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TOPOLOGY OF 3-COSYMPLECTIC MANIFOLDS

BENIAMINO CAPPELLETTI MONTANO, ANTONIO DE NICOLA, AND IVAN YUDIN

ABSTRACT. We continue the program of Chinea, De Leén and Marrero who studied the
topology of cosymplectic manifolds. We study 3-cosymplectic manifolds which are the closest
odd-dimensional analogue of hyper-Kéhler structures. We show that there is an action
of the Lie algebra so(4,1) on the basic cohomology spaces of a compact 3-cosymplectic
manifold with respect to the Reeb foliation. This implies some topological obstructions to
the existence of such structures which are expressed by bounds on the Betti numbers. It is
known that every 3-cosymplectic manifold is a local Riemannian product of a hyper-Kahler
factor and an abelian three dimensional Lie group. Nevertheless, we present a nontrivial
example of compact 3-cosymplectic manifold which is not the global product of a hyper-
Kahler manifold and a flat 3-torus.

1. INTRODUCTION

Cosymplectic geometry is considered to be the closest odd-dimensional analogue of Kéahler
geometry (see e.g. [2, Section 6.5], [9, Section 14.5]). This becomes even more evident when one
passes to the setting of 3-structures. Indeed, while both cosymplectic and Sasakian manifolds
admit a transversal Kahler structure, only 3-cosymplectic manifolds admit a transversal hyper-
Kahler structure (cf. [6]).

In the fundamental paper [8], Chinea, De Leén and Marrero studied the topology of cosym-
plectic manifolds, refining the previous results of Blair and Goldberg ([3]). They proved a
monotonicity result for the Betti numbers of a compact cosymplectic manifold M?"*! up to
the middle dimension. Next, the differences bgp+1 —bap, (with 0 < p < n) were shown to be even
integers (in particular, by is odd). Moreover, they found an example of a compact cosymplectic
manifold which is not the global product of a Kéahler manifold and the circle. Later on, other
nontrivial examples were provided (cf. [19] [I1]). More recently, Li ([I§]) gave an alternative
proof of the monotonicity property of the Betti numbers of cosymplectic manifolds (which he
prefers to call co-Kéhler) by using topological techniques.

A 3-cosymplectic manifold (see e.g. [B, Section 13.1]) is a smooth manifold M of dimen-
sion 4n + 3 endowed with an almost contact metric 3-structure such that each structure is
cosymplectic. This class of Riemannian manifolds is contained in the wider class of 3-quasi
Sasakian manifolds. Every 3-cosymplectic manifold is in particular cosymplectic hence all the
previously mentioned results still hold. A natural problem is whether the quaternionic-like con-
ditions which relate the structure tensors of 3-cosymplectic manifolds can induce additional
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rigidity to the underlying topological structure. The aim of this paper is to give an answer to
this question.

Every 3-cosymplectic manifold M admits the canonical Reeb foliation F3 of dimension three.
We denote by Hj, (M) the basic cohomology with respect to this foliation. The first result we
prove in Section [3] can be restated in the form

(1.1) Hjp (M) = H (M) ® Hip (T°)

for any compact 3-cosymplectic manifold M. This shows that the Betti numbers of M are
completely determined by the basic Betti numbers bz := dim HY, (M), namely

(1.2) by = bl + 3081 +3b)_5 + b _s.

When F3 is a regular foliation we can identify Hj (M) with H}, (M/Fs). In this case
M/ F;5 is a hyper-Kéhler manifold. There are known several results which give restrictions on
possible values of Betti numbers of compact hyper-Kéhler manifolds. This suggests to look
for the similar results about Hj (M). The results on Betti numbers of compact hyper-K&hler
manifolds can be divided into two families. In one family there are results that can be obtained
from the existence of the so(4,1) action on the cohomology ring of a hyper-Kdhler manifold
discovered by Verbitsky in [28]. In the other family there are the equations derived from
the Riemann-Roch theorem by Salamon in [24]. There is no hope at the moment to get an
extension of the Salamon’s result for Hj; (M) for a case when F3 is non-regular, as the theory
of transversally hyper-Kahler foliations is not developed enough.

In Section [4] we show the existence of an so(4,1) action on H}, (M). From representation
theory of so(4,1) it follows that the basic Betti numbers bgp 41 are divisible by four, and that

h p—|—2
b2p2< 2 )aOSpgn

We show these results in Section [5] and Section [f] by more elementary arguments to make the
article accessible to a wider audience. As consequences, we will obtain that for a compact
3-cosymplectic manifold by, + bapi1 are multiples of four and that
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bpz(p;) for 0 <p<2n+1.

From the above considerations one can see that there are strong obstructions to the existence
of compact 3-cosymplectic manifolds. On the other hand, every 3-cosymplectic manifold is a
local Riemannian product of a hyper-Kéhler factor and an abelian three dimensional Lie group.
Moreover, the formula could suggest that every compact 3-cosymplectic manifold is the
total space of a toric bundle over a hyper-Kahler manifold. We disprove this by an example
in Section [7l Namely, we construct a compact 3-cosymplectic seven dimensional manifold M7
such that Hj, (M7) cannot coincide with the cohomology ring of a hyper-Kéhler manifold.
Note that in particular M7 is not a global product of a hyper-Kéhler manifold and T3, which
answers the open question about the existence of non-trivial examples of such manifolds.

2. PRELIMINARIES

An almost contact manifold is an odd-dimensional manifold M which carries a field ¢ of
endomorphisms of the tangent spaces, a vector field &, called characteristic or Reeb vector field,
and a 1-form 7 satisfying

p*=—I+n®¢ () =1,
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where I: TM — TM is the identity mapping. From the definition it follows that ¢ = 0,
no¢ =0 and that the (1, 1)-tensor field ¢ has constant rank 2n (cf. [2]). An almost contact
manifold (M, ¢,£,n) is said to be normal when the tensor field Ny = [¢, @] + 2dn @ £ vanishes
identically, where [, ¢] is the Nijenhuis torsion of ¢. It is known (see e.g. [2, page 44]) that
any almost contact manifold (M, ¢, &, n) admits a Riemannian metric g such that

(2.1) 9(PE,oF) = g (E, F) —n(E)n(F)
holds for all E,F € T'(TM). This metric g is called a compatible metric and the manifold
M together with the structure (¢,&,7,g) is called an almost contact metric manifold. As
an immediate consequence of , one has n = ¢ (+,¢€) and g (¢E,F) = —g (E,¢F). Hence
O (E,F) = g(FE,¢F) defines a 2-form, which is called the fundamental 2-form of M. Almost
contact metric manifolds such that both n and ® are closed are called almost cosymplectic
manifolds and those for which dn = ® are called contact metric manifolds. Finally, a normal
almost cosymplectic manifold is called a cosymplectic manifold, and a normal contact metric
manifold is said to be a Sasakian manifold. In terms of the covariant derivative of ¢, the
cosymplectic and the Sasakian conditions can be expressed respectively by
Vo =0

and

(Vi) F =g (E, F){—n(F)E,
forall E,F e T (TM).

It should be noted that both in Sasakian and in cosymplectic manifolds ¢ is a Killing vector
field. The Sasakian and the cosymplectic manifolds represent the two extremal cases of the
larger class of quasi-Sasakian manifolds (cf. [I]).

An almost contact 3-structure on a (4n + 3)-dimensional smooth manifold M is given by

three almost contact structures (¢1,&1,m), (2,82, m2), (¢3,&3,n3) satisfying the following re-
lations, for every «, 8 € {1,2,3},

3
(22) ¢a¢5 —Ng® §a = Z 6aﬂ7¢w - 6a/3]7
~y=1
3 3
(23) ¢a£ﬁ = Z Eaﬁ'yf'y, Ta © ¢ﬁ = Z €apyTy,
y=1 ~y=1

where €44+ is the totally antisymmetric symbol. This notion was introduced by Kuo ([I7])
and, independently, by Udriste ([27]). In [I7] Kuo proved that given an almost contact 3-
structure (¢u, &y Na), @ € {1,2,3}, there exists a Riemannian metric g compatible with each
of the structures and hence we can speak of almost contact metric 3-structure. It is well
known that in any almost 3-contact manifold the Reeb vector fields &7, &2, €3 are orthonormal
with respect to any compatible metric g and that the structural group of the tangent bundle
is reducible to Sp(n) x {I3}. Moreover, the tangent bundle of any almost 3-contact metric
manifold splits up as the orthogonal sum T'M = H & V, where the 4n-dimensional subbundle
H= ﬂizl ker (1) is called the horizontal distribution and V = (&1, &2, &3) is called the vertical
(or Reeb) distribution. An almost 3-contact manifold M is said to be normal if each almost
contact structure (¢q,&n, o) is normal.

Let (¢a,&asNa, g) be an almost contact metric 3-structure. When each structure is Sasakian
M is called a 3-Sasakian manifold.
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By an almost 3-cosymplectic manifold we mean an almost 3-contact metric manifold M
such that each almost contact metric structure (¢q,&a,Na,g) is almost cosymplectic. The
almost cosymplectic 3-structure (dq,&q,Na,g) is called cosymplectic if it is normal. In this
case M is said to be a 3-cosymplectic manifold. However it has been proved recently in [10]
Theorem 4.13] that these two notions are the same, i.e. every almost 3-cosymplectic manifold
is 3-cosymplectic.

Just as in the case of a single structure, the 3-Sasakian and the 3-cosymplectic manifolds
represents the two extremal cases of the larger class of 3-quasi-Sasakian manifolds (cf. [7]).

In any 3-cosymplectic manifold the forms 7, and ®, are harmonic ([12] Lemma 3]). More-
over, we have that &,, 1, ¢, and @, are V-parallel. In particular

(2'4) [gavgﬁ] = V&yfﬁ - vi/aga =0

for all o, B € {1,2,3}, so that V defines a 3-dimensional foliation F3 of M*"*3. Since each
Reeb vector field is Killing and is parallel, such a foliation turns out to be Riemannian with
totally geodesic leaves.

Recall that a foliation F is regular (in the sense of Palais [23]) if each point p € M has a
foliated coordinate chart (U, p) such that each leaf of F passes through U at most once.

Theorem 2.1. ([6, Corollary 3.10]) Let (M*" "3 ¢, 0,0, 9) be a 3-cosymplectic manifold.
If the foliation Fs is regular, then the space of leaves M*"+3 ) F3 is a hyper-Kdhler manifold of
dimension 4n. Consequently, every 3-cosymplectic manifold is Ricci-flat.

Remark 2.2. If we drop the assumption of regularity in Theorem[2.1]and we assume instead that
the vertical foliation has compact leaves, then the space of leaves is a hyper-Kéahler orbifold,
i.e. a second countable Hausdorff space locally modeled on finite quotients of R™. We refer
to [22] for the formal definition and properties of orbifolds and to [25] for the generalization of
geometric objects to the orbifold category.

Concerning the horizontal subbundle, note that — unlike the case of 3-Sasakian geometry
— in any 3-cosymplectic manifold # is integrable. Indeed, for all X, Y € T' (H), 1. ([X,Y]) =
—2dn, (X,Y) = 0 since dn, = 0.

3. DECOMPOSITION OF THE COHOMOLOGY OF 3-COSYMPLECTIC MANIFOLDS

Unless otherwise stated, in the remaining of the paper we will assume that all manifolds are
compact. In this section we investigate some algebraic properties of the de Rham cohomology
H}p (M) of a 3-cosymplectic manifold M 4n+3 By the Hodge-de Rham theory the vector space
HE, (M) can be identified with the vector space Q¥ (M) of harmonic k-forms on M.

For each « € {1,2,3} we define linear operators A, and I, by

lo: QF (M) — QFFL (M) Ao QL (M) — QF (M)
W No Nw W ig, W,

We denote by {A, B} the anticommutator AB + BA of two linear operators A and B. From
Na (§8) = dap it follows that

(3.1) {Aa;ls} = dagp.
Moreover
(3.2) {Aa, As} = {la,lg} =0.
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Define e, = oA Then it follows from (3.1]) that e, are idempotents. In fact
eala = ladalada = —laladara + lada = €q.

Moreover from and it follows that [eq,es] = 0, for a # B. Thus {e1,e2,e3} are
pairwise commuting idempotents.

By [8, Proposition 1] all operators l,, Ay, and thus e,, preserve harmonic forms. Now we fix
k €{0,...,4n + 3} and consider the restrictions of the operators e, to Q¥ (M), o € {1,2,3}.
Note that Q¥ (M) is a finite dimensional vector space over R. As e, is idempotent, its minimal
polynomial m,, (z) is a divisor of  (z — 1). Therefore the only possible eigenvalues of e,, are 0
and 1. Moreover, since m,, () does not have multiple roots, the operator e, is diagonalizable
with 0 and 1 on the diagonal. As the operators {ej,es,e3} commute with each other, by
Bourbaki [4, Proposition VII.13] they can be simultaneously diagonalized. Define for all triples
€1, €2, €3 € {0,1}

ok (M):{wEQ’}{(MHeaw:saMa:1,2,3}.

H,E162€3
Since ey, e3, e3 can be simultaneously diagonalized on Q’}{ (M) we get that
(3.3) M) = B ., (M),
€1,62,e3€{0,1}
Now let w € Q... (M). Then hw € Q];ITQES. In fact

61110.) = ll)\lllw = 7>\1Z1l1w + llw = llw

ealiw = lieqw = enliw, a=2,3.
Similarly if w € 91;1'515263 (M), then \jw € 9%706253 (M). Therefore, we get maps of vector
spaces

12 QO gcye, (M) = Q3. (M) AP QL (M) = Qo (M)

H,leges H,leses
Now 1522 A72°% is the restriction of e; to QE}SZES (M) and thus [72°*A72°* = id. Analogously
the composition Aj?2172°% is the restriction of
)\1[1 =id — ll>\1 =id — el
t0 Q7 ocye, (M) and thus A72°#052%* = id. Thus A{*** and I{** are inverse isomorphisms
between the vector spaces 9%705253 (M) and Q¥FL _(M). Replacing 1 with 2, 3, and putting

H, leges

all together we get for every 0 < k < 4n the cube

l
Q]1€L1+,1100 (M) . Q];Iflo (M)
ll ll
l3
l
Ql}i,ooo (M) l : Q?&w (M) ls
l
ls QI;{T1201 (M) : Q];—I—t_l?’ll (M)
l1 13
1
l
Qoo (M) : Qo (M)



whose faces are anti-commutative and edge arrows are isomorphisms of vector spaces. Therefore
the whole information about the cohomology groups of M is contained in the vector spaces
Q 000(M), 0 < k < 4n.

Denote by b} the dimension of Q’I“_LOOO(M). Then

dim Qf; 199 = dim Qf o1 = dim Qfy 59, = dim Q7 o0 = by, k>1
dim Q7 119 = dim Qf 1oy = dim Qf 51y = dim Q7 5o = by, k>2
dim Qf 13y = dim Qf; 5o = by k>
Therefore, from the decomposition we get
bo = bl
(3.4) by = b} + 3b)
by = bl + 3b} + 3b)
b, = bjl +3b_; + 3D} + b} 3<k<d4n+3.

Now we will identify the vector spaces Q]}{)OOO (M) with the basic cohomology of the Reeb
foliation generated by &,, o € {1,2,3}, on M. In our case the spaces of basic forms are given
by

Qk (M) = {we QF (M) |ig,w =0, i¢,dw =0 for each a = 1,2,3} .

The basic differential dp is the restriction of the exterior derivative d to Q5 (M). The basic
cohomology spaces are defined as cohomology spaces of the complex (25 (M),dg). In our
case the mean curvature of the Reeb foliation F3 is zero since the foliation is totally geodesic,
therefore we can use the transversal de Rham-Hodge theory developed in [I5]. By this theory,
the basic cohomology spaces can be identified with the kernel of the basic Laplacian

Ap:=dpdp + dpdp,

where dp is the codifferential ¢ followed by the orthogonal projection of Q* (M) onto Q% (M).
We denote by Q5 (M) the kernel of Ap.

Proposition 3.1. Let M*"™3 be a compact 3-cosymplectic manifold. Then Q. (M) =
Q%000 (M). In particular, the numbers bl coincide with the basic Betti numbers of the Reeb
foliation on M.

Proof. First we show that Q599 (M) C Q5 (M). Let w € Q];{,ooo (M). Then
ie,w = Aaw = (Aa = laA2) w = Aalodaw = Ageaw =0, a € {1,2,3}.

Moreover, dw = 0 therefore w € Qf; (M). Thus we have to show that Q; ;o (M) is the kernel
of Ap. We know that Q7 5o (M) is the kernel of A. Thus it is enough to show that Ap = A
on Q% (M). From the definitions of A and Ap we see that it is enough to check that § = dp on
0% (M). Recall, that dp is the restriction of § to Q7% (M) followed by the orthogonal projection
from Q* (M) to 2% (M). Therefore, the map dp coincides with the restriction of § to 2% (M)
if and only if 6 (5 (M)) C QF (M).

Let w € Q% (M). The operators [, and d anticommute in our case, since [, is the wedge
product with a closed 1-form. As shown in [I3] pages 97-98], on a Riemannian manifold the
usual operator of interior product ix, where X is a vector field, can be defined as the Hodge
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dual of the operator g (X, —) A —. Thus A, = i¢, is the Hodge dual of I, = no A —. Since ¢ is
the Hodge dual of d we get that § and A\, anticommute, which implies

(35) igaéw = 751'5@&} =0.

Now we use the fact that the anticommutator of i¢, and d is the Lie derivative L¢ . In the
last paragraph of page 109 of [I3], it is shown that for a Killing vector field X

Lx+{0,9(X,—-)AN—}=0.
Since &, is a Killing vector field, we get
Le, +1{6,la} =0.
Therefore, § and L¢, commute
[0, Le.] = —[0,{0,1a}] = —6%la — 6100 + 8106 +1,6% = 0

and by (3.5) we get
ie,dow = L¢, 6w — dig, 0w = 0Le,,w~+ 0= 0§ (dig, +ie,d)w=0.
In the last step we use that w is basic. Thus if w € Q7 (M) then dw € Q% (M). This concludes

the proof.
|

4. ACTION OF s0(4,1) ON THE COHOMOLOGY OF 3-COSYMPLECTIC MANIFOLDS

In this section we will show that Qf; ;o (M) admits an action of the Lie algebra so (4,1).
This result is the odd-dimensional analogue of the one obtained by Verbitsky in [28] about
the action of so(4,1) on the cohomology groups of a hyper-Kéhler manifold M4". In fact,
intuitively the space @iio Qlfﬁl,ooo (M) can be thought of as a cohomology ring of the hyper-
Kahler orbifold obtained from M*"+3 by taking the quotient under the action of the three
Reeb vector fields.

For every cyclic permutation (o, 3,7) of (1,2,3) we denote by Z, the 2-form

|
(4.1) SIEES 3 (Po + 218 A1y) -

Define the operators L, : QF (M) — Q2 (M) and A, : Q¥ (M) — QF (M) by Low = E4 Aw
and A, 1= *Ly*.
We will give now a local description of these operators. Let
{ X1, 01 X0, $2X1, 03 X1, ..o, X, 91X, 02X, $3X0n, €1, 62,63}

be an orthonormal basis of vector fields in some open subset U of M. Denote by (s the 1-form
dual to X, that is (s = g (X5, —). Then

(42) 7’¢aXs (¢Zz<t) =g (X57 d)a (¢O¢Xt)) =g (Xsa ¢3Xt) = _5525; ]- S S,t S n.
Therefore the set
(43) {Clv ¢>{<17 ¢;C17 ¢)§<17 DI CTH ¢>{<’fb7 ¢;<TL7 ¢§CTL7 m,n2, 773}

is a basis of 1-forms on U.



Proposition 4.1. Let (a, 3,7) be a cyclic permutation of (1,2,3). Then

(4.4) Do =2 (G APals — DG A3Cs) — 2m5 A1y

s=1

and therefore

n

(4.5) Bo = Y (G NOiGs — D5Cs A3 Cs) -

s=1

Proof. Let us denote by (, ) the natural pairing between k-forms and k-vector fields. By
definition of ®, we have

<(I)OMXS A ¢04Xs> =g (Xsu¢iXs) =-1
<(I)ou¢,3Xs A ¢VXS> =g ((bBXs, ¢a¢7Xs) =g (¢ﬁst _¢ﬂXs> =-1
(@asmp Any) = g (Mg, Gany) = g (ng, —15) = —1,

and (P, V) = 0 for any other element V of the basis of the space of bivector fields on U. On
the other hand,

(G A 92 X A 6o Xa) = 56 (X) 6360 (6aX0) = — 5

(635G A 3o 63X A0, X,) = 203G (63X0) 636 (6,X,) =

N =~

1
(s A1y, € NEy) = 577,6 (€p)ny (&) =
O

Note that for any k-form w on M, any vector field Y of unit norm, and p the dual 1-form
such that p(Y) = 1, we have

(4.6) % (p A kw) = (—1)UnF3=RE=D

From (4.2)), ([4.5)), (4.6)), and the fact that x> = id for odd dimensional manifolds, it is easy to
obtain the formula

n

(47) Aa = Z (iX.§i¢aXs + i¢5Xsi¢»st) .

s=1

Remark 4.2. From [3| Lemma 2.3] it follows that the operators w — ®, Aw preserve harmonic
forms. Since the operator w — ng Any Aw is equal to lgl,, it also preserves harmonicity. Then,
by definition of the operators L., they preserve harmonicity as well. Since the Hodge star x
preserves harmonic forms we get that also A, preserves them.

Now we verify that Le (2 gg0 (M)) C Q7000 (M) and A, (277,000 (M)) € Q7 g0 (M). For
this it is enough to show that L, and A, commute with e, for any pair 1 < o, p < 3. Since
A, is the Hodge dual of L, and id — e, is the Hodge dual of e, it is enough to check that L,
commute with e,. We know that e, = [, ). Since [, is the wedge product with a 1-form and
L,, is the wedge product with a 2-form, they commute. Now, let w € QF (M), then

MLow =g, (Eq Aw) = (iguEa) Aw+Zq A (iguw) = (iguEa) Aw+ LA w
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and by (&3)
i, B0 =3 (i, Cs N G5l — G Nig, 01Ce — e, GCe A G5Cs + B3Cs Nig, #5Cs) = 0.

s=1
As consequence, we can restrict the operators L, and Ay to Q7 5o9 (M). From now on, we
will consider L, and A, as endomorphisms of Q73 ;o (M).

Define the operator H : Q’ICLOOO (M) — Qlf—[,ooo (M) by Hv = (2n — k) w.
Proposition 4.3. We have [Lqa, Ao] = —H on Qg9 (M).

Proof. Every element of Q];{,OOO can be locally written as a linear combination of wedges of
elements in

(48) {Ch ¢TC17 ¢;<17 ¢§C17 ey Cn, ¢>{Cn7 ¢;Cn> ¢§Cn} .
Note that for any 1 < s,t < n and any cyclic permutation («, 3,7) of (1,2,3)

[Co NG N —igyx,ig, x,] =0 [05¢s A @Cs A —yix,ig,x,] =0
and for s # ¢t

[Cs A ¢ZCS A=, ixti(baxt} =0 [QSBCS A nyCS A Z’¢/iXti¢-th:| =0.
Therefore by (4.5) and (4.7)), we get
(4.9) [La, Ao = Z ([Cs A diCs A —rix,igox,] — [05Cs N D5Ce A= igsx.ig, X, ]) -

s=1

Now for any linear operators a, b, ¢, d, we have
[ab, cd] = [ab,c] d + c[ab, d]
= (a{b,c} —{a,c}b)d+c(a{b,d} — {a,d} D)
=a{b,c}d—{a,c}bd+ cai{b,d} —c{a,d}b

(4.10) =a{b,c}d—{a,c}bd —ac{b,d} —c{a,d} b+ {a,c} {b,d}.
It is also obvious that for arbitrary «, 8 # ~:

{¢s AN —ig.x.} =0 {GA—ix }=1
(4.11) {o5¢ N —ig,x,} =0 {o5Cs N —rigsx,} = —1

{QSZQ‘? A 77iXs} =0.
Therefore, using (4.10) we get

n

[LOC’ AOC] = Z (_¢ch A i¢aXs + CS A iXs - 1 - (d)i;CS A i¢’st + (;SECS A i¢BXs + 1))

s=1
n
= —2n + Z (Co Nix, = BhCs Nigox, — G5Cs Nigyx, — P2Cs Nig x,) -
s=1

Now the sum in the last row operates on any fixed-degree form involving only elements in (4.8))
by multiplying the form by its degree. Hence

[LosAp]w=—Huw
for all w € Q7 go9- O



For every cyclic permutation («, 3,7) of (1,2,3) we define the operator

n

Ko =Y ($5Gs Nix, + (s Nig,x, + $5C Nigyx, — 85Cs Ao, x,) -

s=1

Let p1,..., pr be a sequence of elements in (4.8]). Then from (4.2) and
PP = —05, Ppda = 95,
it follows that

1
]Jr "‘/\(ZSZPj/\"‘/\pr

M;r

Ko (pi N+ Npg) =
_]:1

Proposition 4.4. For any cyclic permutation (a, B,7) of (1,2,3) we have on Qy 50 (M)
(4.12) (Lo, Ag] = K,

(4.13) (Lo, Ay = — K.

In particular K, is globally defined, for each o € {1,2,3}.

Proof. We have

n
LavAﬁ Z Cs A Qﬁ(s A 7?7:XSZ.¢L3XS:| + [Cs A ¢ZCS A=, i¢'sti¢aXS:|
s=1

— [5C A BECs AN —ix,igsx,] — [@5Cs A DLCs A —ig, X, igax.]) -
Now, by and we get

[Las Mg) = D (=65Cs Nigyx, +Cs Mg, x, —ix, (65¢ A=) + 65C Nig,x,)

s=1

=3 (G Mg, x, + G5 Nix, + G5Cs Nigx, — Pl Ny,
s=1
= K.,.

Equation (4.13) is proved as follows. We have

n

[LaaA'y] = Z ([Cs A (/j):;CS A _aiXsitﬁst] + [gs A ¢3Cs A _7i¢axsi¢ﬁxs]

s=1

- [(bECs A (z)ikst A _7iXsi¢'yX3:| - [¢;§Cs A (ﬁ;gs AR izi)aXsiqﬁng]) .
Again by (4.10 m we get

[La, A,] Z( Ol Mg x, — Cs Nigyx, — O5Cs Nix, —ig,x, (63¢: A —))

s=1
n

== (G Nigyx, + 3G Nix, + B5Cs Aig,x, — 3G Mg, x,)
s=1

= —Kj.
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Theorem 4.5. The linear span g of the operators { Lo, Ao, Ko, H | = 1,2,3} on Q90 (M)
18 a Lie algebra.

Proof. We have to check that g is closed under taking commutators. Clearly it is enough to
check that the commutator of any two operators from the set { Lo, Aq, Ko, H | =1, 2,3} lies
in g. It is obvious that [La, Lg] = 0 and [A,, Ag] = 0 for any pair 1 < «, 8 < 3. Since K, does
not change the degree of forms, L, raises the degree by 2 and A, decreases the degree by 2
we get

(4.14) (Ko, H] =0 [Lo, H] = 2L, Ao, H] = —2A,.

Furthermore, by Proposition we know that [L,,A,] = —H, and by Proposition that
[La, Ag] = K, for any cyclic permutation («, 8,) of (1,2,3). Therefore it is left to check that
the commutators [K o, L], [Ka, Lgl, [Kas Aal, [Ka, Lg] and [K,, K3 for all pairs 1 < o, 3 < 3
lie in g.
For any cyclic permutation (o, 8,7) of (1,2,3) we have
-
[KQ,L ] [[LB7 A ] ’Lot] = [[L57 La] ’AW] + [LB’ [A’W La]] = [Lﬁv Kﬂ]
= _[KﬂvLﬂ]'

As («, 8,7) is an arbitrary cyclic permutation of (1,2,3) we get also
(K, Lg] = — [K’Y’L’Y] [K’Y’L’Y] = —[Ka, La]

and combining we obtain [K,, Ly] = — [Ka, L], which implies [K,, Ly =0 for all 1 <« < 3.
Similarly, we have [K,, Ayl =0
Now for any cyclical permutation (a, 8,7) of (1,2,3) we have

Ko, Lg] = = [[Ly, Ag], Lg] = — [Ly, [Ap, Lg]] = — [Ly, H] = —2L,,

[

[Kas Ly] = [[Lg, Ay Ly] = [Lp, [Aq, Lo)] = [Lg, H] = 2L,
(Ko Ag] = [[Lg, A ], Ag] = [[L /371\6] o] = [-H A = =20,
(Kas Ay] = = [[Ly, Ap], Ay = = [[Ly, Ay], Ap] = [H, Ag] = 2A,

]
(Ko, Kg] = [[Lg, Ay, K] = [Lg, [Ay, Kp]] = [Lp, 2Aa] = —2K,.
a

Now we prove that the Lie algebra g can be identified with the Lie algebra so (4,1). Let us

recall the definition of so (4,1). We denote by F; the matrix
diag (1,1,1,1,-1).

Then
s0(4,1):={ A€ Ms; (R)| AE; = —F, A"}

as a set. The Lie bracket on so (4, 1) is given by the usual commutator of matrices. We denote
by e;; the matrix with 1 at the place (¢, j) and zeros elsewhere. Define for 1 <i¢ < j <5

o Jeistesi J=5
ij — .
€;j — €;; otherwise.

11



Then the set {¢;; |1 <i < j <5} is a basis of so(4,1). A direct computation shows that
[tij, tir] = —tjk [tij, tik] = tik [tik, tjk] = —tij 1 <j<k<5
[tij tis] = —tj5 [tij tjs) = tis [tis, tjs] = ti 1< <D

We will also use ¢j; to denote —t;; for 1 <i < j < 4. Now for any cyclic permutation (c, §,7)
of (1,2,3) we have

[tas, —tad] + [tadstas] = —2tss
2 (taa +tas)

2(tas —tas) = =2 (tas — taa)
[tas + tad, tgs +ta] = tap —tap =0

[ ab + toz47 ab — lad
[tas + taa, 2tss

[tas — taa, 2tss

] =
=
=
J
[tas + tad, tgs — tpa] = tag +tap = 2tap
[tas +taa,tys —tya] =
= ( '75+t74)
[2t gy, tys + tya] = 2 (tgs + tga)
25y, tas — tpa] =
[ =

[27557, tgs + tp4

( Y5 T t'v4)

2tpy,tys = tya] =2 (tBS - tﬁ4)
Therefore the assignment
H — 2ty45 Lo — tas +taa Ao = tas — tas K, — 2tg,
induces an isomorphism of Lie algebras so (4,1) — g. Thus we have proved the following result.

Theorem 4.6. The operators Lo, Ay, a € {1,2,3}, give a structure of so(4,1)-module on
Q%1000 (M).

5. AcTioN OF H ON Q35 (M) AND BETTI NUMBERS OF COMPACT 3-COSYMPLECTIC
MANIFOLDS

Let U C M be an open subset and
{Clv ¢>1k<lv QS;Cla ¢§Cla DI Cna QSTCTM QS;CTL? ¢§Cn7 m,n2, 7]3}

an orthonormal basis of 1-forms on U. Define €y, (U) as a linear span with coefficients in
C> (U) of the set

Y = {gla ¢>{Cla ¢;§1a ¢§Cla ey Cna ¢Tcna ¢;<na ¢§<n} .

Then Q7 oo (U) is a subspace of Qg (U). Define the operator I, on €5y, (U) extending by
linearity the map

PLA AP —= Qrpr N N DL p1,---,pp €Y.

Proposition 5.1. The operators I, a € {1,2,3}, are well-defined on Qo (M). Moreover,
they preserve harmonic forms. In particular, we can consider I, as an endomorphism of
Q1000 (M).

12



Proof. For 1 < s < k, we define the operators K, s on Q& (U) extending by linearity the map
pLA A pr S ()T g A AL, A AP N A i,
1<j1<<js <k
where pq,...,pr € Y. We also denote the identity operator by K, . Then K, = K, and
k+1
Ko = (—1)( ) I,. Tt is easy to check in local coordinates that
KozKa,s = (5 + 1)Koz,s+1 - (k -8+ 1)Koz,s—1~

These formulae can be used to show that K, , is a polynomial in K, with constant coefficients
which do not depend on the used local chart. Since K, are globally defined and preserve
harmonic forms we get that the operators K, s are globally defined and preserve harmonic
forms for all s. In particular, I, is a well-defined operator on 3,, (M) and preserves harmonic
forms. O

It is straightforward to see that the operators I,, o € {1,2,3}, restricted to Q?Id,‘éoo (M)
satisfy the same relations as the imaginary units of the quaternion algebra H. Therefore we
get

Theorem 5.2. Let k be odd. Then Q]fq,ooo (M) is an H-module.

Corollary 5.3. Let k be odd. Then bZ 1s divisible by 4.

Proof. Every finite dimensional module over H is a direct sum of regular modules. As the
dimension of the regular module is 4, the result follows. O

We denote by (d) the principal ideal in Z generated by d. In other words, (d) will be the
set of the integers divisible by d.

Corollary 5.4. Let M be a compact 3-cosymplectic manifold. For any odd k we have
br—1+ b € (4).
Proof. Using we get for k=1
bo + by = bh 4 b + 3bh = b + 4% € (4).
Similarly, for k = 3 we get
by + by = bl + 3bY + 3b)y + by + 3bly + 3b} + b} = by + 4bly + 6b) + 4b) € (4).
Finally, for odd k£ > 5 we have
bi—1 +bp = by + 30y + 3D+ by + b+ 3D + 3D, + b,
= b} 4+ 4b}_q + 6b_y +4bf_5 + b, € (4).

6. INEQUALITIES ON BETTI NUMBERS

In this section we give a bound from below on the Betti numbers of a compact 3-cosymplectic
manifold. We start with the following statement about horizontal Betti numbers, which is a
generalization of Wakakuwa’s Theorem 9.1 in [29].

13



Proposition 6.1. Let M be a compact 3-cosymplectic manifold of dimension 4n + 3. Then
for0<k<n
k42
wk>< ; )

Proof. Recall the definition (4.1) of the 2-forms =,. Let us fix 0 < k < n. We consider the set

Sy = {2 Ak Az

k’1+k‘2+k‘3=k}.

All the elements of S can be obtained from the constant O-form 1 on M by successive ap-
plications of operators L, a € {1,2,3}. Therefore by Remark we get Sp C QF gg0(M).

Thus, to prove the proposition it is enough to show that Sy contains (k;Z) linearly independent
elements. This can be checked locally. Let U be a trivializing neighbourhood like in Section [
We order the elements of the basis (4.3) of 1-forms on U by

(<@< < <piC <G < < Pin
< P50 < - < P5Cn < P3¢ < - < P3G, <M1 < M2 < 13,

Then we get an induced lexicographical ordering on the basis of Q* (U). By using the local

expression (4.5)) of Z,, @ € {1,2,3}, we see that the first basis element with respect to this

ordering that enters in Z¥* A 52 A 28 with a non-zero coefficient is

Cl A ¢TC1 A <2 A d)TCQ ARERIA Ckl A ¢T<k1 A Ck1+1 A ¢;<k1+1 JARERNAN Ck1+k2 A ()b;oﬁ"rkz
A Crrba+1 A B3Cki ka1 A A oy phia kg A P3Cky +ha-ts-

Since for different triples (ki, k2, k3) such that ky + ko + k3 = k the above basis elements are
different, we get that Sy contains (kgz) elements and they are linearly independent. O

As a consequence we get the following lower bound on the Betti numbers of a compact
3-cosymplectic manifold.

Theorem 6.2. Let M be a compact 3-cosymplectic manifold of dimension 4n + 3. Then for

0<k<2n+1
bk2<k+2>
2

Proof. For k = 0 we have obviously by =1 = (;) First we consider the case k = 2[,1 <1 < n.

Then by (3.4) and Proposition

1+2 I —1+2
l%:b;+3@F1+3@F2+@F32( 2>44&0+3< 0 >+0

ﬂ+ma+ﬁ)+ga+ml:(L+nu+2+302(m+2ﬂm+1)

2 2 2 2
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Now, suppose that k =2+ 1, 0 <! < n. Then, again by (3.4) and Proposition

2
_0F2+Y (DL _ (D) EI+6+D) _ (2+2) (2 +3)

2 2 2 2
C(20+3\ (k42
2 )2 )

7. NONTRIVIAL EXAMPLES OF COMPACT 3-COSYMPLECTIC MANIFOLDS

1+2 I—1+2
bk@H1+%&+3@F1+@F220+3<2 )+3~0+< >

The standard example of a compact 3-cosymplectic manifold is given by the torus T#"+3
with the following structure (cf. [20, page 561]). Let {01,..., 04,13} be a basis of 1-forms such
that each #; is integral and closed. Let us define a Riemannian metric g on T4"*3 by

4n+3

g := Z 0; ®0;.
=1

For each o € {1,2,3} we define a tensor field ¢, of type (1,1) by
¢a = Z (Eo/n-H ® 61 - E1 & 9(1+1 + E’Yn+i X aﬁn_t,_i
i=1
—Egpti ®Oynti) + Eangy @ Oant g — Eant g @ Oantry,

where {F1, ..., E4,+3} is the dual (orthonormal) basis of {01, ..., 04,43} and («, 5,7) is a cyclic
permutation of {1,2,3}. Setting, for each « € {1,2,3}, &, := Ey4ntq and 1y := 04,44, One can
easily check that the torus T*"*3 endowed with the structure (¢q,£a, 7a, g) is 3-cosymplectic.
On the other hand, the standard example of a noncompact 3-cosymplectic manifold is given
by R*"*3 with the structure described in [6, Theorem 4.4].
Both the above examples are the global product of a hyper-Kahler manifold with a 3-
dimensional flat abelian Lie group. In fact, locally this is always true.

Proposition 7.1. Any 3-cosymplectic manifold M*™+3 is locally the Riemannian product of
a hyper-Kdhler manifold N*™ and a 3-dimensional flat abelian Lie group G°.

Proof. The tangent bundle of M*"*3 splits up as the orthogonal sum of the vertical distribution
V and the horizontal distribution H, which define Riemannian foliations with totally geodesic
leaves. Therefore, by the de Rham decomposition theorem the manifold M is locally the
Riemannian product of a leaf N4" of H and a leaf G® of V. The structure tensors ¢, ¢s,
¢3 induce an almost hyper-complex structure (Jy,J2, J3) on N*". Furthermore, for each o €
{1,2,3} and for all X, X' € (T N*") =T(H),
[Jav Ja](Xv X/) = N(%(Xv X/) - 2d770¢(X7 X/)fa =0,

as M*"*3 is normal and 7, is closed. Consequently, the structure is hyper-complex. Finally,
the induced metric is clearly compatible with such a hyper-complex structure, so that N4 is

hyper-Kéhler. On the other hand, from Lie group theory (see e.g. |26, page 10]) it follows that
G? is an abelian Lie group. Since the Reeb vector fields are parallel, we get

(7.1) R(€a:€8)&y = Ve, Ve, &y — Ve, Ve &y — Vie, 6584 =0,
15



Therefore G3 is flat. O

When n = 0 of course we have no splitting, and M is necessarily a 3-torus in the compact
case, as it is shown in the following proposition.

Proposition 7.2. Suppose M3 is a compact three dimensional 3-cosymplectic manifold. Then
M3 is a three dimensional torus.

Proof. First of all M3 is clearly flat. Indeed, in this case the three Reeb vector fields span
all the vector fields over the ring of smooth functions. Furthermore, they commute with each
other and are parallel. Thus, similarly to we get R(£4,£3)6y = 0 for any triple of indices
1 < a, 8,7 < 3. The manifold M? is orientable, since 71 Az A 13 # 0 is a volume form on
M3. Moreover 7, 12, 13 are three linear independent harmonic forms of degree 1, so that
b1 (M 3) > 3. The complete list of compact orientable Euclidean three-dimensional manifolds
was obtained in Sections 2-3 of [14]. The unique manifold with b; > 3 in this list is the three
dimensional torus. ]

Due to Proposition it is natural to ask whether there are examples of 3-cosymplectic
manifolds which are not the global product of a hyper-Kéhler manifold with an abelian Lie
group. We will give an example of a compact 3-cosymplectic manifold in dimension seven that
is not a product of a hyper-Ké&hler manifold and a three-dimensional torus. Before describing
the construction, we remind the following well-known result.

Theorem 7.3. If M* is a compact four-dimensional hyper-Kdihler manifold, then M* is either
a K3 surface or a four dimensional torus.

Proof. From [29, Theorem 8.1] it follows that b;(M?) is even. Moreover, since every hyper-
Kéhler manifold is Calabi-Yau, M* has a trivial canonical bundle. Therefore, by the Kodaira
classification (cf. [16, Section 6A]) M* is either a K3 surface or a 4-torus. O

Let (M*" J,,G) be a compact hyper-Kihler manifold, where (Ji,.J2,J3) is the hyper-
complex structure of M4" and G is the compatible Riemannian metric. Let f : M*" — M4"
be a hyper-Kéhlerian isometry, that is f is an isometry such that
(7.2) feoda=Joof.
for each « € {1,2,3}. Let us define the action ¢ of Z on the product manifold M4" x R? by

"2} ((kl, kg, kg) s (:E, tl, tg, tg)) = (fk1+k2+k3 (1‘), t1 + kl, to + kg, t3 + kg) .
Note that the action ¢ is free and properly discontinuous, hence the orbit space M;%”H =
(M*" x R3)/Z? is a smooth manifold. We define a 3-cosymplectic structure on M;"** in the
following way. Let 51,52,53 be the vector fields on M*" x R3 given by éa = %, and let
71,72, 73 be the 1-forms defined by 7, := §(+, &), where

QZG+dt1®dt1+dt2®dt2—|—dt3®dt3.

Let (;ASQ be the tensor field of type (1,1) on M*" x R? defined as follows. Let E be a vector
field on M. We can uniquely decompose E into the sum of a vector field X tangent to M*"
and its vertical part 22:1 N3(E)Ez. Then we set

3
GoE =T X + Y capyiip(E)E,.
B,y=1
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Since f is an isometry, § descends to a Riemannian metric on the quotient manifold
M}l”+3. Furthermore, the vector fields fl, 52, 53, together with their dual 1-forms 1,72, 73,
are clearly invariant under the action ¢. Finally, because of , also the endomorphisms
(ﬁa induce three endomorphisms on the tangent spaces of M}l"+3. We denote the induced
structure by (¢da,&asNa,g), @ € {1,2,3}. By a straightforward computation one can check
that (M}I"J“O’, Doy €y Nary g) 1s a 3-cosymplectic manifold. Moreover, M;f"”’ is not in general a
global product of a hyper-Kéahler manifold by the torus T3. To see this we will consider the
following more specific seven-dimensional example.

Let H be the algebra of quaternions. We consider H as a hyper-K&hler four-dimensional
manifold with a hyper-complex structure given by left multiplication by i, j, k. Define the
action of Z* on H by

Z* xH—H
((a,b,c,d),q) = g+ a+bi+ ¢j + dk.
By distributivity of multiplication in H this action commutes with the left multiplication
by i, j, and k. Furthermore, the Euclidean metric on H is translation invariant. Thus the
quotient space H / 74 is diffeomorphic to T* and inherits a hyper-Kahler structure from H.

Let f: H — H be the map given by the right multiplication by i. Then from associativity
of multiplication on H it follows that f commutes with the hyper-complex structure maps

on H. Moreover, from the distributivity of multiplication in H it follows that f induces a
hyper-Kéhlerian isometry f on H/74.

Theorem 7.4. Let M* = T* and f be as above. Then MJZ is not the total space of a toric
bundle over a hyper-Kdhler four dimensional manifold. In particular, M]Z s not the global
product of a compact hyper-Kihler four-manifold and the torus T3.

Proof. Suppose M} has a regular Reeb foliation, in other words M; is the total space of a
toric bundle over a hyper-Kihler manifold K4 = M; /]-‘3, where F3 is the Reeb foliation on
M]Z Since the harmonic forms 7, generate the cohomology groups of fibres in this bundle, by
the Leray-Hirsch theorem
* 7\ ~v * 3 * 4
H* (Mj) = H* (T*) @ H* (K*).
By Theorem there are only two possibilities for K*: either K¢ = H/ 74 or K% is a

complex K3 surface. In the first case the Hilbert-Poincaré series of H* (T3) ® H* (K 4) is
(1+t)" =1+ 7t+21t2 + ..., in the second case it equals

(1222 +tHY (1 +1)3 =1+ 3t +25¢2 + ...

We will show in Proposition that by (M]Z) < 21. This will imply a contradiction with our
initial assumption. U

To get an estimate on by (MJZ) we will define a structure of CW-complex on M}
Recall the definition of CW-complex (cf. [2I, Definition 7.3.1]). We will modify it by
replacing the balls in R” by cubes Q* = {x € RF |O <z; <1,i=1,..., k}

Definition 7.5. A CW-complez is a Hausdorff space X, together with an indexing set I for
each integer k¥ > 0 and maps ¢F: Q¥ — X, k > 0, a € I such that the following conditions
are satisfied:
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(1) X :OUkZO Uagk ¢§(Qk),

(2) #E(Q") N @(Q") =0 unless k =1 and a = f;

(3) gb’ébk is one-to-one;

(4) Let X* =, User, @1 (Q7). Then ¢k (dQ¥) c X*~1 for each k > 1 and « € I.

(5) A subset Z of X is closed if and only if ((b’;)_l (Z) is closed in Q* for each k > 0 and
a € I.

(6) For each k > 0 and « € I, the set ¢F (Q¥) is contained in the union of a finite number
of sets of the form qﬁlﬁ QY.

Let X be a CW-complex. Then we have the induced maps
ok . Sk = Q’“/a@k — X’“/Xk—l.

We will denote the image of this map by S*. By [2I, Example 7.3.15] we get a homeomorphism
of topological spaces

=\ ok @ fagr— \) sk= X/ xre,

a€ly a€ly a€ly
where V¢ S¥ denote the one point union (see e.g. [21], page 205). We denote by gz the
map from V Sk to S’g that acts as the identity on S’g and collapses all the other spheres

to the basic point.

Now we explain how the homology groups of a CW-complex can be computed. We define
C (X) to be the free abelian group generated by Ij. For every pair « € I, and 5 € I_1 we
define the map d, g to be the composition

Skl gk Loy xho1 T, X’“—l/xk—2 =\ st sk
YEI

We denote by [da,g] the degree of the map dn . Now define the differential 0: Cy (X) —
Cr—1(X) by 9(a) = > ¢y, _, [da,p] B 1t is proved in Chapter 8 of [21] that the homology
groups of the complex (C, (X),d) are isomorphic to the integral homology groups of the space
X.

Since R is torsion free and Cj, (X) are free Z-modules, it follows from the universal coefficient
theorem that

Hy, (C, (X) @2 R) = Hy (C (X)) @z R = HE (X)), k>0.
If X is an m-dimensional compact Riemannian manifold then we have by the Poincaré duality
HE(X) = Hp R (X) = QnF (X), 0<k<m.

Define 7: H x R? — MJZ to be the composition
HxR®> = (H/7z4) x R® = M7,
where m; and 7o are the natural projections.

Now we describe the cellular structure on M} For every k € {0,...,7} we denote by I the
set of k-subsets in {1,...,7}. For every S € I, and x € Q* define 05 (z) to be the element of
R” = H x R3, obtained from z by order preserving placing of coordinates of x into the places
s € S and putting at all other places 0. Now we define qﬁlgz QF — MJZ to be the composition
o 95.

18



Proposition 7.6. The maps { (b’g | Sely, k=0,..., 7} give a CW-complex structure on MJZ

Proof. The topological space MJZ is Hausdorff since it is a manifold. Now we show that the

restriction of 7 to [0, 1)7 is a bijection. For any = € R we denote by |x] the integral part of
and by {z} the fractional part  — |z] of z.
Let [[q] , %] € MJZ Then [[q],7] = [[qi—(L$1J+L$2J+Lw3J)] Az}, {xa}, {xg}] in MJZ by defini-

tion of the action of Z3 on H/ 74 x R3. Thus the restriction of 75 to H/ 74 x [0, 1)3 is a
surjection. To see that 7o is a bijection we note that the map

fo H/z4 xR® —» H/74 xR
(la)s @) > ([qi~ Lo tled oD ] (a1} {aa}, {2s})

is Z3-invariant. Since for different points of H/ 74 x R? the values of f are obviously different
we see that the restriction of m to H/ 74 x [0, 1)3 is injective. Similarly we can show that
the restriction of 7, to [0,1)" gives a bijection between [0,1) and H/ 74 x |0, 1)®. Thus we
get that the restriction of 7 to [0, 1)7 gives a bijection between [0, 1)7 and MJZ
Now we check that the maps gb’g satisfy the properties of CW-structure.
(1) We have

OU%@%ﬂmi

k=0 SEI},
which implies that the similar union with qb’g in place of F)g gives M}

(2) Let S € Iy and T € I;. Then the points of 6% (Qk) have non-integer coordinates
at places s € S and integer coordinates in all other places. Similarly for the points
of 0L, (Ql) This implies that if S # T then there are no common points in the sets

%) an '), As the restriction of 7 to , is a bijection the same property
0% (Q%) and 6% (Q'). As th f 0,1)"isab h
holds for ¢ (Qk) and ¢, <Ql)
(3) As 0% (Qk) c o, 1)7 we see that the restriction of ¢% to Qk is one-to-one, for any
0<k<7S€Il.

(4) From the considerations at the beginning of the proof we can see that if two points
(q,7), (¢',2") € HxR? are representatives of the same point in M} then the number of
integer coordinates in (¢,x) and (¢’,2’) is the same. Now X* C M can be identified
with those points [[¢],#] € M such that (g,z) has at most k fractional coordinates.
Now every point Q¥ contains at least one integral coordinate. Therefore for S € Iy,
0% (8@’“) contains at least 7 — k + 1 = 8 — k integral coordinates, or, in other words,
at most k — 1 non-integral coordinates. Thus ¢% (3@’“) =mofk (8Qk) is a subset of
Xkt

(5) If Z € M]Z is closed then for any 0 < k < 7and S € I, the sets (d)’g)fl (Z) are obviously
closed, as the maps ¢* are continuous. Suppose now that for every 0 < k < 7 and
S € I the sets ((b’g)fl (Z) are closed. As M} has the quotient topology under the

projection 7, we have to show that 77! (Z) is a closed subset in H x R?. Let (gn, %)
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be a sequence in 71 (Z) that converges to (¢,Z) € H x R3. We have to show that
(¢, %) € =1 (Z). Let i € {1,2,3}. If 2% is fractional, then starting from some n we
have Lx;J = L#J If 2% is integer then for infinitely many n we have z?, < LxZJ or
[le < z!. By passing to an appropriate subsequence we can assume that for all n
cither |xf| = |#'] — 1 or |2%| = [#']. We denote the common integer part of z%, by
z'. Define

~1 ~2 ~3
—T —X°—T ’
7

qu ={qn

q/ _ qi—§1_§2_§3 ((E/)Z _ LL'i -
Then (q;,,2;,) is a sequence of points in 7~* (Z) that converges to (¢’,2’). Moreover
(¢',2') € n=1(Z) if and only if (¢,z) € 71 (Z). We also have 0 < (/)" < 1 and
z' € [0,1].

Now, similarly to the considerations above, by passing to an appropriate subsequence
we can assume that the integer parts of the coefficients of ¢/, does not depend on n.
Denote by ¢ the quaternion with coefficients equal to the integer parts of ¢/,. Define
¢! =q,—qand ¢" = ¢ —q. Then (q!,2!) € 7= (Z) converges to (¢", ). Moreover,
(¢",2') € 771 (Z) if and only if (¢, 2") € #~1 (Z) if and only if (¢,x) € 7=1 (Z).

Let S = {1,...,7}. Note that 6%: Q7 — R7 is the identity map on Q7. Therefore
(qﬁg)_l (Z) = Q" N7~ 1(Z). Thus the intersection Q" N7~ 1 (Z) is closed in Q7 and

thus in R”. Since the sequence (q//,2”) lies in Q" N7~ 1 (Z) we get that also its limit

(¢",2") is an element of Q" N7~ (Z) Cc 7~ 1 (Z).
(6) Obvious, as we have only finitely many cells at every dimension.

With the cellular structure on MJZ given in Proposition we get

Proposition 7.7. The degree of the map d3 5y g3y is 1. Therefore 02 ({3,5}) # 0. In partic-
ular,

by (M7) = dim (H5 (M])) < dim (ker (92)) < 21.

Proof. Below we identify R” with H x R3. Note that X consists of one point [[0],0,0,0].
Therefore XI/XO = X'. Now we describe the image of 9Q* in X' under ¢y3 5;. We have

0Q* ={(0,z)|0 <z <1}U{(z,1)[0<z <1}
U{(Lz)[0<z<1}U{(2,0)|]0 <z <1}

in R2, Now forall0 < z < 1

(/5%3,5} (0,2) =[[0] ,z,0,0] = ¢%5} (r) € 5%5}

a5y (@,1) = [[23],1,0,0] = [[z3 (1)],0,0,0] = [[2k] , 0,0,0] = 14y (z) € Sy
a5y (1,2) = [[i],2,0,0] = [[0],2,0,0] = 65, (z) € S}y,

Ota5y (,0) = [[2]],0,0,0] = 63 () € Sfgy.
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Therefore after composing ¢y3 53 with g3y we get that for 0 <z <1

dgs 513y (0,2) = dgz 533y (2, 1) = dys 5343y (1,2) = [[0],0,0,0] € 5%3}
d¢s 5143y (2,0) = [[2j],0,0,0] € S%3}~

Now it is obvious that the degree of d(3 5 (3} is one. O
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