	pipeline	which	embeds	MPs	 in	 lipid	bilayer	simulations	and	stores	and	publishes	the	

results	 along	 with	 instructions	 that	 allow	 independent	 researchers	 to	 set	 up	 their	 own	

simulations.	The	pipeline	consists	of	identifying	MPs	in	the	PDB,	converting	the	coordinates	into	
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a	coarse-grained	model	(see	the	Molecular	Dynamics	of	Membrane	Proteins	subsection)	adding	

membrane	lipids	and	solvent	to	the	system	and	simulating	it	for	100	ns	allowing	the	membrane	

to	 self-assemble	 in	 a	 bilayer,	 and	 followed	 by	 a	 900	 ns	 production	 run	 in	 order	 to	 study	 the	

membrane	dynamics	 for	a	 total	simulation	time	of	1	μs.	The	systems	are	then	converted	back	

into	 atomistic	 detail	 and	 are	 analyzed.	 All	 TM	 proteins	 found	 in	 mpstruc	 can	 be	 found	 in	

MemProtMD	 as	 well.	 There	 are	 also	 specialized	 databases	 that	 gather	 information	 regarding	

important	 biological	 targets	 such	 as	 GPCRs	 and	 Transporters.	 	 GPCRdb	 110a,	 GPCR	 Consortium	

and	 GPCR	 Network	 have	made	 important	 contributions	 to	 the	 cataloguing	 of	 known	 data	 on	

GPCRs	and	their	understanding.	In	particular,	GPCR	Consortium	aggregates	researchers	and	data	

on	 the	 matter,	 in	 partnerships	 with	 both	 GPCRdb	 and	 GCPR	 Network.	 GPCRdb	 provides	

information	 on	 specific	 GPCRs,	 their	 structures,	 known	 mutations,	 homologues,	 ligands	 and	

phylogenetic	 relationships.	 	 It	 contains	 46	 unique	 crystalized	 entries	 (statistics	 of	 June	 29th	

2017),	varying	in	resolution	between	1.7	and	7.7	Å,	covering	various	receptor	types	as	shown	in	

Figure	3.	Table	SI-1	contains	all	the	aforementioned	databases	with	a	short	description	and	their	

website.	

	

	

Figure	3.	GPCRs	available	at	GPCRdb	(at	June	29th	2017).	
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GPCRdb	also	offers	other	services:	

i) GPCRM:	Generation	of	GPCR	models	using	the	available	template	structures;	

ii) scPDB:	using	structure-based	approaches,	PDB	structures	are	used	to	 identify	

binding	sites	on	the	GPCR	suitable	for	drug-like	ligand	docking;	

iii) GPCR-SSFE:	 A	 GPCR	 –	 Sequence-Structure-Feature-Extractor	 –	 provides	

template	 suggestions	 and	 homology	 models	 of	 the	 helical	 regions	 of	 >5000	

family	A	GPCRs;	

iv) GOMoDo:	 Automatic	 homology	 modeling	 and	 ligand	 docking	 of	 GPCR	

receptors;	

v) GPCR-ModSim:	 Generation	 of	 homology-based	 3D	 models	 using	 GPCR	

sequences	and	further	model	equilibration	using	MD	simulations.	

Linked	to	GPCRdb,	GPCR-OKB	116(G-Protein	Coupled	Receptor	Oligomerization	Knowledge	Base)	

provides	 detailed	 information	 on	 GPCR	 oligomerization.	 GPCR-I-TASSER	 117	 predicts	 GPCR	

structure	with	the	aid	of	a	software	program	(LOMETS	118)	responsible	for	identifying	a	suitable	

template.	It	assembles	full-length	models	through	a	template-based	fragment	approach.	

The	 Transporter	 Classification	 Database	 (TCDB)	 is	 another	 important	 database	 that	 gathers	

functional	and	phylogenetic	information	on	transporters.	It	features	943	transporter	structures	

from	well-defined	biological	systems	(Figure	4,	accessed	in	June	29th	of	2017).	TransportDB	119	is	

another	example	of	a	comprehensive	transporter	database;	however,	 it	has	not	been	updated	

since	2013.		
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Figure	4.	TCDB	information,	regarding	transporters	(at	February	29th	of	2017),	in	http://www.tcdb.org/.	

	

4.3.	Molecular	Dynamics	of	Membrane	Proteins	

Molecular	dynamics	(MD)	simulations	have	benefited	greatly	from	advances	in	recent	years	and	

proven	a	valuable	resource	for	the	study	of	MPs.	Various	force	fields	have	been	developed	for	

membranes	 such	 as:	 CHARMM36	 120	 (implemented	 in	 the	 Chemistry	 and	 HARvard	

Macromolecular	Mechanics	 –	 CHARMM	–	 software)	 and	 AMBER	 Lipid14	 (implemented	 the	 in	

Assisted	Model	Building	with	Energy	Refinement	–	AMBER	–	software)	121.	The	main	difference	

when	compared	to	other	force	fields	 is	the	number	of	supported	acyl	chains,	head	groups	and	

lipids.	For	example,	Lipid14	 features	12	acyl	chains,	9	head	groups	and	8	 lipids,	which	enables	

the	 creation	 of	 a	 wide	 array	 of	 molecules.	 Although	 constructing	 these	 systems	 might	 seem	

challenging,	some	platforms	provide	simple	solutions,	such	as	the	CHARMM-GUI	122,	QwikMD	123	

and	 High	 Throughput	 Molecular	 Dynamics	 (HTMD)	 75f.	 CHARMM-GUI	 is	 an	 online	 webserver	

(http://www.charmm-gui.org/),	 which	 takes	 input	 from	 a	 number	 of	 MD	 software	 programs	

such	as	AMBER	121	or	GROMACS	124	and	constructs	a	simulation-ready	system	with	a	membrane-

embedded	 protein.	 QwikMD	 and	 HTMD	 are	 standalone	 software	 programs	 which	 offer	

accessible	 interfaces	 for	both	beginners	and	experts	 to	perform	several	MD	tasks,	 such	as	 the	

insertion	 of	 a	 protein	 in	 the	membrane,	 among	 others.	When	 performing	MD	 simulations	 of	
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membrane-inserted	 proteins,	 protein-lipid	 interactions	 are	 an	 important	 factor	 to	 consider	 as	

they	 can	 be	 greatly	 affected	 and	 should	 be	 carefully	 modeled.	 For	 example,	 hydrophobic	

mismatch	 125	may	 produce	 profound	modifications	 in	 the	 system:	When	 the	 bilayer	 is	 thicker	

than	the	hydrophobic	region	of	a	TM	protein,	hydrophobic	residues	exposure	to	water	leads	to	

an	energy	penalty,	which	causes	an	increase	in	the	membrane	thickness	and	a	slight	tilt	of	the	

protein.	 When	 the	 opposite	 occurs,	 the	 membrane	 is	 compressed	 to	 prevent	 interaction	

between	hydrophilic	residues	and	the	membrane.	

The	membrane	can	be	represented	 in	MD	in	two	ways:	 i)	explicitly	(all-atom	or	coarse-grained	

(CG))	 and	 ii)	 implicitly.	 All-atom	 models	 represent	 the	 membrane	 explicitly	 with	 as	 little	

approximations	as	possible.	One	of	 the	 first	models	was	gramicidin	 in	a	DMPC	bilayer	back	 in	

1994	126.	The	system	comprised	4390	atoms	and	the	simulation	was	run	for	0.5	ns.	The	access	to	

powerful	 computational	 resources	 and	 advanced	 sampling	 techniques	 allow	 now	 longer	 MD	

simulations	for	membrane	protein	systems	(reaching	the	microsecond	timescale	in	some	cases)	
75l,	 127.	 Such	 long	 simulations	 allow	 observing	 and	 characterizing	 interesting	 mechanistic	

phenomena.	Just	to	name	a	few,	Ogata	et	al.	128	were	able	to	determine	that	transfer	of	oxygen,	

water	 and	 protons	 across	 the	 thylakoid	 membrane	 by	 the	 photosystem	 II	 is	 actually	 done	

through	 different	 pathways	 129.	 Allostery	 is	 an	 important	 phenomenon	 which	 gives	 rise	 to	

complex	 intramolecular	mechanisms	 and	 is	 often	 used	 as	 an	 information	 transfer	mechanism	

across	the	membrane.	MD	can	also	be	used	to	study	relevant	phenomena	and	aspects	of	some	

techniques,	 such	 as	 x-ray	 crystallography:	 For	 example,	 a	 2016	 study	 showed	 that	 small	

detergents	at	high	concentration	can	bind	to	important	protein	sites,	something	which	does	not	

happen	 with	 larger	 detergents	 130.	 This	 was	 made	 possible	 by	 making	 use	 of	 a	 particular	

technique,	 accelerated	MD,	which	 allows	 for	 better	 search	 of	 the	 conformational	 space	 131.	 A	

similar	advanced	sampling	method	was	applied	to	determine	binding	site	characteristics	and	the	

differential	 interaction	 of	 agonists,	 partial	 agonists	 and	 antagonists	 in	 the	 M3	 muscarinic	

receptor	 132.	 To	 reduce	 the	 computational	 expense	 associated	 with	 all-atom	models,	 Markov	

models	 can	 be	 integrated.	 Such	 models	 assume	 that	 only	 the	 current	 state	 is	 important	 for	

future	states.	This	requires	an	initial	dimensionality	reduction	(which	eliminates	redundant	data	

on	atom	coordinates)	 and	grouping	 similar	 kinetic	modes	 133.	 The	Markov	model	 itself	 is	 then	

able	to	project	longer	timescales	from	shorter	simulations	134.	This	combination	allowed	Razavi	

et	 al.	 to	 determine	 the	 most	 likely	 sodium	 release	 pathways	 for	 the	 human	 dopamine	

transporter	(hDAT)	triggered	by	hydration	of	the	Na2	(at	sodium	binding	sites	of	hDAT)		135.	As	

advanced	 sampling	 techniques	 in	MD	have	 become	 very	 relevant	 for	 the	 study	 of	membrane	

proteins	we	will	 review	 a	 few	 here	 (for	 a	more	 thorough	 description	 refer	 to	Mori	 et	 al.	 75l).	

Replica	 exchange	MD	 (REMD)	 is	 an	 advanced	 increased	 sampling	 technique	 in	 which	 several	
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replicas	of	the	system	are	sampled	in	parallel,	each	with	a	different	temperature	or	Hamiltonian.	

Exchange	 between	 different	 replicas	 can	 take	 place	 if	 the	 Metropolis-Hasting	 criterion	 is	

satisfied.	 REMD	 has	 been	 applied	 to	 study	 the	 insertion	 mechanism	 of	 α-helical	 peptides,	

suggesting	 that	 folding	 is	 more	 likely	 to	 happen	 inside	 the	 membrane	 than	 on	 the	

membrane/water	 interface	 as	 previously	 thought	 137.	 Steered	 MD	 (SMD),	 a	 technique	 which	

uses	 external	 forces	 to	drive	 the	 simulation,	was	used	 to	determine	 the	 gating	mechanism	of	

MscL	–	a	mechanosensitive	channel	of	large	conductance	–	by	applying	external	forces	of	35-70	

pN	 to	 residues	 near	 the	 membrane-water	 interface	 138.	 Metadynamics	 is	 another	 advanced	

sampling	technique	used	to	calculate	several	state	functions	–	such	as	free	energy	–	and	it	works	

essentially	 by	 adding	 positive	 Gaussian	 potential	 to	 already	 searched	 spaces.	 By	 doing	 so,	 it	

prevents	 the	 system	 from	 sampling	 previously	 sampled	 conformations,	 allowing	 a	 faster	 and	

more	 efficient	 description	 of	 the	 full	 energetic	 landscape	 139.	 One	 of	 its	 application	 to	 MP	

systems	was	the	characterization	of		ion	permeation	through	ion	channels	140.		

Despite	the	improvement	observed	in	both	harware	and	software	for	explicit	MD	simulations	of	

MPs,	 the	 time-	 and	 length-scales	 are	 still	 prohibitive	 for	 a	 large	 number	 of	 systems.	 One	

approach	 that	has	been	gathering	 interest	 in	 recent	 years	 is	 the	use	of	CG	models.	 These	are	

able	 to	 represent	 lipids	 (and	 also	 proteins)	 by	 approximating	 ensembles	 of	 atoms	 as	 single	

particles.	MARTINI	141	is	one	of	the	best	known	CG	force	fields.	It	uses	a	“four-to-one	mapping”,	

which	considers	four	heavy	atoms	and	their	respective	hydrogen	atoms	as	a	single	particle.	By	

doing	 so,	 it	 greatly	 reduces	 the	 computational	 cost,	 allowing	 for	 longer	 MD	 simulations.	

However,	MARTINI	 fixes	 protein	 secondary	 structure,	which	 prevents	 this	method	 from	being	

able	 to	 predict	 protein	 structure	 or	 detect	 conformational	 changes.	 As	 such,	 it	 can	

preferenciably	 be	 used	 as	 a	 tool	 for	 the	 prediction	 of	 the	 oligomerization	 and	 interactions	 of	

MPs.	An	interesting	case	study	on	the	effect	of	cell	membrane’s	curvature	on	protein	and	lipid	

dynamics	for	the	F1Fo-ATP	synthase	revealed	that	the	energetic	cost	of	membrane	deformation	

can	 be	 reduced	 through	 side-by-side	 association	 of	multiple	 dimers	 142.	 Another	 example	was	

the	 study	 of	 β-barrel	 outer	 MPs	 turnover	 in	 E.	 coli,	 which	 led	 to	 the	 conclusion	 that	 an	

accumulation	of	proteins	occurs	in	the	E.	coli	poles	due	to	a	slow	down	of	their	diffusion	through	

the	 formation	 of	 homologous	 and	 heterologous	 assemblies,	 mostly	 mediated	 by	 aromatic	

residues	 143.	 An	 interesting	 study	 on	 the	 formation	 of	 Ras	 nanoclusters	 in	 extensive	 CG	

simulations	revealed	that	these	nanoclusters	 influence	the	membrane	curvature	and	that	their	

clustering	depends	on	palmitoylation	and	farnesylation	144.	CG	simulations	were	also	performed	

to	 observe	 Ras	 clusters	 and	 their	 effect	 on	 the	 formation	 of	 cholesterol-rich	 domains	 in	 the	

membrane	 145.	All-atom	and	CG	models	can	also	be	combined	as,	 for	example,	 in	 the	study	of	
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the	binding	site	of	phosphatidylinositol	4,5-biphosphate	(PIP2)	in	Kir2.2:	PIP2	was	found	to	have	

conserved	binding	sites	in	receptor	tyrosine	kinases,	which	are	constituted	by	basic	amino	acids	

responsible	for	the	clustering	of	PIP2	in	juxtamembrane	regions	146.		

Next	to	the	explicit	models	discussed	above,	the	membrane	can	also	be	represented	implicitly,	

by	some	continuum	model	as	a	mathematical	function,	with	the	remaining	of	the	system	–	the	

proteins	–	 represented	at	an	all–atom	 level.	This	allows	 to	greatly	 increase	 the	computational	

efficiency.	 When	 using	 an	 implicit	 solvation	 model,	 the	 membrane	 is	 modeled	 based	 on	 its	

solvent	free	energy,	which	depends	on	the	free	energies	of	(i)	the	electrostatic	solute-solute	and	

solute-solvent	 interactions,	 (ii)	 the	 cost	 of	 cavity	 formation	 for	 protein	 insertion	 in	 the	

membrane,	 and	 (iii)	 the	 solute-solvent	 vdW	 interactions.	 Simulating	membranes	 implicitly	 can	

be	 done	 through	 equations	 such	 as	 the	 Poisson-Boltzmann	 (PB)	 equation	 147.	 This	 equation	 is	

able	to	describe	the	electrochemical	potential	of	a	solution	perpendicular	to	a	charged	surface	

(a	membrane),	which	can	be	hard	to	implement	in	MD	simulations	due	to	its	high	computational	

costs	 148.	 As	 such,	 approximations	 such	 as	 the	 Generalized	 Born	 (GB)	 method	 have	 been	

considered	 to	 reproduce	 the	 PB	 model	 149.	 GB	 with	 a	 simple	 SWitching	 (GBSW)	 150	 is	 an	

implementation	of	a	GB	method	in	the	CHARMM	software	120,	151.	It	considers	identical	dielectric	

constants	 for	 the	 membrane	 and	 the	 protein	 (represented	 as	 the	 solute),	 and	 a	 smoothing	

function	 that	 models	 membrane-water	 and	 solute-water	 interactions.	 The	 membrane	 is	

represented	as	a	 solvent-inaccessible	 infinite	planar	 low-dielectric	 slab.	A	 similar	example	of	a	

GB	 model	 for	 membranes	 is	 the	 Heterogenous	 Dielectric	 Generalized	 Born	 (HDGB)	 method,	

which	considers	the	membrane	as	several	layers	with	different	dielectric	constants	152.		

Initially	 these	 models	 represented	 the	 protein	 as	 cylinders	 or	 point	 particles	 inside	 the	

membrane	153,	which	is	a	rather	poor	representation	of	a	MP.		Since	then	several	other	aspects	

have	 been	 incorporated,	 namely	 considering	 individual	 α-helices,	 the	 hydrophobic	 effect,	 the	

large	 free	 energy	 penalty	 associated	 with	 peptide	 desolvation	 154,	 hydrodynamic	 effects	 (as	

reviewed	on	155),	or	the	macroscopic	strain	energy	of	the	membrane	156.	Different	mathematical	

models	 have	 been	 implemented,	 including	 the	 already	mentioned	 PB	model	 157,	 with	 a	 wide	

range	of	applications,	such	as	studying	the	interaction	of	peptides	and	ions	with	the	membrane	
158.	For	example,	Argudo	et	al.153c	have	used	a	model	that	takes	into	account	surface	area,	mean	

curvature,	Gaussian	curvature,	preferred	curvature,	and	bending	and	Gaussian	moduli	159	of	the	

membrane	as	well	as	its	compression	160	and	lipid	tilt.		The	latter	considers	that	not	all	lipids	are	

perfectly	oriented	according	to	the	bilayer’s	normal	vector	161.	The	validity	of	implicit	models	has	

been	 assessed	 by	 comparing	 them	 with	 atomistic	 models.	 One	 study	 that	 looked	 into	 the	

epidermal	 growth	 factor	 receptor	 dimerization	 in	 the	 membrane	 concluded	 that	 atomistic	
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Monte	Carlo	simulations	yield	dimerization	rates	that	could	differ	by	two	orders	of	magnitude	

compared	to	simple	partial	differential	equations	162.	Grand	Cannonical	Monte	Carlo	(GCMC),	a	

technique	yielding	promising	results	when	used	in	MP	simulations,	allows	to	simulate	systems	at	

constant	 chemical	 potential,	 volume	 and	 temperature	 (𝜇VT).	 A	 2014	 study	 combining	 GCMC	

with	 other	 MD	 techniques	 shed	 light	 on	 the	 interaction	 between	 single-stranded	 DNA	

homopolymers	and	the	α-hemolysin	pore,	concluding	that	cations	act	as	primary	charge	carriers	

through	 α-hemolysin	 pore,	 and	 that	 polymer	 passage	 through	 the	 channel	 might	 lead	 to	 a	

flickering	 gate	 behaviour	 163.	 Similar	 techniques	 have	 been	 used	 to	 study	 ion	 permeation	

through	an	α-hemolysin	channel	in	a	comparative	study	with	a	continuum	model	showing	that	

GCMC	seemed	to	give	better	results	than	a	continuum	model	164.	Other	studies	have	compared	

MD	simulations	to	continuum	models	for	electropores	165	and	CG	models	to	continuum	models	

for	lipid	bilayer	fusion	pores	166,	both	with	not	so	favourable	results	for	the	continuum	models,		

suggesting	that	hybrid	approaches	(combining	both	methods)	might	lead	to	better	results.		

4.4.	Prediction	of	interactions	between	a	membrane	protein	and	its	

soluble	partner	

Membrane	proteins	 play	 an	 essential	 role	 in	 key	 cellular	 functions	 by	 interacting	with	 several	

different	 molecules	 and	 particles,	 ranging	 from	 photons	 to	 macromolecules	 such	 as	 other	

proteins.	 Typically,	 MPs	 interact	 with	 soluble	 partners.	 The	 modelling	 of	 those	 interactions	

becomes	easier	if	the	involved	binding	interfaces	can	be	identified.	Many	approaches	have	been	

developed	over	the	years	 for	this	purpose.	Sequence-based	methods	are	gaining	an	 increasing	

importance	for	MPs.	They	compare	sequence	related	proteins	and	identify	the	surface	residues	

and	 even	 contacts	 that	 are	 significantly	 conserved,	 as	 conservation	 is	 overall	 correlated	 with	

functional	 importance	 167.	 Other	 approaches	 such	 as	 PS-HomPPI	 and	 NPS-HomPPI	 168	 predict	

interfaces	using	data	on	interfacial	residues	belonging	to	homologous	proteins.	ML	methods	are	

also	used	and	can	predict	protein	interfaces	based	on	either	structure,	sequence	or	both.	There	

are	 meta-servers	 as	 well,	 which,	 instead	 of	 implementing	 their	 own	 method,	 provide	 an	

interface	 that	 gathers	 structural	 and/or	 sequence	 features	 from	 several	 other	 servers	 and	

software	programs	and	analyzes	 them	to	 identify	protein	 interfaces.	An	example	 is	CPORT	 169,	

which	 gathers	 information	 from	 six	 different	 servers	 and	 combines	 this	 information,	 provides	

results	better	 than	 those	ones	presented	by	 the	 individual	 servers.	 It	 is	 important	 to	mention	

that	most	methods	have	been	developed	for	soluble	proteins	and	might	have	limitation	when	it	

comes	to	binding	site	prediction	for	MPs.	
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ProMate	170	is	an	interesting	example	of	a	structure-based	method,	which	uses	several	features	

such	 as	 secondary	 structure,	 length	 of	 non-secondary	 structure	 protein	 regions	 and	 pairwise	

amino	acid	residues	distribution	to	calculate	an	interface	propensity	value	for	each	residue.	Part	

of	 the	 development	 of	 ProMate	 involved	 the	 elimination	 of	 redundant	 or	 highly	 correlated	

features,	 which	 reduces	 computation	 and	 search	 space.	 PPIPP	 171	 is	 a	 good	 example	 of	 a	

sequence	based	method	by	using	propensity	 scores	based	on	 the	presence	of	a	given	 residue	

compared	 to	 any	other	 residue	at	 the	 interface.	 To	 solve	 the	 lack	of	 partner	 information,	 the	

model	was	trained	by	comparing	residues	in	intermolecular	protein-protein	interface	with	intra-

protein	contacts.	 	PPIPP	 is	built	on	24	ANN	and	returns	the	average	score	as	 final	score,	using	

PSSMs	as	one	of	its	main	features.	PAIRpred	172	is	an	hybrid	approach,	using	both	sequence	and	

structure-based	 features:	 the	 structure-based	 features	 consist	 of	 relative	 Surface	 Accessible	

Surface	Area	(SASA),	residue	depth,	half	sphere	amino	acid	composition	and	a	protrusion	index,	

while	the	sequence-based	features	are	based	on	PSSMs	and	predicted	relative	accessible	surface	

area.	All	these	are	combined	through	a	SVM	to	predict	protein-protein	interactions.		

An	important	note	made	by	Xue	et	al.	in	their	2015	review	173	is	that	partner	information	is	very	

valuable	for	protein	interface	prediction,	which	is	often	overlooked.	A	comparison	of	the	results	

obtained	through	PPIPP	and	PAIRpred	–	with	partner	information	–	with	the	ones	from	PSIVER	
174	(sequence-based)	and	SPPIDER	175	(structure-based)	proved	that	partner	information	greatly	

improves	 the	predictions	made.	Evolutionary	 conservation	of	 residues,	 and	 co-evolution	 176,	 is	

also	 a	 growingly	 utilized	 feature	 in	 protein	 interface	 prediction	 177.	 It	 is	 based	 on	 the	

conservation	of	amino	acids	at	the	 interfaces,	as	 it	relies	on	scoring	residues	or	residues	pairs,	

depending	many	times	on	Multiple	Sequence	Alignment	(MSA)	methods	82-83,	178.		

4.5.	Prediction	of	interactions	between	membrane	proteins	

It	 is	well	known	that	membrane	proteins	can	associate.	Several	methods	have	been	developed	

to	predict	their	 interfaces.	 In	the	case	of	β-barrel	MPs,	the	Transmembrane	Strand	 Interaction	

Potential	 (TMSIP)	has	been	 recently	used	 to	predict	oligomer	 interfaces	 179.	By	analyzing	each	

strand	 independently,	 information	can	be	gathered	that	hints	at	 the	 location	of	an	 interface	–	

whether	it	is	with	other	β-barrels	or	with	other	structural	elements.	A	higher	TMSIP	in	a	β-barrel	

OMP	region	indicates	a	high	chance	that	there	lies	a	protein	interface	that	needs	to	be	stabilized	

in	order	to	lower	the	TMSIP	for	that	region	180.		

BTMX	(β-barrel	TransMembrane	eXposure)	181	is	a	server	dedicated	to	the	prediction	of	β-barrel	

interfaces	by	predicting	the	exposure	of	known	TM	residues.	It	uses	a	simple	feature	based	on	
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the	orientation	of	hydrophobic	residues.	Table	1	summarizes	some	of	the	most	commonly	used	

features	in	the	literature	for	contact	prediction	of	proteins.	

	

Table	1.	Features	used	on	several	servers	and	methods,	with	the	respective	biological	reasoning	and	the	ML	algorithm	
applied	to	program	and/or	train	the	predictor.	The	target	for	each	feature	is	mentioned	between	parentheses.	

Feature	 Remark	 Method	 Reference	

Amino	acid	occurrence	in	

Trans-Membrane	Helices	

(TMH)segments	and	their	

amino	acid	frequency	in	

proteins	with	different	size	

windows	(predicting	TMH).	

Using	solely	the	amino	acid	

occurrence	leads	to	a	lack	of	

prediction	accuracy.	The	

variation	of	windows	in	order	

to	find	the	perfect	size	and	

incorporating	the	amino	acid	

frequency	improves	it.	

Modified	genetic	algorithm	 182	

Propensity	values	for	

individual	amino	acids	

according	to	the	Beuming	and	

Weinstein	(BW)	scale	and	

evolutionary	conservation	

(EC)	of	amino	acids	with	

different	window	sizes	

(predicting	the	burial	status	

of	TMH	proteins).	

BW	scales	had	been	already	

used,	however	by	adding	EC	to	

the	function,	a	better	scoring	

function	can	be	made.	

Support	vector	classifier;	

Fisher’s	indexes	were	utilized	

to	assess	which	of	the	

windows	elements	were	more	

significant	for	what	particular	

features	(amino	acid	presence	

or	EC).	

183	

Amino	acid	physicochemical	

properties	(charge,	polarity,	

aromaticity,	size,	electronic	

character).	Each	amino	acid	

was	filed	in	a	category	for	

each	property.	Compositional	

index	(amino	acid	

composition	for	TMH)	

(predicting	TMH).	

The	physicochemical	

properties	and	composition	

index	are	input	to	different	

support	vector	decomposition	

machines	and	these	were	

trained	together	in	a	weighted	

random	forest.	The	hybrid	

method	proved	to	be	more	

efficient.	

Singular	Value	Decomposition	

(reduces	dimensions	with	

strong	correlation	and	

reduced	signal	to	noise	ratio).	

184	

Normalized	accessible	surface	

area	(ASA	values	for	residues	

from	MSMS/reference	ASA	

values	for	Gly-residue-

Gly)(solvent	accessibility	of	

ASA	from	membrane	and	non-

membrane	segments	are	

different.	

PSI-BLAST	profiles	were	used	

on	the	non-redundant	NCBI	

DB.	ε-insensitive	support	

regression	vector	(defining	the	

loss	function	that	ignores	

185	
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TM	residues).	 errors	–	values	over	a	given	

distance	from	the	SVR).	

PSSM	for	a	9-element	window	

centered	on	the	target	

residue.	6-letter	exchange	

group	representation	(20	

amino	acids	are	filed	into	6	

categories	–	letters)	

(identification	of	TMH	

segments).	

With	PSSM,	patterns	are	

recognized	through	a	20*n	

matrix	display	in	a	n-element	

window;	amino-acids	can	be	

classified	into	6	classes	(which	

reduces	the	dimension,	

making	it	easier	to	compute).	

Particle	swarm	optimization	to	

optimize	the	weights	of	the	

different	residues	and	6-

letters;	Fuzzy	SVM	for	machine	

learning.	

186	

Relative	solvent	accessibility,	

secondary	structure,	relative	

solvent	accessibility,	multiple	

alignment,	KD	and	WW	

hydropathy	profiles	(TM	

domains).	

Hydropathy	profiles	led	to	the	

confusion	of	MPs	with	

globular	proteins	and	were	

later	excluded.	

Neural	networks.	The	main	

changes	done	were	with	the	

number	of	hidden	layer	nodes,	

sliding	window,	training	

protocols.	In	the	training	set	

globular	proteins	and	signal	

peptides	were	also	utilized	

(reduces	confusion	with	these	

moieties	in	the	final	classifier).	

187	

Windowed	PSSM	profiles,	

position	of	the	residue	in	the	

TMH	(cytosolic	side,	

hydrophobic,	extracellular	

side),	orientation	of	the	

sidechain	(with	LIPS100),	

sequence	distance	between	

residues	and	residue	

coevolution,	protein	length	

and	number	of	helices	(helix-

helix	contacts	and	interacting	

helices).	

These	features	were	

considered	as	out-of-context	

features	(apparently	would	

not	affect	the	predictions).	As	

such,	several	features	for	

globular	and	soluble	proteins	

were	taken	into	account	

(PSSM	profiles,	sequence	

distance,	coevolution	and	

protein	length)	and	some	

particular	MP	features	were	

added.	The	protein	length	was	

considered	to	be	solely	the	

length	of	the	TMHs.	

ANN	with	several	Boolean	

vectors	describing	all	of	the	

features.	

188	
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Solvent	inaccessible	residues	

(buried	polar	residues)	-	

entirely	conserved	within	

protein	families	and	

superfamilies	-	and	hydrogen	

bonded	to	an	equivalent	main	

chain	atom	in	each	family	

member	(helix	capping).	

	

Conservation	of	polar	residues	

and	the	hydrogen-bond	

interactions	that	they	form	

play	an	important	role	in	

maintaining	protein	structure,	

by	promoting	strong	restraints	

on	amino	acid	substitutions	

during	divergent	protein	

families	and	superfamilies	

evolution.	

The	residue	propensity	to	

form	hydrogen	bonds	to	main	

chain	atoms	was	calculated	as:	

P#$%& ' =
(
n#$%& '
N '

)

(
n#$%& -.-#/
N -.-#/

)
	

Where	Parch	is	the	particular	

architectural	context,	narch(x)	is	

the	number	of	residues	

forming	hydrogen	bonds	to	

main	chain	atoms	in	a	Parch	,	

N(x)	is	the	number	of	type	x	

residues	in	the	total	dataset	

and	N	(total)	is	the	total	

number	of	residues	in	the	

dataset	of	131	families.	
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Salt	Bridges	under	varying	

ion	(Ca(II))	concentrations	

with	proteins,	namely	

membrane-anchored	proteins	

(SNAP25)	–	concentration-

dependent	ion-induced	

protein	oligomerization.	

Preferred	interaction	

partners	of	Ca(II)	ions.	

	

Ion-selective	effects	

concerning	channel	

permeability,	enzyme	activity	

and	protein	oligomerization	

have	shown	to	be	ubiquitous,	

concerning	ion-protein	

interactions,	however,	the	

underlying	molecular	ion-

binding	patterns	and	the	

effect	of	ions	on	proteins	in	

cellular	multicomponent	

environment	have	not	been	

resolved.	

	

Radial	distribution	functions	

(RDFs)	between	Ca(II)	and	the	

carbon	atoms	of	the	

carboxylate	groups	of	Asp,	Glu	

and	the	C-terminus;	oxygen	

atoms	of	the	hydroxyl	groups	

of	Ser	and	Thr	and	nitrogen	

atoms	of	the	side	chain	amino	

groups	of	Gln,	Arg	and	Lys.	The	

RDFs	yielded	increased	

probabilities	for	locations	

ranging	from	0.25	(carbonyl	

oxygens)	to	0.5	nm	(amino	

nitrogens).	
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Mean	value	of	burial	

propensity	within	a	19	

residues	sliding	windows	(B-

value	of	the	residue)	–	defined	

as	the	average	fraction	of	the	

buried,	solvent-accessible	

surface	area	relative	to	the	

Topology	prediction	of	

Transmembrane	Helices	

(TMHs);	most	TM	proteins	are	

TMH,	strongly	associated	to	

the	membrane	by	

hydrophobic	interactions.	

THUMBUP	–	TMH	proteins’	

topology	predictor	using	

Hidden-Markov-model	based	

in	UMDHMM	(University	of	

Maryland	HMM)	–	

UMDHMMTMHP	(UMDHMM	for	

191	
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total	solvent-accessible	

surface	area	(proposed	as	

hydrophobicity	scales).	

	

	 topology	prediction	of	TMH	

proteins)	assigning	one	of	five	

states	to	each	residue	

	

Surface	Propensity	(SP)	–	

defined	by	the	inside/outside	

propensity	of	amino	acids,	

Surface	Fraction	(SF)	–	

reflects	the	probability	of	

finding	a	residue	on	the	

surface	of	the	TM	protein;	

(also,	conservation,	

hydrophobicity,	etc.).	

	

The	method	was	most	

successful	in	predicting	

residue	orientation	in	TMHs	by	

combining	conservation	and	

knowledge-based	features	

such	as	surface	propensity.	

	

Jack-knife	approach	was	used	

to	determine	the	SFs	for	the	

SP	scale;	MSA	(Multiple	

Sequence	Alignment)	for	the	

prediction	of	the	lipid-facing	

probability	of	residues	in	a	

protein	sequence,	assigning	a	

cut-off	value	for	the	

Probability	of	the	residue	

being	inside.	
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One	dimensional	Equilibrium	

Structural	Features	(ESFs)	–	

eight	one	dimensional	

structural	features:	SASA	

(three	features),	Helix-helix	

Contact	(HCC	–	one	feature)	

and	Backbone	conformational	

angles	(four	features).	

There	is	little	explanation	on	

why	some	residues	are	

predicted	as	belonging	to	a	

wrong	structural	class	or	with	

large	errors	in	the	absolute	

values	of	these	features.	

	

Multilayer	feed	forward	neural	

network,	which	input	is	the	

position	specific	scoring	matrix	

using	Leave-one-out	(LOO)	

method	to	avoid	overfitting.	
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Prediction	of	mean	secondary	

structure,	solvent	accessibility	

and	coiled-coil	regions	from	

multiple	sequence	alignments	

or	amino	acid	sequences.	

The	use	of	different	multiple	

sequence	alignments	of	the	

same	protein	proves	to	

improve	greatly	the	results.	

Neural	network-based	

prediction.	Training	was	done	

with	different	multiple	

sequence	alignments	for	the	

same	proteins	for	several	

different	proteins.	
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Functional	impact	of	amino	

acid	substitution	from	

proteins	in	the	Uniprot	or	

NCBI	RefSeq	databases	and	

the	residue	substitution.	

Functional	impact	is	based	on	

evolutionary	conservation	of	

the	amino	acid	being	replaced	

in	close	homologs.	

Several	numerical	estimates	

for	amino	acid	residue	

substitution.	These	are	

calculated	through	the	

difference	in	entropy,	which	is	

use	as	a	measure	of	the	

impact	of	a	mutation.	

195	

Evolutionary	information	 Traditional	sequence-based	 Mutual	information,	chi- 83a	
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encoded	in	multiple	sequence	

alignments.	

prediction	methods	might	not	

be	sufficient	for	structure	and	

function	prediction.	

square	statistic,	Pearson	

Correlation,	Joint	Entropy.	

Evolutionary	residues	

couplings.	

3D	complex	structure	

determination.	

Interacting	proteins’	sequence	

pairing	and	comparison.	
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4.6.	 Modeling	of	Membrane	Protein	Complexes	by	Docking	

The	 determination	 of	 the	 3D	 structure	 of	 protein	 complexes	 is	 of	 the	 utmost	 importance	 for	

molecular	 biology	 and	 drug	 discovery.	 Docking,	 a	 computational	 method	 that	 assembles	 the	

biologically	relevant	complex	from	its	known	constituents,	is	the	method	of	choice	for	this	task	
197.	 It	 involves	 “search	 and	 scoring”,	 both	 of	 which	 will	 be	 addressed	 in	 the	 following.	 First,	

during	 the	 search	phase,	 a	 large	number	of	 candidate	association	models	must	be	generated.	

Any	available	biological	information	on	the	location	of	the	interface	can	in	principle	be	used	to	

direct	this	step,	which	should	generate	a	set	of	poses	as	close	as	possible	to	the	native	structure.	

Search	methods	 can	 be	 split	 into	 three	 different	 approaches	 198:	 i)	 rigid	 docking,	 where	 both	

proteins	 are	 considered	 as	 rigid	 structures;	 ii)	 semi-flexible	 docking,	 where	 only	 one	 of	 the	

components	 (usually	 the	 smallest)	 or	 limited	 regions	 in	 both	 components	 are	 flexible;	 and	 iii)	

flexible	docking,	where	both	proteins	are	allowed	to	be	flexible.	As	one	would	expect,	the	latter	

is	more	demanding	when	it	comes	to	computational	resources,	but	will	probably	yield	the	best	

results	 as	 it	 will	 be	 prepared	 to	 deal	 with	 possible	 conformational	 changes	 upon	 complex	

formation.		

Once	models	(poses)	have	been	generated,	the	next	stage	is	scoring,	which	aims	at	ranking	the	

poses	and	 identifying	 the	native-like	models.	Various	metrics	have	been	used	 for	 this	purpose	

such	 as	 geometric	 complementarity,	 exclusion	 of	 solvent	 from	 the	 interface	 and	 associated	

entropy	 changes	 (desolvation),	 electrostatic	 and	 van	 der	 Waals	 interactions,	 and	 hydrogen	

bonds.	 A	 current	 limitation	 of	 existing	 scoring	 functions	 is	 that	 they	 do	 not	 provide	 accurate	

identification	of	native-like	solutions.	This	is	particularly	true	for	MPs,	as	most	docking	software	

programs	 were	 developed	 for	 quaternary	 structure	 prediction	 of	 primarily	 water-soluble	

proteins.	Membrane	proteins	are	surrounded	by	the	lipidic	environment	of	the	membrane,	and	

consequently	 commonly	 used	 scoring	 functions	 are	 not	 suited	 to	 deal	 with	 these	 systems.	

Moreover,	 search	 algorithms	 typically	 do	 not	 consider	 the	 membrane,	 which	 does	 provide	

additional	restraints	on	the	possible	orientations	of	the	components	of	a	complex.		
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Despite	 this,	 some	 methods	 have	 been	 specifically	 developed	 for	 MP	 docking.	 For	 single-

spanning	TMHs,	TMDOCK	75d	 is	one	of	the	most	recent	one,	using	an	all-atom	model	for	TMHs	

and	inserting	them	into	the	membrane	following	the	folding	of	membrane-associated	peptides	

(FMAP)	75m	protocol	199.	By	using	templates	for	right-	and	left-handed	TMH,	several	models	are	

created	 by	 parallel	 translation	 of	 the	 helices,	 followed	 by	 energy	minimization	 of	 both	 single	

TMHs	and	 the	TMH	dimer.	The	scoring	 function	estimates	 the	 free	energy	of	helix	association	

based	on	 a	 combination	of	 van	der	Waals	 interactions,	H-bonds,	 solvation	 energy,	 changes	 in	

entropy	upon	helix	association	and	helix	dipole	electrostatic	interactions.	PREDDIMER	200	is	one	

of	the	oldest	TMH	docking	software	and	can	be	described	as	a	three-step	process	consisting	of:	

(i)	 TMH	 structure	 prediction	 requiring	 user	 input	 for	 the	 protein	 sequence,	 pH	 and	 relative	

orientation	 of	 the	 helices	 in	 a	 dimer	 (parallel/antiparallel),	 (ii)	 TMH	 docking	 and,	 (iii)	

characterization	of	the	TMH	dimer	with	hydrophobic	properties	and	contact	regions.	CATM	201	is	

another	method	which,	based	on	observed	recurring	patterns	in	TMH	dimer	interfaces,	predicts	

homodimeric	interfaces	–	it	considers	important	amino	acid	residues	motifs,	namely	Gly-Ala-Ser	

(GASright)	 202	 .	 Its	 surprisingly	 simple	 scoring	 function	mainly	 consists	 of	 hydrogen	bonding	 and	

van	der	Waals	interactions.	Evolutionary-based	TMH	docking	can	also	be	performed	by	EFDOCK-

TM	that	combines	several	approaches	and	features,	such	as	EVFold	203	 (evolutionary	features),	

LIPS	 100	 (selection	 of	 interacting	 surface	 region	 for	 TMHs)	 and	 OCTOPUS	 96	 (determining	

intramembrane	protein	segments).		

Most	methods	described	in	sections	4.4	and	4.5	are	summarized	in	Table	SI-2,	which	contains	a	

short	description	of	the	method	as	well	as	the	easiest	way	to	access	it.	

5. Case	studies	
In	this	section,	we	will	limit	ourselves	to	GPCRs,	transporters	and	ion	channels	which	constitute	

the	main	target	of	many	computational/experimental	drug	targeting	strategies.	

5.1.	G-protein-coupled	receptors		

GPCRs	 belong	 to	 one	 of	 the	 largest	 superfamilies	 of	membrane	 associated	 proteins	with	 the	

most	diverse	functions	204.	GPCRs	share	a	typical	pattern	consisting	of	seven	TM	helixes	(TM1-7)	

and	 similar	 intracellular	 binding	 partners.	 Three	 High	 Variability	 Regions	 (HVR)	 have	 been	

identified	between	TM5	and	TM6	and	at	the	N-	and	C-terminal	regions	205	(Figure	5	A)	206.	Even	

though	 GPCRs	 share	 high	 structural	 similarity,	 their	 ligands	 can	 range	 from	 a	 photon	 to	 a	

protein	 207.	GPCRs	 can	 receive	distinct	 stimuli,	having	 roles	on	metabolic,	neuronal,	hormonal	
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and	 immunological	 functions,	 as	 well	 as	 in	 cell	 growth	 and	 cell	 death	 208.	 Apart	 from	 their	

ligands	 (e.g.	 G-proteins,	 arrestins	 and	 GPCR-interacting	 proteins	 (GIPs),	 membrane-inserted	

GPCR-binding	 proteins	 	 209)	 the	 lipid	 membrane	 environment	 also	 has	 an	 active	 role	 in	

modulating	GPCR	structure	and	function.	For	example,	interaction	with	cholesterol	significantly	

changes	GPCRs	 conformational	 flexibility	 210	 and	modulates	 their	 interactions.	As	 such,	 it	was	

suggested	 that	 rather	 than	 “binding	 sites”,	 GPCRs,	many	 times,	 have	 “high	 occupancy	 sites”,	

when	associated	to	these	cholesterol	“hot-spots”	in	the	membrane.	Constitutive	internalization	

of	GPCRs,	 a	 crucial	 cellular	 function	 responsible	 for	 receptor	 regulation,	 is	 regulated	by	GPCR	

interactions	and	can	be	clathrin-dependent	or	clathrin-independent,	stressing	the	large	array	of	

interactions	 and	 the	 versatility	 of	 GPCRs	 211.	 Trafficking	 of	 GPCRs,	 which	 can	 be	 agonist	

dependent	or	independent,	commonly	displays	an	important	role	on	the	signaling	routes	these	

receptors	are	involved	in	211.	

	

	

Figure	5.	Examples	of	membrane	protein	structures.	(A)	2.65	Å	resolution	crystal	structure	of	bull	opsin	(PDBID:	4J4Q	
206).	The	7	transmembrane	α-helical	domains	(TM1-7)	–	a	key	aspect	of	GPCRs	–	and	the	three	high	variability	regions	
(HVR)	are	indicated.	The	latter	correspond	to	the	C-terminus	region	(pink),	the	extracellular	 loop	between	TM5	and	
TM6	(green)	and	the	N-terminus	region	(purple)	206.		(B)	3.42	Å	resolution	crystal	structure	of	the	E.	coli	ATP-Binding	
Cassette	(ABC)	Transporter	McjD	(PDBid:	5EG1	212).	 Its	key	features	are	 its	TM	and	ATP-binding	domains	(ABD).	The	
latter	 are	 responsible	 for	 binding	 and	 degrading	 ATP	 in	 order	 to	 power	 the	 drug-pumping	 function	 typical	 of	 ABC	
transporters.	McjD	 is	 a	 good	 example	 of	 how	 the	 lipidic	 environment	 affects	 the	 stability	 of	 the	MP.	 Through	MD	
simulations,	Mehmood	et	 al.	 212	were	 able	 to	determine	 the	 synergistic	 effect	 of	 zwitterionic	 lipids	on	 its	 stability,	
besides	 from	McjD	 negative	 lipid-dependent	 function	 and	 the	 impact	 of	 both	 on	 the	 structure	 of	McjD.	 (C)	 1.9	 Å	
resolution	crystal	structure	of	the	chicken	acid-sensing	ion	channel	(ASIC)	1	in	its	closed	state	(PDBid:	2QTS	213).	The	
key	aspects	of	this	homotrimeric	 ion	channel	are	its	acid	sensing	domains	(ASD)	which,	upon	activation,	 lead	to	the	
opening	of	 the	 channel,	 formed	by	 its	 transmembrane	domains	 (TMD).	 The	ASD	where	named	as	 such	because	of	
their	 ability	 to	 bind	 both	 protons	 and	 chloride.	 Each	 ASD	 has	 3	 regions	 of	 amino	 acids	 (colored	 in	 pink,	 blue	 and	
orange)	which	provide	essential	interactions	for	the	structure	of	the	ion	channel	213.	
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GPCRs	play	a	central	role	 in	an	enormous	variety	of	cellular	mechanisms	 in	human	physiology	

and	disease	and	are	the	targets	of	40%	of	all	commercialized	drug	targets.	As	such,	they	are	the	

subject	of	major	efforts	 toward	understanding	their	 function	and	signaling	selectivity	 214.	New	

insights	have	been	provided	by	recent	GPCR	structures	in	selected	conformations,	stabilized	by	

a	variety	of	ligands	with	pharmacologically	distinct	properties	(agonists,	inverse	agonists,	etc.),	

by	 nanobodies	 mimicking	 signal	 transducers	 215,	 and	 in	 some	 cases	 by	 full	 heterotrimeric	 G-

proteins	(GTP-binding	protein)216,217.	Still,	the	molecular	mechanisms	connecting	GPCR	structure	

to	 these	 states	 and	 how	 these	 states	 are	 related	 to	 GPCR	 functional	 mechanisms	 remain	

undetermined.		

Computational	 methods	 can	 be	 useful	 in	 understanding	 structure-activity	 relationships	 218,	

conformational	changes	upon	ligand	binding	219,	and	complex	mechanisms	such	as	allostery	220.	

Such	 methods	 have	 also	 been	 used	 to	 study	 of	 GPCR	 dimerization	 and	 oligomerization221,	

explaining	more	complex	GPCR	signaling	pathways	 222,	and	to	clarify	molecular	mechanisms	of	

signaling	selectivity	by	exploring	the	dynamic	properties	of	the	systems	75i,	223.	Using	evolutionary	

conservation,	 a	 GPCR-independent	 mechanism	 of	 trimeric	 G	 protein	 activation	 224	 was	

elucidated,	 proving	 the	 significance	 of	 common	 regions	 across	 these	 proteins	 and	 illustrating	

how	co-evolution	can	elucidate	complex	GPCR-related	mechanisms.	

GPCRs	comprise	a	 large	number	of	different	receptors.	Dopamine	receptors	(DR),	 for	 instance,	

have	 been	 studied	 under	 the	 scope	 of	 determining	 structural	 relevant	 elements,	 such	 as	

intracellular	 and	 extracellular	 loops	 (ICLs	 and	 ECLs,	 respectively,	 which	 have	 been	 deemed	

critical	for	their	interaction	with	many	other	effectors)	as	well	as	agonist	and	antagonist	binding	
225.	When	considering	drug	design	against	GPCRs,	 studying	 the	differences	between	 the	active	

and	inactive	state	226	is	important,	as	is	the	case	for		Dopamine	receptors	2	and	4	(D2R	and	D4R,	

respectively)	 227.	 Computational	 studies	 have	 also	 been	 able	 to	 assess	 how	 post	 translational	

modifications	 (PTMs),	 such	 as	 phosphorylation,	 influence	 GPCR-arrestin	 interaction	 228.	 The	

interactions	GPCRs	with	G-proteins	is	another	relevant	field	of	study	since	their	complexes	can	

generate	 several	 biological	 effects.	 Many	 of	 the	 published	 studies	 have	 concentrated	 on	 the	

rhodopsin-like	 family	 (class	A)	 229.	 The	 effect	 of	 dimerization	 and	 allosteric	 communication	 on	

GPCR	 activation	 has	 also	 been	 studied	 computationally	 230,	 particularly	 for	 D2R.	 In	 particular	

Helix	 8	 (HX8),	 a	 perimembrane	 substructure,	 has	 been	 identified	 as	 a	 key	 player	 in	 D2R-PDZ	

domain	interaction	231.	Another	GPCR,	Serotonin-2A,	a	serotonin	receptor,	has	also	been	studied	

through	 computational	methods:	 A	 hybrid	 approach	 using	 experimental	 data	 (NMR	 and	mass	

spectrometry,	 for	 example)	 and	 computations	 (MD)	 revealed	 the	 importance	 of	 the	 ICL2	

substructure	when	 considering	 conformational	 changes	 upon	 ligand	 binding	 232.	Metabotropic	
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Glutamate	Receptors	 (mGluR)	are	 yet	another	 thoroughly	 studied	GPCR	 family,	 since	 they	are	

involved	 in	 a	 large	 array	 of	 neurologic	 disorders.	 For	 example,	 it	 was	 found	 that	 orthosteric	

modulation	 by	 ligands	 is	 apparently	 not	 as	 relevant	 as	 allosteric	 modulation.	 This	 led	 to	 the	

design	of	allosteric	drug	(both	negative	and	positive)	against	mGluR	233.	

5.2.	Transporters	

Transporter	 proteins	 are	 one	 of	 the	most	 interesting	 and	 diverse	 groups	 of	 TM	proteins.	 The	

TCDB	database	234	contains	about	10000	transporter	protein	sequences	distributed	across	more	

than	1110	families.	Such	a	high	number	of	families	has	given	rise	to	algorithms	for	the	prediction	

of	 transporter	 targets	 using	 RBF	 networks	 235,	 which	 simplifies	 the	 assignment	 of	 families	 to	

individual	 transporters.	 The	ATP-binding	 cassette	 (ABC)	 transporters	 superfamily	 is	 one	of	 the	

largest	and	most	 important	 transporter	 superfamilies	 236,	with	7	different	gene	 families	 237.	48	

human	 ABC	 transporters	 have	 been	 identified,	 with	 several	 different	 targets	 and	 cellular	

locations	238.	Their	 involvement	 in	diseases	such	as	Alzheimer’s,	Tangier’s,	Harlequin	 Ichthyosis	

and	Stargardt’s	239	makes	them	highly	relevant	and,	as	such,	common	drug	targets	240.		

ABC	transporters	are	structurally	organized	in	at	least	4	domains:	2	nucleotide-binding	domains	

(NBDs),	also	known	as	ATP-binding	cassettes,	responsible	for	the	binding	and	hydrolysis	of	ATP,	

and	two	TMs,	responsible	for	substrate	transport	and	typically	consisting	of	6	helices,	across	2	

different	chains	241,	as	shown	in	Figure	5	B	for	the	E.	coli	ABC	transporter	McjD	212.	Even	though	

ABC	transporters	are	expressed	in	both	prokaryotes	and	eukaryotes,	few	structures	are	available	

in	the	PDB	242.	Pinto	et	al.	241	have	reviewed	how	structure	relates	with	drug	interaction	in	ABC	

transporters	and	how	computational	methods,	namely	web	platforms,	can	be	used	to	determine	

drug	 inhibition	and	 transport	mechanisms.	The	major	drawback	seems	 to	be	 the	absence	of	a	

generalized	method	applicable	to	all	ABC	transporters	since	each	method	is	custom	made	for	a	

single	 receptor	or	 for	a	 small	 subset	of	 receptors.	 Interesting	 strategies	 to	 further	understand	

ABC	 transporter-drug	 interactions	 could	 be	 the	 identification	 of	 recurring	 features	 through	

different	methods	and	 their	 combination	 to	build	models	 to	predict	 these	 interactions,	or	 the	

study	of	transporters	according	to	their	targets,	as	was	done	in	a	recent	study	by	Gromiha	et	al.	
243,	 leading	 to	 the	 identification	 of	 mutations	 responsible	 for	 activity	 and	 drug	 response	

alterations.		

Glutamate	 transporters	 244	 are	 an	 interesting	 case	when	discussing	 transporters,	 since	 various	

computational	methods	were	used	to	understand	their	structure	and	mechanism	of	action,	such	

as	homology	modelling	and	MD.		The	major	setback	is	the	lack	of	homologous	structures,	since	

the	only	available	structure	was	of	the	archaeal	glutamate	transporter	GltPh,	which	was	resolved	
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in	2007	245.	Functionally,	it	is	highly	similar	to	its	prokaryote	and	eukaryote	homologues		246.	GltPh	

is	a	trimer,	each	monomer	being	composed	by	eight	primary	α-helices	(TM1-8)	and	two	helical	

hairpins	(HP1	and	HP2).	TM3,	TM6-8	and	both	hairpins	in	each	monomer	are	responsible	for	the	

co-transport	of	3	Na+	and	1	aspartate.	Most	MD	simulations	have	been	conducted	to	describe	

this	transport	mechanism	247.	Homology	modelling	studies	were	able	to	show	that,	despite	the	

low	 sequence	 identity	 between	 GltPh	 and	 Excitatory	 Amino	 Acid	 Transporters	 (EAATs),	 the	

mammalian	 counterparts	 of	GltPh	 and	 LeuT,	 	 their	 binding	pockets	 are	 60%	homologous,	with	

important	 amino	 acids	 being	 present	 in	 both	 GltPh	 and	 EAATs,	 which	 should	 explain	 their	

different	mechanisms	247	(EAATs	co-transport	1	glutamate,	3	Na+,	1	H+	to	the	inside	of	the	cell,	

while	 exporting	 1	 K+	 248).	MD	 simulations	 of	 EAAT3,	 based	 on	 a	 homology	model	 of	 the	 GltPh	

homologue,	 have	 highlighted	 the	 necessity	 of	 protonating	 E374	 to	 stabilize	 the	 binding	 of	

glutamate	249,	 revealed	the	 location	of	 the	potassium	binding	site	and	shed	 light	on	the	actual	

opening	and	closing	mechanism.		

GltPh	belongs	 to	a	 rather	 large	group	of	membrane	 transporters	 called	 sodium	symporters.	As	

already	 mentioned,	 their	 main	 driving	 force	 for	 transport	 is	 a	 sodium	 ion	 (and	 sometimes	

chloride)	gradient,	whose	dissipation	enables	the	transport	of	other	substances,	such	as	leucine	

and	 aspartate,	 besides	 glutamate.	 LeVine	 et	 al.	 129	 recently	 reviewed	 the	 information	 from	

different	techniques,	including	MD,	and	compared	different	symporters,	namely	GltPh	and	LeuT.	

They	 showed	 that	 these	 transporters	 share	 common	 features	 in	 their	 allosteric	 regulation:	

Regardless	of	sequence	and	3D	structure,	they	share	common	functional	motifs	that	allow	them	

to	 bind	 specifically	 both	 ions	 and	 substrate	 for	 their	 transport.	 Such	 findings	 lead	 to	 a	 better	

understanding	of	a	protein	class	that	also	encloses	sMATs	(MATs	will	be	further	discussed	in	the	

following	paragraph)	and	EAATs.	

Another	transporter	protein,	MonoAmine	Transporters	(MATs),	 is	responsible	for	the	reuptake	

of	 monoamine	 neurotransmitters	 (serotonin,	 dopamine	 and	 norepinephrine)	 in	 presynaptic	

neurons	 250.	 MATs	 are	 named	 accordingly	 to	 their	 substrate,	 hSERT	 (human	 Serotonin	

Transporter),	 hDAT	 (human	 Dopamine	 Transporter)	 and	 hNET	 (human	 Norepinephrine	

Transporter).	 The	 transport	 is	 energetically	driven	by	 the	 co-transport	of	 sodium	and	 chloride	

ions	 251.	 Unfortunately,	 no	 high-resolution	 structure	 is	 available	 for	 MAT.	 However,	 in	 2015,	

Koldso	et	al.252	developed	models	for	each	of	the	human	MATs	using	Drosophila	melanogaster	

DAT	 (dDAT)	and	an	engineered	LeuT	 (LeuBAT)	as	 templates.	Their	binding	 to	 substrate	and	 to	

different	psychostimulants,	antidepressants	and	Mazindol,	an	anorectic,	was	assessed,	revealing	

important	parts	of	the	mechanism	of	all	human	MATs.		

Several	 studies	 throughout	 the	 years	 have	 revealed	 recurring	 structural	 motifs	 on	 different	
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transporter	 proteins.	 Shi	 253	 gathered	 all	 recurring	 folds	 and	 secondary	 structures	 motifs	

presented	 by	 secondary	 transport	 proteins.	 These	 were	 considered	 the	 Major	 Facilitator	

Superfamily	(MFS)	fold,	the	LeuT	fold	and	the	Na+/H+	antiporter	(NhaA)	fold.	They	mostly	consist	

of	 different	 rearrangements	 of	 α-helices	 into	 structurally	 identical	 monomers.	 Upon	

dimerization,	these	monomers	forming	the	secondary	transport	protein.	Another	key	feature	of	

transporters	is	how	monomers	orient	in	an	anti-parallel	fashion	upon	dimerization.		

5.3.	Ion	Channels	

Ion	 channels	 enable	 the	 crossing	 of	 hydrophilic	 molecules	 (ions)	 through	 a	 hydrophobic	

environment	(lipid	bilayer)	254.	These	MPs	are	key	at	regulating	the	concentration	of	ions	and	are	

central	 to	 several	 biological	 functions,	 such	 as	 the	 generation	 and	 maintenance	 of	

electrochemical	 gradients	 255.	 Ion	 channels	 connecting	 intracellular	 and	 extracellular	

environments	 are	 generally	 narrow	 and	 very	 sensitive,	 while	 ion	 channels	 connecting	

intracellular	 environments	 are	 larger	 and	 allow	 for	 a	 steadier	 flux	 of	 ions.	 It	 was	 shown	 that	

these	 channels	 are	 ion	 selective	 and	 have	 “open”	 and	 “closed”	 states,	 allowing	 for	 the	

maintenance	 of	 electrochemical	 gradients.	 To	 better	 understand	 their	 role	 in	 neuronal	

communication,	 it	 is	 necessary	 to	 cross-reference	 ion	 channels	 with	 membrane	 carriers	 and	

pumps	256.	

Ion	pumps	are	essential	 for	 the	maintenance	of	 intracellular	 ion	concentrations,	being	able	 to	

generate	gradients	at	the	expense	of	energy.	Ion	channels,	on	the	other	hand,	feature	sensitivity	

and	 high	 ion	 conductivity,	 allowing	 them	 to	 rapidly	 disrupt	 gradients	 generated	 by	 pumps	 by	

allowing	ions	to	move	according	to	their	electrochemical	gradient.	This	makes	them	decisive,	for	

example,	 in	 the	 generation	 of	 electrical	 impulses,	 which	 can	 propagate	 and	 shape	 a	 well-

functioning	nervous	system.	In	some	cases,	ions	can	also	act	as	secondary	messengers	(e.g.	zinc,	

calcium	magnesium	divalent	cations),	which	is	relevant	in	innate	and	adaptive	immunity,	where	

ion	 channels,	 pumps	 and	 carriers	 play	 a	 role	 in	 this	 process	 257.	 The	 membrane	 electrical	

potential	is	largely	influenced	by	ion	concentration	and	fast	leakage,	making	these	ion	channels	

highly	relevant	in	therapy,	particularly	in	neurodegenerative	diseases	258.	

The	voltage-gated	ion	channel	superfamily,	 including	the	K+-,	Na+-	and	Ca2+-channels,	with	four	

homologous	 functional	 units	 consisting	 of	 six	 TM	 domains	 are	 key	 examples	 due	 to	 their	

important	 therapeutic	and	 functional	 role.	The	 fourth	domain	has	been	shown	to	work	as	 the	

voltage	sensor,	while	the	linker	between	the	fifth	and	sixth	domains	forms	the	pore	structure	for	

the	 passage	 of	 ions.	 The	 ligand	 operated	 receptor	 channel	 superfamily,	 associated	 to	

neurotransmitter	 receptors	 such	 as	 GABAA	 receptor,	 glutamate	 receptor	 and	 nicotinic	
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acetylcholine	receptor	are	MPs	composed	of	five	homologous	subunits,	each	containing	a	large	

hydrophilic	 amino-terminal	domain	which	binds	 ligands	and/or	 competitive	blockers,	 followed	

by	 four	 TM	 segments	 259.	 Computational	 algorithms	 have	 been	 developed	 for	 ion	 channel	

classification.	 VGIchan	 260,	makes	 use	 of	 amino	 acid	 sequences	 and	ML-based	 tools	 to	 classify	

channels	 into	 sodium,	 potassium,	 calcium	 or	 chloride	 channels,	 while	 the	 Voltage-Gated	 K+	

Channel	 Database	 (VKGDB)	 261,	 analyses	 and	 compiles	 data	 regarding	 channels	 using	

phylogenetic	 analysis	 and	 HMMs.	 	 Due	 to	 the	 relevance	 and	 increasing	 information	 available	

regarding	 ligand-gated	 ion	 channels,	 the	 Ligand-Gated	 Ion	 Channel	 Database	 (LGICdb)	 was	

created	 262,	 containing	 554	 entries	 (accessed	 in	 June	 29th	 of	 2017).	 Channelpedia	 is	 another	

database	with	information	on	most	ion	channels	263.	

A	 few	 studies	 on	 structural	 prediction	 on	 ion	 channels	were	 published	 recently.	 Ion	 channels	

usually	 undergo	 conformational	 changes	 to	 perform	 their	 designated	 biological	 functions.	 A	

structural	model	of	the	“down	state”	of	a	potassium	channel	voltage	sensing	domain	(VSD)	was	

predicted	 through	 homology	 modeling	 from	 a	 supposedly	 up-state	 –	 the	 gating	 state	

corresponding	 to	 the	 activated	 receptor	 264.	 The	up	and	down	 states	of	VSD	are	 important	 to	

understand	conformational	changes	happening	upon	activation	as	they	represent	the	states	for	

positive	 and	 negative	 voltages,	 respectively.	 Acid-Sensing	 Ion	 Channels	 (ASICs)	 are	 voltage-

insensitive	 cation	 channels	 sensitive	 to	extracellular	photons	whose	activity	 can	be	altered	by	

several	agents	265.	These	channels	are	believed	to	be	composed	by	3	chains,	each	containing	one	

large,	bulky	acid-sensing	domain	(ASD)	and	one	TM	domain	(TMD).	The	ASDs	of	the	Acid-Sensing	

Ion	Channel	1	(ASIC1),	besides	binding	both	protons	and	chloride	ions,	are	also	responsible	for	

the	key	 interactions	 that	maintain	 the	homotrimeric	 structure	of	ASIC1,	across	 three	different	

regions	 213	 (Figure	 5C).	 Since	 ion	 channels	 typically	 visit	 a	 large	 ensemble	 of	 possible	

conformations,	 the	 combination	 of	 different	 computational	 techniques	 can	 lead	 to	 a	 better	

understanding	of	their	structure-function	relationship.	

Homology	 modeling	 and	 evolutionary	 couplings	 were	 used	 in	 the	 study	 of	 Cyclic	 nucleotide-

gated	ion	channels,	involved	in	visual	and	olfactory	sensory	transduction	266.	The	results	support	

a	 modular	 model	 of	 allosteric	 gating,	 according	 to	 which	 protein	 domains	 can	 move	

independently,	but	are	coupled	to	each	other.	Despite	the	lack	of	a	proven	global	approach	to	

the	prediction	of	ion	channel	structure	,	they	remain	targets	for	drug	design	with	computational	

methods	 such	 as	 homology	 modeling,	 ligand-based	 methods	 and	 structure-based	 methods	

being	used	on	a	case-by-case	basis	267.	

An	important	research	focus	for	ion	channel	function	are	lipid-protein	interactions,	which	have	

been	shown	to	be	an	important	factor	affecting	the	channel	structure	and	function	22.	To	name	a	
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few	examples,	nonanular	 lipid	binding	to	the	pore	domain	of	a	mutant	KcsA-Kv1.3	channel	–	a	

prokaryotic	 potassium	 channel	 and	 a	 human	potassium	 channel,	 respectively	 –	was	 shown	 to	

reduce	its	activity	268	and,	through	an		hybrid	experimental-computational	approach,	Kir2.1	was	

shown	to	bind	cholesterol	in	two	nonannular	hydrophobic	regions	that	affect	the	hinge	motion	

responsible	for	channel	gating	269.	

	

6. Conclusions 
In	 this	 review,	we	have	presented	an	overview	of	both	 theoretical	and	experimental	methods	

used	for	the	structural	characterization	of	membrane	proteins	and	their	 interactions.	We	have	

shown	that	the	combination	of	computational	tools	and	MP-associated	data	offers	approaches	

that	are	complementary	to	the	more	expensive	and	time-consuming	experimental	studies.	Even	

though	 computational	 methods	 for	 MP	 study	 depend	 on	 available	 data,	 the	 rising	 trend	 for	

experimental	 methods	 to	 perform	 better	 at	 characterizing	 MPs	 draws	 an	 exciting	 future	 for	

novel	integrative	approaches	to	study	these	highly	relevant	proteins.	The	many	developments	in	

computational	methods	 for	 predicting	MP	 topology,	 structure	 and	 interactions,	 together	with	

the	ever-increasing	amount	of	experimental	data,	computational	power	and	new	user-friendly	

interfaces	to	access	these	methods,	should	boost	research	 in	this	 field	and	enable	researchers	

with	little	training	in	computational	biology	to	further	advance	the	field	of	MP	structure.	
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SUPPLEMENTARY	INFORMATION	

	

Table	SI-1.	Membrane	Proteins	Databases	

Database	 Description	 Reference	and	website	

mpstruc		 Membrane-embedded	structure	database	 1	

http://blanco.biomol.uci.edu/mpstruc/	

MPNMR	 MPs	of	known	structure	determined	by	
NMR	

1	

http://www.drorlist.com/nmr/MPNMR.html	

GPCRdb	 G-Protein	Coupled	Receptor	Database	 2	

http://gpcrdb.org/	

MemProtMD	 analytical	pipeline	which	embeds	MPs	in	
lipid	bilayer	simulations	and	stores	and	
publishes	the	results	along	with	

3	

http://sbcb.bioch.ox.ac.uk/memprotmd/beta/	



	 2	

instructions	that	allow	independent	
researchers	to	set	up	their	own	simulations	

	

	

	

Table	SI-2.	Biocomputational	Tools	for	protein	studies.	

Tool	 Purpose	 Reference	and	

website	

AMBER:	Assisted	

Model	Building	

and	Energy	

Refinement	

“(…)	package	of	computer	programs	for	applying	molecular	

mechanics,	normal	mode	analysis,	molecular	dynamics	and	

free	energy	calculations	to	simulate	the	structural	and	

energetic	properties	of	molecules.”	

4	

http://ambermd.org

/	

BOCTOPUS	 “Improved	topology	prediction	of	transmembrane	β	barrel	

proteins.”	

	

5	

https://socbin.org/b

octopus/index.php	

OCTOPUS	 “(…)	a	new	method	for	predicting	transmembrane	protein	

topology	is	presented	and	benchmarked	using	a	dataset	of	

124	sequences	with	known	structures.	Using	a	novel	

combination	of	hidden	Markov	models	and	artificial	neural	

networks,	OCTOPUS	predicts	the	correct	topology	for	94%	of	

the	sequences.”	

6	

http://octopus.cbr.s

u.se/	

CHARMM:	

Chemistry	at	

Harvard	

Molecular	

Mechanics	

Molecular	simulation	program:	“(…)	the	program	provides	a	

large	suite	of	computational	tools	that	include	numerous	

conformational	and	path	sampling	methods,	free	energy	

estimators,	molecular	minimization,	dynamics	and	analysis	

techniques,	and	model-building	capabilities.”	

7	

https://www.charm

m.org/charmm/?CFI

D=cbe96aec-152d-

470a-897d-

e69e371b2389&CFT

OKEN=0	

CPORT	 “CPORT	is	an	algorithm	for	the	prediction	of	protein-protein	

interface	residues.	It	combines	six	interface	prediction	

methods	into	a	consensus	predictor.”	

8	



	 3	

http://haddock.scien

ce.uu.nl/services/CP

ORT/	

GOMoDo	 “This	webtool	performs	automatic	homology	modeling	and	

ligand	docking	of	GPCR	receptors.”	

9	

http://molsim.sci.uni

vr.it/cgi-

bin/cona/begin.php	

GPCR-I-TASSER	 “A	Hybrid	Approach	to	G	Protein-Coupled	Receptor	Structure	

Modeling	and	the	Application	to	the	Human	Genome.”	

	

10	

http://zhanglab.ccm

b.med.umich.edu/I-

TASSER/about.html	

GPCR-ModSim	

	

“A	comprehensive	web	based	solution	for	modeling	G-

protein	coupled	receptors.”	

	

11	

http://open.gpcr-

modsim.org/	

GPCRM	 “(…)	novel	method	for	fast	and	accurate	generation	of	GPCR	

models	using	averaging	of	multiple	template	structures	and	

profile-profile	comparison.	“	

12	

http://gpcrm.biomo

dellab.eu/	

GROMACS:	

Groningen	

Machine	for	

Chemical	

Simulation	

“A	parallel	message-passing	implementation	of	a	molecular	

dynamics	(MD)	program	that	is	useful	for	

bio(macro)molecules	in	aqueous	environment	(…)”	

13	

http://www.gromacs

.org/	

HomPPI:	PS	

(partner-specific)	

and	NPS	

(nonpartner	

specific)	HomPPI	

“	(…)	a	class	of	sequence	homology-based	methods	for	

predicting	protein-protein	interface	residues.	“	

14	

http://ailab1.ist.psu.

edu/PSHOMPPIv1.2/	

LOMETS:	Local	

Meta-Threading-

Server	

“	(…)	on-line	web	service	for	protein	structure	prediction.	It	

generates	3D	models	by	collecting	high-scoring	target-to-

template	alignments	from	9	locally-installed	threading	

15	

http://zhanglab.ccm

b.med.umich.edu/LO

METS/	
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programs	(FFAS-3D,	HHsearch,	MUSTER,	pGenTHREADER,	

PPAS,	PRC,	PROSPECT2,	SP3,	and	SPARKS-X).”	

MEMBRAIN	 “A	method	to	derive	transmembrane	inter-helix	contacts	

from	amino	acid	sequences	by	combining	correlated	

mutations	and	multiple	machine	learning	classifiers.”	

16	

https://omictools.co

m/membrain-tool	

MEMOIR	 “Template-based	prediction	for	membrane	proteins	(…)	

produces	homology	models	using	alignment	and	coordinate	

generation	software	that	has	been	designed	specifically	for	

transmembrane	proteins.”	

17	

http://opig.stats.ox.a

c.uk/webapps/mem

oir/php/index.php	

MEMSAT3	 “(…)	a	new	method	for	the	prediction	of	the	secondary	

structure	and	topology	of	integral	membrane	proteins	based	

on	the	recognition	of	topological	models.	“	

18	

http://bioinf.cs.ucl.a

c.uk/software_downl

oads/memsat/	

PAIRPred:	Partner	

Aware	Interacting	

Residue	Predictor	

“(…)	partner	specific	protein-protein	interaction	site	

predictor	that	can	make	accurate	predictions	of	whether	a	

pair	of	residues	from	two	different	proteins	interact	or	not.”	

19	

http://combi.cs.colo

state.edu/suppleme

nts/pairpred/	

PPIPP:	prediction	

of	protein-protein	

interaction	pairs	

“This	web	server	takes	fasta	sequences	of	two	proteins	and	

predicts	pairs	of	interacting	residues	between	them.	The	

input	is	a	pair	of	amino	acid	sequences	in	the	fasta	format.”	

20	

http://mizuguchilab.

org/netasa/ppipp/	

PRIMSIPLR	 “Prediction	of	inner-membrane	situated	pore-lining	residues	

for	alpha-helical	transmembrane	proteins.”	

	

21	

ProMate	 “(…)	a	structure	based	prediction	program	to	identify	the	

location	of	protein-protein	binding	sites.”	

	

22	

	

PSIPRED	 “A	two-stage	neural	network	has	been	used	to	predict	

protein	secondary	structure	based	on	the	position	specific	

scoring	matrices	generated	by	PSI-BLAST.”	

23	

http://bioinf.cs.ucl.a

c.uk/psipred/	
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PSIVER	 “(…)	server	for	the	prediction	of	protein-protein	interaction	

sites	in	protein	sequences.	This	server	is	free	and	open	to	all	

users	and	there	is	no	login	requirement.”	

24	

http://mizuguchilab.

org/PSIVER/	

SPPIDER	 “The	SPPIDER	protein	interface	recognition	server	can	be	

used	to:	(1)	predict	residues	to	be	at	the	putative	protein	

interface(s)	by	considering	single	protein	chain	with	resolved	

3D	structure;	(2)	analyse	protein-protein	complex	with	given	

3D	structural	information	and	identify	residues	that	are	

being	in	interchain	contact.”	

25	

http://sppider.cchmc

.org/	

TMkink	 “a	method	to	predict	transmembrane	helix	kinks”	

	

26	

http://tmkinkpredict

or.mbi.ucla.edu/	

VGIchan	 “prediction	and	classification	of	voltage-gated	ion	channels”	

	

27	

http://www.imtech.r

es.in/raghava/vgicha

n/	
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