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Abstract 

A fundamental question that often occurs in statistical tests is the normality of 

distributions. Countless distributions exist in science and life, but one 

distribution that is obtained via permutations, usually referred to as 

permutation distribution, is interesting. Although a permutation distribution 

should behave in accord with the central limit theorem, if both the 

independence condition and the identical distribution condition are fulfilled, 

no studies have corroborated this concurrence in functional magnetic 

resonance imaging data. In this work, we used Anderson–Darling test to 

evaluate the accordance level of permutation distributions of classification 

accuracies to normality expected under central limit theorem. A simulation 

study has been carried out using functional magnetic resonance imaging 

data collected, while human subjects responded to visual stimulation 

paradigms. Two scrambling schemes are evaluated: the first based on 



permuting both the training and the testing sets and the second on permuting 

only the testing set. The results showed that, while a normal distribution does 

not adequately fit to permutation distributions most of the times, it tends to be 

quite well acceptable when mean classification accuracies averaged over a 

set of different classifiers is considered. The results also showed that 

permutation distributions can be probabilistically affected by performing 

motion correction to functional magnetic resonance imaging data, and thus 

may weaken the approximation of permutation distributions to a normal law. 

Such findings, however, have no relation to univariate/univoxel analysis of 

functional magnetic resonance imaging data. Overall, the results revealed a 

strong dependence across the folds of cross-validation and across functional 

magnetic resonance imaging runs and that may hinder the reliability of using 

cross-validation. The obtained p-values and the drawn confidence level 

intervals exhibited beyond doubt that different permutation schemes may 

beget different permutation distributions as well as different levels of accord 

with central limit theorem. We also found that different permutation schemes 

can lead to different permutation distributions and that may lead to different 

assessment of the statistical significance of classification accuracy. 

Keywords Permutation testing, normality, classification analysis, Anderson–Darling 

test, central limit theorem 

1 Introduction 

Decoding mental states from patterns of brain activity in humans relies 

mainly on using classification techniques on brain images acquired via 

functional magnetic resonance imaging (fMRI).1–3 The decoding devolves on 

MultiVoxel pattern analysis (MVPA) of fMRI data by using classifiers. There 

has been a non-trivial interest in this method with aims to uncover the brain 

mysteries and understanding how it works. The statistical significance of the 

classification procedure has been raised as an important issue to confirm 

successful mental decoding. Consequently, in neuroimaging studies where 

researchers usually work on constrained datasets that may suffer from low 

sample size and high dimensionality, classification analysis are usually 

performed via cross-validation. One can obtain a p-value of the classification 

accuracy by using the binomial distribution (the multinomial distribution if 

more than two classes).4 This approach, however, fails because of using 



cross-validation and another method has to be used to find the p-values of 

the classification accuracy.5,6 Since the class distributional properties are 

unknown and the distributional properties of the test statistic are complex, 

permutation tests have been suggested to estimate the classification 

significance.2 These methods are based on the null hypothesis that classes 

have identical distributions and an attempt is made to reject the hypothesis 

and prove otherwise. The significance of the classification can be estimated 

by measuring how far does the accuracy deviate from theoretical chance-

level. Permutation testing is inspired from Fisher’s exact test that he 

proposed in the 1930s.7 When applied in pattern classification, the method 

simply estimates how much the test error of the classifier deviates from the 

permuted test error values of the same classifier. As it is computationally 

impractical to cover all the possible permutations as in Fisher exact test, 

applying Monte Carlo method is eminent. It is worth mentioning that 

permutation testing applied to neuroimaging has also been used in univariate 

analysis of fMRI data to detect peak activations in response to stimuli.8 

When running permutation testing procedures to estimate the classification 

significance, a classifier is used to classify the data of each permutation and 

an empirical permutation distribution (PD) from the permuted classification 

accuracies is built. Thus, a PD represents an empirical estimate of the 

cumulative distribution of the test error (or the accuracy) of the classifier 

under the null hypothesis of independence between the data and the labels. 

The test error or the accuracy can be estimated using cross-validation in 

each iteration of the permutation procedure. As mentioned in Stelzer 

et al.,6 the theoretical null distribution of the accuracy (percentage of correctly 

estimated labels) in each cross-validation fold is proportional to a binomial 

distribution. Consequently, in accordance with the central limit theorem 

(CLT), a PD calculated in a cross-validation classification manner should 

approximate to normal law if both the independence condition and the 

identical distribution condition among the validation folds are fulfilled. 

Moreover, Golland et al.9 proved that the empirical leave-one-out cross-

validation error for finite VC classifiers will concentrate to the theoretical 

value expected under the null hypothesis. Based on different cross-validation 

schemes over artificially generated random data and real clinical data, 

however, Noirhomme et al.10 found cases where PDs can be matched to the 



binomial distribution and cases where PDs are differed significantly from the 

binomial distribution. 

FMRI data are usually acquired in several independent runs and they may 

not have enough samples to enable running the classifier without partitioning 

the data. One of the most renowned partitioning schemes is called cross-

validation where the data are partitioned into several folds such that one fold 

is reserved for testing the classifier and the remaining folds are used in 

training the classifier. It is quite useful, if possible, to consider each run as a 

fold that enables performing leave-one-run out cross-validation. After finding 

the classification accuracy for each fold, the overall accuracy (or the error) is 

measured by taking the mean of the accuracy. Although there has been 

criticisms of using cross-validation in fMRI classification studies,5 other works 

highlighted the importance of using cross-validation and did several analyses 

to show how useful permutation tests are.11,12 Furthermore, several practice 

situations have widely accepted that possible dependence features 

associated with non-overlapping folds or cross-validation could be 

negligible.3 Despite the fact that it is commonly accepted that every PD is 

normally distributed and centered on the theoretical chance-level, there has 

not been any study to confirm this. Hence, it is still not known whether any 

PD in neuroimaging studies follows a normal distribution or not, and since 

there are numerous classifiers to consider, it is also not known yet whether 

PDs obtained from which of these classifiers will accord to CLT. To that end, 

this work could be considered as another attempt to investigate the pros and 

cons of cross-validation and whether they can adequately retort on prediction 

from fMRI data. 

It is clear that investigating the accordance of PDs to CLT is a vital topic to 

fMRI classification and could facilitate obtaining enhanced mental states 

decoding techniques. The motives behind measuring the normality of PDs 

are: comparison different classification models, inferring the dependence 

across fMRI runs, finding enhanced data partitioning schemes, spotlighting 

the method of cross-validation, and whether it can be considered as 

inadequate partitioning procedure.5 To investigate the shapes of PDs in this 

work, several PDs are built via classifying fMRI data taken when the subjects 

responded to visual stimulation paradigms. Anderson–Darling test (AD-test) 



will be used to infer whether a PD is normal or not, i.e., to test the null 

hypothesis that the random sample of the test error values of a classifier, or 

a system of classifiers, is generated by a normal distribution. 

2 Methods 

2.1 Testing normality 

AD-test13,14 has been considered as one of the most powerful normality tests 

in the literature.15AD-test statistic is defined as follows 

AD=n∫+∞−∞(Fn(x)−Φ(x))2[Φ(x)(1−Φ(x))]−1dΦ(x) (1) 

where Φ(.)Φ(.) is the cumulative distribution function of the standard normal 

distribution, Fn(.)Fn(.) is the empirical distribution function, and n is the sample size. 

When the parameters of the normal distribution are estimated from the empirical 

distribution, a normalization factor has been proposed for improving the power of the 

original formulation16 

AD*=AD( 1+0.75n+2.25n2)AD*=AD(1+0.75n+2.25n2) (2) 

2.2 Classifier’s test error 

Cross-validation procedures are commonly used for evaluating the 

performance of classification models by estimating the expected level-of-fit of 

the models. These procedures are of extreme importance when the data has 

fewer samples, as in the case of fMRI classification analysis. One round of 

cross-validation involves partitioning the sampled data into two 

complementary subsets. From one subset (called the training set), the 

parameters of the model are estimated and from the other subset (called the 

testing set), the estimated model is validated. The validation is based on a 

distance measure of the quality of fit of the estimated model. This distance is 

calculated by comparing the labels observed from the sample belonging to 

the testing set and the labels predicted by the estimated model. For nominal 

labels, as it occurs in brain decoding experiments, the distance measure 

commonly computed is the so-called test error. In cross-validation methods, 

the test error is defined by the proportion of data belonging to the testing set 

incorrectly classified by the estimated model and represents an estimate of 



the misclassification error rate of the classification model in the prediction of 

future data. In order to reduce variability, multiple rounds of cross-validation 

are performed using different partitions such that the final test error, given by 

the average of the test errors over the rounds, is the expected level-of-fit of 

the classification model, and thus, can be used for assessing its 

performance. 

There are few types of cross-validation techniques depending on how the 

partition of the sampled data is made and the mostly used is called J-fold 

cross-validation. In the J-fold cross-validation, the original sampled data are 

randomly partitioned into J equal size subsamples and the cross-validation 

process is repeated J times such that, in each iteration, a single subsample 

of the Jsubsamples is used as a testing set, and the remaining (J−1)(J-

1) subsamples are used as a training set. To describe the mathematical 

formulation of the J-folds cross-validation, consider a linear classification 

model given by 

y=Wx+by=Wx+b (3) 

where W and b are the model parameters and y is the classifier’s output, which 

indicates the nominal label predicted by the model for the observation x. Let N be the 

number of subjects involved in the analysis. For subject i, i=1,2,…,Ni=1,2,…,N, let a 

sampled data and its corresponding label set be denoted by x(i)x(i) and Y(i)Y(i), 

respectively. To assess the fit of the model shown in equation (3), the test error is 

computed as a fit measure using J-fold cross-validation on the data set of the subject i. 

Consider the subject i and a partition Ω=∪Jj=1ΩjΩ=∪j=1JΩj of its original 

dataset in J subsets, Ω1,Ω2,…,ΩJΩ1,Ω2,…,ΩJ. For the jth iteration of cross-

validation, the dataset of the samples x(i)x(i) and their corresponding 

labels Y(i)Y(i) are split into two sets: a training set defined 

by S1j=∪Jk=1,k≠jΩkS1j=∪k=1,k≠jJΩk and a testing set defined 

by S2j=ΩjS2j=Ωj. In the training phase, the model (3) is fitted to subject i such 

that the fitted model obtained in the jth cross-validation iteration can be 

written as 

y(i)=Wˆ(i,j,1) x +b (̂i,j,1)y(i)=W^(i,j,1) x +b^(i,j,1) (4) 



where Wˆ(i,j,1)W^(i,j,1) and b (̂i,j,1)b^(i,j,1) are the estimates of the parameters of the 

classification model (3) obtained from the data x(i)x(i) belonging to the training 

set S1jS1j, say x(i,j,1)x(i,j,1) and their corresponding labels Y(i,j,1)Y(i,j,1), of subject i. 

Note that Y(i,j,1)Y(i,j,1) refers to the original (non-permuted) labels and it only belongs 

to the samples used in the training phase into the jth cross-validation iteration. In the 

testing phase, the test error is obtained using the estimated model (4) and the 

data x(i)x(i) and their corresponding labels Y(i)Y(i) belonging to the testing set. Note 

that the parameters of the classifier estimated in the training phase, in this case the 

weight pair (Wˆ(i,j,1),b (̂i,j,1))(W^(i,j,1),b^(i,j,1)), characterizes the estimated classification 

model (4), which is used to calculate an estimate of the test error in the testing phase. 

This estimate of the test error is the proportion of the data x(i)x(i) belonging to the 

testing set incorrectly classified by the model (4). Formally, it represents the difference 

between the observed labels and the corresponding labels predicted by the estimated 

model (4), for all the data x(i)x(i) belonging to the testing set. Then, the test error 

obtained in the jth iteration of cross-validation, denoted by ê j,ie^j,i, can be written as 

e ĵ,i=ǁǁWˆ(i,j,1)x(i,j,2)+b (̂i,j,1)−Y(i,j,2)ǁǁ e^j,i=‖W^(i,j,1)x(i,j,2)+b^(i,j,1)−Y(i,j,2)‖  (5) 

where x(i,j,2)x(i,j,2) and Y(i,j,2)Y(i,j,2) are the testing data and their corresponding 

labels, respectively, belonging to the testing set S2jS2j of subject i. 

To measure the performance of the classification model, given in equation 

(3), for subject i, the test error, given by the mean of the estimates (equation 

(5)) over J iterations, is considered. Therefore, the test error of the 

classification model (3) for subject i can be written as 

ê i=1J∑j=1Jê j,ie^i=1J∑j=1Je^j,i (6) 

The expression (6) is a function of the data x(i)x(i) and the corresponding 

labels Y(i)Y(i) and so it is a statistic. Furthermore, equation (6) represents an 

estimative of the expectation of the misclassification error rate of the 

classifier (3) which can be written as E(ǁǁy^−yǁǁ)E(ǁy^-yǁ), where y^y^ is the 

label predicted by some classifier that was estimated from the training set. 

For all the analyses in this work, a measure of classification 

accuracy â ia^i will be used, which is given by 



â i=1−ê i=1−1J∑j=1Jê j,ia^i=1-e^i=1-1J∑j=1Je^j,i (7) 

and for a classifier denoted as CC, let the classification accuracy be denoted 

as â i(C)a^i(C). Remark that, as observed in Stelzer et al.,6 under the assumption of 

independence of the J cross-validation folds, the accuracy value obtained at the end of 

the cross-validation process could be represented in terms of the constant 1/J1/J times 

a binomial random of J×kJ×k trials, and then, for a large number of these trials, it could 

be approximated to a normal probability law in accordance to CLT. In 

practice krepresents the number of samples in the testing set of each cross-validation 

fold (k is 18 in this work, as will be shown later). 

2.3 Using a group of classifiers 

To fulfill the independence condition required by the CLT, the PD of the 

mean accuracy of groups of classifiers will be analyzed. The main idea is 

based on the fact that increasing the number of iterates may help the 

distribution of means to concord with the CLT. In other words, there is a 

chance that using more classifiers in a group would increase the number of 

iterates. Hence, it is more likely that PDs of mean accuracies of a group of 

classifiers will approximate to normal according to CLT. Adding more 

classifiers, however, may decrease the true best classification error rate 

compared to a superior classifier, like support vector machines (SVM) 

especially when the number of classifiers and sample size are small. 

Nonetheless, for cases with inferior classifiers, for example Gaussian Naïve 

Bayes, the classification error rate of using more classifiers may increase. 

Hence, it is difficult to claim that any given classifier is superior, this is 

because the classification error rate of using more classifiers would give the 

median accuracy, as illustrated in Figure 2. That would be more useful than 

using a single (superior) classifier. Using a group of classifiers may release 

the user from the confusion of which classifier to choose and may prevent 

phishing the best classifier. Now, assume having a finite set of s different 

classifiers, C1,C2,…,CsC1,C2,…,Cs, and let ℂ

rs=(G1,G2,…,GL)ℂsr=(G1,G2,…,GL) be the set of the all L=(rs)L=(rs) groups 

of rclassifiers, r=1,2,…,sr=1,2,…,s, which can be selected from s classifiers. 

The classification accuracy of two classifiers or more can be combined to 

yield the mean accuracy of the classifier group given by 



â i(Ck1,Ck2,…,Ckr)=1r∑q=1râ i(Ckq)a^i(Ck1,Ck2,…,Ckr)=1r∑q=1ra^i(Ckq) (8) 

where r denotes the number of classifiers in the group 

and kq∈(1,2,…,,s)kq∈(1,2,…,,s) for all q=1,2,…,rq=1,2,…,r. This imitates that the mean 

is now considered over r×J×kr×J×k values, and if these classification accuracy values 

are random, then the distribution (PD) will approach normality more than the sum 

shown in equations (6) and/or (7). 

 

Figure 2. Classification accuracy of using each of the five classifiers working at 

the same permutation sample. Ten permutation samples are shown, P1, P2,…, 

P10. The legend shows the name of each classifier and the classification 

accuracy for the non-permuted labels (in parentheses). These results were 

obtained from classifying fMRI patterns of face vs. house in Subject 1 without 

doing motion correction. 

2.4 Central limit theorem 

Despite the fact that there are many variants of the CLT, one form that has 

been used most frequently (known as Lindeberg–Lévy theorem) states that 

the arithmetic mean of an adequately large number of iterates of 

independent and identically distributed random variables, each with a well-

defined expected value and well-defined variance, will approximately be 

normally distributed.17,18 Variants of the CLT have been established by 



relaxing the assumptions of independence or identical distribution or both. 

This work will evaluate the fit of the normal model to the PD of classification 

accuracy that is obtained by an arithmetic mean of random variables. In this 

work, mean is depicted in equation (7) or (8) and each random variable 

corresponds to the accuracy value obtained from one of the cross-validation 

folds. 

2.5 Permutation tests 

Permutation testing is based on a simple idea that was proposed by Roland 

Fisher that he denoted as the exact test.7 Let there be some effect, one just 

needs to permute/scramble the data then test if the effect is still there or not. 

In principle, the scrambling has to be repeated several times to cover all the 

possible combinations of permutations. This would be computationally 

impractical in large data; therefore, Monte Carlo technique has to be used. 

This means that the number of permutations has to be limited to fewer 

samples than the upper bound that the sample size allows. Since the 

distribution underlying the classification procedure is unknown, permutation 

tests have been used in many neuroimaging studies to estimate the 

classification’ statistical significance.2,4,19 The method has also been used to 

find the statistical significance in many other fields, for example in genetics.20 

In permutation testing, the classifier’s test error (equation (6)), or equivalently 

the classification accuracy (equation (7)), can be used as a test statistic for 

assessing the null hypothesis that the relationship between the data and the 

labels are not correlated. The alternative hypothesis is that the classifier 

arisen in the training step is associated with a small misclassification error 

rate (or, equivalently, a high classification accuracy rate). Mostly, the null 

hypothesis can be rejected if the test error is low enough compared to 

theoretical chance-level. The null distribution of the test error can be used to 

find the statistical significance of the classifier and one might think of it as 

estimating the probability, under the null hypothesis, of finding a result as 

extreme as, or more extreme than, the test error value actually observed (i.e. 

the p-value). Analog idea can be applied using the classification accuracy. 

Thus, the estimated p-value represents the statistical significance of the 

observed classification results that are likely to be obtained by random 



chance. Performing the permutation is straightforward, let ℙℙ be the set of all 

possible label permutations denoted as operators, and let one sampled 

permutation operator be denoted as �P, i.e. �P∈ℙ∈ℙ. Each permutation 

operator works on the label set; thus, the permuted labels can be written as 

Y′(i,j,1)=Y(i,j,1)(�(1))Y′(i,j,1)=Y(i,j,1)(P(1)) (9) 

Y′(i,j,1)=Y(i,j,2)(�(2))Y′(i,j,1)=Y(i,j,2)(P(2)) (10) 

where �P(1)(1) is a permutation operator that works on the training set to give the 

scrambled training set, and �P(2)(2) works on the testing set to give the scrambled 

testing set Y′(i,j,2)Y′(i,j,2). Subsequently, to find the classifier’s permuted test error, one 

can use Y′(i,j,1)Y′(i,j,1) and Y′(i,j,2)Y′(i,j,2) instead 

of Y(i,j,1)Y(i,j,1) and Y(i,j,2)Y(i,j,2) (scrambling both the training set and the testing set). 

To perform scrambling only the testing set, one can use Y(i,j,1)Y(i,j,1) to train the 

classifier and then use Y′(i,j,2)Y′(i,j,2) to test the classifier. Both of these permuting 

schemes will be tested in this work. 

2.6 The probability of normality and the accordance to CLT 

AD-test will be used for inspecting the fitting of the normality to the PD which 

has been empirically generated using M permutations (or iterations). 

The ADAD-test statistic yields a p-value that represents an estimate of how 

likely the PDPD is close to normal, let it be denoted as p−value(PD)p-

value(PD), or just p. The decision will be made at a level of significance of 

α%. Therefore, the normality of the PD is rejected if p−value(PD)<p-

value(PD)<α. 

Due to the stochastic character of p-values (or, equivalently, in generating 

PDs), using AD-test based on one generated PD may not be adequate to 

showing accordance or discordance to CLT, i.e., the normality of the PD 

generated by any finite set of permutations. Consequently, finite repetitions 

in generating a set of PDs for each experiment are vital to estimate the 

probability of normality. According to the law of large numbers, the proportion 

of occurrence of an event observed in a large number of trials will be close to 

the probability of the event and will tend to become closer as more trials are 

performed in the same conditions. Therefore, to find the estimate of the 



probability of normality of the PD, we will calculate the proportion of the 

accordance of normality of a large number of generated PDs. There is a 

need to repeatedly find PDs up to N times, thus, yielding the set of 

observed p value (PD):(p1,p2,…,pN)p value 

(PD):(p1,p2,…,pN) (see Figure 1). Now, for a set containing NPDsPDs, one 

can estimate the probability of normality of a PD calculated via the permuted 

classification accuracy of classifier C as follows 

P(p(C)>α)=1N∑n=1Nθ(pn−α)P(p(C)>α)=1N∑n=1Nθ(pn-α) (11) 

where θ is a step-function (e.g. θ(β)=1,ifβ≥0;0otherwiseθ(β)=1,ifβ≥0;0otherwise), and α 

is set to 0.05, which is the critical value one may choose to reject the null hypothesis of 

the normality of the PD. In equation (11), p(C)p(C) represents the random p-value 

resulted from applying the AD-test on the permuted classification accuracy values 

determined by classifier C. This statistical measure would give a summarization of the 

random p-values and thus an estimate of the probability of normality. 

 

Figure 1. Schematic diagram of the steps performed for estimating the 

normality of the PD of the classification accuracy of classifier C for Subject i. 

One value of the classification accuracy of classifier C for Subject i is obtained 



using a permutation procedure. The permutation procedure is repeated M times 

for Subject i, generating one empirical PD of the classification accuracy. This 

PD is investigated whether it is well fitted to a normal probability law using the 

AD-test (a5%a5% is the critical value of AD* AD* (formula 2) at a 5% significance 

level). Note that one generated PD can also be related to finding the 

classification significance (xobsxobs is the value of the measure of 

accuracy â ia^iobserved for the classifier when the labels are not permuted), 

which is out of our interest in this paper. The whole process is 

repeated N times, resulting in a pool of Np-values which are aimed to evaluating 

the normality of the N generated PDs and thus, obtaining an estimative of the 

probability of normality of the PD of the classification accuracy of classifier C for 

Subject i. 

AD: Anderson–Darling test; PD: permutation distribution. 

To calculate the probability of normality for a group of classifiers G, one first 

needs to find the mean accuracy of the group using equation (8) for each 

generated permutation. Thus, a PD of the mean accuracy of the group G can 

be constructed from M permutations, and a p−valuep-value that estimates the 

normality level can be obtained by applying AD-test on the PD. To find the 

probability, we need to find the set of these p−value(s)p-value(s). Therefore, 

repeating the procedure Ntimes, a set containing Np−value(s)p-value(s) will 

be generated. Now, using formula (11), the probability of normality of the PD 

of the mean accuracy of the group G can be estimated. Assume 

using Lgroups of classifiers and by performing these aforementioned steps 

for L groups leads to the following set of p-

values p1(G1),p2(G1),…,pN(G1),………,p1(GL),p1(G1),p2(G1),…,pN(G1),……

…,p1(GL),p2(GL),…,pN(GL)p2(GL),…,pN(GL). By the total probability 

law21 and by equation (11), and for a PD estimated via the mean 

classification accuracy for the group ℂsrℂrs of L classifiers, the formula that 

can be used to estimate the probability of normality is as follows 

P(p(ℂ

p(G)>α|||||G=Gl)=∑l=1L1LP(p(Gl)>α)=1LN∑l=1L∑n=1Nθ(pn(Gl)−α)P(p(ℂrs)>α)=∑l=1LP(G=Gl)P(p(G)>α|G=Gl)=∑l=1L1LP(p(Gl)>α)=1LN

α) 



where θ is the step-function and α is set to 0.05, or as desired. In equation 

(12), p(G)p(G) represents the random p-value regarding the application of the AD-test 

on the permuted mean classification accuracy values determined by the classifier 

group G. 

2.7 The used classifiers 

There are several classifiers that one can choose to perform the 

classification analysis. The following classifiers have been used in this work: 

1. Artificial neural networks (NNs), from Netlab,22 NNs with one hidden 

neuron were used, and using 50 epochs for training. 

2. Support vector machines (SVM), from SVM light.23,24 

3. Logistic regression (L2-LR), K class LR classifier, with optional 

regularization via L2 norm of weight vector(s).25,26 

4. Gaussian naïve Bayes (GNB).25,26 

5. Sparse multinomial logistic regression (SMLR).25,26 

6. Ridge regression (RR),25,26 this is a linear regression classifier that 

penalizes small weights (like weight regularization in back-propagation of 

NNs, as if doing an implicit feature selection). Moreover, this classifier 

has an analytic solution involving matrix inversion, thus it is deterministic, 

unlike NNs. 

Due to the high classification performance they provide, these classifiers are 

often used in MVPA. GNB, on the other hand, has the lowest performance 

but maintains very efficient execution. 

2.8 PDs and finding the probability of normality, an example 

To have an idea on how to find the probability of normality using a group of 

classifiers, assume using the following threeaa classifiers C1,C2,C3C1,C2,C3. 

One can find the classification accuracy for the same permutation sample, 

i.e. the same relabeling set, for each of the following groups: 

One-classifier group: ℂ13=((C1),(C2),(C3))ℂ31=((C1),(C2),(C3)), 

Two-classifiers group: ℂ

23=((C1,C2),(C1,C3),(C2,C3))ℂ32=((C1,C2),(C1,C3),(C2,C3)), 



Three-classifiers group: ℂ33=((C1,C2,C3))ℂ33=((C1,C2,C3)). 

In the above example, using the One-classifier group will yield three PDs, 

three PDs for the Two-classifiers group, and one PD for the Three-classifiers 

group. This is because a One-classifier group has three separate accuracy 

values, one for C1C1, another for C2C2, and another for C3C3. One can 

literally write these accuracies as: â i(C1)a^i(C1), â i(C2)a^i(C2), 

and â i(C3)a^i(C3), hence, a PD for each of the three. The Two-classifiers 

group will result in three accuracy values; first the mean accuracy 

of (C1,C2)(C1,C2) that can be written as â i(C1,C2)a^i(C1,C2), then, the mean 

accuracy of (C1,C3)(C1,C3) so â i(C1,C3)a^i(C1,C3), and finally the mean 

accuracy of (C2,C3)(C2,C3) so â i=(C2,C3)a^i=(C2,C3). For the Three-

classifiers group only one overall accuracy value exists that is found by 

taking the mean of all the three classifiers, namely the mean accuracy 

of (C1,C2,C3)(C1,C2,C3), yielding â i(C1,C2,C3)a^i(C1,C2,C3). 

To elucidate the estimation of the probability, consider a group of two 

classifiers taken from three available classifiers, ℂ

23=((C1,C2)(C1,C3)(C2,C3))=(G1,G2,G3)ℂ32=((C1,C2)(C1,C3)(C2,C3))=(G1,G2,

G3), to give three distributions (PD1,PD2,PD3)(PD1,PD2,PD3), such 

that PD1PD1, PD2,PD2, and PD3PD3 are found from the mean classification 

accuracy, â i(C1,C2)a^i(C1,C2), â i(C1,C3)a^i(C1,C3), 

and â i(C2,C3)a^i(C2,C3), respectively. Then, using AD-test gives the 

following p-

values: p1(G1),p2(G1),…,pN(G1),p1(G2),…,pN(G3),p1(G1),p2(G1),…,pN(G1),p1

(G2),…,pN(G3), and the probability of normality can then be found 

using equation (12). 

To give another example, Figure 2 illustrates individual classification 

accuracies using five classifiers each working at the same permutation 

sample as well as the mean classification accuracy given by the five. 

Calculating the coefficient of variation for each permutation resulted in values 

between 0.03 and 0.098. These (relatively) low values suggest that the mean 

classification accuracy may be an adequate global measure for quantifying 

the joint performance of classifier groups. 



Regardless of permutation testing and the CLT, using the mean accuracy of 

a group of classifiers can be considered as a measure since it is estimated 

as a combination of several classifiers, and thus, one could move apart from 

peeking the result from a supreme classifier. 

2.9 The dataset 

Publicly available data that were collected while subjects were viewing eight 

object categories1,29have been used in this work. This dataset is well 

designed and contains adequate runs and brain volumes and thus has 

become one of the major data used in several brain analysis works. In the 

dataset, hemodynamic changes (blood oxygenation level-dependent signals) 

were measured in each subject with a gradient echo planar imaging on a GE 

3 T scanner with a repetition time (TR) 2.5 s, yielding 40 slices of resolution 

with 64 × 64 in each volume (40 3.5 mm-thick sagittal images). High 

resolution T1-weighted spoiled-gradient recall images were obtained for each 

subject, with 124 slices of resolution (256 × 256) (124 1.2 mm-thick sagittal 

images). 

The fMRI dataset contains responses of six human subjects that were 

collected using an MRI machine while they were performing a one-back 

repetition detection task and visualizing each of the eight objects/stimuli. In 

addition to rest condition, stimuli were gray-scale images of faces, houses, 

cats, bottles, scissors, shoes, chairs, and scrambled pictures (xpic). Twelve 

time series (i.e. runs) were obtained from each subject responses. Each time 

series began and ended with 12 s of rest and contained eight stimulus blocks 

of 24 s duration, one for each class, separated by 12 s intervals of rest. Each 

stimulus was presented for 0.5 s with an interstimulus interval of 1.5 s. Stimuli 

for each meaningful class contained four images, and for each class, there 

were 12 exemplars of meaningful stimuli containing pictures of the same face 

or objects photographed from different angles. In the end, there were 12 runs 

for each subject, containing 1452 brain volumes including rest, see1 and29 for 

more details. It is worth to mention that Subject 5 has one missing run in the 

server of the database29 and therefore was dropped from the analysis. 

3 Experimental results 

3.1 Implementation issues 



• By eliminating rest brain volumes, every subject in the data ended 

encompassing 864 brain volumes, with only eight classes. To use a 

binary classifier, one can pick data representing a pair-of-stimuli: bottle 

vs. shoe, bottle vs. scissor, chair vs. scissor, face vs. house, and face vs. 

xpic, etc. Therefore, there will be 216 volumes for each pair-of-stimuli 

(e.g. bottle vs. shoe) in the form of 12 Runs× 18 volumes/Run. 

Furthermore, each run has two blocks such that one block has nine 

volumes of the first category and the other has nine volumes for the 

second category. The motive behind selecting these pair-of-stimuli was 

to obligate high classification power, house and face, and low 

classification power, shoe, bottle, and scissor. In fact, these pair-of-

stimuli(s) have been selected after performing a few exploratory analyses 

on the dataset. The use of this particular dataset is of particular interest 

to this work, not only due to the vast number of conditions and the 

adequate number of trails it has, but due to the high computational 

complexity that permutation testing and normality analysis demands. 

• The analysis will be performed with and without motion correction (aka 

fMRI alignment). This might be a useful prototype to study the effect of 

the native space with less possible interpolation effect and then 

comparing these results to the ones with motion correction. SPM827 has 

been used to perform motion correction. With or without motion 

correction, all of the fMRI signals will be de-trended and z-scored. 

• Labels will be shifted by 5 s (2TRs) to compensate for the hemodynamic 

lag (this is a common practice in MVPA experiments and studies2). Since 

the BOLD's haemodynamic response has a delay with respect to the 

stimulus onset, it is common practice to correct the regressors’ delay in 

each condition. This is usually done by convolving the regressors with a 

set of basis functions chosen to model the haemodynamic response. The 

haemodynamic response, however, will set the onset/offset of the 

regressors, and therefore using a shift of 2TRs would be sufficient in 

most cases. The correctness of this shifting strategy is supported by the 

literature,2,4,6,28 as well as the high classification accuracy we got in the 

non-permuted/true regressors with error rates close to 99% in some 

classifiers, like LR (see Figure 2). Furthermore, our tests have shown 

that TR shifting and haemodynamic model convolution yield the same 



classification accuracy. Nevertheless, correcting the haemodynamic lag 

through shifting the regressors by a value of 2 is not a rule of thumb to be 

used with other datasets. This is supported by the fact that the 

haemodynamic lag is exceedingly known to vary across the brain, and 

further investigation may lead to better results in the future. 

• Instead of permuting brain-volumes, only the labels are permuted. This 

technique has exactly the same effect and was used in previous 

studies.12 

• Uniformly distributed pseudorandom numbers will be generated; these 

numbers will then be used to scramble the labels. To preserve 

independence among runs, only labels within runs will be scrambled. 

• Permutation (scrambling) schemes: Although most studies in the 

literature scramble the whole data labels (e.g. the training and the testing 

set), there has been a debate whether one might only need to scramble 

the testing set. The idea behind permutation testing is breaking the 

correlation, if exists, between patterns of brain activity and the labels. 

Permuting only the testing set has the advantage of efficient 

implementing since the classifier will only be trained once, and then, 

tested over and over using the same scrambled testing set. Scrambling 

the training set and the testing set implies that training the classifier and 

testing it should be performed over and over for all the scrambled training 

and testing sets, respectively. Because no definite answer exists to this 

dilemma, both approaches, scramble-train-test and scramble-test, will be 

endeavored in this work. More details on permutation schemes can be 

found in Etzel and Braver.28 

• Each classifier runs in a leave one run out manner. Consequently, for the 

12 folds cross-validation scheme, 11 runs will be used for training the 

classifier and one run will be preserved for testing it. 

• As demonstrated earlier, generating only one PD is not sufficient to 

estimate the probability of normality. Thus, each classification and the 

respective permutation testing have to be repeated N times to 

find N PDs. If, however, M permutations are used to generate each PD, 

then a total of M×NM×N operations will be needed, where each 

operation designates training a classifier then testing it. For example, 

using M=1000M=1000, N=1000N=1000 indicates the need to run 1E6 



classifier instances (training and testing) and that is a computationally 

demanding task. To solve this problem, we opted to generate a pool of 

permutations of size ν (one might think of it as a PD of size ν). 

Afterwards, a total of N PDs each of size M (provided that M<νM<ν) will 

be randomly sampled from this pool. In this work, the permutations pool 

has a size ν=10,000ν=10,000. 

• Region-of-Interest (ROI): Two ROIs that came along with the fMRI 

dataset have been used in the analyses. These ROIs are as follows: VT4 

(called mask_vt4 in the dataset) is a mask that represents voxels in the 

ventral temporal cortex, H8 (called mask8_house_vt) is a mask that 

contains a set of voxels maximally responsive to house category. The 

number of voxels each ROI has is shown in Table 1. 

• Details on the used classifiers were provided in section 2.7. 

 

Table 1. The number of voxels in each ROI. 

 

Table 1. The number of voxels in each ROI. 

 

Note: These masks in functional native space were provided by the 

authors, 1,29 “VT” refers to a mask in the ventral temporal, house_vt is GLM 

contrast-based localizer maximally responsive to house stimulus. 

ROI: region-of-interest. 

View larger version 

3.2 PD and normality 

Before demonstrating the detailed results, it is useful to visualize cases 

where the normal distribution fits the PDs or not, thus exposing if these PDs 

behave in accord with CLT. Three PDs, which are estimated from the 



classification analysis of fMRI data containing patterns of brain activity of 

face vs. house of Subject 1, are depicted in Figure 3 (a) to (c). Two PDs for 

the same experiment setting after performing motion correction to the MRI 

volumes of Subject 1 are also shown in the same Figure 3(d) and (e). To 

have an idea about the amount of motion in the subject’s fMRI data, motion 

correction parameters are shown in Figure 4. Among those five cases shown 

in Figure 3, there are two cases where the normal distribution seems to be 

adequate to the PD of the classification accuracy, and all the points are 

closer to a line as the QQ-plots show. Nevertheless, Figure 3 suggests the 

existence of multimodal distributions; or eventually, mixture of normal 

distributions fitted to the PDs, this topic is, however, beyond the scope of this 

paper. What is importantly shown in these figures is that a PD for the same 

experimental setting, but without motion correction to the fMRI data, may or, 

more likely, may not behave in accord CLT. For motion-corrected subjects, 

however, the probability of having a normal PD approaches 0, even if one 

opts for using a group of classifiers. 

 

Figure 3. Permutation distributions constructed using the mean classification 

accuracy of L2 LR (a) a distribution that is not normal, with AD-test p-

value = 0.004, b) A permutation distribution that approximates to normal with 

AD-test p-value = 0.11. For both a and b, L2 LR classifier has been used and 

the probability of normality was 25%. (c) This permutation distribution gave AD-

test p-value = 0.7469, and thus approximates to a normal distribution, where the 

classification accuracy is the mean of using five-classifiers and the probability of 

normality for this case was 57%, (d) Permutation distribution constructed using 

the mean classification accuracy of L2 LR, normality testing via AD-test resulted 

in p-value = 6.9E-9 and the estimated probability of normality was zero, (e) 

Permutation distribution obtained using mean classification accuracy of five 

classifiers with AD-test p-value = 1.17E-13, and the estimated probability of 



normality was also zero. The classification was performed using patterns of face 

vs. house extracted from VT4 (the ventral temporal cortex) of Subject 1 and the 

size of each permutation distribution is 1000. Motion correction was used only 

on the data for d and e. A corresponding QQ plot is shown below each 

histogram. 

 

Figure 4. Motion correction parameters of Subject 1, performed using SPM 8. 

For more in-depth analysis, the probability of normality for PDs obtained by 

the classification accuracy per each classifier has been investigated. Such 

probability, which was estimated using equation (11) for each five pair-of-

stimuli at two different ROIs for each of the five subjects, is exhibited for five 

classifiers in Figure 5. At a first glance, the results seem quite stimulating due 

to some classifiers (like L2LR and SMLR) that reveal a greater tendency to 

not reject normal fitting to the PDs. This tendency, however, is relatively 

small and far from the expected 95% confidence level. Indeed, under the null 

hypothesis of normality, the p-value of AD-test will be uniformly distributed 

and, consequently, the estimated probability (11) should approximate close 

to 95% for α = 0.05. In the results shown in Figure 5, the probability was 

observed to vary between 9% (Subject 1) and 44% (Subject 4) for L2LR and 

SMLR classifiers, 22% (Subject 2) for GNB, SVM and RG classifiers, and 

between 0% (Subjects 3 and 6). In terms of average probability over all 

stimuli, the estimated probabilities were (23%, 1%, 3%, 22%, 1%) for L2LR, 

RR, GNB, SMLR, and SVM respectively. Due to these low (averaged) 

confidence levels, it becomes difficult to foresee a classifier type giving a PD 

that concords with CLT. Moreover, the estimated probabilities vary from one 

classifier to another, L2LR gave a low probability value of accordance to CLT 

(23%) and SVM gave extremely low probability value (1%), and that is even 

harder to construe. 



 

Figure 5. Probability of normality of the permutation distribution obtained via the 

classification accuracy for each of the five classifiers considered in this work. 

Each binary classifier worked on data extracted either from H8 or VT4 brain 

ROIs for the five pair-of-stimuli. Invisible bars designate zero values. 

Assessing the existence of a significant correlation between classification 

accuracy and probability of normality is crucial to this study. To do this, 

conditions yielding superior classification accuracy values have been 

scrutinized separately from the others yielding inferior classification accuracy. 

Thus, mustering utterly the results obtained via the stimuli that gave superior 

accuracy, e.g., face vs. house, face vs. xpic in both H8 and VT4 regions from 

all subjects, a correlation value equal to −0.06 (p-value=0.8) was found 

(mean ± standard deviation of the classification accuracy over all these 

stimuli and subjects was 0.91 ± 0.10). However, mustering utterly the results 

obtained via the stimuli that gave inferior classification accuracy, e.g. bottle 

vs. scissor, bottle vs. shoe, chair vs. scissor in both H8 and VT4 regions from 

all subjects, a correlation value equal to 0.08 (p-value = 0.65) was found 

(mean ± standard deviation of the classification accuracy over all these 

stimuli and subjects was 0.67 ± 0.09). Therefore, both conditions revealed 

that the probability of normality is not significantly associated with the 

classification accuracy. 

3.3 PD via the mean accuracy of a group of classifiers 

The purpose of the approach presented in this section is to investigate the 

probability of accordance to CLT for PDs generated using averages of 

classification accuracies of sets of rnclassifiers (r=1,2,3,4,5r=1,2,3,4,5), 



selected from five different types of classifiers (L2LR, RR, GNB, SMLR, and 

SVM) to work as test statistic for permutation testing. For the five subjects 

and the five pair-of-stimuli that were selected for this study, we performed 

several experiments using two scrambling schemes: scramble-train-test and 

scramble-test. For this experimental setting, we focused on data without 

motion correction and we performed de-trending, to remove linear trends due 

to scanner drifts, and z-scoring. It is convenient to divulge that the average of 

classification accuracies for each set of r classifiers has been calculated 

using formula (8) and this has been done for each of the two ROIs and for 

each subject. The probabilities of normality of the PD of the mean 

classification accuracy by a group of classifiers were estimated using formula 

(12) and are depicted in Figure 6. The results shown in Figure 6 indicate 

clearly that a PD obtained via the mean classification accuracy of one 

classifier does not approximate to normal, and that the more classifiers used, 

the more likely that the PDs will behave in accord with the CLT. Using a 

group of classifiers, however, the accordance of PDs to CLT was not eminent 

as it can be seen in Figure 6(d) (training/testing set, H8, face vs. house). In 

fact, Figure 6(d) reveals that using a group of five-classifiers, the probability 

of having a normal distribution decreased in three subjects out of five, having 

even achieved a value close to 3% for Subject 6. This small probability is 

lower than all the other pair-of-stimuli over all subjects as well. This is an 

interesting issue since it occurs when classifying face vs. house in H8 (note 

that H8 ROI is maximally responsive to houses) which has a high 

classification accuracy 96% in the non-permuted data. Nevertheless, reason 

behind this drop in probability of normality for this case is not clear hitherto. 



 

Figure 6. Probability of normality (the y-axis) of various permutation 

distributions for each of the five subjects, versus groups of classifiers (1C, 2C, 

3C, 4C, 5C) that denote using (one-classifier, two-classifiers, three-classifiers, 

four-classifiers, five-classifiers). All these analyses were performed without 

head motion correction to fMRI data. Training/testing set refers to scrambling 

both the training and the testing sets, and testing set refers to scrambling only 

the testing set. H8 and VT4 are the two regions-of-interest used. 

Another interesting issue still stands out in Figure 6 for the case of scramble-

train-test vs. scramble-test, which is; independently of the pair-of-stimuli and 

subject, a more stable probability pattern among the pair-of-stimuli and 

subjects is detected in scrambling-test scheme. Undeniably, calculating the 

standard deviations of these probabilities of normality for each group of 

classifiers and scrambling scheme, values of volatility were obtained when 

scrambling both training and testing sets than those obtained when 

scrambling only testing sets. These results seem crucial and suggest that 



permutation schemes can lead to different PDs and consequently, different 

assessment of the statistical significance of classification accuracy. 

3.4 The classification accuracy and the normality 

It is imperative to investigate whether this accordance of PDs with CLT is 

related to the classification accuracy or not. Figure 7 illustrates the mean 

classification accuracy (over the five classifiers) for each pair-of-stimuli at the 

two ROIs. Comparing figures 6 and 7 one can conclude that approaching 

95% of probability of normality is not correlated to the value of classification 

accuracy, i.e. whether the classification accuracy is high or low. For instance, 

one case with low classification result, as in the bottle vs. scissor situation at 

H8 in Subject 6 which is close to theoretical chance-level with value equal to 

0.52, and another case with high classification accuracy, as in face vs. house 

situation at VT4 in Subject 6 with value equal to 0.98, are associated with 

high estimates of the probability of having a normal distribution, which are 

given by 90% and 85%, respectively. Analytically, using the training-testing 

permutation scheme, no statistically significant correlations between the 

classification accuracy and the probability of normality according of PDs were 

found (values of Pearson correlations: −0.47, −0.17, −0.27, −0.24, −0.38, 

with p-values: 0.17, 0.63, 0.45, 0.51, 0.28, for Subjects 1, 2, 3, 4, and 6, 

respectively). A similar conclusion was obtained for permuting only the 

testing scheme. The used labels in Figure 7 mimic the used stimuli and 

ROIs, e.g. btl_scr_H8 means classifying patterns of activity at ROI H8 for 

bottle vs. scissor. 



 

Figure 7. Mean classification accuracy over the five classifiers for the used pair-

of-stimuli at VT4 and H8 ROIs. (Shows the non-permuted classification 

accuracy). 

3.5 Will the probability of normality approach 95% confidence level when using several 

artificial neural network classifiers? 

The previous analysis with groups of classifiers, covering from one up to five 

classifiers, compassed a (Mean±StdDev) summary value 

of 0.78±0.150.78±0.15 for the probability of normality using Five-classifiers 

group. It would be interesting to investigate how many NNs classifiers would 

assist attaining the confidence level of probability of normality having 95% or 

more. NN classifiers could work in linear and/or nonlinear mode and they 

have some stochastic degree to ensure a different classifier instance at each 

execution, the learning is non-deterministic. Basically, NNs are randomly 

initialized prior to learning with back-propagation and other weight 

optimization procedures. Therefore, there will not be a unique optimal 

solution and that means every trained NN will depend on the initial weights 

and other stochastic processes during learning. Using such classifiers will 

facilitate one incrementing the number of classifiers used as needed. Up to 

15 NNs have been used and the confidence level of accordance to normal 

law approached a value close to 95% when using only the testing set 



permutation. Figure 8 shows the results of bottle vs. shoe for patterns 

extracted from H8, other pair-of-stimuli and regions have a similar behavior. 

These experiments have been repeated after using testing-training 

permutation scheme and surprisingly, the probability of accordance to normal 

law under this scrambling setting was zero, regardless of the number of NN 

classifiers used. This indicates that, although different NN classifiers have 

different random initial-weights and stochastic non-deterministic learning 

algorithms, they are not adequate for PDs to accord to CLT, and that the 

mechanism of the permutation scheme can affect the PD of the classification 

errors/accuracies. 

 

Figure 8. Probability of normality versus number of neural networks used to find 

the classification accuracy. The effect of increasing the number of neural 

network classifiers to approach the confidence-level in stating accordance with 

central limit theorem is obvious. Only the testing set has been scrambled here, 

in classifying bottle vs. shoe brain responses that were extracted from H8 ROI. 

Other pair-of-stimuli gave similar curves. 

3.6 The effect of motion correction on the normality 

All the previous analyses were performed using the data in the native space 

and the classification accuracies were high and reached 0.99 in some cases, 

see Figure 7. Motion correction (which is also known as alignment, 

registration) is a default preprocessing procedure that is usually performed 

prior to performing fMRI analysis. The purpose of motion correction is to 

reduce the distortion in fMRI signal due to subject’s head movement during 

the fMRI acquisition session. To investigate the effect of preprocessing on 



the probability of PD to behave in accord with CLT, within- and between-

session motion corrections to Subject 1 have been performed. Using 

training/testing sets scrambling, the obtained results for bottle vs. scissor 

were surprising that after performing motion correction, the probability of 

normality was zero for every group of classifiers. Using testing set 

scrambling, however, the obtained probability reached 95% confidence level 

and is similar to that of Figure 7 where no motion correction has been 

performed, especially for a group of three classifiers or more. 

We are abutting an astounding result in the case of scrambling both the 

training and the testing sets that resulted in total non-accordance with CLT 

when motion correction has been performed to the data. To evaluate the 

precision of the decision provided by AD-test p-values, we calculated their 

mean and standard deviation. Figure 10 illustrates the mean of the AD-

test p-values for PDs obtained from classifying bottle vs. scissor and face vs. 

house patterns of activity extracted from Subject 1 when motion correction 

has or has not been applied. 

 

Figure 9. The estimated probability of normality vs. the number of classifiers 

used for classifying bottle vs. scissor of motion-corrected subject 1. Data labels 

have been placed above each bar to highlight the missing values when the 

probability value being zero. Analogous results were obtained for the other pair-

of-stimuli. tst_trn_H8: scrambling the testing and the training sets for data 

extracted from ROI H8. tst_H8: scrambling only the testing set for data 

extracted from ROI H8 VT4 is the other ROI. 



 

Figure 10. Mean of Anderson–Darling test p-value(s) for permutation 

distributions obtained from classifying data from Subject 1 when motion 

correction has or has not been applied to the data. Cases for five groups of 

classifiers are shown; (1C, 2C, 3C, 4C, 5C) denote using (one-classifier, two-

classifiers, three-classifiers, four-classifiers, five-classifiers). Error bars (95% 

confidence level) are sometimes invisible due to low values. 

It is clear from Figure 10 that increasing the number of classifiers pushes 

down the mean of AD-test p-values when the training set and the testing set 

are both scrambled in data that have been corrected for motion. This 

indicates that approaching a normal distribution will not be possible even if 

more classifiers are used, and the PD will not limit to normal as expected by 

CLT. Another interesting issue in this case is that the mean of AD-test p-

values for the two investigated ROIs (H8 and VT4) was different regardless 

of the used number of classifiers (unlike the case when only testing set 

scrambling is used). In the other case of scrambling only the testing set, the 

mean of AD-test p-values continues to escalate which indicates that the 

probability of normality increases with incrementing the number of classifiers. 

In conclusion, these two figures indicate that regardless of the classification 

accuracy, the non-accordance of PDs to CLT cannot be solved by increasing 

the number of classifiers when both the training and the testing sets are 

scrambled for motion-corrected subjects. 

To have an idea on the classification accuracy with or without motion 

correction, Figure 11exhibits the classification accuracy for Subject 1 with 

and without performing motion correction. The classification accuracy for 

bottle vs. scissor without motion correction was 0.75, and after performing 

motion correction was 0.80, but for face vs. house was 0.99 before and after 

performing motion correction. This indicates that motion correction has a 



marginal effect on the value of classification accuracy, which concords with 

earlier findings.30 

 

Figure 11. Classification accuracy vs. used classifier, at ROIs H8 and VT4 of 

Subject 1 with and without performing motion correction. These graphs show 

the (true) non-permuted classification accuracy. 

The effect of motion correction on the normality of PDs was noticeable 

in Figure 10; however, as with previous findings, both Figures 

10 and 11 indicate that the probability of normality of a PD has no relation to 

the true (non-permuted) classification accuracy, i.e. whether the classification 

accuracy is high or low. It is apparent that the mean classification accuracy of 

classifying patterns of face vs. house is higher than the mean classification 

accuracy of classifying bottle vs. scissor. Therefore, the results illustrated 

in Figures 9 to 11 indicate that normality testing of PDs may be used to 

detect the degree of dependence/independence among fMRI runs regardless 

of the value of classification accuracy. 

4 Discussion and conclusions 

The main yield of this work is that PDs of fMRI data classification do not 

approximate to normal. As a result, it is potential to argue that this non 

abidance to the CLT indicates resilient dependence in the folds of the cross-

validation scheme that is usually used to find the classifier performance. This 

dependence may swindle unreliable classification significance either due to 

the overlapping of training samples or the dependency among different 

magnetic resonance imaging sessions. If that is the case, an alternative to 

this classification-error measurement dilemma is a classification approach 

and/or a performance metric that makes the PD approximates normality. One 

way to achieve this is by using a set of classifiers and then taking the mean 

accuracy over these classifiers. This approach has been tested in this work 



using five different classifiers, which included LR, GNB and three more, and 

has led to normal PDs with greater confidence levels. Besides these five 

classifiers, what other classifiers should be included in the test? 

Hypothetically, NNs could be used to generate a set of classifiers, since each 

classifier instance has its own random initial weights, and possibly, different 

weights optimization approach and/or learning strategies. Unlike the five 

different classifiers used, the performed analyses have shown that NNs 

classifiers are highly dependent. This work has only considered binary 

classifiers using within-subject analysis of visual stimulation data. Our 

findings are strongly in accordance to empirical results shown in Stelzer 

et al.6 which reveal that the higher the correlation of the cross-validation 

folds, the larger the deviation of the classification accuracy from the exact 

binomial distribution expected under the assumption of independence 

between cross validation folds and thus, to the approximated normal 

distribution expectable from binomial distribution when the numbers of trial is 

large. 

Results using single classifier analyses on subjects without motion correction 

were appealing. Among the six classifiers studied in this work, LR classifier 

and SMLR classifier gave the highest probability of accordance to CLT 

(∼ 20%), which means these two classifiers have a strong power to detect 

across fMRI runs dependence. Using the same subjects that were not 

corrected for motion, and using the other four classifiers, namely: NNs, RR, 

GNB, and SVMs, there were no obvious across fMRI runs dependency (the 

probability of normality was less than 5%). Nevertheless, for each of the 

used scrambling schemes—scramble the training and the testing set, and 

scramble only the testing set—a performance metric based on the mean 

classification accuracy of a group of five (or more) classifiers resulted in PDs 

that behave in accord to CLT with high confidence level, and the probability 

of normality reached ∼90%. 

After performing motion correction for the subjects used in this study, the 

probability of accordance to CLT for each (single) classifier was 0%, for both 

scrambling schemes. This is compared to 1% to 49% for results of subjects 

without motion correction. Consequently, motion correction profoundly 

affected the shape of the PD, even though it did not increase the 



classification accuracy by a momentous margin. This points out that motion 

correction may increase the across fMRI runs dependency, i.e. intra and inter 

stimulus pattern dependency. Moreover, using a performance metric based 

on the mean classification accuracy of a group of classifiers did not improve 

the accordance to CLT for scrambling both the training and the testing sets 

of motion-corrected data (which is the usual way permutation testing has 

been performed in the literature). In fact, using a group of classifiers, the 

shape unexpectedly departed away from normality and the fact that the 

average(s) of AD-test p-values were declining as one increases the number 

of classifiers has been verified. Unpredictably, scrambling both the training 

and the testing set did not provoke PDs to approximate to normal law similar 

to the case where subjects data have not undergone motion correction. 

Nonetheless, scrambling only the testing set spoke differently (using a group 

of classifiers again) and the probability of accordance to CLT was nearly 

similar to that when motion correction procedure was not performed on the 

subjects. It is quite difficult at this stage to interpret this discrepancy between 

the two scrambling schemes. It may designate, however, that scrambling 

both the training and the testing sets have higher inter and intra stimulus 

dependency. Hence, if the normality of PD is an essential brick to find the 

significance of the classification, then, one should opt to scramble only the 

testing set to obtain the p-values related to the classification significance. 

Nonetheless, the option of not performing motion correction to fMRI data is 

only related the multivoxel classification analysis and this has no connection 

to the decisive need to perform motion correction in univariate/univoxel 

analysis of fMRI data. 

For subjects in the native space, i.e. without motion correction and without 

geometrical normalization, there is a weak correlation between the 

probability of normality and the classification of categories when both the 

training and the testing sets are scrambled. To elucidate on this, it is 

apparent that the mean probability of normality of PDs obtained from 

classifying face vs. house is slightly lower than that of classifying bottle vs. 

shoe (one classifier analyses). One probable cause is that patterns of activity 

in blocks containing stimuli that may result high classification accuracy, e.g. 

faces vs. houses, have more across run dependency than blocks containing 

lower classification accuracy, e.g. bottles vs. shoes. It is difficult to rationalize 



this phenomenon in this work and further studies are needed with the 

anticipation of using it as a diagnostic tool in the near future. It must be 

mentioned that the accordance of PDs to CLT has not been explored in this 

work for multi-class problems and other fMRI paradigms, and that goes to 

inter and intra stimuli dependency across runs in across subjects’ studies 

too. 

It is essential to mention that the analyses that have been done in this work 

have taken non-trivial execution time. The temptation of scrambling only the 

testing set is quite practical for the reason that it is much faster than the one 

where both the training and the testing sets are scrambled. In fact, 

scrambling both sets as well as the relevant classification analyses could be 

performed efficiently using parallel computing via GPU. Thus, implementing 

PD normality test as a diagnostic tool to detect the independence between 

different brain regions may be feasible. 
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Notes 

aOne may choose to use the average accuracy of the number of classifiers 

at hand, especially if using a large number of homogenous classifiers, and 

not the approach shown above that has more in-depth analysis. 



References 

1. 

Haxby, JV Distributed and overlapping representations of faces and objects in ventral 

temporal cortex. Science 2001; 293: 2425–2430. Google Scholar, Crossref, Medline, ISI

 

2. 

Etzel, JA, Gazzola, V, Keysers, C. An introduction to anatomical ROI-based fMRI 

classification analysis. Brain Res 2009; 1282: 114–125. Google Scholar, Crossref, Medline

 

3. 

Carlson, TA, Schrater, P, He, S. Patterns of activity in the categorical representations of 

objects. J Cognitive Neurosci 2003; 15: 704–717. Google Scholar, Crossref, Medline

 

4. 

Pereira, F, Mitchell, T, Botvinick, M. Machine learning classifiers and fMRI: a tutorial 

overview. Neuroimage 2009; 45: S199–S209. Google Scholar, Crossref, Medline

 

5. 

Friston, K. Sample size and the fallacies of classical inference. Neuroimage 2013; 81: 503–

504. Google Scholar, Crossref, Medline  

6. 

Stelzer, J, Chen, Y, Turner, R. Statistical inference and multiple testing correction in 

classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster 

size control. Neuroimage 2013; 65: 69–82. Google Scholar, Crossref, Medline

 

7. 
Fisher RA. Statistical methods for research workers. Edinburgh: Oliver and Boyd, 

1954. Google Scholar 

8. 

Nichols, TE, Holmes, AP. Nonparametric permutation tests for functional neuroimaging: a 

primer with examples. Hum Brain Mapp 2002; 15: 1–25. Google 

Scholar, Crossref, Medline, ISI  

9. 

Golland, P Permutation tests for classification. Learn Theory Proc 2005; 3559: 501–

515. Google Scholar, Crossref  



10. 

Noirhomme, Q Biased binomial assessment of cross-validated estimation of classification 

accuracies illustrated in diagnosis predictions. Neuroimage Clin 2014; 4: 687–694. Google 

Scholar, Crossref, Medline  

11. 

Ojala, M, Garriga, GC. Permutation tests for studying classifier performance. J Mach Learn 

Res 2010; 11: 1833–1863. Google Scholar  

12. 

Al-Rawi, MS, Cunha, JPS. On using permutation tests to estimate the classification 

significance of functional magnetic resonance imaging data. Neurocomputing 2012; 

82: 224–233. Google Scholar, Crossref  

13. 

Anderson, TW, Darling, DA. Asymptotic theory of certain goodness of fit criteria based on 

stochastic processes. Ann Math Stat 1952; 23: 193–212. Google Scholar, Crossref

 

14. 

Anderson, TW, Darling, DA. A test of goodness of fit. J Am Stat Assoc 1954; 49: 765–

769. Google Scholar, Crossref  

15. 

D’Agostino RB. Tests for the normal distribution. In: Ralph B, Agostino D' and Stephens MA 

(eds) Goodness-of-fit techniques. New York: Marcel Dekker, 1986, pp. 367–413. Google 

Scholar 

16. 

Stephens, MA. EDF statistics for goodness of fit and some comparisons. J Am Stat 

Assoc 1974; 69: 730–737. Google Scholar, Crossref  

17. 
Rice JA. Mathematical statistics and data analysis. 2nd ed. Belmont, CA: Wadsworth 

Publishing Co Inc, 1994. Google Scholar 

18. Billingsley, P. Probability and measure New York John Wiley & Sons. Google Scholar 

19. 

Golland, P, Fischl, B Permutation tests for classification: towards statistical significance in 

image-based studies. In: Taylor, C, Noble, JA (eds). Information processing in medical 

imaging, proceedings, Berlin: Springer-Verlag, 2003, pp. 330–341. Google Scholar, Crossref

 



20. 

Pahl, R, Schafer, H. PERMORY: an LD-exploiting permutation test algorithm for powerful 

genome-wide association testing. Bioinformatics 2010; 26: 2093–2100. Google 

Scholar, Crossref, Medline  

21. 
Pfeiffer PE. Concepts of probability theory. New York: Dover Publications, 1978. Google 

Scholar 

22. 

NETLAB. Netlab neural network 

software, www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/(accessed 1 

August 2015). Google Scholar  

23. 

Joachims T. SVM 

light, www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html (accessed 1 August 

2015). Google Scholar  

24. 

Joachims, T. Making large-scale support vector machine learning practical. In: Bernhard 

Schölkopf, Christopher JC Burges, Alexander J Smola (eds) Advances in Kernel 

Methods, Cambridge: MIT Press, 1999, pp. 169–184. Google Scholar  

25. 

Norman, KA Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn 

Sci 2006; 10: 424–430. Google Scholar, Crossref, Medline  

26. 

Princeton Multi-Voxel Pattern Analysis (MVPA) 

Toolbox, www.csbmb.princeton.edu/mvpa/ (accessed 1 August 2015). Google Scholar

 

27. 

SPM8. Statistical parametric mapping, www.fil.ion.ucl.ac.uk/spm/ (accessed 1 August 

2015). Google Scholar  

28. 

Etzel JA and Braver TS. MVPA permutation schemes permutation testing in the land of 

cross-validation. In: 2013 3rd International workshop on pattern recognition in 

neuroimaging. Philadelphia: IEEE publications, 2013, pp.140–143. Google Scholar 



29. 

Haxby et al. Faces and objects in ventral temporal cortex 

(fMRI), http://dev.pymvpa.org/datadb/haxby2001.html (accessed 1 August 2015). Google 

Scholar  

30. 

Etzel, JA, Valchev, N, Keysers, C. The impact of certain methodological choices on 

multivariate analysis of fMRI data with support vector machines. Neuroimage 2011; 

54: 1159–1167. Google Scholar, Crossref, Medline  

 


