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Abstract  

Presently, residential electricity consumers are, in general, charged at flat or dual time-of-use tariffs 

along the day, which are defined by the retailer for long periods (e.g., one year). These pricing schemes 

do not convey price signals reflecting generation costs and grid conditions. Hence, consumers lack the 

incentives to engage in different consumption patterns using the flexibility they generally have in the 

operation of some end-use loads. Dynamic tariffs, i.e. energy prices varying possibly with significant 

magnitude in short periods of time, are expected to become an applicable pricing scheme in smart grids. 

In this setting, home energy management systems can play an important role to help end-users optimizing 

the usage of appliances to minimize energy costs without compromising comfort. This can be 

advantageous also from the perspective of grid management. 

A semivectorial bilevel programming approach is developed to model the interaction between 

electricity retailers and consumers in order to optimize electricity time-of-use retail pricing. The aim is to 

support the retailer in finding good decisions for the prices. The retailer (upper level decision maker) 

establishes dynamic time-of-use electricity prices to maximize profits. The consumer (lower level 

decision maker) responds by selecting, under that price setting, a load scheduling decision leading to a 

nondominated solution balancing his objectives of minimizing the electricity bill (cost dimension) and 

minimizing the dissatisfaction in face of his preferences and requirements (comfort dimension).  

The lower level optimization problem is formulated as a bi-objective mixed-integer linear 

programming problem. A hybrid approach is proposed, which consists of a genetic algorithm for the 

upper level problem and an exact solver to solve surrogate scalar problems at the lower level. A case 

study is presented and discussed.  

 

Keywords: Semivectorial bilevel optimization; Multi-objective optimization; Genetic algorithms; 

Hybrid approaches; Demand response; Electricity retail markets. 

 

1 Introduction 

In several countries, the electricity sector has been open to retail competition, including to residential 

customers. Under deregulation, retailers procure electricity in wholesale markets in which prices are 

generally established by locational marginal pricing schemes in day-ahead markets; retailers then offer 

flat or (slightly) variable time-of-use tariffs to their residential customers, thus managing the risk 

involved. The price signal is conveyed to consumers in flat or more usual dual time-of-use tariffs (i.e., 

considering two differently priced periods within one day such as peak and off-peak), which are defined 

for long periods (e.g., one year). Therefore, this type of price signal does not reflect varying generation 

costs and grid conditions. Moreover, negative wholesale prices have occurred sporadically in periods of 
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excess of generation based on renewable sources and low demand [1][2]. In this context, the setting of 

time-differentiated tariffs at the retail level reflecting the power systems conditions (generation 

availability, network congestion, etc.) has the potential to contribute to improving the overall efficiency of 

the system, lowering peak generation costs, facilitating the penetration of renewable sources, reducing 

network losses and contributing to the deferral of network reinforcement investments, while offering 

economic benefits to customers. The implementation of these dynamic tariffs, i.e. energy prices varying 

possibly with significant magnitude in short periods of time, will be facilitated by the deployment of 

smart meters, underpinning the empowerment of consumers in the evolution of electricity network to 

smart grids. These price incentives will motivate consumers to engage in different consumption patterns, 

namely by using the flexibility they generally have in the operation of some appliances (end-use loads) 

through adequate demand response actions. After receiving tariff information some time in advance (e.g. 

one day), the consumer is able to respond by scheduling load operation providing energy services, such as 

hot water, laundry, electric vehicle charging, etc. Different schedules represent distinct trade-offs between 

the minimization of the electricity bill and the minimization of the dissatisfaction associated with 

postponing or anticipating load operation to different periods. The optimization of these cost and comfort 

dimensions will be made operational by a home energy management system, such as the one proposed in 

[3]. This system can be parameterized with the customer’s energy usage profile and is endowed with 

communication capabilities to receive grid information (prices and possibly emergency requests) and 

switch the loads through on/off plugs. These smart technologies are recognized by the European 

Parliamentary Research Service [4] “as a way to encourage greater consumer involvement in the retail 

market, facilitate dynamic pricing and foster demand response”, linking “smart metering systems with 

smart appliances that can automatically adjust their energy use according to price signals”. 

In the present work, we formulate the problem of optimizing electricity time-of-use retail pricing as a 

semivectorial bilevel optimization model, i.e., a bilevel optimization model with a single objective 

function at the upper level and multiple objective functions at the lower level. Bilevel optimization 

models and game-theoretical approaches have been proposed to determine equilibrium solutions in 

problems related with the interaction between electricity retailers and consumers. In a bilevel decision 

problem, the decision maker at the upper level is the leader and the decision maker at the lower level is 

the follower. The leader decides first, but his objective is affected by the follower’s decision. 

Zhang et al. [5] proposed a multi-leader/single-follower nonlinear bilevel optimization model to 

analyze the strategic bidding behavior of generating companies (leaders) in day-ahead electricity markets. 

This model assists generators in choosing their biddings to maximize profits and a market operator 

(follower) to minimize its purchase electricity costs. The multiple leaders and the follower have 

individual control variables, objectives and constraints. The model is tackled using a particle swarm 

optimization approach.  

Meng and Zeng [6] proposed a bilevel optimization model in which the electricity retailer (leader) 

determines real-time retail prices to maximize profit and the customer (follower) reacts to minimize 

electricity bills. The hierarchical problem is converted into one single level problem by replacing the 

lower level problem with the Karush–Kuhn–Tucker (KKT) conditions. A branch and bound algorithm is 

then used to solve the resulting single level problem as in [7]. Meng and Zeng [8] proposed a real-time 

pricing scheme for demand response management in smart grids by means of a single-leader/multi-

follower model, in which the retailer determines the price and the customers’ energy management 

systems automatically manage the energy usage by appliances in the households to maximize benefits. In 

the lower level, three separate linear sub-problems corresponding to interruptible, non-interruptible and 

curtailable appliances are considered. Meng and Zeng [9] extended the previous model to include also 

costumers whose energy consumption patterns are not known by the retailer. Therefore, the retailer 

should learn these patterns with the purpose of determining the retail prices. Meng and Zeng [10] further 

introduced a waiting time cost model for modeling the consumer’s energy cost of interruptible and non-

interruptible appliances. In this model, a waiting time benefit function is defined to represent the energy 

bill saved by waiting a given time before the operation of appliances. The approaches [8], [9] and [10] use 

genetic algorithms to maximize the retailer’s profit, determining the optimal real-time pricing scheme 

considering the expected customers’ reactions. An LP solver is used to optimize separately each sub-

problem at the lower level.  

Zugno et al. [11] proposed a model to determine the dynamic price-signal delivering maximum retailer 

profit and the corresponding optimal load pattern for consumers, subject to stochastic prices, weather-
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related variables and must-serve load. The bilevel model is reformulated as a single level mixed-integer 

linear programming (MILP) problem.  

Alves et al. [12] proposed a hybrid approach consisting of a genetic algorithm and an exact MILP 

solver to deal with a bilevel problem in which the retailer establishes prices to maximize profits and 

consumers are able to deviate consumption of shiftable loads to minimize costs. Constraints impose 

specific time slots for load operation, which may decrease the retailer’s profit. Carrasqueira et al. [13] 

proposed two bilevel population-based algorithms, one based on an evolutionary algorithm and the other 

on particle swarm optimization, to tackle the same problem. 

Sekizaki et al. [14] presented a bilevel electricity retail market model in which flexible responses of 

consumers are traded at selling prices offered by a retailer over one day, considering distribution network 

physical constraints. A genetic algorithm is used to find an approximated solution to the non-convex 

bilevel model. 

Bu et al. [15] developed a game-theoretical decision-making scheme for electricity retailers in the 

smart grid, using real-time pricing demand-side schemes. Various utility functions to model the electricity 

customers’ preferences and electricity consumption patterns are used. Customers adjust electricity 

demand to maximize their individual utility, which depends on the amount of energy consumed, the price 

and an individual factor. The retailer aims at maximizing profit. Simulations have been carried out to 

study how the system parameters affect the decisions. Yang et al. [16] also developed a game-theoretical 

approach to optimize time-of-use pricing strategies, which includes models of costs to utility companies 

arising from demand fluctuations and models of user satisfaction. The user satisfaction depends on the 

difference between the nominal demand and the actual consumption. Utility functions are designed for 

both players, considering scenarios with a single user type and multiple user types responding differently 

to time-varying prices.  

Saez-Gallego et al. [17] aimed to capture the demand response of a pool of flexible (price-responsive) 

consumers determining the corresponding optimal market bid. That is, electricity prices are exogenous 

and not control variables. An inverse optimization framework using a time series of price-consumption 

pairs is developed resulting in a bilevel optimization problem. The inverse problem aims at estimating the 

parameters defining the objective function and the constraints of the lower level problem in order to 

minimize the difference between the optimal consumption and the measured consumption. 

The bilevel models mentioned above do not include the operation cycles of the household appliances 

(apart from the model proposed in [12]). The operation cycles define the power requested to the grid by 

each appliance in each stage of operation (e.g. water heating, centrifugation, etc., in washing machine 

operation) and their incorporation into the model is essential to obtain a realistic load characterization. In 

addition, the representation of the consumer’s objectives in these studies has been reduced to the 

minimization of the electricity bill or some type of (difficult to elicit) utility functions of consumer’s 

satisfaction. In the present paper, we consider explicitly two objective functions at the consumer’s level 

representing cost and comfort dimensions. Consumer’s decisions are modeled at appliance level, 

considering typical operation cycles of several appliances and information about the time slots preferred 

for operation.  

A semivectorial bilevel optimization model is proposed to assist the retailer in optimizing dynamic 

electricity tariffs varying in sub-periods during one day (upper level problem). This model is based on the 

scalar bilevel model presented in [12]. The retailer is the leader and wishes to determine tariffs that 

maximize his profit. The consumer is the follower who reacts to make the most of these time-

differentiated prices to minimize his electricity bill (cost dimension) and minimize the dissatisfaction 

(comfort dimension) associated with rescheduling load operation according to the flexibility resulting 

from his preferences and requirements. The model considers a cluster of consumers with similar 

consumption and demand response profiles. The lower level optimization problem is formulated as a 

multi-objective mixed-integer linear programming (MOMILP) model. The consumer’s decision consists 

of determining a load schedule corresponding to a nondominated solution trading-off his two objective 

functions. 

The proposed model is tackled using a hybrid approach consisting of a genetic algorithm for the upper 

level problem and an exact solver to solve surrogate scalar problems (i.e. combining both objective 

functions) at the lower level. The consideration of multiple objective functions at the lower level 
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introduces further challenges regarding computational difficulties to ensure that solutions are actually 

nondominated and the need for the retailer to examine a set of extreme outcomes resulting from his 

optimistic/pessimistic stance and the possible consumer’s reaction. In this setting, the computation of four 

extreme (optimistic, pessimistic, deceiving and rewarding) solutions offers comprehensive information 

for the retailer’s decision process. The aim is to support the retailer in finding good decisions for the 

prices, although these may not be the optimal extreme solutions to the model due to the use of the genetic 

algorithm for the upper level problem.  No other approaches have been found in the literature to deal with 

a model with these characteristics. 

The structure of the paper is as follows. In section 2, semivectorial bilevel programming is introduced. 

Four types of extreme solutions (the optimistic, deceiving, pessimistic and rewarding solutions) are 

introduced, which provide useful insights for the best outcome of the decision process under different 

perspectives of analysis. In section 3, the semivectorial bilevel model with a MOMILP problem (with two 

objective functions) at the lower level is presented to study the interactions between the electricity retailer 

and consumers. The semivectorial hybrid genetic algorithm developed to compute the four extreme 

solutions is presented in section 4. An illustrative case study based on real data is presented and discussed 

in section 5, including the incorporation of consumer’s preferences to compute nondominated 

compromise solutions other than the extreme solutions. In section 6, the main conclusions are drawn. 

 

2 Semivectorial bilevel programming 

A general bilevel programming problem with a single objective function at each level can be defined as 

follows: 

 0),(:),(minarg

0),(..

),("max"





yxgyxfy

yxGts

yxF

y

x

       (BP) 

where 1nx  is a n1-dimensional vector of upper level variables and 2ny   is a n2-dimensional 

vector of lower level variables; F(x, y) and f(x, y) are the leader’s and the follower’s objective functions, 

respectively. Since the follower optimizes f(x, y) after x has been selected, x assumes a constant vector 

whenever f(x,y) is optimized.  

The follower’s rational reaction set to a given 'x  is: 

  0),'(:),'(minarg)'(  yxgyxfx
y

.  

The feasible region for the bilevel problem (BP) is called the inducible region:  

 )(,0),(:),( 21 xyyxGyxIR nn   .  

Without loss of generality, problem (BP) has been defined with a maximizing upper level function and 

a minimizing lower level function to be closer to the bilevel problem dealing with the interaction between 

an electricity retailer and consumers addressed in this paper. Nothing substantial changes if both objective 

functions are to be minimized or maximized. 

The bilevel problem is the leader’s problem. Quotation marks have been added in ),(max"" yxF  due 

to the unclear definition of the objective function value F(x, y) from the leader’s point-of-view (who has 

control over x only) if the set of optimal solutions of the lower level problem is not singleton [18]. 

Multiple optimal responses of the follower pose a problem to the leader, as he does not know which 

optimal solution the follower will choose. This choice may affect significantly the leader’s objective 

value and, consequently, his decision. In many studies this difficulty is avoided just by assuming that the 

solution to the lower level problem is unique. In other cases, an optimistic or a pessimistic approach is 

considered. The optimistic approach (the most common one) assumes that the leader is free to select the 

solution that suits him best among the optimal decisions of the follower. In this case, the upper level 

optimization is taken with respect to x and y, meaning that the leader is able to influence the choice of the 

follower [18].  When cooperation between the leader and the follower is not allowed, or if the leader is 

risk-averse and wishes to bound the damage resulting from an undesirable selection of the follower, a 
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pessimistic approach may be admitted. The leader prepares for the worst case, that is, he chooses a 

decision x which performs best in view of the ‘worst’ (globally optimal) follower’s response [19]. The 

pessimistic bilevel problem is perceived to be very difficult to solve and, typically, the algorithms for the 

optimistic bilevel problem do not extend to the pessimistic formulation [20]. 

 

A semivectorial bilevel problem is a bilevel programming problem with a scalar optimization problem 

in the upper level and a multiobjective (vector-valued) optimization problem in the lower level. A general 

semivectorial bilevel problem (SVBP) with m minimizing objective functions at the lower level and a 

maximizing objective function at the upper level can be formulated as follows: 

  0),(:),(),...,,(minarg

0),(..

),("max"

1




yxgyxfyxfy

yxGts

yxF

m
y

x

 (SVBP) 

In a semivectorial bilevel problem only efficient (nondominated or Pareto optimal) solutions to the 

lower level problem for each x vector are feasible to the bilevel problem. 

Let  0),(:)( 2  yxgyxY n .  

For a given 'x : 

 a solution )'(' xYy   is weakly efficient to the lower level problem if and only if there is no other 

2
ny  , )'(xYy , such that )','(),'( yxfyxf jj   for all j=1,…,m; 

 a solution )'(' xYy  is efficient to the lower level problem if and only if there is no other 2
ny  , 

)'(xYy , such that )','(),'( yxfyxf jj   for all j=1,…,m and )','(),'( yxfyxf jj   for at least one 

j. 

Let )','(),'( yxfyxf   denote the dominance relation, i.e. )','(),'( yxfyxf jj   for all j=1,…,m and 

)','(),'( yxfyxf jj   for at least one j. 

Thus, the set of efficient solutions to the lower level problem of formulation (SVBP) for a given 'x  is 

defined as:  )','(),'(such that  )'( no is  there:)'(')'( yxfyxfxYyxYyxEf  . 

The feasible region of problem (SVBP) is IR= )(,0),(:),( 21 xyyxGyx Ef
nn  

. 

 

The bilevel programming problem with multiple objective functions at the lower level was firstly 

called semivectorial bilevel optimization problem by Bonnel [21] and Bonnel and Morgan [22]. In [21] 

necessary optimality conditions for the optimistic formulation were provided and in [22] a penalty 

function method to tackle this type of problem was proposed. The optimistic formulation assumes that the 

follower accepts any efficient solution to the lower level problem. Other methods based on penalty 

functions were further proposed by Ankhili and Mansouri [23], Zheng and Wan [24], Zheng et al. [25] 

and Ren and Wang [26] for the SVBP with multi-objective linear programming (MOLP) problems in the 

lower level. Calvete and Galé [27] also focused on bilevel problems with lower level MOLP problems. 

Assuming a quasiconcave upper level objective function and all constraints linear, an enumerative exact 

algorithm and a genetic algorithm were proposed based on the search of the extreme points of the 

polyhedron defined by all constraints. Lv and Wan [28] proposed an algorithm for the linear SVBP (linear 

problem in the upper level and a MOLP problem in the lower level) by reformulating the problem as a 

special bilevel programming problem where the lower level is a parametric linear scalar optimization 

problem (using the weighted-sum scalarizing approach). The bilevel problem is then transformed into a 

non-smooth (one level) optimization problem. All the aforementioned approaches deal with the optimistic 

formulation.  
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The pessimistic formulation is more challenging from the theoretical, methodological and 

computational perspectives. Liu et al. [29] developed necessary optimality conditions for the pessimistic 

formulation using a scalarization technique (that converts the lower level problem into a parametric 

program), following an approach related to the one proposed by Dempe et al. [30] for the optimistic 

formulation. Lv and Chen [31] proposed a discretization iterative algorithm (inspired by discretization 

techniques used in semi-infinite programming) to compute the pessimistic optimal solution to a SVBP 

with a convex lower level problem and no upper level variables in the lower level constraints. 

As can be seen by the previous references, theoretical and algorithmic contributions made thus far to 

solve semivectorial bilevel problems have generally adopted an optimistic approach. The optimistic 

approach presumes that the follower does not have preferences and the leader is free to select the solution 

that suits him best among the efficient solutions to the follower. This assumption is, however, unlikely in 

most practical decision situations. Alves et al. [32] discussed the consequences of assuming an optimistic 

approach in a real decision situation. The authors also introduced a new solution concept called deceiving 

solution (the worst outcome of a failed optimistic approach) and developed an algorithm based on particle 

swarm optimization to approximate the optimistic, pessimistic and deceiving solutions to general 

semivectorial bilevel problems. 

In order to illustrate the limitations of adopting an optimistic formulation and just computing the 

optimistic solution (optimal solution to the optimistic formulation) as the solution to the SVBP, let us 

consider the problem under study dealing with the interaction between an electricity retailer and 

consumers. In this problem, the retailer (upper level decision maker) establishes dynamic electricity 

prices and wants to maximize profits. The consumer (lower level decision maker) wants to minimize the 

electricity bill and simultaneously minimize his dissatisfaction associated with the corresponding load 

scheduling. Suppose that the retailer sets a specific electricity price configuration. For this decision, a set 

of efficient solutions to the consumer can be computed. At one extreme situation there is the load 

schedule that minimizes the consumer’s electricity cost and, at the other one, there is a load schedule 

associated with the highest cost but optimal for the comfort objective function. In this problem, higher 

consumer’s cost is in general associated with higher retailer’s profit. The optimistic approach assumes 

that the follower is indifferent between all efficient solutions for that price setting, including those two 

opposite situations. This leads the retailer to believe that the follower would always disregard cost, just 

looking at comfort, because this choice would be the best one for the retailer. Actually, accepting an 

optimistic approach means assuming that the follower is indifferent between optimizing one objective 

function, optimizing the other objective function or obtaining any compromise between the two objective 

function values. Therefore, the larger the number of lower level objective functions is, more freedom is 

given by the optimistic approach to the leader for choosing the solution more convenient to him. In 

practice this assumption is seldom realistic. Therefore, to provide decision aid to the leader in 

semivectorial bilevel problems, different types of solutions should be computed, which can give insights 

to the leader of possible outcomes and ranges of values resulting from different decisions.  

The optimistic solution indicates the leader his maximum profit when the follower’s decision for each x 

setting is the best for the leader. Associated with the optimistic approach, the deceiving solution can also 

be defined, which results whenever the leader makes an optimistic decision and the follower’s reaction is 

against the interests of the leader, i.e., a solution resulting from a failed optimistic approach.  

The pessimistic solution is the one that gives the maximum profit for the leader when the follower’s 

decision for each x setting is the worst for the leader. We can further consider the best return of a 

pessimistic approach, which we call the rewarding solution: this solution is obtained whenever the leader 

takes a pessimistic approach and the follower’s reaction is the most favorable to the leader. 

Regarding the formulation (SVBP), where the upper level objective function is to be maximized, these 

four types of extreme solutions can be defined as: 

• the optimistic solution, (xo, yo), is given by  

 0),(),(:),(max
,

 yxGxyyxF
Ef

yx
 

• given the optimistic upper level decision xo, the deceiving solution is (xd,yd) where xd =xo and yd 

is given by  )(:),(min o
Ef

o

y
xyyxF  . 
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• the pessimistic solution, (xp, yp), is given by 

 






  0),(:)(:),(minmax yxGxyyxF

Ef
yx

 

• given the pessimistic upper level decision xp, the rewarding solution is (xr,yr) where xr = xp and 

yr is given by   0),(),(:),(max  yxGxyyxF pp
Ef

p

y
. 

Note that the deceiving solution may not satisfy the upper level constraints G(x,y) ≤ 0, i.e. it may be 

infeasible to the leader, but this information can also be useful to the leader. The value of F in a feasible 

deceiving solution can be worse (and is never better) than the one in the pessimistic solution. This 

assertion is justified as follows. Consider  )(:),(min)( xyyxFx Ef
y

p   and let us designate (x, 

yp(x)) as belonging to the pessimistic frontier. The pessimistic solution (xp, ypp(x
p)) is the best 

feasible solution (i.e., it satisfies G(xp,yp ) ≤ 0) according to F on the pessimistic frontier. The deceiving 

solution (xd, ydp(x
d)) also belongs to the pessimistic frontier. Thus, if the deceiving solution is feasible 

(i.e., it satisfies G(xd,yd ) ≤ 0), it cannot be better than the pessimistic solution, otherwise it would be the 

pessimistic solution itself. At the best, the deceiving solution is as good as the pessimistic solution. 

These solutions are illustrated in Fig. 1, which shows the leader’s objective value (F) for sets of 

efficient solutions to the lower level problem, )(xEf  (vertical line segments), considering different x 

values. The top dashed curve represents the best solutions for the leader among the efficient solutions to 

the lower level and the bottom dashed curve represents the corresponding worst solutions. The optimistic 

solution is the point with highest F on the top curve and the deceiving solution is the point on the bottom 

curve with the same x. The pessimistic solution is the point with highest F on the bottom curve and the 

rewarding solution is the point on the top curve with the same x. 

 

 

Fig. 1 – Illustration of the optimistic, pessimistic, deceiving and rewarding solutions. 

 

These four types of extreme solutions can be further illustrated using the following semivectorial linear 

bilevel problem with two lower level objective functions [33]. 
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Fig. 2 shows the inducible region IR of the problem in dark gray. The pessimistic solution P has (x, y1, 

y2) = (2, 6, 2), (f1, f2) = (10, 4), F = 14, and the rewarding solution R has (x, y1, y2) = (2, 6, 0), (f1, f2) = (6, 

6), F = 16. This problem has alternative optimistic solutions. All solutions on the edge defined by the 

vertices O with (x, y1, y2) = (4, 6, 0) and O’ with (x, y1, y2) = (5, 5, 0) give the maximum leader’s objective 

value, F = 20. If the follower’s reaction is not the best to the leader, as expected in the optimistic 

approach, different worst outcomes for the leader arise for 4 ≤ x ≤ 5 thus leading to different deceiving 

results: from F(4, 6, 4)=12 (in solution D) to F(5, 0, 5)=5 (in solution D’). This illustrative example 

elucidates the need to explore alternative optimal solutions to the optimistic approach (similar situations 

may occur for the pessimistic approach). Setting x=4 is less risky as it leads to a better deceiving solution, 

although all values of x on the edge 4 ≤ x ≤ 5 lead to the same optimistic objective function value for the 

leader. 

 

Fig. 2 –Illustrative example of the four extreme solutions with alternative optimistic solutions corresponding to different 

deceiving outcomes. 

 

3 A semivectorial bilevel model to optimize electricity dynamic retail 

pricing 

In this model the retailer’s decision consists of determining the optimal price of electricity xi (€/kWh) 

in each sub-period Pi (i = 1,…,I) of the planning period. These prices set by the retailer are bounded by 

minimum (
ix ) and maximum (

i
x ) values in each sub-period; in addition, an average price (xAVG) relative 

to the entire planning period is imposed. The consideration of maximum, average and minimum prices for 

the electricity tariffs set by the retailer throughout the planning period act as proxies for competition in 

retail markets. As referred to in [11], these constraints satisfactorily model possible contracts between 

retailers and consumers able to reschedule the appliance operation periods in face of dynamic tariffs (and 

thus willing to engage in new time-differentiated tariff schemes instead of flat rate ones). The retailer may 

establish these constraints based on estimates of wholesale prices and expected profit margins in a 

competitive retail market. The lower/upper bound prices, the corresponding sub-periods and the average 

price offered by each retailer are meaningful information to be compared by consumers when making 

their contracting decisions. Therefore, the agreement on this set of constraints seems a realistic way to 
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model commercial offers in a competitive electricity retail market, while ensuring end-users are not 

exposed to short-term price volatility of wholesale markets. 

The consumer has control over a set of shiftable loads (appliances), j =1,..,J, whose operation cycles 

can be set within allowable time slots Tj according to his preferences and comfort requirements regarding 

the provision of energy services (hot water, laundry, electric vehicle charge, etc.). A base load 

corresponding to non-controllable appliances is also considered, which cannot be scheduled by the 

consumer’s energy management system. In face of the electricity prices established by the retailer, the 

consumer aims to determine the intervals of time each appliance j should operate to minimize the 

electricity bill and the dissatisfaction associated with not operating it in the preferred comfort intervals 

within Tj . 

Data: 

T = number of intervals (minutes, quarter-hour, half-hour or other period of time) of the planning period 

(t =1,…,T). Let  T,...,1T  . Let h be the duration of one interval as a fraction of one hour (to 

accommodate the most convenient discretization of the planning period). 

J = number of shiftable loads to be managed by the consumer (j =1,..,J). 

I = number of sub-periods of time Pi  T in which different prices of electricity (time-of-use tariffs) are 

charged by the retailer to the consumer (i =1,…,I).  

P1i , P2i : points in time delimiting each sub-period Pi , i=1,…,I, such that Pi = [P1i , P2i] and .TP
1





I

i
i

 

Let 
iP  denote the amplitude of Pi, i.e. 112 

iii
PPP . 

ix  = minimum price charged to the consumer in sub-period Pi   (€/kWh). 

i
x  = maximum price charged to the consumer in sub-period Pi  (€/kWh). 

xAVG = average price charged to the consumer in T. 

πt = price the retailer purchases energy in the spot market at time t  T (€/kWh). 

Ct = contracted power by the consumer at time t  T (kW). 

bt = non-controllable base load at time t  T (kW), i.e. amount of load that cannot be scheduled by the 

consumer’s energy management system. 

dj = duration of the operation cycle of shiftable load j (h). 

gjr = power requested by load j at time r of its operation cycle (r =1,…,dj) (kW). 

Tj =[T1j, T2j]  T: time slot in which load j is allowed to operate, although there may exist different 

degrees of satisfaction (or dissatisfaction) to the consumer for the operation of load j within Tj. 

sjt = penalty associated with the operation of load j at time tTj. This is a degree of dissatisfaction, which 

varies from 0 to 100. sjt =0 corresponds to the time intervals the consumer specifies as most preferred 

to allocate load j; sjt =100 corresponds to the maximum dissatisfaction, although the consumer still 

allows load j to operate in these time intervals (sjt is only defined for t within the time slot Tj).  

 

To avoid ambiguity between points in time of the operation cycle of a given load and points in time of the 

planning period, we refer to the time r of an operation cycle as “stage r”. 

 

Upper level decision variables: 

xi = price charged by the retailer to the consumer during sub-period Pi  (€/kWh), i=1,…,I. 
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Lower level decision variables: 

yjrt = binary variable representing whether load j is “off” or “on” at time t of the planning period and stage 

r of its operation cycle. 

In order not to unnecessarily increase the number of yjrt variables, they are defined only for t in the 

time slot allowed for the operation for each load. Therefore, yjrt are defined for j=1,…,J, r=1,…,dj, t= 

T1j,…, T2j. 

Auxiliary lower level variables: 

pjt = power requested to the grid by load j at time t of the planning period (kW),  j =1,…,J, t=1,…,T. 

 

It is necessary to define whether the operation cycle of load j is “on” or “off” at time t to define several 

expressions of the model (such as defining the auxiliary variables pjt and the lower level dissatisfaction 

objective function). This role can be expressed by  
jd

r jrty
1

. 

In the semivectorial bilevel model presented below, the objective function at the upper level (1) 

represents the maximization of the retailer’s profit (revenue from selling energy to consumer minus cost 

of purchasing the energy in the spot market). Constraints (2) to (4) define the upper/lower bounds for the 

energy prices charged to the consumer in each sub-period Pi and set an average price in T.  

The objective functions of the lower level problem (consumer’s problem) are defined by (5) and (6): 

the first objective function f1 aims to minimize the consumer’s electricity cost while the second objective 

function f2 is intended to minimize the consumer’s dissatisfaction. 

The auxiliary lower level variables pjt are enacted by the lower level variables yjrt through defining 

constraints (7). Since variables pjt are defined for every t=1,..,T, defining constraints comprise two groups: 

(7) which define pjt for t within the time slot allowed for load j to operate (for which yjrt variables have 

been defined) and (8) for t outside this time slot for which pjt is always zero. 

Constraints (9) impose that the contracted power is not exceeded at any time t of the planning period. 

Constraints (10) ensure that, at time t, each load j is either “off” or is “on” at only one stage r of its 

operation cycle. 

Constraints (11) ensure that, for each load j, if it is “on” at time t and at stage r ≤ dj  1 of its operation 

cycle, then it must be also “on” at time t+1 and at stage r+1. 

Constraints (12) ensure each load j is operating at stage r exactly once. 

Note that constraints (11) do not prevent that a load j starts at a time after  

T2j – dj +1 and, as it cannot finish later than T2j, it continues from T1j. For instance, consider that a load j 

is at stage r=1 at t=T2j 1, r=2 at t= T2j and then skips to r=3 at t=1, r=4 at t=2, etc.; this operation 

scheme is not feasible in practice but it does not violate constraints (11). Thus, constraints (13) are 

imposed, which ensure that each load j starts its operation (stage r=1) at most at time T2j  dj + 1 so that it 

can finish until T2j, i.e. within its allowed time slot. Constraints (11) together with (12) and (13) ensure 

that load j is operating exactly dj consecutive time intervals, forcing yjrt  to be 0 when load j is “off”. 

 

Semivectorial bilevel model: 

  
   






























T

t

J

j
jttt

I

i t

J

j
jtti

x
pbpbxF

i 1 11 P 1

max  
 

(1) 

 

s.t.  

ii xx               i =1,…, I (2) 

ii xx               i =1,…, I (3) 
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AVG
I

i
ii xxP

T


1

1
 (4) 

 
  
















I

i t

J

j
jtti

p
i

pbxf
1 P 1

1min  (5) 

  
  
















J

j

T2

T1t

d

r
jrtjt

y

j j

ysf
1 1

2

j

min  (6) 

s.t.  

 



dj

r
jrtjrjt ygp

1

   j=1,…,J ; t= T1j,…, T2j (7) 

 

 0jtp      j=1,…,J ; t < T1j  t > T2j 
(8) 

 tt

J

j
jt Cbp 

1

  t=1,…,T (9) 

 1
1




dj

r
jrty     j=1,…,J ; t= T1j,…, T2j (10) 

 
jrttrj

yy 
 )1)(1(

       j=1,…,J ; r =1,…,dj 1;  t=T1j,…,T2j 1 (11) 

 1
2

1




j

j

T

Tt
jrty        j=1,…, J; r =1,…,dj (12) 

 1
12

1
1 





jj

j

dT

Tt
tjy    j=1,…, J (13) 

 yjrt {0,1}    j=1,…,J ; r =1,…,dj; t= T1j,…, T2j 

 pjt  ≥ 0    j=1,…,J ; t=1,…,T 
(14) 

 

 

4 A hybrid approach to compute the extreme solutions 

The model (1) – (14) has particularities that can be exploited to design an efficient computational 

approach to deal with the problem. In what follows, let y denote the lower level vector of variables 

(composed of the decision variables yjrt and the auxiliary variables pjt); x is the upper level vector of 

variables, where xi, i=1,…,I represents the electricity price charged by the retailer to the consumer in each 

sub-period Pi. 

The upper level objective function F (retailer’s profit) and the first lower level objective function f1 

(consumer’s cost) have a strong correlation, so solutions with higher F values generally present higher f1 

values. In addition, considering that there is always a time slot larger than or equal to dj for each load j in 

which the operation of load j totally satisfies the consumer (i.e. sjt =0), then for each price setting an 

efficient solution with zero dissatisfaction, f2=0, may exist. The minimum value of f2 is different from 0 

only if all configurations of load operation in slots with total satisfaction violate the contracted power 

constraint (9). But, even in that case, the minimum value of f2 can be known a priori by minimizing f2 

over (7)-(14) as it does not depend on x. Thus, let 0  denote the minimum value of f2. This means that, for 

each x', the efficient lower level solutions y' that minimize the consumer’s dissatisfaction present f2= 0 . If 

there is more than one efficient solution that minimizes f2 for a given x', all of them surely have the same 

consumer’s cost f1 (otherwise they would not be efficient). However, these solutions may present 
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different values of the retailer’s profit due to the term in (1) corresponding to the purchase of electricity at 

the spot market. 

In the formulations below, F and f1 are represented by F(x,y) and f1(x,y) because both depend on x and 

y, but f2 only depends on y so it is represented by f2(y). 

The optimistic solution to the semivectorial bilevel problem is a solution (xo, yo) that gives the 

maximum retailer’s profit assuming that the consumer always chooses the efficient solution that most 

benefits the retailer. This is an efficient solution that minimizes dissatisfaction (i.e., f2= 0 ) or is very close 

to it. Actually, the second term in (1) may cause that a lower level solution y' with maximum cost f1(x', y') 

among all )'(xy Ef  may not be the solution that gives the maximum retailer’s profit for that x'. 

However, the solution )'(xy Ef  that gives the maximum F(x',y) is, in general, among the alternative 

solutions (x',y) with f2= 0 . Thus, for a given x', efficient solutions to the lower level problem that 

minimize dissatisfaction must be computed if the aim is to determine the optimistic solution. Since the 

minimum of dissatisfaction is known, these efficient solutions can be obtained by solving problem (P1a), 

where LLconstraints denotes the set of solutions satisfying the lower level constraints (7) – (14): 

ntsLLconstraiy

yfts

yxf
y



 0)(..

),'(min

2

1

 (P1a) 

Problem (P1a) may have alternative optima presenting the same cost and dissatisfaction for the 

consumer, but presenting different profit for the retailer. A totally optimistic approach (which can be 

admitted if the leader is somehow able to bias the follower’s decision, e.g. by means of side payments) 

assumes that the consumer will choose the solution with highest profit for the retailer among the tied 

solutions for the consumer’s objective functions. So, in order to approximate the totally optimistic 

solution, problem (P1b) can be solved instead of (P1a), where  is a very small positive constant (e.g., 

10-4). Problem (P1b) was inspired on previous works on bilevel optimization to determine the optimistic 

solution to bilevel problems with a single objective function at each level [34][35]. 

ntsLLconstraiy

yfts

yxFyxf
y







0)(..

),'(),'(min

2

1

 (P1b) 

On the other hand, the pessimistic solution to the semivectorial bilevel problem is a solution (xp, yp) 

that presents the maximum retailer’s profit among the worst solutions (from the retailer’s point of view) 

obtained for each price setting. Thus, it is assumed that the consumer always makes the decision that is 

worst for the retailer, i.e. he chooses a lower level efficient solution that minimizes cost. For a given price 

setting x', the problem (P2a) can be solved, in which  is a small positive weight (e.g., 10-2) assigned to 

the second objective function to ensure that an efficient solution is obtained to the lower level problem, 

rather than a weakly efficient solution: 

ntsLLconstraiyts

yfyxf
y





..

)(),'()1(min
21

 (P2a) 

Also in this case there may exist alternative efficient solutions that minimize the consumer’s cost for 

price x'. These solutions correspond to different load schedules with equal comfort and cost for the 

consumer. If a totally pessimistic approach is adopted (because the leader is risk-averse and/or is not able 

to influence the choice of the follower), it is assumed that the consumer will choose the solution with 

minimum F (worst for the retailer) among the alternative optima solutions to (P2a). This solution can be 

obtained by solving the following problem, where af1
 and af2

 are the values of f1 and f2 obtained in 

(P2a): 
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a

a

y

fyf

fyxf

ntsLLconstraiyts

yxF

22

11

)(        

),'(

..

),'(min





  

However, since af1
 and af2

 are floating point numbers, numerical difficulties often exist that may lead 

to an infeasible problem. Therefore, the resolution of this problem is replaced by the following procedure: 

1) After solving (P2a), problem (P2b) is solved with  <  (e.g., =10-4, =10-2): 

 

ntsLLconstraiyts

yxFyfyxf
y





..

),'()(),'()1(min
21

 (P2b) 

Problem (P2b) is a weighted-sum of the lower level objective functions for x', including a very small 

perturbation associated with the upper level objective function. This perturbation intends to induce a 

worst solution to the retailer among the alternative optimal solutions to this weighted-sum function. 

2) If the optimal solution to (P2b) has (f1, f2) = ),(
21

aa ff  and presents an F value smaller or equal to the 

F value in the optimal solution to (P2a), then the solution to (P2b) is retrieved. Otherwise, the solution to 

(P2a) is kept. 

 

A hybrid algorithm has been developed which integrates a genetic algorithm for the upper level search 

and a MILP solver to optimize the scalarizing problems of the lower level model. 

The algorithm presented below is intended to compute solutions that can help the leader (retailer) to 

delimit the potential outcomes of his decisions. By knowing the optimistic and the deceiving solutions, 

the retailer acknowledges the result of a completely successful optimistic approach and also the worst 

possible result if such an approach is followed. By knowing the pessimistic and the rewarding solutions, 

the retailer perceives the worst and the best outcomes of the most conservative decision. Therefore, these 

four extreme solutions provide the retailer important insights about the ranges of possible profit values. 

These are particularly interesting if the leader has no information about the tradeoffs the consumer is 

willing to make between the electricity bill and the comfort dimension after knowing the electricity prices 

set by the retailer. 

The algorithm described below aims to approximate these four solutions to the semivectorial bilevel 

problem (1) – (14). Scalarizing problems (P1b) and (P2a,b) are employed for this purpose. 

 

4.1. Semivectorial Hybrid Genetic Algorithm (SVHGA) 

The genetic algorithm (GA) applies to the upper level problem (1) – (4). Each individual of the 

population represents an electricity price setting )',...,','('
21 I

xxxx  . For each x' a scalarizing problem 

concerning the lower level problem (5) – (14) with x= x' is exactly solved to obtain an efficient solution y' 

to the lower level problem.  

The GA has been coded in Delphi for Windows. The scalarizing lower level problems are MILP 

problems that are solved by the CPLEX solver, which is called by the GA. 

 

SVHGA: 

Step 1. Create the initial population Pop of N individuals ),...,,( 21
n
I

nnn xxxx  , n =1,…,N with 
n
ix =

),( ii xxrand ; for each xn the Repairing routine (presented below) is applied to ensure that xn also 

satisfies constraint (4). 
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Step 2. For each xn  Pop, n=1,…,N, compute the extreme efficient solutions ),( non yx and ),( npn yx – 

see Fig. 3. These solutions are obtained by solving exactly the problems (P1b) and (P2a,b) for x = 

xn, using the MILP solver.  

Fig. 3 – Structure of the Population 

 

Step 3. Initialize the incumbent solutions 

• Optimistic solution: (xo, yo)  PopxyxF nnon  :),(maxarg  

• Pessimistic solution: (xp, yp)  PopxyxF nnpn  :),(maxarg  

• Deceiving solution: let k be the index of solution xo in Pop such that xk = xo; then, (xd,yd) = 

(xk,ykp)  

• Rewarding solution: let l be the index of solution xp in Pop such that xl = xp; then, (xr,yr) = 

(xl,ylo)  

While the maximum number of iterations is not reached do 

Step 4. Create an Offspring population with N children, repeating N times Step 4.1 to Step 4.4: 

- 4.1) randomly select one parent x'  Pop and select by binary tournament the other x"  Pop; the 

tournament is decided by the value of F(x, yo) in the first N/2 selections and by F(x, yp) in the 

remaining N/2 selections. There is equal chance of individuals x' or x" to be the first or the second 

parent in the recombination (Step 4.2). 

- 4.2) For the selected pair of parents x' and x", apply one-point crossover to generate a child cx ; 

the cutting point is randomly drawn between 1 and I-1. 

- 4.3) Mutation is then applied to xc with probability Pm of changing each gene i=1,…,I of xc. For a 

given c
ix , mutation consists of adding or subtracting a positive perturbation randomly generated 

in the range between 0 and  ii xx   with a parameter 0< <1. 

- 4.4) Repair xc using the Repairing routine to satisfy constraints (2) - (4) and insert xc in Offspring; 

if cx  is not repairable, generate another cx  by repeating the selection of two parents (Step 4.1), 

recombination (Step 4.2) and mutation (Step 4.3) and the repairing process (Step 4.4). 

Step 5. For each cx  Offspring solve (P1b) and (P2a,b) using the MILP solver to obtain the extreme 

efficient solutions to the lower level problem: ),( coc yx  and ),( cpc yx . 

Step 6. Update incumbent solutions with Offspring: 

x1 

x2 

xN
 

… 

(x1, y1p) 

(x2, y2o) 

(x2, y2p) 

(x1, y1o) 

(xN, yNo) 

(xN, yNp) 

Pop 
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• update the optimistic and deceiving solutions if there is any ),( coc yx  such that  ),( coc yxF > 

F(xo, yo). If solutions with the same F exist then the one with the best deceiving F is selected. 

• update the pessimistic and rewarding solutions if there is any ),( cpc yx  such that  ),( cpc yxF > 

F(xp, yp). If solutions with the same F exist then the one with the best rewarding F is selected. 

Step 7. Select the individuals of Pop and Offspring to integrate the next population: 

Copy to NextPop the 10% best (w.r.t. F) xPop  Offspring among solutions ),( oyx  
and the 

10% best (w.r.t. F) xPop  Offspring among solutions ),( pyx . The other 80% elements of 

NextPop are selected by binary tournaments between one individual of Offspring and one 

individual of Pop. The result of the tournament is determined by ),( oyxF  in half of the 

competitions and by ),( pyxF  
in the other half. Any individual included in the new population is 

removed from its original population (Offspring or Pop), so the same individual cannot be 

selected twice.  

  Pop  NextPop 

End While 

Return: (xo, yo), (xp, yp), (xd,yd), (xr,yr). 

 

Diversity is ensured by the mutation operator and the selection mechanism in Step 7. These diversity 

enforcing processes are balanced with some elitist pressure in the selection of the population for the next 

generation. 

The Repairing routine (firstly proposed in [12]) works as follows. 

Let )',...,','(' 21 Ixxxx   and let A be the set of indices i of ix'  that are allowed to be changed. Initially, 

A={1,2,…,I}. 

1. For each i=1,…,I, if ix'  is out of the bounds imposed by constraints (2) and (3), then it is 

pushed to the closest bound (
ix  or 

i
x ) and i is excluded from the set A. 

 Let 



I

i
ii xPs

1

' . If AVGxTs  , then stop and return this feasible 'x .  

2.  If AVGxTs  , it means that x' does not satisfy constraint (4) and the following correction is 

applied: 
 




Ai i

AVG

ii
P

sTx
xx ''   for all Ai  (if A=Ø, then stop and discard 'x  as it cannot 

be repaired). 

3. Return to step 1 (since constraints (2) and (3) may no longer be satisfied).  

 

5 Case study 

The algorithm has been applied to a practical case study whose results are discussed in this section. 

Data were acquired from actual audit information and some values were estimated. The information to 

derive the customer’s preferences (feasible time slots for load operation) and penalty coefficients to 

model dissatisfaction with load scheduling has been obtained through audits and surveys in the 

framework of PhD theses on Sustainable Energy Systems at the University of Coimbra and reports in the 

scientific literature [3][36]. 

 

5.1. Problem data 

The input data are similar to the data used in [12] except for the comfort time slots allowed for the 

operation of each load and the degree of dissatisfaction. 

• 24 hours planning period divided into intervals of 15 minutes (1 unit of time t), leading to a 

planning period of T=96 intervals (i.e., units) of time, T={1,…,96}. Thus, h =1/4 h. 
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• 7 sub-periods of time Pi T, i=1,..,7, for defining the electricity prices to be charged by the 

retailer to the consumer.  

• The maximum and minimum prices (
ix  and ix ) in each sub-period are given in Table A.1 in 

Appendix. The average price xAVG  is 0.116 €/kWh. 

• The energy prices the retailer has to pay (πt) for the electricity purchased in the spot market are 

displayed in Table A.2 in Appendix.  

• 5 shiftable loads (J=5): dishwasher, laundry machine, electric water heater (EWH), electric 

vehicle and clothes dryer. The power required in each stage r of the operation cycle of each 

load j (i.e. gjr values) is presented in Table A.3 in Appendix. 

• The power required by non-controllable base load in each interval (bt, t=1,…,T) is presented in 

Table A.4 in Appendix.  

• The contracted power Ct is 4.6 kW for t=28,…,84 and 3 kW for the other t T. 

• The comfort time slot [T1j, T2j] allowed for each load j and the penalties (sjt) associated with 

the operation of each load j at time tTj are displayed in Fig. 4. The scale of the sjt values is 0-

100, where 0 means total satisfaction and 100 maximum dissatisfaction (minimum comfort) 

but load j is still allowed to operate at that time t. The more or less stringent penalties imposed 

by these time slots characterize the degree of willingness of consumers to engage in demand 

response programs regarding each appliance. 

 

Fig. 4. Comfort time slots allowed for the operation of each load and the degree of dissatisfaction  

(0 = total satisfaction, 100 = maximum dissatisfaction) 

 

5.2. Parameters 

In the computational simulations of SVHGA, a population size of 30 individuals was considered and 

100 iterations of the GA were performed in each run. 

In each iteration of SVHGA, three MILP problems are solved by the CPLEX solver for each individual 

x: (P1b), (P2a) and (P2b). For the data presented in section 5.1, each of these problems has about 2830 

variables and 2935 constraints. After the preprocessing phase employed by CPLEX, which eliminates 

variables and constraints, the adjusted MILP problems to be solved have the following dimensions: 
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- (P1b): 1446 variables (1327 binary and 119 continuous) and 1542 linear constraints; 

- (P2a), (P2b): 2522 variables (2347 binary and 175 continuous) and 2581 linear constraints. 

 In order to tune the parameters, extensive experiments were carried out for different values of the 

mutation probability (Pm) and the  parameter used in the mutation operator (Step 4.3 of the algorithm) 

considering all combinations of: Pm=0.01, Pm=0.05 and =0.1 to =0.7 with increments of 0.1 (10 

independent runs for each combination). Concerning the variation of Pm, better results were consistently 

obtained with Pm=0.05, which is in accordance with the study in [12]. The algorithm seemed not to be 

very sensitive to the variation of , displaying very small variations for the optimal F values of the 

optimistic and pessimistic solution (for the best, worst and average values). A slight improvement exists 

as  increases from 0.1 to 0.4, but for ≥0.2 no solution differs from the best optimistic F value obtained 

in all runs by more than 0.09%. The best and the average values of F of the optimistic solution improve as 

 increases from 0.1 to 0.4, but then they seem to worsen slightly for higher values of . The best F of the 

pessimistic solution is very similar in all combinations of parameters, while the average just improves 

from =0.1 to =0.2. Therefore, we adopted Pm=0.05 and =0.4, and results of 20 independent runs are 

presented henceforth. 

We performed 20 independent runs considering two processes of generating the initial population: 1) 

30 random feasible individuals; 2) 20 random feasible individuals and 10 individuals “directed” to the 

upper bound of the price in each sub-period (which requires other prices to be at or close to the lower 

bound in other sub-periods to ensure feasibility due to the average price constraint). Process 2) introduces 

a level of greediness in the initial population towards profit maximization (upper level function). The 

differences between the results of the two processes of generating the initial population are not 

significant: all lower than 0.03% for the maximum, minimum, mean and median value of F in the 

optimistic and the pessimistic solutions. The value of F in the best optimistic solution obtained in the 20 

independent runs with the “directed” initial population was slightly better than the best optimistic solution 

obtained with the pure random initial population; the opposite is true for the pessimistic solution. The 

results selected for presentation in the paper are the ones obtained with the pure random initial population. 

 

5.3. Results 

The average computational time for performing one generation with a population of 30 individuals (i.e. 

Step 4 to Step 7 of the SVHGA, including solving 90 lower level MILP problems) was 23 seconds in a 

computer Intel Core i7-2600K CPU@3.4GHz, 8 GB RAM with Windows 10. The average time for a 

complete run (100 generations) was 2295 seconds with a standard deviation of 25.7 seconds. Although 

the lower level MILP problems have a large number of variables and constraints, in particular binary 

variables, these problems are solved very fast by CPLEX. Due to the preprocessing phase employed by 

CPLEX, the optimal solutions to such problems were always found at the root of the branch-and-bound 

tree in a maximum of 28 iterations of the simplex method. 

There is an additional computational effort in solving two problems (P2), i.e., (P2a) and (P2b) for each 

x, but rarely the solution to (P2b) is different from the solution to (P2a). A solution to (P2b) is accepted if 

it presents equal values of f1 and f2 with respect to the solution to (P2a) and F2b ≤ F2a. A tolerance of 10-4 

has been admitted to compare the values of f1 and f2. An accepted solution is considered new if F2b < F2a – 

10-5.  A solution to (P2b) is rejected if f1 and f2 suffer a variation larger than the tolerance w.r.t. the 

solution of (P2a). In this experiment with 20 runs, the maximum number of new accepted solutions from 

(P2b) was 4 in a run with 3030 problems (P2b). The average number of new accepted solutions was 0.8 

and the average number of rejected solutions was 55. Total numbers for all computations indicate that 

98% of the solutions obtained with (P2b) are the same as the ones obtained with (P2a) and 99.97% of the 

solutions used by the algorithm result from (P2a). Therefore, for the current problem we consider it would 

be suitable to just solve (P2a) instead of (P2a)+(P2b) in order to save computational time. 

The maximum, minimum, mean and standard deviation of the retailer’s profit (F) obtained in the final 

solutions of the 20 runs are presented in Table 1. This table also shows the results of the particular runs 

that provided the maximum values, which are marked with (*). The other values in these particular rows 

that neither are the maxima obtained in the 20 runs nor correspond to the optimistic, deceiving, 

pessimistic or rewarding final solutions are displayed in grey. The F values are in € and refer to a period 
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of 24 hours and a cluster of 1000 consumers with similar consumption and demand response profiles. We 

observe that the standard deviation is low, i.e. the values of F in the final solutions of these 20 runs are 

closely around the mean, thus revealing stability of the algorithm.  

 

Table 1 – Values of F obtained in the final solutions of the 20-runs experiment 

 Optimistic approach Pessimistic approach 

Run F-optimistic F-deceiving F-pessimistic F-rewarding 

…     

6 1922.009 1559.066 1573.112 1909.229 (*) 

...     

9 1919.402 1561.991 (*) 1574.335 1904.282 

…     

12 1923.247 (*) 1558.002 1573.594 1904.429 

…     

15 1919.626 1561.523 1574.435 (*) 1904.204 

...     

Maximum (*) 1923.247 1561.991 1574.435 1909.229 

Minimum   1919.402 1557.631 1571.905 1899.684 

Mean 1921.636 1559.220 1573.674 1903.934 

Stand. dev. 1.088 1.158 0.562 1.717 

 

Care must be taken in reading the “maximum F-deceiving” and the “maximum F-rewarding” values in 

Table 1 because they may not correspond to the deceiving and rewarding solutions as defined in Section 

2. Although the best F-deceiving value found is 1561.991, this is not obtained for the same x prices as in 

the optimistic solution. The best solution to the optimistic formulation has an F value of 1923.247 (F-

optimistic, which assumes that the consumer schedules his loads in the best way to the leader’s profit). 

Considering the same price setting, the F-deceiving is 1558.002 occurring if the consumer schedules his 

loads in the worst way to the leader. The electricity prices (upper level solution, xi, i=1,…,7) for these 

solutions are presented in the first row of Table 2.  

The best solution to the pessimistic formulation has an F value of 1574.435 (F-pessimistic, the best 

retailer’s profit assuming that the consumer schedules his loads in the worst way to the leader’s profit). 

The corresponding F-rewarding is 1904.204 occurring if the consumer, given this price setting, schedules 

his loads in the best way to the leader. The electricity prices for these solutions are presented in the 

second row of Table 2. 

As can be seen in Table 2, the electricity prices obtained for the optimistic/deceiving solutions and the 

pessimist/rewarding solutions only differ in sub-periods P4, P5 and P7. This similarity can also be 

observed in the graph of Fig. 5, which depicts the prices in Table 2 and also the minimum and maximum 

prices allowed in each sub-period of time (cf. Table A.1).   

   

Table 2. Electricity prices (€/kWh) in the best solution for the optimistic approach and in the best solution for the 

pessimistic approach 

Sub-periods  Pi  

[P1i – P2i] 

Solution  

P1 

[1-28] 

P2 

[29-38] 

P3 

[39-44] 

P4 

[45-60] 

P5 

[61-76] 

P6 

[77-84] 

P7 

[85-96] 

Optimistic/Deceiving 0.1 0.24 0.12 0.120237 0.030064 0.24 0.074266 

Pessimistic/Rewarding 0.1 0.24 0.12 0.100004 0.060771 0.24 0.060300 
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Fig. 5 – Comparison of the electricity prices obtained for the pessimistic and the optimistic approaches. 

 

The objective function values and the load schedules (times for the operation of the loads) in the best 

optimistic solution obtained in this experiment and the corresponding deceiving solution, as well as the 

best pessimistic solution and the corresponding rewarding solution, are shown in Table 3.  

 

Table 3. Objective function values and load schedules in the optimistic, deceiving, pessimistic and rewarding 

solutions. 

 Upper level (F) and lower level (f1 and f2) 

objective function values  

[initial time t1 - final time t2]   

for the operation of each load 

 

Solution: 

Retailer’s 

profit, F 

(€) 

Consumer’s 

cost, f1 

(€) 

Consumer’s 

dissatisfaction,  

f2  
(a) 

Dishwasher Laundry 

machine 

EWH Electric 

vehicle 

Clothes 

dryer 

Optimistic 1923.247 3434.287 0 [1-5] [39-44] [28-32] [5-40] [76-78] 

Deceiving 1558.002 3116.685 827.778 [1-5] [60-65] [39-43] [5-40] [74-76] 

Pessimistic 1574.435 3132.08 974.604 [1-5] [60-65] [41-45] [5-40] [85-87] 

Rewarding 1904.204 3420.186 0 [1-5] [45-50] [28-32] [5-40] [76-78] 

(a) 0  total consumer’s satisfaction, 100  maximum dissatisfaction per interval and per load. 

 

 The load diagrams of these solutions are shown in Fig. 6. This figure also displays the dissatisfaction and 

consumer’s electricity cost at each interval of the planning period.  
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Fig. 6 – Load diagrams of the extreme solutions, showing the consumer’s electricity cost and the dissatisfaction at each time. 

 

As Fig. 6 shows, there are close similarities between the optimistic solution and the rewarding solution 

and between the pessimistic solution and the deceiving solution. These similarities exist regarding the 

load scheduling patterns and also the time intervals in which the cost and dissatisfaction are more 

noticeable. The main difference between the load scheduling patterns in the pessimistic and deceiving 

solutions (the peak in the intervals 39-40 in the deceiving solution) results from the time overlapping of 

the operation of the EWH and the electric vehicle, which does not exist in the pessimistic solution. 

It can be thus observed that there is a low risk of engaging into an optimistic approach and having a 

deceiving solution with respect to adopting a pessimistic approach. Actually, if the retailer adopts an 

optimistic perspective and this fails because the consumer schedules his loads in a different way from the 

optimistic solution, the worst case for the retailer gives a (deceiving) profit of 1558.002. This value is 

worse but close to the best profit value that the retailer can obtain if he adopts a pessimistic perspective 

(1574.435).  

 

5.4. Incorporating consumer’s preferences to compute other solutions 

The extreme optimistic, deceiving, pessimistic and rewarding solutions can be regarded as beacon 

solutions, as they provide the leader information about his profit ranges when adopting two opposed 

perspectives, optimistic and pessimistic, and the follower’s reaction is pro or against the interests of the 

leader. Other solutions may be analyzed resulting from the incorporation of possible consumer’s 

preferences. The semivectorial bilevel problem is temporarily transformed into a (single-objective) 

bilevel problem where the lower level problem is a scalarizing problem of the original bi-objective lower 

level problem. This analysis enables to check how close or far the solutions resulting from the 

incorporation of different consumer’s preferences are from the extreme solutions previously obtained. 

The consumer’s preferences may be operationalized by means of reference points for the lower level 

objective function values. These reference points are defined from aspiration levels that the consumer 

would like to achieve for his electricity bill and the degree of dissatisfaction with the changes of the load 

operation cycles. The minimization of the augmented Chebyshev distance to the reference point is used to 

determine, for a given price setting, the consumer’s solution closest to those aspiration levels. The bilevel 

formulation considering the Chebyshev scalarization for the lower level problem is (P3), where 

),( *
2

*
1 qqq   denotes the reference point, ULconstraints is the set of solutions satisfying the upper level 

constraints (2)-(4),  is the variable that gives the Chebyshev distance and  is a very small positive 

constant (e.g., 10-4). The term  )(),(
21

yfyxf   aims at ensuring that an efficient solution is computed 

rather than a weakly efficient solution only. This term together with  define the augmented Chebyshev 

distance. 
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The consumer may also wish to impose bounds on his objective function values. For instance, he 

would like that his electricity bill was always below a certain level. However, as the electricity prices are 

controlled by the retailer, there may be circumstances in which those constraints cannot be met. 

Therefore, we should be careful in adding rigid constraints (as in the e-constraint scalarization) into the 

bilevel formulation, because these constraints may misrepresent the original problem and lead to the 

computation of a non-optimal solution to the leader. Note that the retailer is the leader and he decides 

first. He can set electricity prices x' for which a given bound for the consumer’s cost cannot be met. 

However, if this bound was incorporated into the model, the algorithm would provide another x" (if it 

exists) as an optimal solution for which the previous bound could be satisfied. This difficulty does not 

occur if bounds on the dissatisfaction objective function are included because f2 is independent of x. The 

inclusion of additional limitations on f2 into the Chebyshev scalarizing program (P3) leads to (P4): 
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where e2 is the upper bound imposed on the consumer’s dissatisfaction. 

 

The hybrid GA (HGA) proposed in [12] for single-objective bilevel problems is applied to approximate 

the optimal solution of each bilevel problem with a scalarizing lower level problem. The best solution 

(according to the upper level objective function) from 10 independent runs is reported below. In each run 

100 iterations of the GA were performed considering a population size of 30 individuals. 

 

• Minimizing the distance to the consumer’s ‘ideal point’  

The reference point formed by the best values for the consumer obtained in the extreme solutions 

computed above can be considered as a good representation of the consumer’s ideal point: 3116.685 for 

the cost (minimum cost obtained in the deceiving solution) and 0 for the dissatisfaction (minimum value 

of dissatisfaction regardless the electricity prices). Thus, problem (P3) is solved with q* = (3116.685, 0). 

Solution A (F=1777.797, f1=3288.993 and f2=85.714), presented in Tables 5 and 6, is the best solution 

according to F obtained in 10 runs of HGA. This solution presents intermediate upper level and lower 

level objective values w.r.t. to the extreme solutions computed above. However, the consumer may 

consider this solution a high cost plan. In order to compute other solutions that can reflect the wish of the 

consumer to reduce cost, the reference level of cost may be decreased with an increase in the reference 

level of dissatisfaction. In addition, a strict constraint on the dissatisfaction level can be imposed to 

control the rise of the dissatisfaction objective function. 
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• Decreasing the reference level of cost and increasing the reference level of dissatisfaction, 

imposing an upper bound on dissatisfaction 

Considering the reference point q* = (3000, 200) and adding f2(y) ≤ 300, solution B is obtained by 

solving (P4) using HGA. Solution B, presented in Tables 5 and 6, is the best solution according to F 

obtained in 10 runs of the algorithm. As observed in Table 6, this solution (f1=3170.607 and f2=294.445) 

cannot attain the objective targets established by the reference point but it also does not take advantage of 

the upper limit allowed for dissatisfaction (300) to try to reduce the cost.  

Therefore, in order to test whether the upper bound f2(y) ≤ 300 has constrained solution B or not, this 

constraint is removed and HGA is applied to (P3) with q*= (3000, 200), not considering the additional 

constraint on f2.  

In this simulation, a solution with a dissatisfaction level higher than 300 is obtained – solution C shown 

in Tables 5 and 6. This result enables to conclude that the upper bound of 300 imposed on f2 to compute 

solution B was not redundant, although not binding. Comparing solution C with solution B, we observe 

that the consumer’s cost has decreased 0.4% (-13.49 in absolute value) and the consumer’s dissatisfaction 

has increased 11% (33.33 in absolute value). The load schedule plans are very similar: only the laundry 

machine starts its operation cycle one interval (15 min.) later and the clothes dryer starts one interval 

earlier in solution C than in solution B. This earlier interval of the clothes dryer operation has some 

dissatisfaction for the consumer and this is why the dissatisfaction value has increased. 

 

• Minimizing cost imposing an upper bound on dissatisfaction 

If the consumer’s preference is to privilege the minimization of cost while bounding the dissatisfaction 

level, the e-constraint scalarization with the constraint on f2 can be used for the lower level problem. This 

is formulated in problem (P5): 

 
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In order to try to further improve consumer’s cost with respect to solution C, (P5) is solved with 

f2(y) ≤ 500. Again HGA is applied performing 10 independent runs. The best solution obtained to (P5) is 

solution D presented in Tables 5 and 6. Solution D slightly decreases the consumer’s cost with respect to 

solution C (0.04%; -1.28 in absolute value) and increases the consumer’s dissatisfaction in 27.85 % 

(91.27 in absolute value).  

 

Table 5. Electricity prices (x) in Solutions A to D 

Sub-periods  Pi  

[P1i – P2i] 

Solution  

P1 

[1-28] 

P2 

[29-38] 

P3 

[39-44] 

P4 

[45-60] 

P5 

[61-76] 

P6 

[77-84] 

P7 

[85-96] 

Solution A  (xA) 0.1 0.24 0.12 0.100052 0.079724 0.231706 0.040496 

Solution B  (xB) 0.1 0.24 0.12 0.120004 0.033693 0.24 0.069737 

Solution C  (xC) 0.1 0.24 0.12 0.120059 0.055705 0.24 0.040317 

Solution D  (xD) 0.1 0.24 0.12 0.120144 0.049459 0.24 0.048529 
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Table 6. Objective function values and load schedules in Solutions A to D 

 Retailer’s 

profit (F) 

Consumer’s 

cost (f1) 

Consumer’s 

dissatisfaction 

(f2) 

Dishwasher Laundry 

machine 

EWH Electric 

vehicle 

Clothes 

dryer 

Solution A 1777.798 3288.993 85.714 [1-5] [45-50] [28-32] [5-40] [85-87] 

Solution B 1631.357 3170.607 294.445 [1-5] [41-46] [39-44] [5-40] [75-77] 

Solution C 1617.865 3157.115 327.778 [1-5] [42-47] [39-44] [5-40] [74-76] 

Solution D 1623.331 3155.833 419.048 [1-5] [39-44] [40-45] [5-40] [85-87] 

 

As can be observed in Table 5, the electricity prices are particularly close in solutions C and D. Thus, it 

can be interesting to further analyze the efficient solutions to the consumer problem that are the best and 

the worst to the retailer if he adopts such a price pattern. Let us consider the price setting of solution C, 

i.e., xC = (0.1, 0.24, 0.12, 0.120059, 0.055705, 0.24, 0.040317). Fixing x=xC, the best solution (xC,y) for 

the retailer is given by  )(:),(maxarg C
Ef

C

y

xyyxFy   . We call it a local optimistic solution 

(which is also a local rewarding solution).  Analogously, the worst solution (xC,y) for the leader is given 

by  )(:),(minarg C
Ef

C

y

xyyxFy   . We call it a local pessimistic solution (which is also a local 

deceiving solution). The values given by these solutions bound the possible outcomes for the retailer from 

taking the decision of setting prices xC. These two local extreme solutions are obtained by solving exactly 

the MILP problem (P1b) – for obtaining the local optimistic solution -  and (P2a) followed by (P2b) -  for 

obtaining the local pessimistic solution – with x' = xC. The results are shown in Table 7. 

 

Table 7. Objective function values and load schedules in the extreme solutions for x=xC 

 

(xC, y) 

Retailer’s 

profit (F) 

Consumer’s 

cost  (f1) 

Consumer’s 

dissatisfaction 

(f2) 

Dish-

washer 

Laundry 

machine 

EWH Electric 

vehicle 

Clothes 

dryer 

Local opt./reward. 1911.739 3422.779 0 [1-5] [39-44] [28-32] [5-40] [76-78] 

Local deceiv./pess. 1560.567 3114.462 863.492 [1-5] [60-65] [39-44] [5-40] [85-87] 

 

Remind that the retailer’s profit in the (global) optimistic solution is 1923.247 and the retailer’s profit 

in the corresponding deceiving solution is 1558.002 (cf. Table 3). Comparing these values with the 

ones just obtained, it is realized that the worst values for the retailer’s profit are very close, being the 

local deceiving solution better than the global one in only 0.16%; comparing the global optimistic 

profit with the local one, the former is better than the latter in about 0.60%. This reinforces the 

conclusion for the present case study that there is a low risk to the retailer in adopting an optimistic 

approach and having a deceiving solution with respect to adopting a pessimistic approach or another 

approach that reflects different possible consumer’s preferences. In addition, if the optimistic approach 

is indeed successful, the retailer can obtain a larger profit than in any other approach. 

 

6 Conclusions 

Dynamic tariffs are expected to become an applicable pricing scheme in the smart grid context. This 

type of tariffs provides the price signal incentives for consumers to engage in demand response by 

means of home energy management systems. In this paper a semivectorial bilevel programming model 

is proposed to study the interaction between electricity retailers and consumers. Retailers set dynamic 

tariffs varying in sub-periods during one day aiming to maximize profits. Consumers schedule their 

loads aiming to minimize the electricity bill and minimize the dissatisfaction in face of his preferences 

and requirements. 
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The lower level (consumer) optimization problem is formulated as a bi-objective MILP problem. A 

hybrid approach encompassing a genetic algorithm for the upper level (retailer) problem and an exact 

MILP solver to solve surrogate scalar problems at the lower level is proposed. An illustrative case 

study is presented and discussed. The extreme optimistic, deceiving, pessimistic and rewarding 

solutions are computed. In addition, the incorporation of the consumer’s preferences is performed to 

compute other nondominated solutions trading-off the cost and comfort dimensions. This has been 

accomplished by different means: 1) minimizing the distance to the consumer’s “ideal point”; 2) 

decreasing the reference level of cost and increasing the reference level of dissatisfaction while 

imposing an upper bound on dissatisfaction; 3) minimizing cost imposing an upper bound on 

dissatisfaction. The analysis of these results enabled to provide insightful information to assist the 

retailer decision-making process. In this case study there is a low risk if the retailer embraces an 

optimistic approach and the consumer reacts in such a way that a deceiving solution is obtained, in 

comparison with adopting a pessimistic approach. Moreover, if the optimistic approach is successful, 

according to the consumer’s reaction, the retailer can obtain a larger profit than in any other approach. 

Further work will assess the performance of other algorithmic approaches to solve the upper level 

problem and consider clusters of consumers with different energy usage profiles leading to a bilevel 

multi-follower decision problem. 
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Appendix 
 

Table A.1 - Minimum and maximum electricity prices charged to the consumer in each sub-period. 

Sub-

period Pi 

Start interval, 

P1i   {1,…,96} 

End interval, 

P2i   {1,…,96} 

Minimum price  

(€/kWh) 

Maximum price  

(€/kWh) 

P1 1 28 0.04 0.10 

P2 29 38 0.08 0.24 

P3 39 44 0.03 0.12 

P4 45 60 0.10 0.28 

P5 61 76 0.03 0.12 

P6 77 84 0.08 0.24 

P7 85 96 0.04 0.10 

 

 
Table A.2 - Prices seen by the retailer at the spot market. 

Start interval – End interval 

(t  {1,…,96}) 
Price (€/kWh) 

1 - 8 0.05 

9 - 16 0.035 

17 - 24 0.045 

25 - 32 0.065 

33 - 40 0.075 

41 - 48 0.08 

49 - 56 0.09 

57 - 64 0.1 

65 - 72 0.11 

73 - 80 0.085 

81 - 88 0.08 

89 -96 0.1 

 

All prices in Tables A.1 and A.2 are in €/kWh, so they were then converted to periods of quarter-hour 

(i.e. divided by 4) to feed the model. 

 

 
Table A.3 - Operation cycles of the controllable loads. 

Load j 

Duration dj  

(# quarter-hours) 

Power gjr (W) in each interval  r=1,…, dj 

r =1 r =2 r =3 r =4 r =5 r =6 r =7,…,36 

Dishwasher 5 1724 1272 104 1676 799   

Laundry machine 6 2040 1028 88 180 228 215  

EWH 5 1500 1500 1500 1500 1500   

Electric vehicle 36 1500 1500 1500 1500 1500 1500 1500 

Clothes dryer 3 1808 1740 282     
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Table A.4 - Power requested to the grid by the base (uncontrollable) load. 

Start interval – End interval 

(t  {1,…,96}) 

Power bt  

 (W) 

1 - 32 166 

33 - 34 700 

35 - 36 170 

37 - 44 92 

45 - 54 156 

55 - 64 133 

65 - 80 159 

81 522 

82 - 83 1528 

84 - 85 742 

86 249 

87 452 

88 - 90 280 

91 1064 

92 - 96 241 

 

 


