


STRATIFYING IDEALS AND TWISTED PRODUCTS

ANA PAULA SANTANA AND IVAN YUDIN

Dedicated to Manuela Sobral

Abstract. We study stratifying ideals for rings in the context of relative
homological algebra. Using LU -decompositions, which are a special type
of twisted products, we give a su�cient condition for an idempotent ideal
to be (relative) stratifying.

1. Introduction

The notion of stratifying ideal was introduced, almost simultaneously, in
several articles, although under di↵erent names. The first reference we could
find to these ideals is [4], where they are considered, without any proper desig-
nation, in the context of quasi-hereditary algebras. Then they were studied in
[1] under the name of strong idempotent ideals. Almost simultaneously, in [7],
the notion of homological epimorphism was introduced. Stratifying ideals are
exactly the kernels of surjective homological epimorphisms of rings. The term
stratifying ideal seems to appear for the first time in [5].

Our interest in stratifying ideals was motivated by the problem of construct-
ing minimal projective resolutions. In fact, let ⇤ be a finite dimensional algebra
over a field. One of the many ways to define a stratifying ideal of ⇤ is the fol-
lowing. Given an idempotent e in ⇤, denote by J the ideal⇤ e⇤ and by ⇤ the
quotient ⇤

�

J . The ideal J is stratifying if, for any ⇤-module M and projective

resolution P• ! M of M over ⇤, the complex ⇤ ⌦⇤ P• ! M is a projective
resolution of M over ⇤. Moreover, if P• !M is minimal, then the same is true
for ⇤⌦⇤ P• !M . Therefore one can construct minimal projective resolutions
over ⇤ by constructing them first over ⇤ and then applying the functor ⇤⌦⇤�.
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Coimbra (CMUC), funded by the European Regional Development Fund through the pro-
gram COMPETE and by the Portuguese Government through the FCT - Fundação para a
Ciência e a Tecnologia under the project PEst-C/MAT/UI0324/2013.

245

Te
xt

os
 d

e 
M

at
em

át
ic

a,
 D

M
U

C
, v

ol
. 4

6,
 2

01
4



246 A. P. SANTANA AND I. YUDIN

It is usually quite di�cult to verify if a given ideal of ⇤ is stratifying. It is
well known that hereditary ideals are stratifying. More generally, idempotent
ideals of ⇤ which are projective left ⇤-modules are stratifying.

The aim of this paper is to give a new su�cient condition, Theorem 3.10,
for an idempotent ideal⇤ e⇤ to be stratifying. This result will be used in our
work on homological properties of (quantised) Schur algebras (see [10, 6]).

The paper is organized as follows. In Section 2 we give a short overview
of relative homological algebra over rings with identity, and define the bar
resolution and relative stratifying ideals in this context. We also relate our
definition of relative stratifying ideal to the usual definition of stratifying ideal
of a finite dimensional algebra over a field.

In the first part of Section 3 we define twisted products for relative pairs.
Proposition 3.4 relates twisted products and bar resolutions. The second part of
Section 3 is dedicated to LU -decompositions of a ring A with a fixed idempotent
e. In Theorem 3.10 we prove that AeA is a relative stratifying ideal if A admits
an LU -decomposition.

2. Relative homological algebra

In this section we recall the definitions and results in relative homological
theory that we will use in the article. All these notions and results are given
in terms of left modules, but they can also be applied to right modules, with
appropriate changes in formulae if necessary. By an A-module we mean a left
A-module and we write A-mod for the category of left A-modules.

Relative homological theory was originally developed in [8] and we follow
the terminology used in this work. A more detailed (and slightly more general)
treatment of this topic can be found in Chapter VIII of [9].

Let A be a ring with identity 1 and S a subring of A containing 1. We will
refer to (A,S) as a relative pair. An exact sequence of A-modules will be called
(A,S)-exact if the kernel of every di↵erential is an S-direct summand of the
corresponding object. Equivalently a complex of A-modules

· · ·! Mk
dk�!Mk�1 ! . . .

is (A,S)-exact if there are S-homomorphisms sk : Mk ! Mk+1 such that
dk+1sk + sk�1dk = idMk for all meaningful values of k.

We say that an A-module P is (A,S)-projective if for every short (A,S)-
exact sequence

0! X !M
f�! N ! 0 (2.1)
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STRATIFYING IDEALS AND TWISTED PRODUCTS 247

and everyA-homomorphism g : P ! N there is anA-homomorphism h : P !M
such that the diagram

P
h

~~
g

✏✏
0 // X // M

f // N // 0

commutes. In other words, P is (A,S)-projective if for every short (A,S)-exact
sequence (2.1), the map

HomA(P, f) : HomA(P,M)! HomA(P,N)

is surjective.

Remark 2.1. Obviously every projective A-module is (A,S)-projective. On
the other hand, if S is a semisimple ring, then every (A,S)-projective module
is projective. In fact, in this case, every exact sequence is automatically (A,S)-
exact. Therefore the condition for an A-module to be (A,S)-projective coincides
with the condition for it to be projective.

Example 2.2. Let V be an S-module. Then by Lemma 2 in [8] and subsequent
considerations, the A-module A ⌦S V is (A,S)-projective. Moreover, an A-
module M is (A,S)-projective if and only if it is isomorphic to a direct A-
module summand of A⌦SV , for some S-module V . Modules of the form A⌦SV
will be called (A,S)-free.

It is interesting to note that (A,S)-projective modules behave well under
change of base rings.

Lemma 2.3. Let (A,S) and (R,D) be relative pairs, and � : A ! R a ho-
momorphism of rings such that �(S) ⇢ D and �(1) = 1. Suppose P is an
(A,S)-projective module. Then R⌦A P is an (R,D)-projective module.

Proof. We know from Example 2.2 that P is isomorphic to a direct summand
of A ⌦S V , for some S-module V . Since the functor R ⌦A � is additive, the
R-module R⌦AP is isomorphic to a direct summand of the free (R,D)-module

R⌦A A⌦S V ⇠= R⌦S V ⇠= R⌦D D ⌦S V.

This shows that R⌦A P is (R,D)-projective. ⇤

An (A,S)-exact sequence of left A-modules

· · ·! Pk
dk�! Pk�1 ! · · ·! P1

d
1�! P0

d
0�!M ! 0

is called an (A,S)-projective resolution of M 2 A-mod if each Pk is an (A,S)-
projective module.
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248 A. P. SANTANA AND I. YUDIN

Next we describe the bar resolution B(A,S,M) of M 2 A-mod. This con-
struction will provide an (A,S)-projective resolution for M . We set

B�1 (A,S,M) = M and Bk (A,S,M) = A⌦(k+1)

S ⌦S M, all k � 1,

where A⌦l
S stands for the lth tensor power of A over S. Now we define A-

module homomorphisms dkj : Bk (A,S,M) ! Bk�1 (A,S,M), 0  j  k, and
S-module homomorphisms sk : Bk (A,S,M)! Bk+1 (A,S,M) by

d0,0 (a⌦m) = am,

dk,0 (a0 ⌦ a1 ⌦ · · ·⌦ ak ⌦m) = a0a1 ⌦ a2 ⌦ · · ·⌦ ak ⌦m,

dk,j (a0 ⌦ a1 ⌦ · · ·⌦ ak ⌦m) = a0 ⌦ a1 ⌦ · · ·⌦ ajaj+1 ⌦ · · ·⌦ ak ⌦m,

1  j  k � 1,

dk,k (a0 ⌦ a1 ⌦ · · ·⌦ ak ⌦m) = a0 ⌦ a1 ⌦ · · ·⌦ ak�1 ⌦ akm,

s�1 (m) = 1⌦m,

sk (a0 ⌦ a1 ⌦ · · ·⌦ ak ⌦m) = 1⌦ a0 ⌦ a1 ⌦ · · ·⌦ ak ⌦m, 0  k.

Define dk : Bk(A,S,M) ! Bk�1(A,S,M) by dk =
Pk

t=0(�1)tdk,t. Then one
can verify (cf. [10, Section 3]) that

d0s�1 = idB�1

(A,S,M), (2.2)

dk+1sk + sk�1dk = idBk(A,S,M), k � 0, (2.3)

dkdk+1 = 0, k � 0. (2.4)

We have the following result.

Proposition 2.4. Let (A,S) be a relative pair and M a left A-module. Then the
complex B(A,S,M) = (Bk(A,S,M), dk)k��1 is an (A,S)-projective resolution
of M .

Proof. From Example 2.2, we know that all the modules Bk(A,S,M), for
k � 0, are (A,S)-projective. From (2.4), it follows that B(A,S,M) is a complex.
From (2.2) and (2.3), we get that B(A,S,M) is contractible as a complex of
left S-modules. ⇤
The (A,S)-projective resolution B(A,S,M) is called the bar resolution for M .
We will write �(A,S,M) for the complex obtained from B(A,S,M) by deleting
the term B�1(A,S,M).

The bar resolution for a right A-module N is defined in a similar way to the
one described above. It will be denoted by B(N,S,A). In [9, Corollary IX.8.2],
there it is proved that B(A,S,A) ⇠= B(A,S,A) and

B(A,S,M) ⇠= B(A,S,A)⌦A M and B(N,S,A) ⇠= N ⌦A B(A,S,A). (2.5)
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STRATIFYING IDEALS AND TWISTED PRODUCTS 249

Using the bar resolution, it is possible to define relative Tor-groups (cf. [9,
(IX.8.5)]). Suppose we are given a left A-module M and a right A-module N .
Then the relative Tor-groups are defined as

Tor(A,S)
k (N,M) = Hk (N ⌦A �(A,S,A)⌦A M) .

Suppose P• ! M ! 0 and Q• ! N ! 0 are (A,S)-projective resolutions.
Then, by Theorem IX.8.5 in [9], we have

Tor(A,S)
k (N,M) ⇠= Hk (N ⌦A P•) ⇠= Hk (Q• ⌦A M) . (2.6)

Remark 2.5. In case S is a semisimple ring, we have Tor(A,S)
k (N,M) ⇠=

TorAk (N,M) for all k � 0. In fact, for S semisimple, P• ! M ! 0 is an
(A,S)-projective resolution of M if and only if it is a projective resolution of
M as A-module (see Remark 2.1).

It is now possible to introduce the notion of (A,S)-stratifying ideal. Given
a relative pair (A,S) and an idempotent e 2 S, we write A := A/AeA.

Definition 2.6. The idealAeA is called (A,S)-stratifying if Tor(A,S)
k (A,A) = 0,

for all k � 1.

This definition of (A,S)-stratifying ideal is closely connected with the def-
inition of stratifying ideal given in [5]. In fact, in many situations they are
equivalent.

Proposition 2.7. Let (A,S) be a relative pair with A a finite dimensional
algebra over a field. Suppose that S is a semisimple algebra and e 2 S is an
idempotent. Then the following conditions are equivalent.

(1) The ideal AeA is (A,S)-stratifying;
(2) AeA is a strong idempotent ideal in the sense of [1];
(3) A! A is a homological epimorphism in the sense of [7];
(4) AeA is a stratifying ideal in the sense of [5].

Proof. If S is semisimple, we know, from Remark 2.5, that Tor(A,S)
k (A,A) ⇠=

TorAk (A,A), k � 0. Therefore, by Proposition 1.3(iv’) in [1], the ideal AeA is
(A,S)-stratifying if and only if it is strong idempotent in the sense of [1].

Since A! A is an epimorphism of rings, the multiplication map A⌦AA! A
is an isomorphism. Then, from Theorem 4.4(1) in [7], it follows that A! A is
a homological epimorphism if and only if AeA is (A,S)-stratifying.

Finally, from Theorem 4.4(5’) in [7] and Remark 2.1.2(a) in [5], we get that
AeA is a stratifying ideal in the sense of [5] if and only if A! A is a homological
epimorphism. ⇤
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250 A. P. SANTANA AND I. YUDIN

3. Twisted products

3.1. General definitions and bar resolution. In this section we introduce
the notion of a twisted product for relative pairs and discuss bar resolutions in
this setting.

Definition 3.1. Let (A,S) be a relative pair and A1, A2 subrings of A con-
taining S. We say that (A,S) is a twisted product of A1 and A2 if the map
↵ : A1 ⌦S A2 ! A induced by the multiplication in A is an isomorphism of
abelian groups.

If (A,S) is a twisted product of A1 and A2, we can define the twisting map
T : A2 ⌦S A1 ! A1 ⌦S A2 as the composition

A2 ⌦S A1
µA��! A

↵�1

��! A1 ⌦S A2,

where µA is the multiplication in A. The existence of this map motivated the
name “twisted product”.

Example 3.2. Let G be a group with identity eG and H1, H2 subgroups of
G. Suppose that H1 \H2 = {eG} and H1H2 = G. Then one says that G is a
Zappa-Szép product ofH1 andH2. Given any commutative ring with identity S,
it can be checked that the relative pair (SG, S) is a twisted product of SH1 and
SH2. The Zappa-Szép product was developed independently by Zappa in [12]
and Szép in [11].

Suppose a relative pair (A,S) is a twisted product of subrings A1 and A2.
Then the endofunctors A ⌦S �, A1 ⌦S �, and A2 ⌦S � on the category of
S-mod can be turned into monads using multiplication and units of algebras in
the obvious way. Moreover, T induces a natural transformation ⌧ between the
functors A2⌦SA1⌦S� ! A1⌦SA2⌦S�. One can check that ⌧ is a distributive
law in the sense of [2]. Twisted products of algebras were also studied in [3].

Suppose (A,S) is a twisted product of subrings A1 and A2. Then we can con-
sider every A-module as an A1-module and every A2-module as an S-module.
Thus, we have two functors A⌦A

2

� and A1 ⌦S � from A2-mod to A1-mod.

Lemma 3.3. Suppose (A,S) is a twisted product of subrings A1 and A2. Then
the functors A⌦A

2

�, A1 ⌦S � : A2-mod! A1-mod are isomorphic.

Proof. Given any A2-module M we define fM as the composition of the three
A1-isomorphisms natural in M

A1⌦SM
⇠=�! A1⌦S(A2 ⌦A

2

M)
⇠=�! (A1 ⌦S A2)⌦A

2

M
↵⌦A

2

M�����! A⌦A
2

M. (3.1)

Then f := (fM )
M2A

2

-mod is the required isomorphism of functors. ⇤
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STRATIFYING IDEALS AND TWISTED PRODUCTS 251

Proposition 3.4. Suppose that the relative pair (A,S) is a twisted product of
A1 and A2. Then for any A2-module M the complex A⌦A

2

B(A2, S,M) is an
(A,S)-projective resolution of A⌦A

2

M .

Proof. For k � 0 we have isomorphisms of A-modules

A⌦A
2

A
⌦(k+1)

S
2 ⌦S M ⇠= A⌦S A

⌦k
S

2 ⌦S M.

Therefore, by Example 2.2, the modulesA⌦A
2

Bk(A2, S,M) are (A,S)-projective
for all k � 0.

By Lemma 3.3, the functors A⌦A
2

� and A1 ⌦S � are isomorphic as func-
tors from the category of A2-modules to the category of A1-modules, and so
they are also isomorphic as functors to the category of S-modules. There-
fore, to show that A⌦A

2

B(A2, S,M) is splittable as a complex of S-modules,
it is enough to show that A1 ⌦S B(A2, S,M) is splittable as a complex of
S-modules. Since A1 ⌦S � is an additive endofunctor in the category of S-
modules, and B(A2, S,M) is a splittable exact sequence in this category, we
get that A1 ⌦S B(A2, S,M) is a splittable exact sequence of S-modules. This
shows that A⌦A

2

B(A2, S,M) is an (A,S)-projective resolution of A⌦A
2

M .
⇤

3.2. LU-twisted products and (A,S)-stratifying ideals. Let (A,S) be a
relative pair and e 2 S an idempotent. We denote by ē the idempotent 1 � e.
Given a subring B of A containing S it is convenient to think of B as the matrix
ring

✓

eBe eBē
ēBe ēBē

◆

.

Note that (eBe, e) and (ēBē, ē) are rings. We will say that B is upper triangular
if ēBe = 0, lower triangular if eBē = 0, and diagonal if ēBe = eBē = 0.

We will write B for the quotient of B by the ideal BeB.

Proposition 3.5. Let (A,S) be a relative pair and e 2 S an idempotent.
Suppose that B is an upper or lower triangular subring of A. Then B ⇠= ēBē,
where the isomorphism is induced by the inclusion of ēBē into B.

Proof. We prove the proposition in the case when B is an upper triangular
ring. The lower triangular case is similar.

Let b 2 B. Then b = (ē + e)b(ē + e) = ēbē + ebe + ebē. This shows that
[b] = [ēbē] in B. Thus the map � : ēBē ! B, b 7! [b] is a surjective ring
homomorphism. To check that Ker(�) = 0 it is enough to notice that BeB \
ēBē ⇢ ēBeBē = 0, since ēBe = 0. ⇤
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252 A. P. SANTANA AND I. YUDIN

Definition 3.6. Let (A,S) be a relative pair with S diagonal and e 2 S an
idempotent. We say that A admits an LU -decomposition if there are subrings
L and U of A containing S such that:

(1) (A,S) is a twisted product of L and U ;
(2) L is lower triangular;
(3) U is upper triangular.

Before we state and prove the main theorem, we need two technical results.
Their proofs use the following proposition, which can be found in [9].

Proposition 3.7. (IX.9.3 [9]) Suppose that the ring R is the direct product
of two subrings R1 and R2. Given a right R-module N and a left R-module M ,
there is an isomorphism of abelian groups

N ⌦R M ⇠= (N ⌦R R1)⌦R
1

(R1 ⌦R M)� (N ⌦R R2)⌦R
2

(R2 ⌦R M).

Proposition 3.8. Let (A,S) be a relative pair with S diagonal and e 2 S an
idempotent. Suppose that (A,S) admits an LU -decomposition with subrings L
and U . Then A is a twisted product of L and U .

Proof. To show that A is a twisted product of L and U we first need to
prove that S can be considered a subring of L and U , and L and U can be
considered as subrings of A. For this it is enough to verify that L\AeA = LeL,
U \AeA = UeU and S \AeA = SeS.

Using the fact that eLē = ēUe = 0, we have

AeA = LUeLU = LeUeLU + LēUeLU = LeUeLeU + LeUeLēU ⇢ LeAeU

= LeLUeU = LeLeUeU + LeLēUeU = LeLeUeU ⇢ LeU.

Thus AeA = LeU . Since S is diagonal, it is the direct product of the rings
(eSe, e) and (ēSē, ē) and we have an isomorphism of abelian groups (cf. Propo-
sition 3.7)

� : Le⌦eSe eU � Lē⌦ēSē ēU ! L⌦S U
↵�! A

(a⌦ b, a0 ⌦ b0) 7! (a+ a0)⌦ (b+ b0) 7! ab+ a0b0 .
(3.2)

Therefore

LeU \ LēU = � (Le⌦eSe eU) \ � (Lē⌦ēSē ēU) = 0

and so Le \ LēU = 0. Since L = Le�Lē and Le ⇢ LeU , this implies L\LeU =
Le \ LeU = Le. Now

Le ⇢ LeL = LeLe� LeLē = LeLe ⇢ Le.

Therefore L \AeA = L \ LeU = Le = LeL, as required.
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STRATIFYING IDEALS AND TWISTED PRODUCTS 253

In a similar way it can be proved U \AeA = UeU . To show that S \AeA =
SeS it is enough to notice that

S \AeA = S \ L \AeA = S \ Le = Se ⇢ SeS = SeSe� SeSē = SeSe ⇢ Se.

Thus S \AeA = SeS.
Next we have to check that the map

↵ : L⌦S U ! A

[l]⌦ [u] 7! [lu]

is an isomorphism. By Proposition 3.5, we know that L ⇠= ēLē, U ⇠= ēU ē and
S ⇠= ēSē. Therefore, we can replace ↵ by the map

� : ēLē⌦ēSē ēU ē! A

l ⌦ u 7! [lu].

Notice that Lē = ēLē � eLē = ēLē and ēU = ēU ē � ēUe = ēU ē. Therefore �
can be decomposed in the following way:

Lē⌦ēSē ēU
� //

ı

✏✏

A

Le⌦eSe eU � Lē⌦ēSē ēU �

⇠= // A

⇡

OO

Now Ker(⇡) = AeA = LeU = � (Le⌦eSe eU) , which implies Ker(⇡�) =
Le⌦eSe eU . Therefore Ker(�) = 0 and � (Lē⌦ēSē ēU) = A. ⇤

Proposition 3.9. Let (A,S) be a relative pair with S diagonal and e 2 S
an idempotent. Suppose that A admits an LU -decomposition with subrings L
and U . Then A⌦U U ⇠= A as A-modules and L⌦L A ⇠= A as right A-modules.

Proof. Using Proposition 3.7, we have

L⌦S U ⇠= Le⌦eSe eU � Lē⌦ēSē ēU = Lē⌦ēSē U.

As L is lower triangular, we know that Lē = ēLē. Also ēU ē ! U , u 7! [u] is
an isomorphism by Proposition 3.5. Therefore, the map

� : ēLē⌦ēSē ēU ē! L⌦S U

l ⌦ u 7! l ⌦ [u],

is an isomorphism. We remind the reader that in the proof of Lemma 3.3 we
constructed the isomorphism fU : L⌦SU ! A⌦UU , given by l⌦[u] 7! l⌦[u]. We
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254 A. P. SANTANA AND I. YUDIN

write  := fU�. Consider the isomorphism � : ēLē ⌦ēSē ēU ē ! A constructed
in the proof of Proposition 3.8 . Then we have the isomorphisms

ēLē⌦ēSē ēU ē
�

yy

 

''

l ⌦ u:

||

⌥

##
A A⌦U U [lu] l ⌦ [u]

of abelian groups. Write ⌧ := � �1 : A⌦U U ! A. It is our aim to prove that
⌧ is a homomorphism of A-modules. It is obvious that ⌧ is a homomorphism of
L-modules. Thus, as A is the twisted product of L and U , to prove that ⌧ is a
homomorphism of A-modules it is enough to show that ⌧ is a homomorphism
of U -modules. For this, let u0 2 U and l ⌦ [u] 2 A ⌦U U . Then, as u0l 2 A,
we have u0l = ↵

�

P

i2I li ⌦ ui

�

=
P

i2I liui, for some finite set I, li 2 L and
ui 2 U . Thus

⌧(u0(l ⌦ [u])) = ⌧

 

X

i2I

liui ⌦ [u]

!

=
X

i2I

⌧ (li ⌦ [uiu])

=
X

i2I

[liuiu] =

" 

X

i2I

liui

!

u

#

= [u0lu] = u0⌧(l ⌦ [u]).

Therefore A ⌦U U ⇠= A as A-modules. Applying this result to the opposite
algebras, we conclude that L⌦L A ⇠= A as right A-modules. ⇤

We are now ready to prove the main result of the article.

Theorem 3.10. Let (A,S) be a relative pair with S diagonal and e 2 S an
idempotent. Suppose that (A,S) admits an LU -decomposition with subrings L
and U . Then AeA is an (A,S)-stratifying ideal.

Proof. We can consider U as a U -module and so, by Proposition 3.4, the
complex A ⌦U B(U, S, U) is an (A,S)-projective resolution of A ⌦U U . We
know, from Proposition 3.9, that A⌦U U ⇠= A as A-modules. Therefore, A⌦U

B(U, S, U) gives an (A,S)-projective resolution of A.
If we show that the complex A⌦A A⌦U B(U, S, U) is exact, then

Tor(A,S)
k (A,A)= 0,

for all k � 1, and AeA is an (A,S)-stratifying ideal. We have an obvious
isomorphism of complexes

A⌦A A⌦U B(U, S, U) ⇠= A⌦U B(U, S, U).
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Therefore to prove the theorem it is enough to check that A ⌦U B(U, S, U) is
exact. Consider the maps

��1 : A⌦U U ! A⌦U U

[a]⌦ [u] 7! [a]⌦ [u]

�k : A⌦UU
⌦(k+1)

S ⌦S U ! A⌦U U
⌦(k+1)

S ⌦S U

[a]⌦ u0 ⌦ · · ·⌦ uk ⌦ [u] 7! [a]⌦ [u0]⌦ · · ·⌦ [uk]⌦ [u], k � 0.

It is straightforward to verify that � := (�k)k��1 is a well-defined homomor-
phism of chain complexes from A⌦UB(U, S, U) to A⌦UB(U, S, U). By Proposi-
tions 3.4 and 3.8, the complex A⌦UB(U, S, U) is an (A,S)-projective resolution
of A, and, in particular, it is exact. To finish the proof we will show that � is
an isomorphism, that is that for every k � �1 the map �k is an isomorphism.

The map ��1 is an isomorphism, since both A and U get the structure of
right and left U -modules, respectively, via the projection U ! U .

Suppose now that k � 0. Then

A⌦U U⌦(k+1)

S ⌦S U ⇠= A⌦S U⌦k
S ⌦S U

A⌦U U
⌦(k+1)

S ⌦S U ⇠= A⌦S U
⌦k

S ⌦S U.

Under these isomorphisms �k corresponds to

 k : A⌦S U⌦k
S ⌦S U ! A⌦S U

⌦k
S ⌦S U.

We will write for a moment e1 = e, e2 = ē, S1 = e1Se1 and S2 = e2Se2. As S
is diagonal, using repeatedly Proposition 3.7, we get

A⌦SU
⌦k

S⌦SU ⇠=
M

(i
0

,...,ik)2{1,2}k+1

Aei
0

⌦Si
0

ei
0

Uei
1

⌦Si
1

· · ·⌦Sik�1

eik�1

Ueik⌦Sik
eikU.

Since Ae1 = 0 and e2Ue1 = 0, one sees that the only non-zero summand in
the above direct sum corresponds to the multi-index (2, 2, . . . , 2). Therefore, as
Ae2 = A and e2U = U , we have that

 k : A⌦S
2

(ēU ē)⌦
k
S
2 ⌦S

2

U ! A⌦S U
⌦k

S ⌦S U

[a]⌦ u1 ⌦ · · ·⌦ uk ⌦ [u] 7! [a]⌦ [u1]⌦ · · ·⌦ [uk]⌦ [u].

But these maps are isomorphisms, since S2 = ēSē ⇠= S and ēU ē ⇠= U , by
Proposition 3.5. ⇤

Te
xt

os
 d

e 
M

at
em

át
ic

a,
 D

M
U

C
, v

ol
. 4

6,
 2

01
4



256 A. P. SANTANA AND I. YUDIN

Let K be a field. Suppose that A is a finite dimensional algebra over K and
e 2 A is an idempotent such that AeA is a projective left or right A-module.
Then, as we mentioned in the introduction, AeA is a stratifying ideal. Next we
give an example of a finite dimensional K-algebra A, with an idempotent e, such
that AeA is not projective, although it is a stratifying ideal by Theorem 3.10.

Example 3.11. Given two rings A, B, and an A-B-bimodule M , we have a
ring structure on R := A�M �B, given by

(a1,m1, b1)(a2,m2, b2) := (a1a2, a1m2 +m1b2, b1b2).

The ring R is upper triangular with respect the idempotent (1A, 0, 0),

R =

✓

A M
0 B

◆

,

and is a lower triangular ring with respect the idempotent (0, 0, 1B),

R =

✓

B 0
M A

◆

.

Let A := K, B := K[x]
.

�

x2
�

, M := B
�

xB . Note that M is a one-dimensional

A-B-bimodule. Let v be a generator of M . Then we get a lower triangular ring

L :=

0

@

K[x]
.

�

x2
�

0

hvi K

1

A .

Taking A := K[y]
.

�

y2
�

, M := A
�

Ay , B := K, once more we have that M

is a one-dimensional A-B-bimodule. We denote its generator by w. We get an
upper triangular ring

U :=

0

@

K[y]
.

�

y2
� hwi

0 K

1

A .

Note that both L and U contain the semisimple subring

S :=

 K 0

0 K

!

.

Let e = ( 1 0
0 0 ) 2 S and e = 1S � e = ( 0 0

0 1 ). Then applying Proposition 3.7, we
get

L⌦S U =

✓

eL⌦S Ue eL⌦S Ue
eL⌦S Ue eL⌦S Ue

◆

=

 he11, x, y, xyi hw, xwi
hv, vyi hvw, e22i

!

.
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In the above formula we omitted ⌦ between the elements in L and U , wrote
eii for the products 1 ⌦ 1 at position (i, i), and abbreviated x ⌦ 1 by x, 1 ⌦ y
by y, 1⌦ w by w, v ⌦ 1 by v.

We will define a multiplication in the vector space A = L⌦S U , such that

l ⌦ u = (l ⌦ 1U ) · (1L ⌦ u).

Then A will be a twisted product of the subalgebras L⌦S S ⇠= L and S⌦S U ⇠=
U . To define such product it is enough to define the images of the elements of
U ⌦S L under the map

⌧ : U ⌦S L
⇠=�! S ⌦S U ⌦S L⌦S S ! A⌦S A

µA��! A.

Moreover, the above map restricted to the subspaces S⌦SL and U⌦SS, should
be s⌦ l 7! sl ⌦ 1U and u⌦ s 7! 1L ⌦ us. Applying Proposition 3.7, we get

U ⌦S L =

 

eU ⌦S Le eU ⌦S Le

eU ⌦S Le eU ⌦S Le

!

=

 h1⌦ 1, y ⌦ 1, 1⌦ x, y ⌦ x,w ⌦ vi hw ⌦ 1i
h1⌦ vi h1⌦ 1i

!

.

So we only need to know ⌧(y ⌦ x) and ⌧(w ⌦ v). Define

⌧(y ⌦ x) = xy,⌧ (w ⌦ v) = 0.

It is easy to check that the resulting multiplication in A = L⌦SU is associative.
By construction A is a twisted product of subalgebras L⌦SS and S⌦SU . Thus
we can apply Theorem 3.10 to A, and we get that AeA is a stratifying ideal.
By direct computation one verifies that

dim(Ae) = 6, dim(Ae) = 4, dim(AeA) = 9.

Since e and e are primitive idempotents, the modules Ae and Ae are indecom-
posable projective. Therefore we see that AeA is not projective, as 9 can not
be represented as an integral combination of 6 and 4. Thus AeA is an example
of a non-projective stratifying ideal.
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