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Resumo

Nesta tese estudamos um sistema de equacdes diferenciais parciais
constituido por uma equacao hiperbélica e uma equacao parabdlica que
surge, frequentemente, na descricao da libertagao controlada de farmacos.
Neste contexto, a evolucao da concentracao é definida por uma equagao
de difusao-conveccao-reacdo em que a velocidade convectiva é induzida
por um campo elétrico.

Apresentamos um estudo qualitativo e quantitativo para o modelo
continuo e para o modelo discreto construido de forma conveniente. Re-
alcamos que, para este dltimo, estabelecemos resultados de convergéncia
que mostram que os métodos numeéricos propostos sdo supraconvergentes.

Palavras Chave: Equagao hiperbdlica, Equagao parabdlica, Sistema de libertacao

de farmacos, Método numérico, Supraconvergéncia

Abstract

In this work we study a system of two PDEs: a hyperbolic and a
parabolic equation. This system arise often in the mathematical mo-
delling of the controlled drug release. In this scope, the time and space
evolution of the concentration is described by a convective-diffusion-
reaction equation, where the convective velocity is induced by an electric
field.

We present a qualitative and quantitative study for the continuous
and the proposed discrete models. We remark that in the quantitative
analysis we include supraconvergence results.

Keywords: Hyperbolic equation, Parabolic equation, Drug delivery system, Nu-

merical method, Supraconvergence
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Chapter 1

Introduction

This work aims to study systems of partial differential equations composed by a
parabolic equation and a hyperbolic equation, and completed by convenient initial

and boundary conditions that arises in the scope of drug delivery.

Systems of partial differential equations that describe different physical processes
interacting arise in several applications. For instance, if different species diffuse and
react together, then the time and space evolution of the corresponding concentrations
are described by a system of diffusion-reaction equations ([27], [28]). In this case,
we have the coupling between different parabolic equations. Otherwise, if we would
like to describe the stationary state of the previous physical system, then we should
consider the corresponding elliptic equations. Moreover, if we consider a diffusion
process that is enhanced by the application of an electric field, then the evolution
of the drug concentration and the electric field are described by an elliptic equation
coupled with a parabolic equation ([5], [15]). It remains to remark that coupling
between partial differential equations and ordinary differential equations also arise
in the mathematical modeling of drug release, for instance, when the viscoelastic

properties of the diffusion medium are taken into account ([1]).

The system of equations that will be studied in this thesis can be considered in
drug delivery when the diffusion process is enhanced by an electric field. It should
be remarked that different types of enhancers have been used to increase the drug
transport (physical and chemical enhancers [10]). Iontophoresis and electroporation
belong to the class of physical processes used to increase the drug transport. In
this case, an electric field is applied to the diffusion medium that induces a con-
vective transport. These two enhancer processes have been considered in several
medical applications: dermatology - transdermal drug delivery (|10]); oncology -
cancer treatment (|7]); opthalmology - anterior and posterior segment eye diseases
treatment ([39]). While the first enhancer is characterized by long and lower electric

pulses, the medical protocols defined by the second one are characterized by short
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and high electric pulses. We observe that electroporation induces the increasing of
pores in the live target tissue, and consequently, a higher transport than the one

induced if iontophoresis is applied.

The propagation of the electric potential or electric field is described by the
Maxwell’s equations. In certain scenarios, these equations can be reduced to wave
equations. In the literature, elliptic equations were used to describe the electric prop-
erties of the physical system when the two previous enhancers are considered (5],
[30]). Consequently, the drug concentration evolution is described by the Poisson
equation that is coupled with a convection-diffusion equation. This last equation is
established considering the conservation mass principle and the Nernst-Planck equa-
tion for the mass flux. A natural mathematical question is the mathematical study
of the coupling between the more general equations - the wave equation, and the dif-
fusion equation for the drug transport. The mathematical support from analytical
and numerical point of view are well established for the coupling between parabolic
equations, elliptic equations and elliptic-parabolic equations ([6], [21], [22], [29], [31],
[32], [33], [34], [41], [43]).

For systems of hyperbolic and parabolic equations, we found in the literature the
analytical and numerical study when the spatial domain is split into two domains
Q; and Q2 and the coupling is made by the interface between both (|9], [11], [37]).
However, to the best of our knowledge, the mathematical treatment of systems of
second order (in time) hyperbolic equations and diffusion equations was not consid-
ered in the literature. In this work we consider a system composed by a telegraph
equation and a convection-diffusion-reaction equation, linked by the convective ve-
locity and completed with initial and Dirichlet boundary conditions. Our aim is
to establish some energy estimates for the drug concentration depending on energy
estimates for the solution of the wave equation. We propose a numerical method for
the coupled model that mimics the continuous one. We study the convergence prop-
erties of such numerical method. We prove that, although the truncation errors for
both discretizations are of first order with respect to the space stepsize, the spatial
discretization errors are of second order with respect to convenient discrete H' and

L? norms. Numerical experiments illustrating the theoretical results are included.

This work is organized as follows. In Chapter 2 we present the basis of the
motivation of this work - the wave equations for the electric field intensity and for

the electric potential established from the Maxwell’s equations. Although the elec-
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tric potential or the electric field intensity have been described by Poisson equation,
when iontophoresis and electroporation processes are used to enhance the drug dif-
fusion, a more general scenario requires naturally an evolution equation that have
as stationary states the ones used before. Chapter 3 is focused on the study of a
telegraph equation: a wave equation with a damping effect. We study some energy
estimates for the solution of the initial boundary value problem defined by this equa-
tion, and we propose a spatial discretization that induces a semi-discrete solution
presenting the qualitative properties of the continuous one. The convergence analy-
sis is also presented in this chapter. The coupling telegraph-diffusion equations is
studied in Chapter 4. We start this chapter analysing the stability of the coupled
initial boundary value problem. A coupled semi-discrete problem is proposed and
its convergence is established. Finally numerical results illustrating the main results
are also included. We remark that the existence of the solution of the continuous
model is not established in this work and will be addressed in the future.

We would like to highlight Theorem 6 in Chapter 3 and Theorem 9 in Chapter
4 where the convergence properties of the semi-discrete schemes are established.
These two results are proved assuming that the solution of both initial boundary
value problems are smooth enough. Numerically we observe that the same result
of the Theorem 6 is observed for solution without the required smoothness. The

convergence analysis for less smooth solutions will be also studied in the near future.
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Chapter 2

Maxwell’s Telegraph Equations

2.1. Introduction

The first question that we need to clarify is why arises the coupling between a
telegraph equation and a diffusion equation in the scope of drug delivery. To ans-
wer this question, we start this chapter by highlighting the main difference between
iontophoresis and electroporation and how the electric potentials induced by their
protocols are described in the literature. A general scenario of application of an
electric field or electric potential to enhance a drug diffusion requires a time and
space evolution equation for both. These equations will be deduced from the general

Maxwell’s equations in what follows.

2.2. Iontophoresis and Electroporation

The main objective of iontophoresis and electroporation is the enhancement of po-
larized drug diffusion. In these two processes, an electrode with the drug charge is
placed in the neighbourhood of the polarized drug placed in a target tissue. This
electrode exerts a repulsion force on the drug particles and the other electrode, nor-
mally placed in the opposite side of the tissue, induces an attraction force on the
drug. These two forces create a convective velocity that increases the drug transport.
We observe that they could also induce a fluid movement which contributes to the
convective transport.

The main difference between the iontophoresis and the electroporation is given
by the applied potential protocols ([2]). The iontophoresis is characterized by the
use of constants electric pulses of low intensity (less or equal to 10V) during long
time periods, while the electroporation consists in the application of several electric
pulses of high intensity, but during short periods. Iontophoresis and electroporation
protocols can be applied independently or they can be combined.

In the iontophoresis the drug is only transferred by the free spaces of the tissue,

this means, we do not have changes in the porosity. When the intensity of the
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electric current is too high, pores arise in the target tissue. For this reason, in
the electroporation, the diffusion of drug molecules with high molecular weight is
possible. The formation of pores is not always reversible, it is only possible until
a certain value of intensity, so in most situations, the applied electric field should
be controlled such that an increasing of the permeability is observed, but without
irreversible damage in the tissue ([30]).

Note that the irreversible electroporation is also a promising technique when the
applied electric field intends to destroy target tissue like in cancer treatment. In this
case, the intensity and the duration of electric pulses should be such that the tissue
cannot return to its normal state.

In both processes, the drug transport is determined by the characteristics of the
applied current and the properties of the drug and target tissue. If the drug is
contained in a reservoir, usually a polymeric reservoir, then its characteristics have
an important role in the drug transport.

In the drug transport we identify three main contributions: passive diffusion,
convective transport induced by the repulsion and attraction forces, and transport
due to fluid movement (the so called electro-osmosis) ([18], [35], [42]). The time
and space of the drug evolution is described by the mass conservation law, being c

(kgm~3) the drug concentration,

dc
a—i—V-J—O,

where J (kgm~2s71) denotes the mass flux which is given by the Nernst-Planck
equation ([38])
J =—DVc— vc,

where D (m? s™1) is the diffusion coefficient and v (m s~!) is the convective velocity

given by
DF,
_Zre g
RTemp

v =
where z is the valence of ionic species, F. (9.6485 x 10~*Cmol~!) the Faraday’s
constant, Temp the temperature of the tissue (K), R (8.314.J K~!mol~1) is the
universal gas constant and E (V m™1!) is the electric field intensity. To complete
the mathematical description of the diffusion process we need to establish a partial
differential equation for the electric field intensity. We observe that in [5], [8], [17],

the authors assume a time independent situation, so £ = —V¢, where ¢ is the

electric potential (V') . In this case the electrical potential is defined by the Laplace

6
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equation

V(oVe) =0,

where o denotes the electric conductivity (Sm™1).

The time and space evolution of an electric potential or electric field intensity
can be deduced from the Maxwell’s equations whose stationary states leads to the
Poisson equation. However, to obtain an accurate description of the drug evolution
in a more general setting, it is necessary to construct an equation for the electric
field intensity or for the electric potential. In what follows we deduce such equations

from the general Maxwell’s equations in a three dimensional setting.

2.3. Maxwell’s Equations

The Maxwell equations were presented by Maxwell in 1865 ([30]), being its construc-
tion from physical laws that we present in what follows ([45]).

Let S be an arbitrary smooth and bounded oriented 2-manifold in R? with bound-
ary 05. Let F be the electric field intensity defined on 95, and B the magnetic field
(T') induced in S. The Faraday’s law states that

8/BdA+ E dsS = 0. (2.1)
ot Js s

Applying the Stokes’s Theorem (|23]) we obtain

0B

and therefore, assuming continuity of the vector function, we conclude

OB
5 TV XE=0. (2.2)

The Ampére’s law allows us to compute the time variation of the electric dis-
placement D, (C'm~2) on the boundary of a surface S from .J,, the density of the

electric current (A), and from a magnetic field H (Am~1) in S, by

a/DedA— HdS+/JedA:O. (2.3)
ot Js s S

Let V be an arbitrary domain in R? with piecewise smooth boundary oV. The

Gauss’s law for the electric field states that

D, dA = / p dv, (2.4)
oV 14

7
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where p denotes the total charge density (C'm~™3). Moreover, Gauss’s law for the
magnetic field states that

B dA = 0. (2.5)
ov

Following the establishment of (2.2), using the Stoke’s Theorem and the Gauss’s

Theorem ([23]), it can be easily shown that

0D,
T - VxH+J.=0, (2.6)
V-De—p=0 (2.7)
and
V-B=0. (2.8)

Moreover, from (2.6), (2.7) and the fact that V- (V x u) = 0 for any smooth u, we
obtain the continuity equation

9

J, =L 2.
v o (2.9)

Furthermore, as for bound surfaces we have / VxHdA= / V-(VxH)dV =0,
v 1%
then

8/pdV:a DedA:/ (VxH—Je)dA:—/V-JedV.
ot Jy ot Jov oV v

A compatibility relation between the electric current J, and the electric field F
is given by the Ohm’s law. In fact, this law allows us to define J, in function of £
through the relation

Jo=0F, (2.10)

where o denotes the electric conductivity.

Considering now the system (2.2), (2.6)-(2.8), we verify that it is not complete,
that means that the number of unknowns is different from the number of equations
(twelve variables and eight equations). So we need to specify two called constitutive
equations, to obtain a complete system. Functional relations relating D., E, B and
H are usually assumed

D, = ¢E, (2.11)
B = uH, (2.12)

where € represents the electric permittivity (Fm™!) and p is the magnetic perme-

ability (Hm™!). However, (2.2), (2.6)-(2.8), (2.11), and (2.12) define a system of

8
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fourteen equations for twelve variables. So, now, we need to decrease the number
of equations. In the following result we specify two conditions that can be used to

reduce the number of equations.

Theorem 1. Let us assume that V- (D.(x,0)) = p(x,0) and V- (B(z,0)) = 0. Then
any solution of the system (2.2), (2.6) and (2.9), verifies V-D. =p and V- B =0

fort > 0.

Proof. As we have V - (V x u) = 0 for any sufficiently smooth function u, we have

successively
%(V~B):V-%—€:—V-(VXE):O
and
Q(V~De—p):V~(VXH—J6)—@:V-(V><H):0.
ot ot
Finally, as consequence of the initial conditions we obtain the desired result. O

Considering (2.11), (2.12), (2.10), we can give to equations (2.2) and (2.6) the

followings equivalent form

OH
— E= 2.1
T + V x 0, (2.13)
e—aaf —VxH+0E=0. (2.14)

In the above equations, €, p and o are matrices of order 3, we remark that pu,
€, o0 and p can be position dependents. If the medium is isotropic, that means, it
is uniform in all directions, u, € and o are reduced to real functions. Furthermore,
if the medium is homogeneous which means that its properties do not depend on
the position, then, if the medium is isotropic and homogeneous then p, € and o are

constants.

2.4. Telegraph Equations

In the previous section we established the equations (2.13) and (2.14) as a consistent
system of Maxwell’s equations. Applying the rotational operator to both members
of these equations, and using (2.7), (2.8), and the equality VXV xu = V(V-u) — Au
that holds for all smooth functions, we obtain the following two telegraph equations

for the electric and magnetic fields

0’F OF _
? oOH
Mo THT g A=
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If the medium is homogeneous and isotropic, (2.15) becomes

0’E oco0E 1
— 4+ ———-——AFE=0 2.16
ot? + e Ot  eu ’ (2.16)

with €, u # 0.
We observe that the telegraph equation (2.16) can be rewritten as an integro-

differential equation. In fact, (2.16) is equivalent to

a ot aE 1 t os
— e =— - = © AFE =
5 (e 5 (z,1) 6#/0 e (x,s)ds) 0
that implies that
OFE 1 (" . o
(z,1) = — / e <) AE(z,s)ds + f(z)e <t (2.17)
ot e Jo

Finally we remark that (2.17) can be deduced considering the mass conservation law

oE _oy
E#—VJ—fe €

where the mass flux J is given by

t

Ja,t) = —— [ e 29V B, 5) ds. (2.18)

e Jo
Integro-differential equations of type (2.17) have been considered in the descrip-
tion of diffusion phenomena, where a decay effect defined by the time integral term
in (2.18) is introduced ([12]).
In this section we obtain a partial differential equation that describes the be-
haviour of the electric field. However, in what concerns the application of electric
enhancers to the drug delivery, an intuitive approach is defined by the electric po-

tential ¢. In the next section we establish a telegraph equation for ¢.

2.5. Electric Potential

We start this section with the following proposition not directly related with the

electric potential.

Proposition 1. For u a sufficiently smooth vector function defined on all of R3, we

have

1. If V x u =0, then there exists a scalar function ¢ such that u= —V¢.

2. If V-u =0, then there exists a vector function A such that u =V x A.
Proof. |25] O

10



2.5 Electric Potential

From the equation (2.8), there exists a magnetic vector A called vector potential

(Wbs~1), such that
B=V x A (2.19)

Then from equation (2.2), we obtain

0A
VX|—+FE]=0.
(5 %)
Using Proposition 1, we have for the electric field intensity E, vector potential A,

and scalar potential ¢, the following relation

0A
E+ ——=-Vo. 2.2
+or=-Ve (220)

The relations (2.19) and (2.20) define A and ¢, however A is not uniquely deter-
mined.

Before the establishment of a condition that leads to the uniqueness of A, we
deduce mathematical relations between the electric field and the vector potential A

that will be useful. The first one comes from (2.20) and (2.7) that lead to

—A¢ — g(V cA)=pe ! (2.21)
ot
Analogously, from (2.14) and (2.19), we have
88? =Vx(VxA)—puokE, (2.22)

that combined with (2.20), and V x V x u = V(V - u) — Au allows us to establish
0?A 0¢ 0A
<AA — 6”8152) -V (V A+ euat> = uo (V(;S + 1 ) (2.23)

Another relation can be obtained using the Ohm’s law (2.10) and (2.9). In fact

those relations give

0 ap

V- (0V) + 50V - 4) = . (2.24)

To complete the specification of A, we need to impose an additional condition on

V - A. An usual condition used is the so called Coulomb gauge given by ([19])
V-A=0.

Then from (2.24) we obtain, for the electric potential, the Poisson equation

Ip

v (0V9) = L.

(2.25)

11
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The same relation is obtained if the vector potential A is time independent. More-

over, in this case the electric potential ¢ satisfies the Laplace equation
V- (cVe) =0. (2.26)

Another relation can be deduced from (2.21) if the stationary state is consid-

ered. In fact in this case we get —V - (Vo) = pe L.

We remark that the common
equation used to describe ¢ in iontophoresis and electroporation procedures is the
Laplace equation (2.26) which is deduced assuming that A is time independent. Then
naturally arises the question: what is the equation for a time dependent A?

Let us suppose that A satisfies the Lorentz gauge ([19])

V-A=—uop — uegf.
Then, from (2.21) we get
0*¢ 9¢
2079 90 <. _
pe o Hpoes =V (Vo) = p,
and from (2.23) we obtain
0?A 0A

Finally from (2.24) we conclude, for the scalar electric potential, that

0% ,0¢
TR T

dp

(oVo) = ~ 5 (2.27)

12



Chapter 3

Electric Field-Telegraph Equation

3.1. Introduction

In the previous chapter, telegraph equations for E and ¢ were established from
the Maxwell’s equations. One of this equations will be coupled with the diffusion
equation to describe the drug evolution when the diffusion is enhanced by an applied
electric field or electric potential. The analytical and numerical study of the coupled
model requires, as a first step, the study of the deduced telegraph equations. In this
chapter we consider the telegraph equation (2.16) for the electric field intensity.

In what follows, we consider that the target tissue is an isotropic medium. Let
V', represented in Figure 3.1, be a reference element in the target tissue, let E be the
electric field intensity and let ¢ be the drug concentration in (z,y, z) at time ¢. Let

A be a cross section with fixed area A. We suppose that
E(x7 y? Z7 t) = E(x’ 07 07 t)

c(z,y,z,t) = ¢(x,0,0,t)

for all (z,y,z) € A. We represent by E(x,t) the electric field intensity E(x,0,0,t),
and by c(z,t) the concentration ¢(z,0,0,¢). This means that under the previous
condition, a three-dimensional problem can be seen as an one-dimensional problem.
We also consider that the target tissue is an homogeneous medium, so €, o, and u
are constants, that we consider positive.

In this chapter we consider the spacial domain Q = (0,1). Equation (2.16) is cou-
pled with initial and boundary conditions that define the following initial boundary

value problem (IBVP)

0’FE 1 o 0F )

WZJ E—;WJrF in (0,1) x (0,77,

E(Ovt) = ¢O(t)’ E(l?t) = ¢1(t) te (OaTL (3.1)
E(x,0) = o(x) z € (0,1),

o .0) = 1) re )

13
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Pl(x:y,z)

v

P; (x,0,0)

/
A

Figure 3.1: Reference element.

where ¢o(t) and ¢1(t) are the boundary conditions, 1o(x) and ;(x) are the initial
conditions, and F' defines a reaction term.

This chapter aims to study analytically and numerically the IBVP (3.1). In Sec-
tion 3.2 we construct the solution of (3.1) using Fourier series, we establish some
energy estimates that allow us to conclude the uniqueness of the constructed solu-
tion. In Section 3.3 we propose a numerical discretization of the IBVP (3.1) that
is obtained considering the Method of Lines Approach: a spatial discretization on
nonuniform grid that leads to a semi-discrete approximation (continuous in time)
followed by a time integration.

We prove in the main theorem of this chapter - Theorem 6 - that the proposed
method leads to a second convergence order approximation in space with respect to
a discrete H'-norm. This result is unexpected because the spacial truncation error
is only of first order in the || - ||oc norm. Some numerical experiments are included
to illustrate Theorem 6. In the proof of Theorem 6 we assume that E is sufficiently
smooth in space, more precisely, we assume that E(t) € C*4(Q). The numerical
simulations allow us to believe that the same result holds for less smooth solutions.

This problem will be studied in the near future.

3.2. Existence and Uniqueness of Solution

We observe that the initial conditions g, 1, and the boundary conditions functions

¢0, ¢1, should be compatible in the sense that (3.1) has a solution. To compute such

14



3.2 Existence and Uniqueness of Solution

solution we use in what follows the method of separation of variables that leads to
Fourier series. We start by rewriting (3.1) as an IBVP with homogeneous initial and

boundary conditions introducing the following change of variables

w(@,t) = (1=2)¢o(t)+x1(t)+bo(2) — (1-2)do (0) —2¢1(0) +t(¥1 (z) — (1—-2) ¢ (0) —2¢1 (0)).

(3.2)
Then FE = E — w satisfies

P?F 1 - odF -
= AE--"4+F i 1 T

otz eu e Ot + in (0,1) x (0,7},
E(0,t) = E(1,t) =0 te (0,7,

(0,1) (1,1) (0,T] (3.3)
E(2,0)=0 z € (0,1),
OF
oL _ 1

8gam 0 r € (0,1),

~ 1 cow Ow
ith F=F+ —Aw— —— — —-.
A + € YT e
To simplify the application of Fourier method, we rewrite now (3.3) as an IBVP
without the reaction term. Let 7 > 0 be a parameter and let v(-,-;7) be solution of

the IBVP

9% 1 o Jv

= Ay— = i 1 T

o2 eu v € Ot in (0,1) x (7,71,
v(0,t;7)=0v(l,t;7) =0 te(r,T],

(0.157) = o(1,t57) (7. 1] "
v(z,7;7) =0 z € (0,1),

g;}(w',T;T) = F(aj,T) xz € (0,1).

Then, if v is sufficiently smooth, we have
~ ¢
E(z,t) :/ v(x,t;7) dr, t € 0,T], z € [0,1].
0

To obtain E we deduce, in what follows, a formal expression for v as a sum of a

Fourier series. We prescribe the following expression
vz, t;T) = Z cj(t,7)sin (jrz). (3.5)
JEN

Then, formally v satisfies the partial differential equation of (3.4) if

1
It 1)+ 2t 1) = ——(jm)%c;(t, 1), Vi €N, t > 7. (3.6)
J e’ €l

The solution of (3.6) depends on the relations between j and the other constants

o, €, pand 7. So we have to consider three different cases

Log\/teNand j= £/t

15



Chapter 3 Electric Field-Telegraph Equation

2. 2ﬂ[¢Namd]> &

3. %\/ggéNandj<%\/g.

As in general %\/g € R\N, we do not consider the first case. For j € N satisfying

the second case, we obtain for ¢; the following expression

4;(7) cos ( W(t - T)>

+ Bj(7)sin ( M(t - 7')> ],

where A;(7) and B;(7) represent appropriate constants that will be specified later.

cjlz, t;7) = e 2 (t=7)

At last, for j in the third case condition, the solution of (3.6) is given by
J2H—4(j7\')2€ t—1 _ 02u—4(j")2€ t—T
CimpeV =TT py(nye VR )]

J
where Cj(7) and D;(7) represent constants to be specified.

ci(z,t;7) = e 27T ,

Then, the solution v introduced in (3.5) can be written as

o2 u—4(jn)2e ’

v(@,t;7) = e—i(t—r)[ 3 ( oV TR
JENG<[ 2/ E]
[o2p—a(jn)2e 4(J7r)2
Ae2u sin(jrz)+  (3.7)
) cos 1/
4 _ 42

) sin ( 466'u SIE TRy - T)) ) Sin(jmc)].

We need to find now the constants A;(7), ), Cj(7) and D;(7) such that v satisfies

+ > <
JEN:>[Z/E]

™

the initial conditions of (3.4).
If

oAj(T):O,jEN:j>[% i

o Cilr) =—Dy(r), jeN:j < [£,/¥],
then the initial condition in (3.4) is satisfied.

In what follows we use the initial velocity in (3.4) to complete the computation

of the previous constants. We consider that

Z fj ) sin(jmx),

jEN

16



3.2 Existence and Uniqueness of Solution

~ 1 ~
where f;(7) = 2/ F(z,7)sin(jmz) dx. Taking this into account, we easily get
0
(A) 45(1) =0, 5 €N:j > £/,

f(T) . . o
(B) Bj(T):ma] eEN:j> [ﬂ\/@;

4e2p

(© C5(r) = —B0

BT ieNi< {g\/@}
9. [2u—4(im)%c JERIE [amye

4e2p

o
(D) Dy(r) = ——2D__
9./7 n—4(jm)%e

4ep

GEN: < |/t

€|

In the following result we specify sufficient conditions on F' that allow us to

conclude that v(x,t;7) is solution of the IBVP (3.4).

Theorem 2. If

1. — 1s continuous in |0, 1];
e [0,1]

O%F

2. D2 is piecewise continuous in [0,1];
x

3. F(0,7)=F(1,7) =0;

then

[o2u—a(mZe
v(z, t;7) = e 2 (t=7) [ Z (CJ(T)e =
_ o2pu—4(jm)2e _r
+Dj(r)e Ve ¢ )> sin(jrz)+ (3.8)

+@wmm<‘wﬂéuﬂﬁrwﬂ)amwwl

x € [0,1], t € [r,T] with Aj(1), Bj(7), C;j(1) and D;j(t) given by (A), (B), (C) and

(D) respectively, is solution of (3.4) in the sense that
(a) v € CH([r,T],C[0,1]) N C*((1,T},C(0,1)) N C((r, T}, C*(0,1));

(b) v verifies the differential equation, the initial conditions and the boundary con-

ditions in (3.4).

17



Chapter 3 Electric Field-Telegraph Equation

Proof. We start by remarking that the expression v was established using the con-

dition defined in (b).

In what concerns (a), we observe that the finite sum defined for j < [% Elis

smooth enough. Next we prove that the sum of the series that arises in (3.8) satisfies
the smoothness requirements specified in (a).

The first step shows that the sum of the series in (3.8) defines a continuous
function in [0,1] X [r,T]. The general term of the series, for j € N,j > [%\/a,
satisfies the following inequality

_olt=7) 4(jm)%e — o2u
e = (Aj (1) cos ( T(t —7)

+ B;(7)sin ( M(t — T)) ) sin(jmzx)

< [By(7)], for 2 € [0,1], t € [r,T].

We have
1/2 1/2
1 e .
Z |Bj(T)] < 5 Z T2, 2. Z (fj(T))Q
o~ 2 24<j7T)€ o )
JENG>[ /%] jENG> [ £75] jeNg>[ 225
where by Parseval’s identity
1/2
Z (-]E](T))Q < HFHL2(—1,1)-
jesz>[i‘;22]

Then, the series with general term |B;| is convergent, and therefore the series in (3.8)

is uniformly convergent. Finally, (3.8) defines a continuous function in [0, 1] x [7, T
Now we want to show that the time derivative of the series in (3.8) exists and is

continuous in [0, 1] x [, T]. For the series of the time derivatives we have

ot )26 — 52
| S tE )(Aj(T)Cos< Agn)e — o' “(tr)>
€

4
+ B;(r)sin ( W(t - T)> > sin(jra)
+ e_a(;j) < — Aj(7) 4(j7r)42:2; il sin ( 4(j7r)42:2/: U2ﬂ (t— T))
+ Bj(r) W cos (1 /W(t - T)> > sin(jra)
< 218,001+ [ LT By o), (39)

18



3.2 Existence and Uniqueness of Solution

for [0,1] x [r,T], where

and

- 2 .
[f5(T)l = ]TT’f/j(T)’v
. oF
being f’;, j € N, the Fourier coefficients of s Using again the Parseval’s identity,
x

OF

and considering that e € L?(0,1), we conclude the convergence of the series defined
x

by the left side in (3.9). Therefore, the initial series is uniformly convergent in

0
[0,1] x [, T] and consequently 9V is continuous in [0,1] x [, T], and this function is

ot

the sum of the series of the time derivatives in (3.8).
2

We need to prove now that 8—;2) exists and that it is continuous in (0,1) x (7,7T].
Let 6 > 0 be such that 6 +7 < T and t € [T + §,T]. Considering the finite sum of
(3.8), of course its second derivative is continuous. The series of the second order

time derivative satisfies the following

o2 ot-m) 4(jm)%e — o
(@ [T )

+ Bj(7)sin ( dgmpPe — oty T)> > sin(jnz)

4e2pu

- A(j7)2e — 02 A(j7)2e — o2
e — Aj(7) Aym)Pe = o’p sin Am)Pe — o’ 'u(t—T)
€ 4e?pn

- Bj(7)74(j €=M o ( Agm)*e — o*p ”)42:2; Gl (t - T)> ) sin(jmz)

g

2 o [4(jm)%e —o%u
< (5) B+ 2| =
€ €

A(jm)?e — o?p

1Byl + =

s Bl (310)
for (0,1) x [T+ 9, T], where

A(jm)%e — o?p

462/£ |B](T)| < 462,“ |f](7)’
and
i) = g7,
](T - (jﬂ_)Q ](T 9
o a . ‘ O°F v .
being f”., j € N the Fourier coefficient of —. Then, — exists and it is the sum
J 2 ot?

of the series defined by the second order time derivate of each term of the series in
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Chapter 3 Electric Field-Telegraph Equation

(3.8), being continuous in (0,1) x [T 4+ 6,T]. As § > 0 can be considered arbitrarily
small, we conclude our result.
Following the previous analysis, it can be shown that the first and second space

derivatives of v exist and are continuous in (0,1) x (7, T7. O

Duhamel Principle allows us to conclude that a solution of the IBVP 3.1 is given
by

E(x,t) = /Otv(:z:,t; T) dt + w(zx,t), (3.11)
where w is given by (3.2), z € [0,1] and ¢ € [0,T].
Theorem 3. If
1. ¢o, 1 € CH[0,T] N C*(0,T);
2. o, 1 € C?0,1];
3. 1/}(()1'1;)} 1/}51'1;) are piecewise continuous in [0, 1];

4. FeC((0,71],C0,1]);

O*F : : ,
5. —— 1is piecewise continuous in [0, 1];

0z?
6. F(0.8) = 5 00)+00(0) + 2 (6h(0)+61(0)~ 66(0)) +64(0) for t € (0.7,

7. F(1,1) = —— )+ (1) + 2 (64 (0)+ 1 (1)~ 61 (0) +61(1) for t € (0, T);

L

e
then the IBVP (3.1) has at least one solution E in the sense that E € C*([0,T], C[0, 1])
NC?((0,T],C(0,1)) N C((0,T],C?(0,1)); E satisfies the telegraph equation in (3.1),

and the initial and boundary conditions in (3.1).

To conclude the uniqueness of the computed solution, we establish, in what fol-
lows, energy estimates similar to the ones well known for the wave equation. To do
that we reduce the IBVP (3.1) to an IBVP with homogeneous boundary conditions.

Let h:[0,1] x [0,7] — R be given by

h(z,t) = (1 — x)do(t) + xd1(t). (3.12)

The E = E—h is solution of the following IBVP, where F, 12)0 and 1/;1 are appropriate

functions.
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3.2 Existence and Uniqueness of Solution

(?E 1 . oobE . |

= E_ZEJFF in (0,1) x (0,77,
E'(x’O) = QZ)(](IE) S (O’ 1)a
%—f(:c,o) = 4 (2) z € (0,1).

In what follows, we use the next notation: if v :  x [0, 7] — R then v(¢) denotes
a function defined of Q in R defined by v(t)(z) = v(z, ).
Let (-,-) be the usual inner product in L?(0,1) and | - || the corresponding norm.

From the telegraph equation of the system (3.13), we get

/chljtf(t)cf(t)dw:; AE()%’?()M—‘:/Q(Cg(t)) dx+/ﬂﬁ’<t>dE

By the Cauchy-Schwartz and the Cauchy with € inequalities, we obtain, for 6 > 0,

. . 2
1d dE 2 dE 1 - 2 dE
L ol < lrolf +a e
2dt || dt H QEMdt H H dt(t)‘ 44 @] +o dt()

Considering now § = 21, we deduce

€
d (llag |7 1 2 tNat | 2
~ o € N
|+ Lozl +2 [ Lo as) < £ ]
dt dt() +/LHV() +e 0 dt() y o (*)
That allows us to establish
. 2
dE 1 N 2 dE
el - EtH A e ds < £ HF *
dt() +equ *) +6/0 dts s / y
dE 1 NI
i ~|IvE H
+ dt(O) + MHV (0)

Taking into account the initial conditions of (3.13), we conclude

dE 2 dE A2 1 A2
tEH/ d</HF d‘ —(/
¢ HV a B|| s st o ||Yo
(3.14)
L2
. L dE 1 N
The energy in the context of the wave equation is given by E(t) +— HVE(t)H .
e
P 2
E(S) ds that arises in (3.14) is induced by the damping term
a(‘?E
B . Moreover, if we do not have a reaction term then holds the following energy
€
conservative law
L2
dE 1 - 2 dE
e —HVEtH / az —H H Il te o1,
Z 0| + = |vEa| 2 [ Ge| a=|a] - 0.7
(3.15)
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Chapter 3 Electric Field-Telegraph Equation

Considering Poincaré inequality in (3.14) we conclude

2

<o (] +

2 t
Lo + |z [ Ee) @) e @)

where ||-|| ;1 represents the usual H! norm, and consequently, as H*(0,1) is embed-

ding in C[0, 1] we conclude

i
dt

~

2 t
Wl + HE(t)HZO < c(Hw}Hﬁ " 2+/0 HF(S)H2 ds), te0,7], (3.17)

where C' denotes a positive constant depending on the coefficients ¢, 4 and o. In

(3.17)

||l denotes the usual maximum norm.

Theorem 4. Under the condition of Theorem 3 the IBVP (3.1) has a unique solu-

tion.

Proof. We need only to prove the uniqueness. Since F and E* are two solutions of
(3.1) in the sense specified in Theorem 3, then E — E* is solution of the correspon-

dent homogeneous telegraph IBVP. The energy conservation equality (3.15) leads to

9 2 ) 2
Hat(E —EY)| =0, a—(E — E*)|| =0. As E, E* are smooth enough functions,
x
we conclude that £ = E* in [0,1] x [0, 7. O

3.3. Numerical Analysis of Telegraph IBVP

3.3.1. Introduction

To obtain an accurate numerical description of the hyperbolic-parabolic coupled
IBVP we need to propose a numerical discreptization of the hyperbolic IBVP (3.1)
that mimics the solution of such system, and that presents a high convergence order.

The method that we propose is obtained considering two steps:

1. Discretization of the spatial derivatives that reduces (3.1) to a second order

ordinary differential system;
2. Time integration of the initial value problem obtained in the first step.

The spatial discretization is defined on non uniform spatial grids and the con-
vergence properties of the semi-discrete approximations are studied. Finally in the
time integration we consider a standard implicit method. The fully discrete solution

is not studied in the present work but will be considered in the near future.
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3.3 Numerical Analysis of Telegraph IBVP

3.3.2. Spatial Discretization

We reduce our study to the homogeneous problem

’E 1 o OFE :

W:aAE—EE‘FF m (071)X(07T]7

E(0,t) = E(1,t) =0 t € (0,77, (3.18)
E(z,0) = 4o(z) z € (0,1),

2 (.0 = (@) 7€ (0,1),

In the spatial domain Q = [0,1] we introduce the non-uniform mesh 0 = x¢ <
x1 < -+ < zr—1 < xy = 1. Let h = (hy,ha,...,hr) be the stepsize vector with
hi =x; —xi—1,1=1,...,1, and let € be the interior grid points. Let Ds be the
finite difference operator

up(Ti—1)hit1 — up(xi)(hi + hig1) + up(wip1)h;

D i) =2
oup(z;) hihiy1(hi 4 hit1)

I-1

,e=1,..., ,

(3.19)
where up, is a grid function, that will be considered in the discretization of the spatial
derivative in the PDE of (3.18). Let E}(t) be the grid function with entries Ej,(z;,t),
1=0,...,1, defined by

dQEh 1 UdEh
——— = —DyE, — ——— +F), in Q) 0,T
12 el 21Lvp c dt + £y 1n hX( ) ]7
Ey(xg,t) = Ep(xr,t) =0 t e (0,7,
n(zo,t) = En(zr,1) (0,7] (3.20)
Eh(fL‘l,O):l[)g(ﬂfl) izl,...,f—l
dE
—(@0,0) = ¥ (x) i=1,.., 01,
t
where F},(z;,t), is an approximation of the reaction term F'(x;,t), i =1,...,1 — 1.

In what follows we consider Fj,(z;,t) = F(z;,t) and Ej(t) is called semi-discrete
approximation for F.

System (3.20) is an initial boundary problem, so it is important to check if it has
solution. Let Y (¢) be a vector with entries of Ep(z;,t) for i = 1,...,1 — 1, that is
Ep(t) is a grid function defined in Q5. By Dg we denote the diagonal matrix with
diagonal entries % and By, the tridiagonal matrix induced by the operator Ds. Then
(3.20) becomes

Y"+ DgY' = BpY + Fy, te(0,T]

Y(0) = tho, Y'(0) = v,

where vy, 11 are the vectors with entries 1o(z;), ¥1(x;), respectively.

(3.21)
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Chapter 3 Electric Field-Telegraph Equation

Let Z=[Y Y'|T and f = [0 F},)7, then (3.21) can be written as

0 Id
7 = Z+f, te(0,T]

B, —-Dg (3.22)
Z(0) = [tho ¢1]"

where Id denotes the identity matrix with order I — 1.
Considering M defined by

0 Id
M = ,
B, —Dg
then

t
Z:&Mzmyﬁ/eWﬂMﬂ@d&temjm
0

The previous relation gives simultaneously Fj(t) and Ej (t).
Now, we intend to study the accuracy properties of Ej(t). Let Ty (t) be the trun-
cation error induced by the previous discretization. This error admits the following

representation

1 OPFE
7(}11‘ - hz‘+1)w

Th(l’i,t) = 36#

+0OR2,,),i=1,...,1—1, (3.23)

where hpax =  max, h;, and O(h2,,.) denotes a quantity that satisfies |O(h2,,)| <

max
Ch?

max*

e

Notice that the previous relation is verified provided that E admits bounded
fourth partial spatial derivative.

From (3.23), the truncation error has first order on non-uniform meshes, so we
expect an equal or bigger order of convergence. In particular case for uniform meshes
with stepsize h, we have ||T),(t)||oc < Ch? provided that E has bounded fourth
partial spatial derivative. In the main result of this section we establish that Ej(t)
has second order of convergence for non-uniform meshes. We introduce now the

convenient functional context. Let Vj, o be the space of grid functions with value

zero in the extreme points of the partition. In V}, ¢ we introduce the inner product

— hi+h

. -

(uh,vh)h = Z %uh(xi)vh(aci), Up, Vp € Vh,U- (3.24)
i=1

By || - ||[n we denote the norm induced by (-,-),. We use the notation

I 3
[ D—zun||n+ = <Z hi(D—wuh(xi»Q) : (3.25)

i=1
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3.3 Numerical Analysis of Telegraph IBVP

where D_, denotes the backward difference operator defined by

up () — Uh(wz‘—ﬁ.

D_pup(z;) = I
We observe that
(Daup,vp)n = —(D—zup, D_gvn)h 4+, Un, vh € Vi,
where
I
(D_xuh, D_mvh)h7+ = Z hiD_muh(xi)D_mvh(xi).
i=1

As for non-uniform meshes the truncation error (3.23) has only first order, the
second order of convergence is not immediate. However, we start presenting a sta-
bility result for the semi-discrete solution Ej(t) of (3.20), whose proof is similar to

the proof of Theorem 6.

Theorem 5. If the semi-discretized model (3.20) has a solution E(t), then

By, 1 dE;,
— || D_. F d < 2
[Leo| +Ziomon + 2 [ [ S s o2
1
<= F,(s)|? d 2 4 I D_ytoll?
<< /0 IFs I} ds+ il + — ID-vnll
and
Lmz < € / NEIE ds+ Il + = 1D—avll (320
o =5, h e h,+
fort €10,T7].

From the previous theorem we conclude the stability of the IBVP (3.20) and the
uniqueness of solution for this semi-discretized problem.

By R} we represent the restriction operator.

Theorem 6. If the IBVP (3.18) has solution E € C*([0,T],C*[0,1]) N C2((0,T7,
C(0,1)), then there exist positive constants C1, Cy such that the error ep(t) =
RLE(t) — Ex(t) verifies

deh(t) deh
e I Tl Ay ) e
h h
< it [ 1B G ds+uE<t>ué4(m),te[o,T] (3.25)

where Ex(t) is solution of (3.20) defined on non-uniform mesh.
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Chapter 3 Electric Field-Telegraph Equation

Proof. The errors ey (t) and Tj(t) verify

d?e;, 1 o dey,

——=—D ——— 41T, inQ 0,7

> ep 20n T gy e n > (077,

ep(xo,t) = ep(xr,t) =0 t e (0,7,

n(@o,t) = en(xr,1) (0,77 (3.29)
€h(£L'i,O):O i:1,...,I—1,

de .

d—t’l(xi,o):o i=1,...,1—1.

From the differential equation of (3.29) we obtain

h €

that is,
1d ||dey, ? 1 d ) o || den  I? dep,
et | haait.2 || D_en(t (=20 = (Th), =2() ) .
5 7t dt()h+2€udtll en(tlnq+ + - dt()h n(t) dt()h

If we use in the second hand member the Cauchy with e inequality, we get ||T}]],
which gives an error estimate of first order. To avoid this result we need to remark

that

(100 50) = G0 entomn — (Grerents)

The previous relation enable us to conclude that

h

1d 2

2dt

1 d 2 g
——||D_, t —
g 1D O+

deh

deh
— @)

2 g dTy,
“n (

- F@0.e0n-(Frw.em)

h

which is equivalent to

deh 2 1 20 ¢ deh 2

%o + il + % [ S| as= @)
= - t @ S),EplS S
2wt -2 | (Gheha) i

dT;
We need now to obtain upper bounds for (dth(t),eh(t)> and (Th(t), en(t))n.
h

dT;
We remark that —h(t) admits the representation

dt
dTy, 1 0*E h? hii1 PFE
— (@i, 1) = 5—(hi = hit1) 557 (@i, - -1 )t
dt (z::1) 3€u( +1)81‘38t<x )+ 12ep <h,~—|—hi+1 8964315(& )
(A (3 _ 1 t
+ 12ep <hz + hit1 ) 61’4815(627 )
with &1, & € (0, 1).
In fact such error satisfies
d3ep, 1 D dey, o d%ey, dTy,

W():a QE()_zﬁ(H_W(ﬂ'
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3.3 Numerical Analysis of Telegraph IBVP

d1T;
That is, dith is the truncation error induced by the discretization of the second order

spatial derivative in the equation

PE 1 3F o 0*E

O3 eudzdt € 02t

Let be
) 1 0*'E
Ty 5(t) = =—(hi — hip1) = (t
(1) 36M(h +1) 535, (1)
and
2 5 2 5
(2) h; hit1 O°E hity hi OPFE
T3 () = . 1
na () 12ep <h7; + hit1 > e 12e0 \ i + hi prEEAC

We have successively

I-1 ;9 4
W2, —h2 O
et (T}E}g(t),eh(t))h =3 “6 t o (@i en(wi, )
1

S OB Denwn )~ 3 O et
T4 6 aatgr TR g gaBgr Y
(3.31)
I
1, 0'E
~ 6 ; hi 9230t (@i—1,0)|en(@i, t) — en(wi-1,t)] (3.32)
1
1 I*E I'E
- = h2 79 71— ,t Z’t
6 & Z[8m36t(m )~ Gasar i >] en(it)
I
1 3 0'E
= 75 2 ggagy i P —en(in )
1 )
1 9 Ty 85E
FN / i (5, ds en(i, ) (3.33)
h2
< =2 | E(1)]] oo 1D —wen(®lln,+
fhmax
1B )| gy llen (@)l (3.34)

Consequently we get, for d1,d9 > 0,

0 1)
}fl‘ (ng,lc%(t)»eh(ch 3% maxHEl H203(Q)+ <o || E (1 H?ﬂ((z)

+— D_en(t)|7 —i—— )7
451 H eh( )Hh,+ 4(52 Heh( )Hh
For (Tﬁ} (t), en(t))n, with d3 > 0, we obtain

d h 1
< =56 IE Ollcwey + 5, len

e (T(0), en(®))

1
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Chapter 3 Electric Field-Telegraph Equation

Putting it all together, we have
a1y,
o (G 0-en0) | <Clbar (IEO] ey + 120 umm

1 1 9 )
- <452 + 4(53) len (I, + 451 HD—xeh(t)Hm_i_,

where C' is a convenient positive constant independent on E, t and h. Considering

now the discrete Poincaré-Friedrichs inequality ([40]), we conclude

‘EM (ngl(t),eh(t)) ‘ <Cht (HE’(t)Hé(Q) + HE/@)H;(Q)) (3.35)

11 1 ,
+ <45 + 15, 1 > 1 D—zen ()5 +-

Taking into account that

1 PE h? hiy1 0*E
Ti (i, t) = — (h; — hi it i 1) S (it
h(x ) 3e,u( +1) ox 3 (x ) + 126# <hi + hz‘_,_l ) 8364 (771 )
2 4
12ep \ hy + hit1 Ozt ’

with 1, n2 € (0,1) and following the construction of the upper bound (3.35), it can

be shown that, for pi, ps, p3 > 0, we have

et (T(0), en(®)al <Clb (1B Zs(0y + 1B 250 (3.36)

1 1 1
F(—+—+— ) ID en(®)]} ..

Considering the upper bounds (3.35) and (3.36) in (3.30) we conclude

deh 2 1 2 20 deh 2
Chill + = |D_sen(t d
[%e0] + 2 io—sentolf+ %2 [ G|
1 1 1 1
<—|l—4+—+ D_ e 2
(554 30 5 ) ID-cen(OIR s
1 /1 1 t
L D_yen(s)|? . d
T (251 o5, T 253> /0 | D-acn(s)ll+ ds
Chi (IE 6| E'(s)|]? d
+ Ol | | (1B O Eagey + 156 ooy ) ds
+ (IBOIzs@ + 1EOI2s )
. 3
Considering p1 = p2 = p3 =3 and §; = d = I3 = > we get
deh 2 1 2 20’ deh 2
Crill + —— | D_sen(t d
[0 + 510l + 22 [ %) as
<1 /tHD en(s)2. ds
>~ —xzCh
e Jo ho+
Ol / |E(9)| gy ds+ 1 ECE >|r?,~4@].
Finally applying the Gronwall inequality, we conclude (3.28). O
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3.3 Numerical Analysis of Telegraph IBVP

Under the conditions of the Theorem 6 we conclude that

2 2 4 Cot ! 2 2

/
Jen I 1D-sen @)+ < Cuthae®™ ([ 1Oy ds+ 1EOIage) )
that is
2 4 Cot K 2 2
/
Ien @R < Cutbune® ([ 1By ds + 1B ug ).

where || - ||1,, represents the following discrete H'-norm

1/2

lunllvn = (lunlli + 1D-aunll )2, un € Vio-

As funlloo < [Junl

bound

1h, Un € Vi, we obtain for ||es(t)|ls the following upper

t
len(t)2 < Calh e ( /0 1B/ (5)lI2qy ds + \E<t>||2c4<m> '

The previous upper bounds were unexpected because T},(t) is only of first order
with respect to the ||+ ||oc norm. This phenomenon is usually called supraconvergence
(|16], [20], [44]), and was firstly studied for elliptic equations ([13], [14]) and parabolic
equations ([3], [24]). Here we observe that this phenomenon is also present when
hyperbolic equations are considered. It should be pointed out that the upper bounds
were obtained assuming that the solution E belongs to C1([0,T],C*[0,1]).

3.3.3. Numerical Simulation

This section aims to illustrate the main result of this chapter - Theorem 6. As this
result is for the semi-discrete approximation Ep(t) defined by (3.20), we need to
specify a fully discrete method.

In [0,7] we introduce the time grid {t,, n = 0,..., N}, with t,41 — &, = A,
and NAt =T. Let Dy; be the second order centred operator in time, and D_; the
backward finite difference operator in time. Replacing the time derivative in (3.20)

by Ds; and D_;, and considering non-homogeneous boundary conditions, we obtain

1
Do B (x;) + %D_tE,’f“(xi) = a1)2157;;“(%) + PP N @), i=1,...,1 -1,

with
Ej(x0) = do(t;), Ej(xr) = d1(ty), j=0,....,N (3.38)
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Chapter 3 Electric Field-Telegraph Equation

and

E)(x;) = o) i=1,...,1 —1. (3.39)

Considering the forward finite difference operator in time D, to replace the first order

time derivative in the initial velocity we get
DyEY (i) =i (x), i=1,...,1—1. (3.40)

We remark that E}'(z;) = E(x;,t,),i=0,...,I,n=0,...,N. The stability and
convergence properties of the finite difference method (3.37)-(3.40) will be studied

in the near future.

Example 1. Let E(z,t) = ever' cos(mz), € [0,1], t € [0,T], and let o, 11, do, d1,
and F be such that E is solution of the IBVP (3.1). We also consider €, pu, o= 1.

We introduce in [0,1] a random non-uniform grid Q;LO), being the new grids Q,(ll)
defined introducing a medium point in each spatial subinterval. Let hV) be the vector
of stepsizes that defines the grid Qg). By B}, we represent the numerical solution
defined by the grid Q,(ll) at time level t,, and e}, denotes the correspondent error. Let
€ = 1IST17%XN e Hl,h(zw

The convergence rate r; is given by

€1—1

%, (3.41)
e (1)

and we take T =1 and N = 90000, because we intend to illustrate the behaviour of

log
ry =

the error induced by the spatial discretization.

In Table 3.1 we present the obtained numerical results for the referenced meshes.
In Figure 3.2 we plot the least squares line for the set (log(h%@x),log(el)), for seven
meshes with I =5 x 2°, i =0,...,6. The obtained angular coefficient illustrates the

second order convergence rate.

Example 2. Let E(x,t) = 67\/%7}@ — 053, x € [0,1], t € [0,7). This function
belongs to H3(0,1). Let the initial and boundary conditions, and F be such that E
is solution of the IBVP (3.1), and take €, u, o equal to 1.

We consider the approach introduced in Example 1 to define the sequence of spacial
grids. By E}'(x;), 1 =1,...,1—1 we denote the numerical solution defined by (5.37)-
(8.40) with

1 Tipd
Fy(zi,t) = 1/ R t) de, =1, 11, (3.42)
(hi + hit1)? Ja



3.3 Numerical Analysis of Telegraph IBVP

Linear regression to study the convergence order

)
O Exactvalue
y= 1.9452x +-0.29029
2
1 hm,a.r €] T
4
50 | 0.0901 | 0.0124 - - -4
100 | 0.0450 | 0.0030 | 2.0533 % ®
200 | 0.0225 | 0.0007 | 2.0130 ) o
400 | 0.0113 | 0.0002 | 2.0006 0 -
Table 3.1: Numerical results for 2 " = " S P .
log (hmax)
smooth F.
Figure 3.2: Linear regression illustrating the
convergence order of the method.
where x, 1 = x; — M, 1, 1 = x; + ML
i—2 i T o L = 2 -

We consider T' = 1 and N = 90000. In Table 3.2 we include the numerical
results obtained by method (3.37)-(3.40), with F}, given by (3.42). We use the no-
tations introduced in Example 1. In Figure 3.8 we plot the least squares line for
(log(hg)ax), log(e;)) for seven meshes with I =5 x 2¢, i =0,...,6.

Table 3.2 and Figure 3.3 illustrate the second convergence order of the method
(3.87)-(3.40) with Fy, given by (3.42) for solutions with lower smoothness (E(t) €
H3(Q)). The theoretical support for this fact cannot be developed using the approach
used in the proof of Theorem 6. The extension of this result for solutions in H>(Q)

will be consider in the near future.

Linear regression to study the convergence order

o] Exact value
3 y= 1.8508x +-197
-4
I | hmae | ey, & s
50 0.0889 | 0.00076 - - B
100 | 0.0445 | 0.00020 | 1.9429 42.,"7 g
g, »
200 | 0.0222 | 0.00005 | 1.9947 . g
400 | 0.0111 | 0.00001 | 2.0384 o0 ye
s
11 S/
Table 3.2: Numerical results for 12 . p B " p N
log (hmax)

less smoother E.

Figure 3.3: Linear regression illustrating the

convergence order of the method.
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Chapter 4

Hyperbolic-Parabolic Coupled
Model

4.1. Introduction

Our goal in this chapter is to study the coupling between the IBVP studied in
Chapter 3 with a parabolic IBVP that can be used to describe a diffusion process.

This coupling, as we mentioned before, can be used to study a drug diffusion
process in a target tissue when an electric field or a scalar electric potential is ge-
nerated to enhance the drug diffusion. We recall that a coupling between a diffusion
equation and a Poisson equation was considered in this scope when iontophoresis or
electroporation protocols are applied ([5], [15]). Such Poisson equation defines the
stationary state of the telegraph equation that we studied before, when a electric field
or a scalar electric potential is applied to enhance the diffusion of a drug, then in the
drug transport were identified three main contributions: passive diffusion, convective
transport induced by the electric field or electric potential, and convective transport
induced by the fluid flux. The last contribution arises namely when high currents
are applied. In what follows we do not consider this last contribution usually called
electro-osmosis. Remark that when high electric pulses are applied, the structure
of the target tissue changes and its porosity increases. To take into account this
property, the diffusion process should be seen in a porous medium. In this case the
coupling of the diffusion equation and one of the telegraph equations, introduced in
Chapter 2, is not enough to describe all physical problem. We need to introduce
another contribution in the drug transport induced by the porosity of the medium,
and to consider Darcy’s law ([4]).

If we consider only the convective transport induced by the electric field, then

the mass flux J is given by the Nernst-Planck equation
J =—-DVc—wc, (4.1)
where ¢ denotes the drug concentration, D the diffusion coefficient and v the con-
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Chapter 4 Hyperbolic-Parabolic Coupled Model

vective velocity given by
zDF,

B RTemp

(4.2)

v =

If we consider the scalar electric potential ¢ to describe the electric properties

generated in the target tissue, then the convective velocity is given by

zDF, 0A

As the concentration of the drug is described by the mass conservation

dc

E—FV-J:Oin (0,1) x (0,77, (4.4)
then for ¢ we conclude
% =V . (DVc)+ V- (ve). (4.5)

Equation (4.5) is coupled with initial and boundary conditions. If, for instance, drug

degradation is taken into account, then c is described by the following IBVP

%:V-(DVO)+V-(UC)+G in (0,1) x (0,77,

c(x,0) = co(x) in (0,1), (46)
c(0,t) = cext(t) in (0,77,

c(l,t) =0 in (0,77,

where v is given by (4.2) or (4.3), ¢o describes the initial drug concentration, cet
defines a source at the left size of the domain Q. We also assume that all drug that
attains the right side of the domain is removed. In (4.6) G represents a reaction that
we suppose ¢ independent.

In what follows, we study the coupled hyperbolic-parabolic IBVP (3.1) and (4.6).
We observe that if the electric potential is considered then the partial differential
equation in (3.1) should be replaced by (2.27). This last coupling is not considered
in this work because as v depends on V¢ several analytical difficulties need to be
solved and we do not have now the right answers.

In Section 4.2 we study the stability of the coupled model (3.1), (4.6). The
existence of solution of such problem will be not considered here. However from the
stability analysis we conclude that (3.1), (4.6) has at most one solution. In section 4.3
we couple the semi-discrete initial value (3.20) with a semi-discrete approximation
of (4.6) and we study the stability and convergence properties of the hyperbolic-
parabolic semi-discrete problem. Finally, some numerical experiments illustrating

the theoretical results established in this chapter are included in Section 4.4.
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4.2 Stability of the Coupled Problem

4.2. Stability of the Coupled Problem

The IBVP (3.1) has at most one solution. We prove now that (4.6) has also at most
one solution. Let us suppose that for E given by (3.1), (4.6) has two solutions ¢ and

¢. Let consider w = ¢ — ¢. It can be shown that w satisfies

1d
L )2 = DIV (®)|? ~ (ww(t), Vu(®)
< D[ Vw(®)|2 + o]l Vu®)]
< —D|Vuw®)|P + ”jj)'("fu O + x| Vw2 ¢ >0,

where x1 > 0 is an arbitrary constant.

For x1 such that D — x; > 0 we obtain

d
@I < 5 IIU( Nallw @), t >0,

that leads to

()2 < ez o IO 4 gy12 ¢ > 0, (4.7)

As ||lw(0)|| = 0 we conclude that exists at most one solution ¢ € C*((0,77],C(0,1)) N
C([0,T),C[0,1]) N C((0,T],C?(0,1)), with the corresponding partial derivatives in
the space of uniformly Ho6lder continuous functions, defined in €2 with exponent 9,
0<d<1

Theorem 4 and the previous remark allow us to conclude that the hyperbolic-
parabolic IBVP (3.1), (4.6) has at most one solution. To conclude the existence
of a unique solution we need to establish conditions that enable to guarantee such
existence ([26]).

In what follows we consider ce,; = 0. Similarly to the proof of the inequality

(4.7) it can be shown

Hc(t)llzé(\l( Y2+ 26, / 1Gs |r2ds)ef0<2<1“ ) 4y

for &1, & > 0 such that D — & > 0.
We analyse now the stability of the coupled IBVP (3.1), (4.6).

Theorem 7. Let E,E be solutions of (8.1) with initial conditions g, 11, 1o, U1,
and ¢, ¢ be the corresponding solutions of (4.6) with initial conditions cg, ¢y. If

c,¢ € CH(0,T),C(0,1))NnC([0,T],C[0,1]) N C((0,T],C?(0,1)), then there exist two
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Chapter 4 Hyperbolic-Parabolic Coupled Model

positive constants x1, X2 such that

lle(t) — é&(t))? +/0 IV(c—&)#)|?* <

~ zDF,
<c3 <||(C —&)(0)*+ RTempya

1
min{1,2D — x1 — x2}’

t (o5 t
/ 1é(s) |2 lwi ()% ds> ext o el ds -y o 1o ),
0

with wg =F-E.

for cg =
Proof. For w. = ¢ — ¢ we easily deduce

%H’wc(f)\\2 +2D|[Vwe(t)|* = =2(vp(t)we(t), Vwe(t)) — 2(wy (£)E(t), Vwe(t)), (4.9)

zDF.E

where Vg = my

w, = vg — vi. Equality (4.9) leads to

D ue(t) 1+ 2D V()| < 2@l ol (1D + 200)] e (1) (0]
< L op® 12 Jlwe®)]? + 1@ lwo®2 + i + x2) [ Vwe(®) |2, 2
X1 X2

where x; > 0, ¢ = 1,2, are arbitrary constants. Then
2 ! 2 o 1 [ 2 2
) + (2D = x1 = x2) [ IVue®IF s < we0)1? + = [ s fue(s) P ds
Lot e 2
+— [ el [lwu(s)5 ds, t € [0,T].
X2 Jo
Fixing x1, x2 such that 2D — x1 — x2 > 0, we obtain
2 ! 2 o, 1 [ 2 2
[we(®)] +/0 [Vwe(s)[|” ds < c3 (ch(o)ll +X2/0 [[E(s) 17l ()15 dS)

t
3
+ 3 / lop ()12 we(s)[2 ds, ¢ € 0,7,
X1 Jo

1

h = .
WHERe €3 min{1,2D — x1 — x2}

Applying Gronwall Lemma we get,

t
eI + /0 | Vuwe(s)|? ds <
1 ¢ B (typ(s)|2, ds
< ¢ (uwcm)u? L o) Pt ds) X o Iop @B ds -y o 7y,
0
]

In the conditions of Theorem 7, taking into account (3.17), (3.12) and that from
(4.8) we have

t (1 =12 1 ) ds
le(t)]1? < <||50H2+2€2/0 IIG(8)||2d5> oo (i vsl3et 2t ) @

we conclude the stability of the IBVP (3.1), (4.6). Moreover, under these conditions,

we also conclude that exists at most one solution of the coupled problem:.
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4.3 A Semi-Discrete Approximation

The previous estimates allow us to obtain an upper bound for the drug mass in
the system, during drug diffusion processes when an electric field is generated. We

define the drug mass in the system, in the instant ¢ by

1
M(t) :/ A(z)c(x,t) dx,
0
where A(x) is the area of the cross section for the position x. Here, by simplicity,

we consider A(z) =1 for all z. So, we have for &, & >0

t % t 1 2 1
M(t) < [le(t)]| < <!C(0)Il2+2€2 /O ||G<s>||2ds) ol (atg 1M1 +agg ) s

with [[v(t)]|eo < gﬁfgp(”ﬁ'(t)”oo—l— A (t)|ls) € ||E(t)]|oo which has (3.17) as an upper
bound.

4.3. A Semi-Discrete Approximation

To simulate the behaviour of the solution of the hyperbolic-parabolic IBVP (3.1),
(4.6) we use in what follows a method of lines approach. As the spatial discretization
has a crucial role in the error of the numerical approximation for the solution of such
coupled problem, we should consider an accurate spatial discretization. We remark
that the semi-discrete approximation (3.20) for the hyperbolic IBVP (3.1) presents
an unexpected convergence rate established in Theorem 6.

Our aim in this section is to propose a spatial discretization for IBVP (4.6)
such that the corresponding semi-discrete approximation and the one defined by the
differential problem (3.20) for the electric field presents second convergence order.

In Q = [0, 1] we consider the spatial grid defined in Section 3.3.2. Let D, be the
finite difference operator given by

un(@i41) — up(i-1)

Deun(w:) = hi + hipt

Let cp(x;,t) be the approximation for ¢(x;,t), i = 0,...,I, defined by the ordinary

differential system

d
% = DDscp, + De(cpon) + Gr in Qp x (0,77,
cn(xo, t) = ep(ar,t) =0 te (0,7), (4.10)
cn(xi,0) = co(x;) i=1,...,1—1,
f 0 where vy (¢) 2DEe b ), Bi(t) s defined by (3.20), Gp(zs,1) i
0 = ere =— s define . ,, 1) 18 a
T Cext where vp, RTemp h\l); Lih 1 n Y y Gp\Tq,1) 15 an
approximation for the reaction term G(x;,t),i=1,...,1 — 1. In this work we take

Gh(xi,t) = G((L‘i,t), 1= 1,.. . ,I— 1.
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The solution of the IBVP (4.10) admits the representation
t
en(t) = e (0) —|—/ et=)AnGy (s) ds, t >0,
0

where Ay, is the matrix induced by the operators Dy and D..

This solution is unique. In fact, if é,(t) is another solution, then wy(t) = cp(t) —
cn(t) satisfies (4.10) with wp,(0) = 0, Gp(t) = 0. As (Dc(vp(t)wr(t)), wp(t))y =
— (M (vn(t)wn(t)), D—zwp(t))n,+, where

up(x;) + up(ziz1)

Mpup(z;) = 5 ,
it can be shown that
5%”“%(75)”}1 + D||D_ywn ()|, + = — (Mp(vn(t)wi(t)), D—gwn(t))y, 4

< Nlon@ oo llwn @I+ 1 D—zwn () [ln.+

< V2{[on ()l ool () ||| D—wn () 1, +
1
< TMth(t)Hgonh(t)H% + X1 D—zwn(®)I7 4
where x1 > 0 is an arbitrary constant. Then, for x; such that D — x; > 0 we get
inh(t)HQ < Jon @I wn )2, ¢ >0
dt h = 2x1 & ho 7=
and consequently,
1ot 2
hwn (@) < e o O S )2, ¢ > 0.

As wp,(0) = 0 we conclude ||wp(t)]|7 =0, t > 0, that is cx(t) = éx(t), t > 0.

Theorem 8. Let Ey(t) be defined by (3.20). Then the IBVP (4.10) has a unique

solution.

The last result and Theorem 5 guarantee that the coupled IBVP (3.20), (4.10)
has a unique solution.

We study now the convergence properties of the semi-discrete approximation

defined by (4.10). Let e (t) = Rpc(t) — cp(t) and eyep(t) = Rp(ve)(t) — vp(t)en(t)

DF,
be the induced spatial error where vy (t) = _RZT “ Ej(t). These errors satisfy
emp
dec h .
dt’ = DDsecp + Deeeyp, + T in Qp x (0,77,
ecvh(.%'(),t) = ec,h(xj,t) =0 t e (O,T], (4'11)
een(2i,0) =0 i=1,...,1—1,
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4.3 A Semi-Discrete Approximation

where the truncation error Ty (t) is given by

D e 0% (ve
Th(wi,t) = g(hz‘ - hz‘+1)8x3 (i, t) + (hi — hz‘+1)a(xg)($i,t)
Dh? [ hin e Dh? h; e
: — 1) =—(m,t : —1) o=,
+ 12 (hl + hit1 > ozt (,’717 ) + 12 (hz + hit1 ) ozt (nQ’ )

h2 hi+1 83 (’UC) h2+1 hl
-+ —1 - T U -1 - 1),
+ 6 <hz + hi+1 > o3 (51 ) + 6 <hz + hi+1 > oz3 (52 )

with n, n2, fla 52 € (0’ 1)

From the differential equations of (4.11), it can be shown that

1d
gallec,h(t)lli = —D|ID_zecn(®)|l 4 — (Mneeon(t), D—secn(t))nt + (Th(t), ecn(t)), -
(4.12)
DF, .
Let k = ;?m, and e, (t) = Ry E(t) — Ej(t), where Ej(t) is defined by (3.20).

We have successively

- (Mhecv,h(t)v D—mec,h (t))h7+

< klle@®)lloollen(Oln - 1D—zecn@llns + Kl En(t)lloo | D—zeenllnllecn(®)ln+
k2 k?

< THC(t)HioHeh(t)H% + (1 + x2) | D—secn(®)i 4 + THEh(t)IlgoHec,h(t)H%-
X1 X2

Applying the last upper bound in (4.12) we obtain

d

alleqh(t)\l% +2(D = x1 = x2) [ D-secn(t) + (4.13)
k2 2 2 k2 2 2

< ;”C(t)uooueh(t)uh + gHEh(t)HooHeC,h@)Hh +2(Th(t), ecn(t))n, t > 0.

Now we need to find an upper bound for (T}(t), e n(t))n. We start by splitting
the truncation error Ty (z;,t) = T,El)(:ci, t)+ T,EQ) (x;,t), with

1) D e 0% (ve)
T, (ziyt) = g(hz - hi+1)$($i7t) + (hi — hit1) ) (ziyt)
and
(2) Dh? hit1 e DhZ,, hi e
T iy = -1) ) -1+ )
h (.7} t) 12 <hz + h,‘+1 ozt (771 t) + 12 h; + hi+1 ozt (772 t)
h? hit1 03(ve) hZ, 4 h; 93(ve)
-+ -1 t L -1 t).
+ 6 <hl + hi+1 ) 0z3 (517 ) + 6 <hl + hi+1 ) 0z3 (527 )
As
V2 of 1
(T80 centDh] < 5 W | 52O lecnll + Sl SOl D O
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D &3c 0?(ve)

for f(.’,U,t) = gﬁ(.ﬁ,t) + W

(z,t), we conclude

of I
%(t)

o

+1]lecn ()7 (4.14)

1
T, ecn®)n] < ghﬁm

- p4 2 2
+ 165 hmax”f(t)Hoo + 52HD—$eC7h<t)”h,+7

where 1, do > 0 are arbitrary constants.

Moreover, as

(2) 1 e 1 &Pve
1200)conttnn] < maxt1. DY (5 550+ |G @] ) hecntoh
we have
2 3 2
(2) < (max{1,D})? , 1 i“c 1 0%ve
(@20 enn] < =250 b 55 5@+ 5] T ] ) @19

+ sllecn(®)]7,

where d3 > 0 is an arbitrary constant.

Taking in (4.13) the upper bounds (4.14), (4.15) we deduce

d
@Hec,h(t)H% +2(D = x1 = x2 = 02)[| D—secn(®)]I7 + (4.16)

K k2
< ;IIC(t)Iliolleh(t)lli + <><2HEh(t)||c2>o +2(d1 + 53)> lecn (D17 + Mmaxg(2),

where
1 ||of 5 (max{1, D})? d'c 2 »Bve, ||?
o0 = - || + gt EELPE (L)) 2 T ).
The inequality (4.16) leads to
t
lecn ()17 +2(D = x1 — x2 — d2) /0 ID—secn(s)llf - ds (4.17)

t k?
< flean(O)]2 + /0 (Mnc(s)nioneh( 2 + A g(s >> ds
t k2 9 9
-/ <X2||Eh<s>||oo 126, +263) lean(s)IZ ds.
0

For x1, X2, 62 such that D — x1 — x2 — d2 > 0 and using the Gronwall Lemma we

obtain
2 ¢ 2
leen(®)2 +2(D — x1 — x2 — b2) / 1D aeen(s)2., ds
0

t k2 kE52+25+25 ds
< [ (Ehe el + o)) as (1O 38125)

Finally we obtain the following result.
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4.4 Numerical Simulation

Theorem 9. Let E and c be solutions of the coupled hyperbolic-parabolic problem
(8.1), (4.6) and let Ey and cp, be the corresponding semi-discrete approximations
defined by (3.20) and (4.10). If E € CY([0,T],C*0,1]) n C?((0,7T],C(0,1)) and
c € C((0,T),C%0,1]) nC([0,T],C[0,1]) N C*((0,T],C(0,1)), then there are positive
constants C;, 1 = 1,2,3 such that the error e.j(t) = Ryc(t) — ci(t) satisfies

t t
lecn I+ | ID-cecn)IR.« dséclh;;axe@t[ / <uc<s>|r%3<mrE<s>\|%4<m

¢ ¢ (a2 ds
- \\c(s)\\zc4(ﬁ)>ds+/o ‘|E'(3)H%4(Q) ds/o Hc(s)Hé(Q) ds] O3 Jo IEn(9)% ds
fort € [0,T].

We remark that Ej(t) is given by (3.20) and considering the upper bound (3.27)
we conclude that ||E} ()] is uniformly bounded in ¢ and h. This fact enable us
to conclude that, under the conditions of Theorem 9 there are positive constants C

and (s independent of £, C, h and ¢ such that

t t
leen (I3 + / ID—secn()I, dsscmfmxe@t[ / (\c<s>\éa<muE<s>ré4<m

t t
+ 110(8)11%4(Q)>ds+ /0 1B ()10 ds /0 le(s) e ey dSIv

for t € [0,T7.

4.4. Numerical Simulation

To illustrate the behaviour of the solution of the hyperbolic-parabolic IBVP (3.1),

(4.6) we propose the fully implicit-explicit discrete finite difference scheme

D_yc} ™ (i) = DDoc) () + De(v) (@) el (2:)) + G (i), i = 1, T — 1,
j=1,...,N—1,

(4.18)
which is coupled with the fully discrete finite difference scheme (3.37)-(3.40) for
electric field intensity. In (4.18), c,’l(:cz) represents the approximation for c(x;,t;),
i=0,....,0,7=0,...,N.

For the numerical approximation for the electric field intensity £ and the numer-

ical approximation for the concentration ¢, we use the following steps:
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1. Solve (3.37)-(3.40);
2. Solve (4.18).

The fully discrete coupled problem (3.37)-(3.40), (4.18) will be studied in the
near future. In what follows we present some numerical experiments that allow
us to illustrate the main convergence result of this chapter - Theorem 9 - and the

qualitative behaviour of the hyperbolic-parabolic IBVP (3.1), (4.6).

Example 3. Let g, U1, ¢o, ¢1, F be such that E(x,t) = even! cos(mx), z € [0,1],
t € [0,T] is solution of (8.1). Let co, Cext and G be such that c(x,t) = e~ sin(rx),
xz € [0,1], t € [0,T] is solution of the IBVP (4.6).

In (3.837)-(3.40) we take Fy(zi, t,) = F(x;,tn) and in (4.18) Gp(zi, tn) = G(x4, tp).
We consider the sequence of the spatial grids as in Exvample 1 and we take T =1 and
N =90000. For the constants of this processes, we consider €, p, o =1, D = 1072,
z =1 and Temp = 310.

Let ¢ = 1ISnnanN ||R§ll)c(tn) = ciwllpw and ry be defined in hr® as in (3.41). In
Table 4.1 we present the obtained numerical results. In Figure 4.1 we plot the least
squares line for (log(h%@x),log(el)) for seven meshes with I =5 x 2¢, i =0,...,6.

Such results illustrate the second order convergence rate established in Theorem 9.

Linear regression to study the convergence order

O Exactvalue

y= 1.9336x+-1.2163

1 hmax €l T -

50 | 0.0882 | 0.00187 -

100 | 0.0441 | 0.00045 | 2.0656

200 | 0.0221 | 0.00011 | 2.0617

400 | 0.0110 | 0.00002 | 2.0945 "
JI2—5 -5 -4 -3 -2 1 o
Table 4.1: Numerical results for log(hma)

the coupled model. Figure 4.1: Linear regression illustrating the

convergence order of the numerical coupled

model.

Example 4. In what follows we illustrate the behaviour of the concentration defined
by the coupled problem (3.1), (4.6). We consider our domain a cube of edge 1, so
considering that the medium is isotropic, we can simplify our study to x € [0,1]. For

the electric field intensity we take e = 4 x 1074, =2 and 0 = 0. We also consider
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4.4 Numerical Simulation

F =0, ¢o(t;) =0.008, ¢1(t;) =0, j=1,....,N , and ¢o(z;) = 2cos (Z(1 + 22;)) +
0.008(1 —x;), ¥1(x;) = f\/% cos (5(2+2x;)) withi=1...,1—1. In what concerns
the concentration, we take z = 1, Temp = 310 and D = 1072. The numerical Ej(t)
and cp(t) are obtained with T = 100, M = 5000 and N = 100.

Let M,(t) be the drug mass released at x = 1, that is given by

M,(t) = /Ot AJ(zg,s) ds,

where A is the area of the cross section which is assumed equal to the unity (see

Figure 3.1). Its numerical approzimation is computed by

L

Mo(t) =~ ALY (_Dcf‘hcf—l _ vcgn> ,

m=0

where LAt =t. As c(xr,t;) =0 for all j, then

L
c
M,(t) ~ At > D=
m=0
02 0.2
0.18 ———£:=D393 0.18
---------- t=098
ot6F v=48.00 0.16
0.14 0.14 e
So12 5o /,’/ \\\
w o -
g 1 N g 01f =T
§DDB N ‘_““»\ §noa
N~ .
0.06 N S 0.06
\\ --\\\ 77777
0.04 S e 004 /T T
0.02 T~ -\“\.\\ 0.02 T
DD 01 02 0.3 04 05‘_0\-.(;‘“07 08 EIDD ‘.\-1 DD 01 02 0.3 0.4 0.5 06 0.7
X X
(a) cext(t) = 0.1 for ¢t € (0,T7; (b) cezt(t) =0 for t € (0,T];
co(0) =0.1,¢9(z) = 0 for x € (0,1). co(z) = 0.2sin(wz) for x € [0,1).

Figure 4.2: Drug concentration in the domain for several time instants.

In Figure 4.2a we plot the drug concentration obtained with cer(t) = 0.1, for
t € (0,T], and co(z) =0, = € (0,1), for different time levels. The results plotted in
Figure 4.2b were obtained assuming that the target tissue has an isolated left hand
side and the drug is removed at the right hand side. In this case the diffusion equation

(4.5) is complemented with the boundary conditions
J(0,t) =0, c(z1,t) =0, t € (0,1],
where J(x,t) = —DVe(z,t) —v(x, t)c(x, t).
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Chapter 4 Hyperbolic-Parabolic Coupled Model

The discretization of this problem is made considering an additional grid point
x_1 = —hy, considering v(x_1,t) = v(x,t), for t € (0,1], and using the following
discretization

DD.c}(x0) + v] (z0)e) (z0) = 0.

We also consider that we do not have reaction.

The effect of the temperature in the released mass for different initial conditions
1s tllustrated in Figure 4.3. In Figure 4.3a we plot the released mass for different
temperatures when at the left hand side of the spatial domain we have the source used
before in the scenario illustrated in Figure 4.2a. When the temperature increases, a
decreasing of the released mass is observed. The behaviour of the concentration for
different temperatures, where the diffusion process is enhanced by an applied electric
field is illustrated in Figure 4.3b. From these results, we conclude that an increase of

the temperatures leads to a decrease of the released mass.

0.14
ot = Temp =210
.
————— Temp =210"; Temp = 260
0.09 Temp =260 0.12 — — —Temp=310["
— — —Temp=310 Temp = 360
0.08 Temp = 360 .
=7 0.1 .
0.07 <
T & [N
x ™~
£ 0 £ 008 P S~
P @ ; -
@ 0.05 a 7 T~
£ = £ / ~_
S0.04 o 0.06 ~
2 =] e
a 5 e
[=] \ P
0.03 e
0.04 \ T2
0.02 \\ B
P
0.01 0.02
0
0 100 0 ,
t 0 10 20 30 40 5 60 70 80 9 100

t

(a) cext(t) = 0.1 for t € (0,T];

b Cext - for R ;
c0(0) = 0.1, co(x) = 0 for = € (0,1). (b) cexi(t) = 0 for t € (0, 7]

co(z) = 0.2sin(wx) for x € [0, 1).

Figure 4.3: Released drug mass at © = 1 for different temperatures.

Figure 4.4 illustrates the behaviour of the drug diffusion for different electric con-
ductivities and different electric permittivities of the target tissue. The results in
Figure 4.4a show that the convective transport is higher for higher electric conduc-
tivities. In Figure 4.4b we observe an opposite behaviour, that is, an increase of the
electric permittivity induces a decrease of the electric transport. These results were

obtained using a pulse initial condition.
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a=0.5
012

011 -

0.08 e

0.06 -

004 1

0.02 | ¥

(a) Variation of o.

Figure 4.4: Released drug mass at =

co(z) = 0.2sin(mwz) for x € [0,1).
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Chapter 5

Conclusions

In this work we studied a coupled initial boundary value problem (3.1), (4.6) that
describes the time and space evolution of the electric field E and the concentration c.
As we mentioned before, this system is a natural extension of the coupling between
Laplace equation for the electric potential and equation (4.5) for the concentration.
We believe that the coupling hyperbolic-parabolic problem can be used to study the
drug absorption enhanced by a physical enhancer like electric currents, as considered

in the references included in this work, or light ([36]).

Theorems 6 and 9 are the main results of this work. In the first result we es-
tablish that the error for the semi-discrete approximation Ej(t), defined by (3.20),
for the electric field E(t), defined by (3.18), presents second convergence order with
respect to the H! discrete norm || - ||1 4. Using this result, we prove in the second
result that the error for semi-discrete approximation ¢y (t), defined by (4.10), for the
concentration ¢, defined by (4.6) with homogeneous boundary conditions, presents
second convergence order but with respect to the L? discrete norm || - ||,. These re-
sults are unexpected because the truncation errors induced by the considered spatial

discretizations have only first order with respect to the norm || - ||oo-

Numerical results illustrating these results are also presented. We remark that
these results require smoothness for the electric field and for the concentration. Nu-

merical simulation for weaker smooth solutions is also included.

The qualitative behaviour of the coupled model (3.1), (4.6) is illustrated consi-
dering the fully discrete coupled method (3.37)-(3.40), (4.18). This scheme was
constructed using the method of lines approach: the time integration of the semi-
discrete coupled problem (3.20), (4.10) using Euler method.

As this work is the first study in the analysis from analytical and numerical
point of view of the IBVPs (3.1), (4.6), several questions are still without an answer.
Firstly, from the numerical simulation of the method (3.1), when the electric field

E(t) is in H3(0,1), we think that Theorem 6 remains true when lower smoothness
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Chapter 5 Conclusions

assumptions are imposed. The stability and convergence analysis of the fully discrete
schemes (3.37)-(3.40), (4.18) under the smoothness assumptions considered in this
work or under weaker assumptions will be studied in a near future. The electric
field E(t) (equation (2.16)) was used in the Nernst-Planck relation (4.1) to define
the convective velocity for the drug concentration. Let us consider now that the
convective velocity is induced by the gradient of the electric potential ¢ defined by
the equation (2.27). The study of results similar to Theorems 6 and 9 need to be
consider for this last scenario. High dimensions for the space variable will be also

considered.
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