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Abstract 

Currently, chronic pain studies are gaining high evidence, outcoming the increased incidence 

of oncologic and osteoarticular degenerative disorders. 

Pain perception is a complex multifactoral process which is still not completely known. 

Genetic factors are related to the susceptibility to develop some chronic pain conditions and, 

furthermore, to drug metabolism, being responsible for different reactions to therapy among 

individuals. 

In this review the author discusses the novel and recent knowledge in pain management. It is 

also stressed out the significance of pharmacogenomic studies either in the diversity of 

reaction to pain therapy or in the underlying causes of different chronic conditions. 

Pharmacogenomics is an imperative field in pain research and there have been major 

achievements during the last years related to increased knowledge and technological 

progression. A pharmacogenomics approach will contribute significantly to a new perspective 

on pain management and future directions point towards a more detailed medical diagnosis 

and an adjusted prescription with better accomplishments. 

The most promising genes for pharmacogenomic analysis of pain are COMT, OPRM1, 

CYP450, MC1R and SLC6A4, according to the existing facts and to the knowledge of pain 

physiology. Pharmacogenomics approach represents a powerful tool to the management of 

both chronic and acute pain, in order to improve patients’ quality of life. 

Key Words 

Pharmacogenomic; Chronic pain; Genetic polymorphisms; COMT; OPRM1; CYP450 family; 

MC1R; SLC6A4  
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“We certainly cannot succeed as a culture by continuing to deny and ignore 

pain, as if we could silence it beneath a mountain of pills.”  

David Morris 
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INTRODUCTION 

 

Currently, people live according to different standards in life but everyone ambitious to live 

with some quality.  

The ageing process is associated to the appearance of different chronic pathologies, being 

oncologic and degenerative diseases the most important ones.  

One of the various signs of illness is pain. This is one of the most unpleasant symptoms and, 

for most patients, it is the primarily reason to look for clinical intervention. 

Frequently, pain is the reflection of an underlying process and it disappears with treatment. 

However acute pain occasionally evolves to a chronic situation, producing a new clinical 

condition with huge impact in patients’ daily life.  

Pain is a society problem that is responsible for long-term disability. The decrease in work 

productivity of employees with pain is responsible for an amount of days of medical leave 

leading to enormous costs.  

In addition, treatments are expensive and not always efficient. The reason for such 

unsuccessful achievement is the lack of acknowledge of pain’s perception mechanisms. 

However, the recent capacity to use imaging techniques to perform research in humans had 

contributed to new advances in this field. 

It is well known that pain’s perception is subjective and its assessment is complex. It is not 

only a sensory perception but also an emotional experience. Although multifactoral, heredity 

has been shown to play an important role in pain disclosure. Some chronic painful processes 

are determined through genetic basis. Some genetic polymorphisms account for susceptibility 
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to develop disease. Furthermore, drug metabolism are also determined by genetic factors 

reproducing different reactions to therapy among individuals.  

Pharmacogenomics is the result of the observation of this genetic influence. It has contributed 

to novel achievements in pain management.  Pharmacogenomic studies revealed the 

involvement of genetic variants in some chronic conditions, such as migraine and 

fibromyalgia. It has also allowed to observe that genetic diversity accounts for different 

degrees of drug metabolism, with significant impact on the clinical approach. Given the 

possibility to distinguish individuals from a population using a genetic diagnosis, it will be 

feasible to achieve a therapeutic approach based on genetic characteristics of small groups.  

The emergent need for original advances in pain is evident. The recent advances in genetics 

and proteomics will contribute to the clarification of mechanisms involved in pain and to the 

possibility for the development of innovative drug targets.  

In this review the author discusses the novel and recent knowledge in pain management. It is 

also stressed out the significance of pharmacogenomic studies either in the drug metabolism 

or in the underlying causes of some chronic conditions.  
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ANATOMY AND PHYSIOLOGY OF PAIN 

 

 

Pain perception is an intricate response from body to stimuli. It is a multidimensional 

phenomenon that encompasses sensory-discriminative, affective-motivational and cognitive-

emotional components mediated by different mechanisms and processed in a complex neural 

network (Dickenson 2008) The entire process of how human body reacts to pain has still 

unrevealed mechanisms. The idea that sensory perception is shaped by previous pain 

experiences and beliefs has gained increasing credibility among scientists. Our ability to 

modulate pain perception is evident in placebo analgesia, in which the belief that one is 

receiving an effective analgesic treatment can reduce pain (Wager et al. 2004). 

The conventional model discriminates four components of pain, that interact so closely that 

are impossible to set apart (Calvino and Grilo 2006).   

1. The sensory-discriminative component, that decode the intensity, duration and 

location of the nociceptive stimulus; 

2. The emotional-affective component, which connects the nociceptive stimulus to 

related environmental conditions; 

3. The cognitive component, to attain pain perception; 

4. The behavioral component, which includes the verbal and nonverbal behaviors in 

response to nociceptive stimulus.  

 

Until very recently, human studies of pain perception were almost impossible. The use of 

non-invasive brain image, as functional magnetic resonance imaging (fMRI) and positron 
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emission tomography (PET), allowed to access the inside of brain functioning and contributed 

to a large footstep in the understanding of pain’s perception mechanism (Brooks and Tracey 

2005). 

The persistent pain which accompanies inflammatory tissue damage and/or nerve injury is 

generally characterized by: its spontaneous nature (not elicited by extrinsic stimuli), and by 

the presence of hyperalgesia (an increase in the pain elicited by a noxious stimulus) and/or 

allodynia (pain elicited by normally innocuous stimuli). Prolonged/chronic pain is regarded as 

fulfilling no physiological purpose (Serpell 2005; Diatchenko et al. 2007). 

The pathways of pain generation can be modulated at three levels: the peripheral nociceptor, 

the spinal (dorsal horn of the cord), and the supraspinal (brain) (Serpell 2005). 

 

 

Primary step on nociceptive information 

 

Peripheral nociception is originated in tissue 

injury (Figure 1), which causes the release of 

inflammatory mediators. The propagation of 

pain initiates with the activation of 

physiological receptors, called nociceptors, 

which are widely distributed (Di Patti and 

Fanelli 2010).  

Some mediators (e.g. ATP, protons, 

serotonin) act on receptors that are linked 

directly to ion channels. Others (e.g. 

Figure 1 Injury stimulates peripheral 

nociception with the release of inflammatory 

mediators. Adapted from www.pacifu.edu 
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bradykinin) act indirectly through receptors linked to second messenger systems and in this 

way modulate the activity of ion channels and either activate or sensitize the neurons (Rang et 

al. 1991).  

The transmission of peripheral stimuli is made by the cutaneous primary afferent fibers. These 

can be classified essentially into three types on the basis of their diameter, structure and 

conduction velocity: (1) C-fiber (thin, unmyelinated and slow), (2) Aδ-fiber (medium, 

myelinated and intermediate velocity) and (3) Aβ-fiber (large, myelinated and fast). Although 

all three classes of cutaneous fibers can transmit non-nociceptive information, under normal 

circumstances, only C and Aδ, but not Aβ, fibers transmit nociceptive information (Millan 

1999; Serpell 2005). 

In an acute stage, nociceptor endings cause a generator potential, which leads to an action 

potential in C and Aδ fibers. These action potentials are then conducted to higher centers in 

the central nervous system (CNS) via neurotransmitter release and are followed by a variety 

of responses, including withdrawal reflexes, conscious perception of pain, and emotional 

effects (Ueda 2008).  

A set of local factors can contribute to peripheral nociception. For example, it has been shown 

that low pH had influence on pain intensity, as it has been demonstrated in animal studies. A 

high proportion of C-fibers are activated by pH 6.0 of lactic acid in vitro (Kang and Brennan 

2009). Increased chemosensitivity of c-nociceptors to lactic acid after incision, further 

supports the possibility that cofactors, such as lactate or others, might facilitate nociceptor 

activation by low pH and contribute to postsurgical pain (Kang and Brennan 2009). 

At the level of the peripheral nerve, drugs that act on particular sodium channels may target 

only pain-related activity. Agents acting on some of the peripheral mediators of pain may 

control peripheral nerve activity (Besson 1999). 
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REGULATORS OF PAIN 

Neuropeptides include a diverse group of chemically distinct molecules, contained in and 

released from a range of sensory nerves. They are involved in the formation, transmission, 

modulation and perception of all types of pain (physiological, neuropathic and inflammatory). 

These neurotransmitters connect to receptors and according to their activity they can be called 

excitatory or inhibitory neuropeptides (Besson 1999). Glutamate is the most prevalent 

excitatory neurotransmitter facilitating the transmission of noxious sensory signals while γ-

aminobutyric acid (GABA) and glycine inhibit it (Dickenson et al. 1997). 

Sensory neurons, at periphery, express opioid receptors and opioid peptides, and the function 

of these neurons can be modulated by endogenous opioids derived from immune cells or by 

opioid drugs (Paassilta et al. 2001). 

  

 

Pain system 

 

The primary afferent fibers reach the spinal cord via the dorsal horn of at each cervical, 

thoracic, lumbar and sacral level, where they establish synapses with second-order neurons. 

Pain fibers from head reach brain stem through the cranial nerve pairs V, VII, IX and X 

(Sessle 2005).  

Before synapsing with second-order neuron, pain fibers can ascend or descend one or two 

spinal cord segments making part of the posterolateral tract (Lissauer Tract). The second-

order neurons are distributed along the dorsal horn of the spinal cord and are organized 

according to the Rexed laminae (Almeida et al. 2004) (Figure 2).   
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At the dorsal horn, neurons are either ascending tract neurons or interneurons that are part of 

segmental motor or vegetative reflex pathways. Most ascending axons constitute the 

spinothalamic tract, which activates the thalamocortical system. This tract sends fibers to 

thalamus, reticular formation, raphe nucleus and the periaqueductal gray matter; it can be 

divided into lateral and medial tracts. The lateral, also called neospinothalamic tract, projects 

to vento-postero-lateral thalamus. The medial, paleospinothalamic, projects for medial 

thalamus (Xie et al. 2009).  The lateral thalamocortical system consists of relay nuclei in the 

lateral thalamus and the primary (SI) and secondary (SII) somatosensory cortices in the 

postcentral gyrus. These are responsible for perception and discrete localization of pain. The 

medial thalamocortical system is responsible for the affective component of pain sensation. 

This consists on nuclei in the central and medial thalamus and the anterior cingulate cortex 

(ACC), the insula, and the prefrontal cortex (PFC) (Schaible 2004; Xie et al. 2009). 

 

Figure 2 Transmission of nociceptive stimulus through dorsal horn of spinal cord to cortical regions. SRT 
spinoreticular tract, SMT spinomesencephalic tract.  Adapted with authors permission from Nature 
Reviews Neuroscience 2004, 5:565-575 
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The role of supraspinal structures in pain process remains unknown. Neuroimaging studies, as 

a non-invasive method, contributed to a progressive unraveling of the neuroanatomical 

structures and brain network involved in pain perception (Brooks and Tracey 2005). 

 

LATERAL PAIN SYSTEM 

Lateral pain system includes the cortices SI and SII. In these areas, the characteristics of the 

nociceptive signal are deciphered, leading to the genesis of pain perception (quality, location, 

intensity, and duration) (Calvino and Grilo 2006). 

Reports in amputees describing phantom limb pain demonstrate a positive correlation 

between pain intensity and the amount of SI reorganization. In spinal cord injuries, it was also 

demonstrated that the amount of SI reorganization significantly correlated with on-going pain 

intensity levels (Wrigley et al. 2009). 

Studies revealed that activations in SII were significantly correlated with scores for the 

sensory-discriminative component during mechanical impact pain, thus SII may play an 

important role in the sensory-discriminative dimension of pain (Maihöfner et al. 2006). 

It has been proposed that the SI cortex is involved mainly in discriminative aspects of pain, 

whereas the SII cortex seems to have an important role in recognition, learning, and memory 

of painful events (Xie et al. 2009). 

 

MEDIAL PAIN SYSTEM 

The ACC mainly collects projections from mediodorsal thalamic nucleus and mostly connects 

with important regions of the descending modulation system, including periaqueductal gray 

matter (PAG) (Xie et al. 2009). 
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The ACC is connected to brain structures that influence the emotional component of thought, 

autonomic and visceral responses, and mood regulation (Ro
 
Hemodynamic responses in ACC, 

reflect simultaneously the sensory, cognitive and affective dimension of pain. ACC activation 

was found in noxious cutaneous / intramuscular stimuli of chronic regional pain patients (Xie 

et al. 2009). 

The activation of the ACC in response to thermal and mechanical pain was shown in human 

fMRI studies in healthy volunteers (Seifert et al. 2007).  Single photon emission computed 

tomography demonstrated reduced blood flow in the ACC of patients with chronic pain 

conditions (Honda et al. 2007).  

Studies approaching placebo-induced analgesia revealed that placebo treatment has 

widespread effects on endogenous opioid activity in cortical and subcortical regions, which 

are critical for the determination of affective value and context-based control of pain (Wager 

et al. 2007). PET studies showed that both opioid and placebo analgesia are associated with 

increased activity in rostral ACC, that may play a key role in the cortical control of the 

brainstem during opioid analgesia through fiber tracts projecting directly to the PAG or across 

of the medial thalamic nucleus (Petrovic et al. 2002). 

The involvement of ACC in nociception modulation may be associated with the activities of 

variety of a neurotransmitters, including glutamate, dopamine and opioids. Activation of µ-

opioid receptor significantly inhibited the glutaminergic excitatory postsynaptic currents in 

the ACC neurons, which was attained through the suppression of presynaptic glutamate 

release (Zheng 2010). 

ACC is associated with both visceral and somatic pain (Xie et al. 2009). The ACC 

nociceptive transmission is mediated by glutamate α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors in normal circumstances. In viscerally 
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hypersensitive rats, the synaptic transmission in the ACC neurons is enhanced. This 

enhancement is mediated mainly by N-methyl D-aspartate (NMDA) receptor activation (Wu 

et al. 2008). 

Another element important for medial pain system is the insular cortex. It is often bilaterally 

activated during noxious somatosensory stimulation and has been suggested that it plays a 

relevant role in pain processing (Coghill et al. 2001). 

The insular cortex receives sensory information from the thalamus and sends efferent fibers to 

the amygdale, lateral hypothalamus, dorsal raphe, PAG, pericerulear region, rostroventral 

medulla, parabrachial nuclei, and the nucleus accumbens. The insular cortex has extensive 

reciprocal cortico-cortical connections with the orbital, infralimbic, ACC and with the 

contralateral insular cortex (Xie et al. 2009). The strategic position of insular cortex, to both 

send and receive information from essential areas in sensory processing, as well as memory 

retrieval, attention, and affection, allows its contribution to the formation of a unique 

signature/fingerprint of pain experience for each individual (Starr et al. 2009).  

Activation of the insular cortex has been correlated with the intensity of noxious stimulation, 

suggesting that this structure may play a role in pain intensity coding (Derbyshire et al. 1997) 

The insula has also been proposed to be involved in autonomic reactions to noxious stimuli 

and in pain-related learning and memory (Ploner and Schnitzler 2004; Xie et al. 2009). 

Central pain augmentation resulting from enhanced excitatory and/or decreased inhibitory 

neurotransmission is a suggested mechanism underlying the pathophysiology of functional 

pain syndromes. Multiple fMRI studies implicate the insula as a region of heightened 

neuronal activity in this condition (Harris et al. 2009). 

PFC as part of medial pain system is thought to have a role in mediating analgesic effect 

during the cognitive modulation of pain (Bingel and Tracey 2008). A placebo-induced 
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analgesia fMRI study revealed that activation of PFC reflects a form of externally elicited top-

down control that modulates the experience of pain (Wager et al. 2004). 

A network of seventeen distinct anatomical areas specifically activated during heat allodynia 

showed the bilateral PFC to be exclusively negatively correlated with perceived intensity 

and/or unpleasantness (Lorenz et al. 2003). 

Sakai et al. (2002)
 
proposed that PFC may protect the maintenance of momentary behavioral 

goals, by rendering working memory operations resistant to distractive stimuli. 

    

VENTROLATERAL ORBITAL CORTEX SYSTEM 

The ventrolateral orbital (VLO) cortex system receives ascending afferent fiber from the 

submedius nucleus, PAG and the dorsal raphe nucleus (Li et al. 1993). The combined effects 

of submedius nucleus, VLO and PAG may constitute one nociception modulation pathway 

that regulates nociceptive information input at the terminal/spinal cord level (Xie et al. 2009). 

The VLO contains a considerable number of µ-opioid receptor subtype 1-like immunoreactive 

neurons and GABAergic neurons that also express µ-opioid receptors (Huo et al. 2005). Xie 

et al (2009) propose the hypothesis that opioid-induced antinociception in the VLO might be 

produced by opioid, via the µ-opioid receptor subtype 1. This receptor exerts inhibitory 

effects on GABAergic inhibitory neurons and leading to activation of the VLO-PAG 

brainstem descending pain control system, to depress the nociceptive inputs, at the 

trigeminal/spinal cord level. The mechanism of this hypothetic pathway needs further 

confirmation by other investigation studies. 

 

MOTOR CORTEX SYSTEM 

The role of motor cortex system in pain modeling comes mainly from clinical studies. 
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Motor cortex stimulation (MCS) has been proposed as a treatment for chronic, drug-resistant 

neuropathic pain of various origins. The indication of MCS might be extended to various 

types of refractory, chronic peripheral pain beyond trigeminal neuropathic pain (Rasche et al. 

2006; Lefaucheur et al. 2008). MCS is effective not only to treat pain, but also improves the 

sympathetic changes in complex regional pain syndrome (Velasco et al. 2009). 

Unilateral repetitive transcranial magnetic stimulation of the motor cortex induces a long-

lasting decrease in chronic widespread pain and may therefore constitute an effective 

alternative analgesic treatment for fibromyalgia (Passard et al. 2007).  

A case report demonstrated that MCS could restore tactile and thermal sensory loss, resulting 

from peripheral nerve injury (Fontaine et al. 2009). 

A PET study showed that MCS may act in part through descending (top-down) inhibitory 

controls that involve prefrontal, orbitofrontal and ACC, as well as basal ganglia, thalamus and 

brainstem (Peyron et al. 2007). 

Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold 

induced by MCS, which demonstrate that epidural electrical MCS elicits a substantial and 

selective antinociceptive effect mediated by opioids (Fonoff et al. 2009). 

 

SPINAL CORD RECEPTORS 

The vast majority of excitatory neurotransmission are mediate by the ionotropic glutamate 

receptors, which are ligand-gated ion channels. These can be stimulated by AMPA, NMDA 

and kainate neuropeptides. The inhibitory receptors are constituted mainly by γ-aminobutyric 

acid (GABA) and glycine receptors (Dingledine et al. 1999; Colvin 2005).   
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Descending control of pain 

 

The spinal cord is under the influence of descending tracts that reduce or facilitate the 

nociceptive processing (Schaible and Richter 2004). The descending control of pain, through 

its pro- and anti-nociceptive components, is an important part of pain mechanism. As 

important as pain transmission, to control tissue damage, it is also imperative to control the 

consequence of these signals in the nervous system. Selective suppression of nociception 

allows a properly reaction to a life-threatening situation without the distraction or 

counterproductive motor responses that might be evoked by noxious input (Heinricher et al. 

2009). The key problem appears when there is a disruption between these normal regulatory 

processes that can account for vulnerability for the development and maintenance of chronic 

pain (Bingle and Tracey 2008).  

Some authors have show that the PAG has an important role on descending influences on 

spinal nociceptive processing (Calvino and Grilo 2006; Bingle and Tracey 2008), essentially 

on the rostral ventromedial medulla (RVM). Neurons in the RVM project along the spinal 

dorsolateral funiculus (DLF) to terminate in the dorsal horn, where they cause inhibition of 

nociceptive transmission (Vanegas and Schaible 2004; Calvino and Grilo 2006). RVM is 

known for its pronociceptive and antinociceptive effects (Tavares and Lima 2007). 

Anatomical, electrophysiological, and behavior studies reveal a primary role for the dorsal 

reticular nucleus in facilitating pain processing (Lima and Almeida 2002).  

On an inflammatory pain model, descending inhibition generally predominates over 

descending facilitation in the primary pain, while the descending facilitation predominates 

over descending inhibition in the secondary pain. In opposition, the primary hyperalgesia and 
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allodynia of the neuropathic syndrome also depend on facilitation from the RVM, while 

secondary neuronal pools are under descending inhibition that is partly supported from the 

PAG (Vanegas and Schaible 2004). 

Descending control of pain is yielded by serotonergic, noradrenergic and opioidergic systems, 

which interact by an intricate manner (Tavares and Lima 2007). 

Serotonergic is an antinociceptive system that acting through the activation of RVM, which 

has been demonstrated by the reduction of RVM analgesic effect by intrathecal administration 

of serotonin antagonists ( Schmauss et al. 1983). However, apparently the serotonergic system 

can act separately from the noradrenergic system (Lima and Almeida 2002). 

The noradrenergic system has a peripheral pronociceptive effect associated with injured 

tissues. Therefore, in the spinal cord, noradrenaline release from descending pathways, 

suppresses pain by inhibitory action on α2A- adrenoceptors on central terminals of primary 

afferent nociceptors (presynaptic inhibition), by direct α2-adrenergic action on pain-relay 

neurons (postsynaptic inhibition), and by α1-adrenoceptor-mediated activation of inhibitory 

interneurons (Pertovaara 2006). 

The pathways conveying the opioidergic antinociceptive actions descend in the dorsolateral 

fasciculus, as revealed by the suppression of antinociception produced by either focal 

electrical stimulation and injection of morphine in the PAG, or systemic administration of 

morphine following bilateral lesioning of that spinal tract (Lima and Almeida 2002). 

Exogenous opiates imitate endogenous opioids and induce analgesia by acting upon PAG and 

RVM, in addiction to the spinal dorsal horn (Vanegas and Schaible 2004).  
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The placebo effect 

 

Placebo analgesia, in analogy to Pavlovian conditioning, is a prime example of cognitive 

modulation of pain. The unexplained success of fake analgesics is supported by the 

underlying mechanism of expectation-induced placebo analgesia, which involves a top down 

activation of endogenous analgesic activity via the descending modulatory system (Bingel 

and Tracey 2008) Studies revealed that placebo can reduce pain by both opioid and non-

opioid system (Colloca and Benedetti 2005). The placebo activated opioid system acts not 

only at pain modulation but also in the respiratory and cardiovascular systems. Placebo 

administration can be followed by manifestation of respiratory depression, decreased heart 

rate and β-adrenergic response (Benedetti et al. 2005). 

The placebo–induced analgesia has a cumulative effect as it increases the analgesic effect of a 

treatment when the patient is aware of it. Colloca and Benedetti (2005) demonstrated that 

patients who previously knew their pain treatment and had expectations on the outcome, had 

higher analgesic efficacy than those who did not. Petrovic et al. (2002) showed, using PET 

studies, that both opioid and placebo analgesia were associated with increased activity in the 

rostral ACC. It was also demonstrated that there was a covariation between the activity in the 

rostral ACC and the brainstem during both opioid and placebo analgesia but not during pain-

only condition.    

Functional MRI studies revealed a decreased brain activity in thalamus, insula and ACC 

related to placebo analgesia during painful heat stimulus. These were also associated with 

increased activity during anticipation of pain in the PFC, providing evidence that placebo alter 

the experience of pain (Wager et al. 2004). 
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THE IMPACT OF PHARMACOGENOMIC IN THE TREATMENT OF PAIN  

   

 

Pain’s perception, as mention above, is a complex interaction of many features. There is a 

distinctive interindividual response to pain related to sensory, affective and cognitive 

interactions.  

Environmental factors, such as early exposure to acute painful stimuli, can determine 

nociceptive thresholds in both animals and humans. A good example is the experience of a 

child to circumcision’s pain, which has been established to increase sensitivity to pain in latter 

life (Taddio et al. 1995).  Although former experiences can influence our physiological 

response to a painful stimulus, it is also determined by individual genetics. It has been 

suggested that genetic predisposition can explain a significant part of the variability observed 

in the perception of pain, sensitivity to painful stimuli and development of chronic pain 

(Neumann and Buskila 2003).  

The multifactoral nature of pain perception brings problems to the genetic research related to 

pain sensitivity. The use of animal models has been helpful in the increasing knowledge about 

mechanisms involved in pain (Kambur et al. 2008; Hedlung 2009). Models of inflammatory 

and neuropathic pain have been also well-described, and may have more relevance to human 

clinical conditions than assays of acute pain (Foulkes and Wood 2008). 

Association analysis approaches have been used to examine the genetic involvement in 

human pain perception (Janicki et al. 2006). Heritability studies using sensory testing of twins 

could identify the importance of genetic contributions to pain traits, and single nucleotide 

polymorphism (SNP) association studies allowed the finding of several genes correlating with 
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altered pain “behavior”( Foulkes and Wood 2008). In contrast, some rare recessive conditions 

found in populations undergoing consanguineous mattings led to alterations in pain 

thresholds, and the genes underlying this effect are of most interest (Verhoeven et al. 2006). 

Although acute pain treatment has been studied by many researchers, chronic pain has not 

been explored in such detail mainly due to its morbidity and association to oncology. 

Therefore, novel pharmacogenetic approaches are emerging and this is a promising research 

field.  

Chronic pain syndromes affect a significant portion of the general population, 10-11% of the 

subjects presented this symptom any time during their lifetime (Buskila 2007).  

The complete genetic information, that is produced every year, from different research 

groups, has contributed to increasing knowledge on the physiological mechanisms and genetic 

variants associated to pain’s perception. However, much is still unknown and further studies 

will allow new advances in the understanding of pain. 

The design of future genetic studies will be shaped by future insights into fundamental 

questions about pain, such as whether subtypes of skeletal, neuropathic, and visceral pain are 

processed by mostly similar or differing mechanisms.  

Pharmacogenetics or pharmacogenomics analyses the role of inter-individual genomic 

variation in drug response (Weinshilboum and Wang 2004). The aim is to disclose influences 

of specific genetic variations on pharmacological responses and the possible interference of 

drug efficacy and side effects. The final goal of pharmacogenomics is the possibility that 

knowledge of DNA sequence might be used to improve therapy in order to maximize 

efficacy. Accordingly this approach allows to target drugs for patients that are likely to 

respond best and to avoid adverse drug reactions, minimizing toxicity (Tsai and Hoyme 2002; 

Roden et al. 2006)  
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The concept that genetic features might influence individual response to drug treatments or to 

physiological events emerged in the middle of the XX century. Although the conception of 

genetic tests was not the same from the present time, it was possible to observe individual 

genetic differences by an indirect approach. Studies of drug metabolism involved the 

measurement of diverse parameters: plasma drug concentrations, urinary drug excretion, peak 

plasma levels, drugs half-life, among others (Weinshilboum and Wang 2004).   

A good example of pharmacogenetic approach are the several studies found in literature 

related to variations in genes coding enzymes of the Cytochrome P450 family and the 

phenotypic variations in the pharmacokinetics of drugs (Evans et al. 1960). More than 80 

distinct allelic variants, mostly polymorphisms, were discovered and it is presently known 

that they influence drug therapy response
 
(Daly et al. 1996; Merez et al. 1997). 

Currently, there have been rapid changes in genomic science, most significantly the 

accomplishment of the human genome project. These recent informations, together with the 

development of novel and more efficient technical tools, it is even more prompt to genotype a 

large number of individuals, allowing major advances in pharmacogenomics studies. 

The major challenge of Pharmacogenomics studies is the development of genetic tests that are 

part of the therapeutic decision tools. The concept of translational science, “from the bench to 

the bedside”, fits this goal. However, this will be achievable only when the genetic tests show 

to have strong scientific evidence of clinical utility. 

From the possibility to distinguish genetic groups in a population, using a diagnostic genetic 

database, it will be feasible to achieve an adjusted therapeutical approach. When reading that 

point, a concerted effort must be conducted and directed to upbringing of health professionals 

and patients (Weinshilboum and Wang 2004).    
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The costs and benefits of a pharmacogenomics approach 

 

The generalized access to a diagnostic genetic database and to most recent technologies 

heralds an era in which professionals will use pharmacogenomics approaches to perform 

patients care. Most likely, genotyping all population in order to adjust therapy to individuals 

with a specific genotype will be costly (Philips and Bebber 2005).  

Despite the huge investment in recent years, pharmacogenomics did not fullfil the promise of 

defining diagnostic markers for a more rationale drug therapy, in order to maximize drug 

efficacy and reduce adverse events (Halapi and Hakonarson 2005).  

Most pharmacogenomic strategies relay on enhancing novel treatments and reduce drug side 

effects. It is likely to be cost effective when the polymorphism under consideration is 

prevalent in the population and has a high degree of penetrance, or if the disease state 

involves outcomes with significant morbidity or mortality if left untreated.  This approach is 

useful also if the treatment involves significant outcomes and/or costs that can be impacted by 

genotype-individualized therapy (flowers and Veenstra 2004).  

Epidemiological studies point out the importance of evaluating the benefits of genomic 

research for public-health application, because of the large resources that have been devoted 

to this area and the urgent need to find its utility in the clinical practice (Merikangas and 

Risen 2003). 

Fishbain et al. (2004) determined the imminent clinical relevance of genomic testing related 

to drug metabolism enzymes in the practice of Pain Medicine. These authors concluded that 

these genomic tests have significant potential for providing the efficacy of drug treatments 

and reduced adverse drug reactions. Therefore, at the present time, genomic tests may not be 
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cost effective if one is not using or planning to use a drug with differential previously 

demonstrated effects according to genotypes. 

Biomedical science has significantly improved our understanding of pain in recent decades, 

but few novel genetic data addressing fundamental pain mechanisms have been included in 

the clinic practice, despite the dramatic increase in pharmaceutical investment (Woodcock et 

al. 2007).   

Presently, we are facing an emergent need of novel drugs for pain therapy. On the last 

decades, the analgesics that have been produced derived from opioids or aspirin-like drugs. 

The knowledge of addicional data concerning pain’s perception and the establishment of new 

pain’s treatment approach stands as a significant challenge in pain genetic research. Genomics 

and proteomics have been identifying targets that could be validated to selectively modify 

pathways of pain and inflammation (Sery et al. 2005).   

Research on receptors involving the transduction, transmission and modulation of nociceptive 

information is clearly one of the most exciting and rapidly advancing areas in the field of pain 

research (Govoni et al. 2008). 
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PAIN GENES 

 

 

COMT 

 

Catechol–O–methyltransferase (COMT) is an enzyme responsible for the inactivation, 

through O-methylation, of catecholamines such as dopamine, adrenaline and noradrenaline 

(Bunker et al. 2008). These neurotransmitters are involved in pain conduction and thus 

variations in COMT activity can contribute to differences in pain sensitivity and response to 

analgesics. This likely involvement of COMT in the regulation of pain perception has been 

shown in recent reports (Zubieta et al. 2003; Diatchenko et al. 2006, Rakvag et al. 2008).  

There are two forms of COMT protein: the soluble COMT (S-COMT) and the membrane 

bound COMT (MB-COMT). MB-COMT is more effective in metabolizing dopamine and 

noradrenaline, while S-COMT is more effective in metabolizing adrenaline (Mannisto and 

Kaakkola 1999). 

The foremost studied SNP in the COMT gene is the rs4680, also known as Val158Met. This 

polymorphism causes an amino acid substitution from valine (Val) to methionine (Met), at 

position 158, leading to a three- to four-fold reduced activity of the enzyme (Tiihonen et al. 

1999). 

The alleles are codominant, so that individuals with the Val/Val genotype have the highest 

activity of COMT, those with the met/met genotype present the lowest activity of COMT, and 

heterozygous individuals have intermediate activity (Vandenbergh et al. 1997).  
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Additionally, Diatchenko et al. (2005) identified three haplotypes of the COMT gene that 

determine enzymatic activity. The LPS haplotype is associated with low pain sensitivity, APS 

with average and HPS with high pain sensitivity. Together, these three haplotypes include 

approximately 96% of the human population. 

Several authors compared COMT genotype and individual response to pain. Zubieta et al. 

(2003) revealed that different levels of catecholamine metabolism induced by Val158Met 

polymorphism are associated with downstream alterations in the functional responses of the 

µ-opioid neurotransmitter system and compensatory changes in µ-opioid receptor binding. 

These authors demonstrated that individuals homozygous for the Met allele showed 

diminished regional µ-opioid system response to pain compared with heterozygotes. These 

effects were followed by higher sensory and affective ratings of pain and a more negative 

internal affective state. These results suggest that reduction in COMT activity, associated with 

the met variant enzyme, result in chronic over-stimulation of dopamine receptor 2 (D2). It is 

located on enkephalin-containing neurons and therefore in prolonged elevations of synaptic 

dopamine that lead to the depletion of enkephalins. The depletion of releasable enkephalins 

results in increased sensitivity to sustained noxious stimuli and is associated with a 

compensatory increase in µ-opioid receptor binding (Diatchenko et al. 2006). However, more 

recent studies are not in agreement with these facts. It was demonstrated that the amount of 

opioid peptide mRNA was not reduced in any of the brain regions studied, except for the 

caudate nucleus (Berthele et al. 2005). In another study the amount of opioid peptide mRNA 

was reduced only in the shell region of the nucleus accumbens but not in other regions 

(Nikoshkov et al. 2008). 

Rakvåg et al. (2008) tested the variation in the COMT gene and morphine requirements in 

cancer patients with pain. They suggest that COMT genetic variability ( 14 haplotypes with 11 
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SNP) influences the efficacy of morphine treatment in cancer patients. It was shown that 

cancer patients carrying haplotype 1 required lower morphine doses to relieve pain than other 

patients.  Regarding the Val158Met polymorphism, cancer patients with the Val/Val genotype 

needed more morphine when compared to the other two genotypes (Rakvåg et al. 2005). 

Another study (Reyes-Gibby et al. 2007) explored the joint effect of COMT and the genes 

coding for the µ-opioid receptor (OPRM1) namely the polymorphisms 118A>G and the 

Val158Met in the effectiveness of morphine therapy in cancer patients. This study showed 

that carriers of Met/Met and AA genotype in the COMT and OPRM1 gene, respectively, 

needed lower morphine dose for adequate control of pain. 

Diatchenko et al. (2006) demonstrated an association between thermal stimuli and COMT 

diplotypes. According to the results Val158Met polymorphism was associated with the rate of 

temporal summation of heat pain but not with the resting nociceptive sensitivity.  According 

to the authors, a subject with Met containing form of MB-COMT and/or haplotypes that 

produce reduced levels of S-COMT (HPS and APS haplotypes) may have an increased risk of 

developing persistent pain conditions.  

Jensen et al. (2009) suggest that the initial response of the pain system is not influenced by the 

COMT Val158Met polymorphism but when the pain defense system is challenged repeatedly, 

this specific genotype based difference become apparent. A possible clinical implication of 

this finding may be that the COMT Val158Met polymorphism related differences may be 

more expressed in individuals where the inhibitory system is already challenged and the 

individual is sensitive already from start, such like patients with chronic pain.  

Contrasting with the above mentioned data, Armero et al. (2005) in their study in the Spanish 

population have not found association between COMT activity and individual susceptibility 

to neuropathic pain.  



Pharmacogenomics and Pain 

Ana Eufrásio 

 

29  

 

The role of COMT in central nervous system has previously been demonstrated in several 

other neurological/psychiatric disorders, such as anxiety (Azzan and Mathews 2003) and 

schizophrenia (Glatt et al. 2003). In a preliminary study, George et al. (2008) suggested that 

high pain catastrophizing and low COMT activity were associated with higher pre-operative 

pain ratings, and an increased probability of experiencing persistent pain following 

arthroscopic shoulder surgery. This study is one of the first that considers a possible 

psychological and genetic interaction in pain.  

Further studies will carry on revealing COMT genetic variability and its interaction with 

enzymatic activity along with its involvement in psychological pain perception.   

 

 

OPRM1 

 

Opioids are the class of drugs that cause pain relieve by binding to specific receptors located 

in the brain and spinal cord. Opioid receptors are essential drug targets in pain treatment. The 

µ - opioid receptor, which is coded by the OPRM1 gene, is a primary candidate for the 

pharmacogenetic studies since it is the site of action of most opioids established in clinical 

practice (Lötsch and Geisslinger 2005). Recent findings associate OPRM1 mutations to 

altered clinical opioid effects and to the susceptibility for drug addiction (Haile et al. 2008). 

Furthermore, it is expected that these studies will have an important contribute for pain 

therapy.   

The most common SNP of OPRM1 is the 118A>G that results from an exchange of aspargine 

for aspartate at position 40. A study in healthy volunteers (Lötsch and Geisslinger 2006) 

revealed a frequency of 10-14% of this SNP.  
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The clinical consequences of SNP 118A>G have been extensively evaluated. Several studies 

shown that the carriers of 118G allele need more alfentanil (Caraco et al. 2001) and morphine 

(Chou et al. 2006; Tan et al. 2009)  for postoperative analgesia, as well as higher doses (twice 

than wild-type) of morphine for cancer pain relief (Klepstad et al. 2004). This SNP was also 

associated with higher pain scores, an increased requirement of morphine for analgesia still 

with lower nausea score (Tan et al. 2009). 

The influence of gender on the association of 118A>G polymorphism and pain sensitivity was 

also established. In disagreement with previously mention results, another study on labor pain 

demonstrated that women carrying 118G allele were more sensitive to analgesic effect of 

intrathecal fentanyl (Laudau 2010). These findings suggest that the presence of 118A>G 

polymorphism is related to a lower effect of opioid analgesia. However, an homozygous 

carrier of the 118G allele, with renal failure, receiving morphine for analgesic treatment, 

tolerated the accumulated plasma levels of morphine-6-glucuronide M6G surprisingly well 

(Lötsch et al. 2002) It seems that these carriers are more protected from opioid side effects.  

An association study demonstrated that the frequency of the minor allele 118G of the OPRM1 

gene was significantly decreased in the group of patients with chronic pain and opioid-treated, 

when compared to the opioid-naïve acute postoperative group without chronic pain (Janicki et 

al. 2006). 

It was also reported that 118A>G SNP is significantly associated with alcohol addiction (Bart 

et al. 2005), methamphetamine (Ide et al. 2004) and heroin abuse (Tan et al. 2003). On the 

other hand, several groups reported lack of association between this genetic variant and 

alcohol or heroin abuse (Franke et al. 2001). 
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CYP Family 

 

The cytochrome P450 (CYP) is a family of enzymes, highly expressed in liver, that play an 

important role in drug metabolism and exhibit considerable interindividual genetic variability 

correlating with their catalytic activity (Stamer and Stüber 2007; Allengaert and Anker 2008). 

Among high number of enzymes, CYP2D6 is one of the most interesting concerning genetic 

variability (Patti et al. 2008). The existence of more than 80 distinct allelic variants of 

CYP2D6 correlated with a variety of metabolic capacity and phenotypes within the population 

(Daly et al. 1996; Marez et al. 1997).  

There are at least fifteen alleles that encode nonfunctional gene products resulting from SNPs, 

gene deletion, aberrant splicing or premature translation termination (Mikus and Weiss 2005) 

If an individual carries both nonfunctional alleles he has a severely impaired CYP2D6 activity 

and he is classified as a poor metabolizer (PM). In the other hand, if an individual carries at 

least one functional allele, he has normal CYP2D6 activity and thus he is called extensive 

metabolizer (EM). Among Caucasians, 5-10% are PMs, and present higher risk of developing 

toxic side effects to CYP2D6 drugs, compared to extensive metabolizers (Lundqvist et al. 

1999), and 10-15% show impaired residual activity of CYP2D6, the so called intermediate 

metabolizers (IMs) (Mikus and Weiss 2005). In the Caucasian population, 1-5% of the 

subjects have a duplication or multiduplication of the CYP2D6 gene, leading to the phenotype 

of ultra rapid metabolizers (UMs) (Lundqvist et al. 1999). 

In other populations, such as Chinese or Japanese and African Americans, CYP2D6 alleles 

are differently distributed compared with Caucasians (Gaedigk et al. 2002; Ji et al. 2002). The 

prevalence of the PM phenotype in Asians ranges from 0–2% and from 1–2% are UMs. 
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This genetic predisposition for drug metabolism variability has important consequences on 

clinical results to pain therapy. As a portion of individuals is predisposed to drug inefficacy, 

others are prone to excessive side effects.  

Tramadol and Codeine are commonly used as analgesics. They belong to the group of drugs 

metabolized by CYP2D6 and, consequently, the genetic variation mentioned previously 

influences their metabolism and efficacy on pain’s treatment.  

 

TRAMADOL 

Tramadol is a synthetic opioid commonly used in the treatment of acute and chronic pain, 

which is known to be metabolized by CYP2D6 (Patti et al. 2008). Its mechanism of action is 

not fully understood, but it is known that CYP2D6 metabolizes tramadol to eleven 

desmethylated compounds, from which, O-desmethyltramadol (M1) predominates and has 

analgesic properties (Stamer et al. 2003). 

Tramadol is used as a racemic mixture of two enantiomers: (+)-tramadol and (-)-tramadol. 

(+)-M1 is largely responsible for µ-opioid receptor mediated analgesia: it has 200 times 

higher affinity than the original compound, whereas (+)-tramadol and (-)-tramadol inhibit 

reuptake of neurotransmitters, such as serotonin and noradrenalin (Stamer and Stüber 2007). 

A study preformed in healthy volunteers (Enggaard et al. 2006) demonstrated that the (+)-M1 

has a major impact on the analgesic effect of tramadol. However, the monoaminergic effect of 

tramadol itself seems to create an analgesic effect. 

Research work on the efficacy of tramadol in postoperative analgesia showed that PMs 

consume higher doses of tramadol and require rescue medication, when compared to carriers 

of at least one wild-type allele (Stamer et al. 2003; Wang et al. 2006). 
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Clinical results were confirmed by analysis of serum concentration of (+)-M1 in different 

CYP2D6 genotypes (Stamer et al. 2007). The PMs had negligible concentrations of this active 

metabolite, compared to heterozygous individuals, EM and UM. Non response rate to 

tramadol increased four-fold in PMs and a significantly higher number of patients were not 

satisfied with pain treatment. 

 

CODEINE 

Codeine is an anti-tussive and analgesic drug, which main metabolite is morphine that results 

from CYP2D6 metabolism (Kirchheiner et al. 2007). O-demethylation of codeine into 

morphine by CYP2D6 represents a minor pathway of codeine metabolism (accounting for less 

than 10 percent of codeine clearance) but is essential for its opioid activity (Dayer et al. 

1988). More than 80 percent of codeine clearance (to inactive compounds) results from N-

demethylation of codeine into norcodeine by CYP3A4 and the glucuronidation of codeine 

(Gasche et al. 2005). 

In PM patients, codeine is an ineffective analgesic. Tyndale et al. (1997) has suggested that 

these individuals may have protection against opiate addiction, since they are unable to form 

active metabolites acting on µ-opioid receptors. 

UM patients are prone to develop toxic effects, some of them lethal, after codeine 

administration (Gasche et al. 2005). Several clinical cases report intoxication related to 

codeine consumption. Voronov et al. (2007) describes a case of narcosis and apnea in a 29 

month old child, two days after an uneventful minor surgery, to whom was administer codeine 

for pain treatment. This child was found out later to be an UM. Another child, a breastfed 13 

days old neonate, died because his mother was taking codeine and he was a UM (Dayer et al. 

1988). Respiratory depression was reported after administration of small dose of codeine in an 
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UM patient with an additional inhibition of CYP3A4 activity by other medication and 

transient reduction in renal function (Gasche et al. 2005)
 
(Figure 3). 

The CYP2D6 genotype predicting UM resulted in about 50% higher plasma concentrations of 

morphine and its glucuronides compared to 

EM (Kirchheiner et al. 2007). 

 

ADDITIONAL OPIOIDS 

Other opioids like fentanyl
 
(Tateishi et al. 

1996) alfentanil (Klees et al. 2005), 

methadone and buprenorphine (Elkader 

and Sproule 2005) are among the drugs 

metabolized by CYP3A4 (Armstrong et al. 

2009). 

Meperidine is a synthetic opiate analgesic 

in which N-demethylation is catalized by 

CYP2B6 and 3A4, with 2C19 playing a 

minor role (Armstrong et al. 2009). 

Genetic polymorphisms in CYP3A4 have 

been identified (Gellner et al. 2001). Perera 

et al. (2009) found an haplotype tagging SNP 

141689, located −7206 base pairs upstream of 

the CYP3A4 gene, which significantly affects the transcriptional activation and enzyme 

activity. Clopidogrel (an antiplatelet agent) response variability is associated to CYP3A4 gene 

Figure 3 Codeine’s metabolism. Cause of 
respiratory depression after acute renal failure. 
Adapted with permission from New England 
Journal 
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IVS10+12G>A polymorphism which modulates its activity (Dominick et al. 2006). As SNPs 

in transcription factors regulating CYP3A4 are still undisclosed it is likely that they are 

important contributors to human variation in CYP3A4 activity (Perera et al. 2009). 

 

NON-OPIOID ANALGESICS  

Non-opioid analgesics are commonly used in persistent mild pain or in association with 

opioid therapy in moderate to severe pain.  

Non-steroidal anti-inflammatory drugs are metabolized by CYP2C9. Individuals with several 

variant alleles (CYP2C9*2 and CYP2C9*3) have demonstrated decreased metabolic clearance 

compared with the ones carrying the wild-type allele (CYP2C9*1) (Ali et al. 2009). The allele 

CYP2C9*2 is frequent among caucasians with approximately 1% of the population being 

homozygous carriers and 22% heterozygous (Zhou et al. 2009).  

 

MC1R 

 

The gene coding for melanocortin 1 receptor (MC1R) variants present supplementary 

appealing evidence of the potential for highly targeted analgesia based on sex and other 

differences (Webster 2008). MC1R is usually associated to red hair and fair skin in humans. 

Non function variants of the MC1R were associated with an increase analgesic response to κ 

receptor-mediated opioid analgesia (Diatchenko et al. 2007). Mogil et al. (2003) found that 

red – headed women with two MC1R variant required lower doses of the κ-opioid pentazocine 

to reach a specific level of analgesia, compared with all the other groups. In opposing, the 

authors also found that red-headed men did not experienced this increased analgesia rising the 

evidence for a gene-by-sex interaction in pain genetics (Diatchenko et al. 2007). 
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SLC6A4 

 

Serotonergic neurons of the CNS are localized in clusters within the raphe nuclei, central grey 

and reticular formation. Nerve fibers arising from the caudal groups of serotonergic neurons 

form a descending system directly to the spinal cord and also project to cerebellum, pontine 

and midbrain structures, whereas ascending fibers originate from the rostral groups of 

serotonergic neurons and innervate almost all brain areas (Ciranna 2006).  

The human serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) is encoded by one 

single gene, SLC6A4, which contains several known polymorphisms in its promoter region 

that affect the transcriptional efficacy of the 5-HTT coding gene (e.g. 5-HTTLPR, 5-HTT 

linked polymorphic region) (Kosek et al. 2009). The 5-HTTLPR consists of a 43-bp 

insertion/deletion yielding a short (S) allele  and a long (L)  allele. The short-allele reduces 

the transcriptional efficiency of the SLC6A4 gene promoter, resulting in decreased 5-HTT 

expression and availability. 

Kosek et al. (2009) found that the triallelic 5-HTTLPR was associated with individual 

differences in analgesic response to an opioid drug in healthy subjects. 

As it will be mentioned further on the present review, the less active short allele of SLC6A4 

gene may be involved in the etiology of some clinical pain syndromes, such as migraine with 

aura and fibromyalgia. 
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PHARMACOGENOMICS OF PAIN AND CLINICAL SYNDROMES 

 

 

Migraine 

 

Migraine is a chronic and sometimes progressive disorder characterized by recurrent episodes 

of headache, which last from 4 to 72h, and associated symptoms (nausea / vomiting, 

photophobia / phonophobia) (Lipton and Bigal 2005). It affects people particularly during 

their productive years. Worldwide, according to the World Health Organization (WHO), 

migraine alone is 19th among all causes of years lived with disability. 

Marziniak et al. (2005) disclosed that the frequency of the less active short allele of 5-HTT 

was increased in migraineurs with aura, but not in migraineurs without aura in comparison 

with control population. This indicates that the SLC6A4 may be involved in the polygenic 

etiology of migraine with aura. 

Several epidemiology studies reveal that migraine frequently runs in families (Honkasalo et 

al. 1995; Russel and Olesen 1995; Gervil et al. 1999; Ulrich et al. 1999). A rare type of 

migraine is familial hemiplegic migraine (FHM), which appears to be transmitted by an 

autossomal dominant mode of inheritance (Gardener 2006). FHM is associated to a mutation 

in CACNL1A4 gene, located to chromosome 19p13 (Ophoff et al. 1996). As CACNL1A4 gene 

encodes a brain-specific P/Q-type Ca
2+

 channel α1 subunit, FHM can be considered as a 

cerebral ion channel disorder. It is expressed in the cell bodies, dendrites and presynaptic 

neurons, most prominent in the cerebellar Purkinje cells (Jee-Young and Kim 2005). 
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Identification of FHM as channelopathy opens new avenues for the development of 

prophylactic treatment (Ophoff et al. 1996). 

Complementary works explore the association between dopaminergic system and migraine. 

Although there is some contradiction most of the authors agreed in the association of 

dopamine D2 receptor coding gene (DRD2) and migraine. Peroutka et al. (1997)
   

were one of 

the first groups studying this association. They had demonstrated that individuals with 

migraine with aura had an increased frequency (0.84) of the DRD2 NcoI C allele when 

compared with controls, suggesting that activation of the D2 receptor could play a modifying 

role in the pathophysiology of migraine with aura. 

De Sousa et al. (2007) found that a seven-repeat allele of the dopamine D4 receptor coding 

gene (DRD4) located at exon 3 variable number tandem repeat (VNTR) may have a protective 

factor for migraine without aura. 

Recently, a mutation in the SLC1A3 (glutamate-aspartate transporter) gene encoding the 

glutamate transporter EAAT1 (excitatory amino acid transporters) was identified in a patient 

with severe episodic and progressive ataxia, seizures, alternating hemiplegia, and migraine 

headache (Jen et al. 2005). This study may be important in introducing decreased glutamate 

uptake as a potential pathogenic mechanism for neuronal hyperexcitability and a potential 

pharmacological target in migraine (Montagma 2007).  

Several new reports of linkage or genetic association are also available for migraine. Russo et 

al. (2005) reported a new locus of genetic determination for migraine with aura at 15q11 – 

q13, a region that contains 3 genes for GABA-A receptors. 

Although all of these findings seem very attractive, the underlying pathophysiology 

mechanisms of migraine remain unknown (Gladstone 2007). 



Pharmacogenomics and Pain 

Ana Eufrásio 

 

39  

 

Migraine treatment develops along strategies, mostly based on empirical grounds (Montagma 

et al. 2005). Several drugs used for the treatment of attacks are unspecific, such as 

paracetamol (acetaminophen), a non-steroidal anti-inflamatory drugs. Only some drugs, like 

triptans, are more specific for migraine treatment (Ophoff et al. 2001; Tfelt-hansen and 

Brosen 2008). Triptans are 5-HT1B/1D agonists and are regarded as very effective acute 

migraine treatment. Eletriptan is metabolized by CYP3A4. Sumatriptan, rizatriptan and 

almotriptan are metabolized by monoamino-oxidase (MAO)-A. Zolmitriptan is metabolized 

by CYP 1A2 and the active metabolite by MAO-A (Tfelt-hansen and Brosen 2008). 

Genotyping for the genes coding for these three enzymes is not relevant for clinical practice, 

because the prediction of the phenotype is poor (Tfelt-hansen and Brosen 2008). 

 

 

Low Back pain 

 

Low back pain is a leading motive to job-related disability and is a frequent cause of chronic 

pain. Besides many possible causes, deterioration of spine and intervertebral discs are 

commonly mentioned. Physicians frequently considered these deteriorations as mechanical, 

but recent findings suggests the implication of genetic and biochemical mechanisms. A large 

population study in China exposed the association of TRP2 allele polymorphism of COL9A2 

gene and degenerative disc disease (Jim et al. 2005). This allele codes for α2 chain of collagen 

IX and it was recently again indicated as one of the risk factors for the development and 

severity of degenerative disc disease in a Chinese Han population (Song et al. 2010).  

Another study using finish population discovered that the presence of at least one TRP3 allele 

increases the risk of lumbar disk disease for about threefold (Paassilta et al. 2001). 
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Fibromyalgia 

 

Fibromyalgia is part of a group of psychiatric and medical disorders, generally named 

affective spectrum disorder (ASD), which commonly co-occur in individuals and coaggregate 

within families (Hudson et al. 2004; Bradley 2009). It is a syndrome characterized by 

widespread pain and diffuse tenderness and is considered to be a multifactoral disorder. 

American college of rheumatology defined fibromyalgia as a chronic disorder characterized 

by the presence of widespread pain of at least 3 months duration followed by tenderness upon 

palpation of at least 11 of 18 predefined tender points throughout the skeletal system (Wolfe 

et al. 1990) ( Table 1). 

 

LOCALIZATION OF TENDER POINT 

Occiput 2 - at the suboccipital muscle insertions. 

Low cervical 2 - at the anterior aspects of the intertransverse spaces at C5-C7. 

Trapezius 2 - at the midpoint of the upper border. 

Supraspinatus 2 - at origins, above the scapula spine near the medial border. 

Second rib 2 - upper lateral to the second costochondral junction. 

Lateral epicondyle 2 - 2 cm distal to the epicondyles. 

Gluteal 2 - in upper outer quadrants of buttocks in anterior fold of muscle. 

Greater trochanter 2 - posterior to the trochanteric prominence. 

Knee 2 - at the medial fat pad proximal to the joint line. 

Table 1 Localization of tender points in fibromyalgia diagnosis 
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Pain and tenderness are thus the defining features of the fibromyalgia syndrome. This central 

feature is currently attributed to an increase in central pain processing (Ablin et al. 2008).  

It is now well established that fibromyalgia aggregates in families. Arnold et al. (2004) 

demonstrated, using 533 relatives of 78 probands with fibromyalgia, that fibromyalgia and 

reduced pressure pain threshold aggregates in families, and that fibromyalgia coaggregates 

with major mood disorders in families. Raphael et al. (2004) studied the comorbidity of 

fibromyalgia and major depressive disorder. They have found increasing rates of depression 

among women with fibromyalgia, establishing that this association was mainly due to an 

hereditary mediated risk for depression among those members affected with fibromyalgia. 

A large study with twins performed in Sweden (Kato et al. 2006), concluded that genetic 

factors accounted for 48-54% of the total variance in chronic widespread pain. Furthermore, 

they observed no sex differences in either the type or magnitude of genetic influences.  

Studies that have addressed the possible linkage of fibromyalgia to human leukocyte antigens 

(HLA) are rare. One study found an excessive representation of DR4 antigen: 64% versus 

30% in healthy controls (Burda et al. 1986). Subsequent studies confirmed the existence of a 

possible gene for fibromyalgia that was linked with HLA region (Yunus et al. 1999) 

However, an additional study failed to support this association (Biasi et al. 1994). 

The neurotransmitter serotonin has also been implicated in the pathophysiology of 

fibromyalgia syndrome. Genotypes’ analysis of the promoter region of SLC6A4 gene in 

patients with fibromyalgia showed a higher frequency of the homozygous genotype for the 

shorter allele, compared with healthy controls. This subgroup exhibited higher mean levels of 

depression and psychological distress. These results support the notion of altered serotonin 

metabolism in at least a subgroup of patients with fibromyalgia (Offenbaecher et al 1999; 

Gürsoy et al. 2001). 
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It was further was suggested that there was another polymorphism associated with 

fibromyalgia at position 102 in the 5-HT2A receptor coding gene, 5HT2A102T>C (Gürsoy et 

al. 2001). The proportion of T/T genotype that was significantly correlated with the lowest 

pain threshold was not increased in fibromyalgia patients. The authors concluded that this 

polymorphism of 5-HT2A gene was not associated with the etiology of fibromyalgia, but the 

T/T genotype could be responsible for psychiatric symptoms of fibromyalgia syndrome.  

Additional studies investigated the association of serotonin receptors coding genes, 5HT3A 

and 5HT3B in fibromyalgia patients (Frank et al. 2004).  Mutation analysis of 5HT3A 

revealed one novel in addition to five known sequence variations; analysis of 5HT3B showed 

seven formerly described mutations and one novel alteration. The authors suggested that 

future pharmacogenomic studies would help to determine possible relevant associations. 

The possible association between COMT and fibromyalgia was studied by Gursöy et al. 

(2001). They concluded that COMT Val158Met polymorphism could be involved in the 

pathogenesis of fibromyalgia and therefore have a potential pharmacological importance in 

the treatment of fibromyalgia patients. 

Further studies by Tander et al. (2008), in contrast to what has been presented above showed 

no association between fibromyalgia patients and 5HT2A and COMT genes. 

Neurophysiological studies (Wood et al. 2007) revealed that the disrupted dopaminergic 

reactivity in fibromyalgia patients could be a critical factor underlying the widespread pain 

and discomfort in fibromyalgia and thus therapeutic effects of dopaminergic treatments 

should be explored. Buskila (2004) and Neumann (2005) reported an association between 

fibromyalgia and the DRD4 gene exon 3 repeat polymorphism and its relationship to novelty 

seeking personality traits. It was shown that dopaminergic, rather than serotoninergic 
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neurotransmission, is altered in fibromyalgia, suggesting increased sensitivity or density of 

D2 dopamine receptors in fibromyalgia patients (Malt et al. 2003).   

As substance P levels have been clearly shown to be elevated in the cerebral spinal fluid of 

fibromyalgia patients, an attempt has been made to find an association between the tachykinin 

NK1 substance P receptor and fibromyalgia. A trend towards an increase frequency of the 

G>C substitution at position 1354 in the 3’ untranslated region of the NK1 receptor coding 

gene was identified, but without reaching statistical significance (Ablin et al. 2008). 

All the polymorphisms mentioned may contribute to the etiology, expression or response to 

treatment in Fibromyalgia patients and therefore they may contribute to a better understanding 

of the disease and be relevant in therapeutic intervention.. 
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CONCLUSION 

 

Pharmacogenomics is an imperative field in pain research and there have been major 

achievements during the last years related to increased knowledge and technological 

progression. Studies showed a firm association between pain and genetic markers, including 

polymorphisms.  

It has been revealed that response to drug therapy depends on individual genetic variability 

and, in some circumstances, it can be predicted. Genetic discrimination approach will increase 

the effectiveness of pain treatment. 

Some chronic pain conditions are also associated to genetic factors, which can be useful for 

diagnosis. Furthermore, it may be essential to understand the pathophysiology of each disease 

and to the development of novel drug targets. 

The capacity to predict chronic pain condition development and drug response allows the 

improvement of pain management.    

A pharmacogenomics approach will contribute significantly to a new perspective on pain 

management and future directions point towards a more detailed medical diagnosis and an 

adjusted prescription with better accomplishments.    

The most promising genes for pharmacogenomic analysis of pain are COMT, OPRM1, 

CYP450 family, MC1R and SLC6A4, according to the existing facts and to the knowledge of 

pain physiology. However, we cannot exclude that other genetic factors may be involved. 
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Although contradictory results have been produced and more advances must be achieved, 

pharmacogenomics approach represents a powerfull tool to the management of both chronic 

and acute pain, in order to improve patients quality of life. 
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ABBREVIATIONS’ LIST 

 

5-HT 5- hydroxytryptamine 

5 – HTT serotonin transporter 

5 – HTTPR serotonin transporter linked polymorphic region 

ACC anterior cingulate cortex 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ATP adenosine triphosphate 

ASD affective spectrum disorder 

APS average pain sensitivity 

CNS central nervous system 

COMT catechol – O – methyltransferase 

CYP cytochrome P450 

D2 dopamine receptor 2 

DLF dorsolateral funiculus 

EM extensive metabolizer 

FHM familial hemiplegic migraine 

fMRI functional magnetic resonance 

GABA γ-aminobutyric acid 

HLA human leukocyte antigen 

HPA high pain sensitivity 

IM intermediate metabolizer 

LPS low pain sensitivity 

M1 O-desmethyltramadol 

M6G morphine-6-glucuronide 
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MAO monoamino-oxidase 

MB – COMT membrane bound catechol – O – methyltransferase 

MC1R melanocortin 1 receptor 

MCS motor cortex stimulation   

Met methionine 

mRNA messenger ribonucleic acid 

NMDA N-methyl D-aspartate 

OPRM opioid receptor µ 

PAG periaqueductal gray matter 

PET positron emission tomography 

PFC prefrontal cortex 

PM poor metabolizer 

RVM rostral ventromedial medulla 

S – COMT soluble atechol – O – methyltransferase 

SI primary somatosensory 

SII secondary somatosensory 

SNP single nucleotide polymorphism 

UM ultra rapid metabolizer 

Val valine 

VLO ventrolateral orbital 

VNTR variable number tandem repeat 

WHO world health organization 
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