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Abstract: Mitochondria are recognized as the producers of the majority of energy cells need for their normal activity. Af-

ter the initial comprehension of how mitochondrial oxidative phosphorylation produces energy, mitochondrial research 

was not a priority for most cell biologists until novel mitochondrial functions were identified. In fact, it is now known that 

mitochondria are not only involved in cell calcium homeostasis, intermediate metabolism and free radical generation but 

are also a crucial crossroad for several cell death pathways. The notion that several clinically used drugs and other xeno-

biotics induce organ degeneration through damaging mitochondrial bioenergetics led to the use of the organelle as an ef-

fective and reliable bio-sensor to predict drug safety. Classic methods used to test the toxicity of a wide range of com-

pounds on isolated mitochondrial fractions were later replaced by novel high-throughput methods to investigate the safety 

of a very large number of new molecules. Without surprise, the assessment of “mitochondrial safety” for new discovered 

molecules is of clear interest for pharmaceutical companies which can now select compounds lacking mitochondrial toxic-

ity to undergo further trials, thus avoiding the possibility of later human toxicity due to mitochondrial liabilities. 
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INTRODUCTION 

1. Mitochondria: More than Just Cell Furnaces 

 In the majority of human tissues, mitochondria play dif-
ferent and crucial roles. It has been estimated that almost 
90% of oxygen consumption by mammals occurs in mito-
chondria with the ultimate objective of synthesizing ATP 
[1]. 

 After determining that mitochondria produce energy by 
chemiosmosis [2], the organelle was mostly considered as 
the cell furnace, whose operation involved membrane charge 
separation. In the 80’s and 90’s, mitochondria again took the 
spotlight with the breakthrough discovery that the organelle 
not only provided cell energy but was also involved in cal-
cium homeostasis [3], in intermediate metabolism, in the 
generation of reactive oxygen species (ROS) and most im-
portantly, in the progression or initiation of cell death [4-6]. 
The central role mitochondria play in cell life and death and 
its involvement in a wide range of diseases including cancer 
[7], diabetes [8] or cardiovascular [8] and neurodegenerative 
diseases [8], increased the scientific interest in the regulation 
of mitochondrial bioenergetics in cells. 

 Advances in analytical methods aimed at investigating 
compounds that damage mitochondrial function have been a 
major thrust for the design and development of drugs that 
would specifically target mitochondria for therapeutic pur-
poses. In fact, drug safety is now one of the most important 
issues for most if not all pharmaceutical companies. Improv-
ing the pharmacological effect of a drug in the organism and 
diminishing the toxicological effects is a major concern in  
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drug development. Since mitochondrial dysfunction is in-
creasingly implicated in drug-induced toxicity, mitochon-
drial models are now used to reduce late stage attrition of 
drug candidates and to allow the design of safer drugs [9]. 

 The interest on mitochondrial toxicology and pharmacol-
ogy is not unexpected as the importance and interest on the 
regulation of mitochondrial physiology and dysfunction has 
increased in the last years. Searching PUBMED database 
(http://www.ncbi.nlm.nih.gov/sites/entrez/) using the key-
word “mitochondria” resulted in 125,733 published papers 
from 1950 until July 2008. A further increase in the number 
of publications per year is coincident with the discovery of 
the relationship between apoptosis and mitochondria (Fig. 
1). The increasing trend still goes on, fuelled by exciting and 
novel discoveries in mitochondrial physiology. 

 The present review demonstrates the importance of mito-
chondria on organ viability and exemplifies several cases of 
drug-induced mitochondrial toxicity. An overview on the use 
of mitochondria as a preliminary bio-sensor for the im-
provement of drug safety in many different target organs is 
also provided, together with a description of traditional and 
novel methods available to investigate drug-induced altera-
tions of mitochondrial function. 

1.1. Mitochondrial Energy Production 

 The discovery of mitochondria occurred in the late 19
th

 
century, the organelle being described as a collection of 
cytosolic free-floating individual vesicles forming threads 
inside cells. The early descriptions were confirmed by elec-
tron microscopy observations of tissue sections, which re-
vealed the existence of a mitochondrial network [10] also 
denominated “mitochondrial reticulum” [11, 12]. 

 Mitochondrial energy production is achieved by electron 
transfer in the respiratory chain by using a process called  
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oxidative phosphorylation (OXPHOS, Fig. 2A) [2, 13]. Mi-
tochondria are also the arena for other metabolic pathways, 
the most well known being fatty acid -oxidation and the 
Krebs cycle (Fig. 2B). Under anaerobic conditions, pyruvate 
produced during glycolysis can undergo alcoholic or lactate 
fermentation, while under aerobiose, pyruvate is converted 
in the mitochondrial matrix by pyruvate dehydrogenase into 
acetyl coenzyme A (acetyl-CoA) [14]. In the mitochondrial 
matrix, the Krebs cycle occurs, which consists in a series of 
chemical reactions involving enzymes with the final objec-
tive of oxidizing acetyl CoA, producing molecules capable 
of supplying electrons to the MRC or replenishing interme-
diates for other pathways. The final result of the Krebs cycle 
is the formation of two molecules of CO2, three molecules of 
NADH, and one molecule of GTP and acetyl CoA (Fig. 2B). 
Additionally, succinate formed in the cycle can be oxidized 
by complex II of the MRC. An alternative way of obtaining 
energy through oxidative phosphorylation is by using lipids 
stored under the form of fatty acids in triglycerides. Fatty 
acids are degraded by a catabolic process known as -
oxidation in the mitochondrial matrix. The process consists 
in the subtraction of several units of acetyl-CoA by oxida-
tion; the triglycerides are hydrolyzed by lipases resulting in 
glycerol and fatty acids. Glycerol can follow the glycolytic 
pathway while fatty acids suffer -oxidation. Inside the mi-
tochondrial matrix, chemical reactions such as dehydration, 
hydration and oxidation occur, converting fatty acids in 
several products used in the mitochondrial metabolism in-
cluding succinyl-CoA which enters the Krebs cycle. The 
reduced equivalents obtained from the different pathways are 
then used by the mitochondrial respiratory chain to generate 
ATP by OXPHOS. Electrons from different origins are 
transferred between different proteins which form the elec-
tron transport chain (ETC), finally being delivered to mo-
lecular oxygen, which acts as the final acceptor. The ETC is 
composed of several proteins located in the inner mitochon-
drial membrane and in structures called cristae [15]. Accord-
ing to the chemiosmotic teory, the proton gradient that is  
 

formed between the matrix and the intermembrane space has 
two components, one being the transmembrane electric po-
tential ( ) and the other one being the pH gradient ( pH). 
Mitochondria are unique cellular organelles which can build 
up a transmembrane electric potential of up to -180 mV [2, 
5] (Fig. 2). Mitochondrial energy production can alternate 
between two steady-states. Respiration is slower during the 
so-called state 4 respiration as no ATP production occurs, 
leading to the maintenance of a high  value. By its turn, 
state 3 respiration is faster as ATP is being generated by the 
ATP synthase, with concomitant use of the . In particular 
occasions, when the inner membrane becomes permeable or 
when a protonophore is used, the  can be completely 
dissipated. Respiration is then increased and ATP production 
decreases due to the formation of a futile proton cycle that 
causes mitochondria to produce heat, instead of ATP. The 
inhibition of the ETC also generally decreases  with a 
simultaneous decrease in respiration. Under physiological 
conditions, it is considered that mitochondrial ATP produc-
tion occurs in an intermediate state between state 3 and state 
4. Synthesized ATP is then exported by the adenine nucleo-
tide translocator (ANT) to the cytosol in exchange for ADP. 

1.2. Calcium Homeostasis and the Mitochondrial Perme-

ability Transition Pore 

 Changes in cytosolic Ca
2+

 concentration provide signals 
to control important events such as muscle contraction, neu-
rotransmitter release, alterations in gene transcription and 
even cell death, among other phenomenon [16-19]. In the 
last years, a wide range of evidence demonstrated a crucial 
role for mitochondria in shaping cellular calcium signaling, 
which converted mitochondria into an organelle of interest 
when studying temporal and spatial regulation of calcium 
spikes in cells. The capacity of isolated mitochondria to 
accumulate calcium in the matrix depending on the proton 
gradient was first described in 1962 [20]. According to the 
Nernst equation, calcium should be accumulated inside the 
mitochondrial matrix with a 1 million fold concentration  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The increasing number of published papers in PUBMED (http://www.ncbi.nlm.nih.gov/sites/entrez/) archive between 1950 and July 

2008 The trend shows an increased interest on mitochondrial, especially when apoptosis was related with the organelle. The dark grey line 

above represents the number of publications found after searching using the keyword “mitochondria”. The light grey line below represents 

the number of papers found with the keywords “mitochondria and apoptosis”. Notice the increase in published papers when mitochondria 

become associated with the apoptotic process. 
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than that in the cytosol [21]. However, this was against all 
the experimental measurements of intramitochondrial cal-
cium concentrations. The paradox was eventually solved 

when it was demonstrated that calcium accumulation inside 
the mitochondrial matrix depends not only of an electrogenic 
uniporter or mitochondrial calcium uniporter (MCU) but also 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Mitochondria: the center of bioenergetics, calcium homeostasis and cell death. The figure represents different functions of mito-

chondria: (A) Oxidative phosphorylation (OXPHOS). Substrates from Krebs cycle are oxidized by the mitochondrial respiratory chain in 

order to establish an electrochemical gradient of protons that is used by the ATP synthase to produce ATP. The chain of reactions involves 

five enzymatic complexes, the NADH-ubiquinone oxireductase (complex I); the succinate-ubiquinone oxireductase (complex II); the ubiqui-

nol-ferrocytochrome c oxireductase or cytochrome c reductase (complex III), cytochrome c oxidase (complex IV) and finally, complex V or 

F1Fo ATP synthase. Other crucial components of the electron transfer reactions are two electron carriers, the lipid soluble coenzyme Q 

(CoQ) and the soluble protein cytochrome c (cyt c.). The ETC complexes are composed of several subunits encoded by the mitochondrial or 

nuclear DNA, with the exception of complex II, which is encoded by the nuclear DNA only. In the presence of substrates (NADH or succi-

nate), the transfer of electrons from complex I and/or complex II to complex IV occurs simultaneously with the pumping of protons from the 

matrix to the intermembrane space, generating an proton electrochemical gradient ( μH
+
) which is ultimately used by complex V to phos-

phorylate adenosine diphosphate (ADP) to ATP, the energetic fuel of the cells. (B) Krebs cycle, which occur inside the mitochondrial matrix 

and where the complete oxidation of pyruvate leads to the production to NADH and succinate under aerobic conditions. (C) Calcium homeo-

stasis and the permeability transition pore: calcium concentration inside the mitochondrial matrix depends not only of an electrogenic mito-

chondrial calcium uniporter (MCU) but also on antiporters (Na
+
/Ca

2+
 and H

+
/Ca

2+
). Inside mitochondria, calcium modulates the activity of 

several important enzymes, some of which part of the Krebs cycle, and also stimulates ATP synthase. An excess of calcium accumulation in 

the matrix leads to the formation of the mitochondrial permeability transition pore, which spans the inner and outer mitochondrial membrane 

and whose opening leads to the collapse of the transmembrane electric potential, ultimately leading to mitochondrial and cellular dysfunc-

tion. Legend for figure: IMM – inner mitochondrial membrane, OMM – outer mitochondrial membrane, IMS – intermembrane space, PTP – 

permeability transition pore, MCU – mitochondrial calcium uniporter. 
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on antiporters (Na
+
/Ca

2+
 or H

+
/Ca

2+
) which export Ca

2+
 from 

mitochondria (Fig. 2C). Upon accumulation, mitochondria 
slowly release calcium back to the cytosol via the antiporters 
[22, 23]. Mitochondria can thus act as localized cytosolic 
calcium buffering organelles, modulating several events of 
Ca

2+
 feedback inhibition or activation [24, 25]. Within mito-

chondria, calcium increases the activity of several enzymes 
that have a crucial role on the Krebs cycle and ATP produc-
tion, such as pyruvate dehydrogenase, 2-oxoglutarate dehy-
drogenase and NAD

+
-isocitrate dehydrogenase [26] as well 

as the ATP synthase [27]. The increase of mitochondrial 
calcium ([Ca

2+
]m) activates mitochondrial metabolism, in-

creasing the supply of ATP under aerobic conditions for a 
number of energy-consuming processes. 

 The mitochondrial efflux mechanisms assisted by the 
matrix Ca

2+
 buffering activity, maintain a stable [Ca

2+
]m, 

allowing mitochondria to accumulate 700-1000 nmol 
Ca

2+
/mg of protein before bioenergetic breakdown occurs. 

The mitochondrial buffering capacity make these organelles 
in efficient controllers of the spatial and temporal shape of 
global cellular Ca

2+
 signals, cooperating with the endoplas-

mic reticulum in calcium-signaling processes [28]. It has 
been reported that mitochondrial calcium accumulation also 
occurs through a “rapid uptake mode” (RaM) mechanism 
which acts on a millisecond timescale, as well as through a 
mitochondrial isoform of the ryanodine receptor which has 
been described in some excitable cells [29] (Fig. 2C). 

 Moderate mitochondrial Ca
2+

 uptake activates metabo-
lism while excessive Ca

2+
 accumulation can induce radically 

different effects. Calcium may synergize apoptotic mediators 
and induce a large-scale mitochondrial morphological altera-
tion, which can cause cell death [30]. 

 The deregulation of mitochondrial calcium homeostasis 
is now recognized to play a crucial role in several patholo-
gies. In addition to the above-described mitochondrial Ca

2+
 

transport mechanisms, it has been shown that some alterna-
tive forms of the mitochondrial permeability transition 
(MPT, see below) may also participate in mitochondrial Ca

2+
 

homeostasis. A low conductance form of the calcium-
induced MPT leads to calcium extrusion from the mitochon-
drial matrix, which in particular systems may serve as an 
amplification loop for Ca

2+
-induced Ca

2+
 release from the 

ER/SR calcium stores [31]. In general terms, the MPT is a 
sudden non-selective increase in the permeability of the 
inner mitochondrial membrane to solutes of molecular mass 
less than 1500 KDa (Fig. 2C). The MPT occurs when mito-
chondria are treated in vitro with an excess of calcium or 
several reagents that increase oxidative stress [32]. The MPT 
results in a loss of mitochondrial membrane potential and in 
a decrease of ATP production. It is now known that the MPT 
is not a consequence of nonspecific mitochondrial membrane 
damage, but instead the result of the opening of membrane 
channels, the so called permeability transition pores (PTP) 
[33, 34], which are inhibited by the immunosuppressant 
cyclosporin A (CsA) [35]. 

 The nature of the structural components of the PTP has 
been a topic of debate. Three main components have been 
proposed to constitute the structure of the PTP: the adenine 
nucleotide translocator (ANT), the voltage-dependent anion 
channel (VDAC), the most abundant protein in the outer 
mitochondrial membrane, and also the matrix chaperone 

cyclophilin D (CyP-D). The PTP complex is proposed to be 
located at contact sites between the inner and outer mito-
chondrial membrane. The reconstitution of PTP-like activity 
in planar bilayers and proteolipossomes from preparations 
containing complexes with the VDAC, the ANT, the cytoso-
lic hexokinase, and the mitochondrial creatine kinase [36], 
suggests that kinases are also involved in MPT regulation. 

 The role of the ANT in the MPT is supported by the 
inhibition or activation of the MPT by bongkrekic acid and 
atractyloside, respectively, which are specific ligands of the 
ANT [37]. Cyclophilin D shows peptidyl prolyl-cis, trans-
isomerase (PPIase) activity and has a very important role in 
protein folding [38]. The presumed role of Cyp-D as a regu-
latory component of the MPT is based on the observation 
that CsA, a specific inhibitor of the cyclophilin family, 
blocks the MPT [39].. It is suggested that Cyp-D associates 
with the inner mitochondrial membrane during the MPT to 
induce a conformational change of a critical pore component, 
most likely the ANT, leading to an increase of inner mem-
brane permeability. Experimental evidence for a direct role 
of VDAC in the MPT has been provided by studies using 
anti-VDAC antibodies that inhibit VDAC activity [40] and 
also the calcium-induced MPT [41]. 

 Some forms of apoptosis (see below) are inhibited by 
CsA, suggesting a role of the MPT in cell death [42]. The 
observation is also supported by the fact that apoptosis can in 
some cases be inhibited by bongkrekic acid [37, 43]. Inter-
estingly, anti-apoptotic members of the Bcl-2 family (Bcl-2 
and Bcl-xL) can inhibit the Bax/Bak-dependent increase of 
mitochondrial membrane permeability by direct interaction 
with some of the PTP components, including the VDAC (see 
Fig. 2D) [44]. 

 Understanding the molecular structure of the PTP can 
provide new understanding of the mechanisms that are criti-
cal for cell life and death and also present an important target 
for a novel class of drugs. Interestingly, an increasing new 
volume of experimental data antagonizes the classical model 
view of the PTP. Genetic knockout experiments have con-
tradicted the long-established “dogma” concerning the main 
identity of the PTP. Some experimental evidence now exists 
against the role of the VDAC [33, 45-47] and the ANT [33, 
48] as critical pore components. Also, the role of hexokinase 
II as a PTP regulator is not yet fully understood [33, 36, 49, 
50]. Only the role of cyclophilin D as an important PTP 
regulator was confirmed and clarified [33, 51-53]. Neverthe-
less, none of the published data is completely clear in ex-
cluding pore components. 

 The traditional ideas about the role of Ca
2+

 on MPT in-
duction also require particular attention. Although it is ac-
cepted that the MPT in intact cells is triggered by an increase 
in mitochondrial calcium concentration [21, 34, 54], some 
studies suggest that calcium might not be the key element to 
MPT induction in cardiac myocytes and neurons [33]. 
Emerging evidence suggests that after an injury-producing 
stress, it is the generation of reactive oxygen species and not 
calcium the responsible for pore induction [33]. An interest-
ing study [55] on the role of ANT as a mitochondrial cal-
cium sensor may help explaining some contradictory results. 
The results indicate that overexpression of different ANT 
isoforms induces different alterations in calcium homeostasis 
[55]. 
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1.3. Mitochondrial Oxidative Stress 

 Reactive oxygen species (ROS) generation by mitochon-
dria is a continuous and physiologic process that occurs in 
aerobic conditions [56] and which increases with ageing 
[57]. A small but constant leak of electrons from the mito-
chondrial respiratory chain induces a monoelectronic reduc-
tion of molecular oxygen, forming superoxide anion (O2

-
). 

Nearly 2-4% of the total oxygen consumed by mitochondria 
is not totally reduced to water and results in the formation of 
ROS. Although superoxide anion has moderated chemical 
reactivity, it can be converted in more reactive species [58]. 
Superoxide anions generated on mitochondria are rapidly 
converted by the intramitochondrial superoxide dismutase 
(mitSOD) to hydrogen peroxide (H2O2), also classified as 
ROS due to its oxidative power [58]. Deregulation of cellular 
calcium can also increase the production of superoxide anion 
by the MRC. The binding of calcium to the phospholipid 
cardiolipin induces alterations in mitochondrial membranes 
which compromise the conformation and consequently the 
functionality of membrane enzymes, facilitating electron 
leak from the respiratory chain [59]. The production of su-
peroxide anion occurs primarily in the NADH dehydro-
genase (complex I) and in the CoQ cycle in complex III [60]. 
The formation of superoxide anion in the iron-sulfur centers 
in complex I is increased if several NADH-linked substrates 
such as malate, glutamate and pyruvate, are used [61]. Rote-
none, an inhibitor of the electron transfer from complex I to 
CoQ stimulates the production of superoxide anion [62]. The 
CoQ cycle is also prone to electron leakage and consequent 
ROS production. The formation of superoxide anion proba-
bly occurs due to electron donation from semiquinone anions 
(UQ H) to molecular oxygen. The electron leak at this level 
may be stimulated by succinate (complex II substrate), an-
timycin A (complex III inhibitor) and cyanide (complex IV 
inhibitor). Antimycin A blocks the formation of semiquinone 
anions in the matricial face of the inner mitochondrial mem-
brane, promoting the accumulation of semiquinonic anions 
previously formed in the cytosolic face, facilitating electron 
leak and ROS production [63]. 

 Although ROS production by mitochondria is a continu-
ous process in physiological conditions, this organelle has an 
efficient antioxidant defense network [64]. Mitochondrial 
superoxide dismutase, glutathione peroxidase, glutathione 
redutase, -tocopherol and cytochrome c are some examples 
of mitochondrial antioxidant defenses [64]. The methionine 
residues of mitochondrial proteins are also an effective anti-
oxidant protection to prevent the oxidation of protein cys-
teine residues. The reduction of methionine residues induces 
the formation of methionine sulphoxide, which does not 
compromise the protein functionality [58]. 

 As described above, the majority of cellular ROS produc-
tion occurs in the MRC, which explains why lipids and pro-
teins from the mitochondrial inner membrane are more sus-
ceptible to be oxidized. However, mitochondrial DNA can 
also be a preferential target for ROS since it is located in 
close proximity with the inner membrane [65, 66]. The oxi-
dation of mitochondrial lipids, protein and DNA are respon-
sible for ROS-induced mitochondrial dysfunction. Oxidative 
modifications of mitochondrial electron transport chain pro-
teins compromise normal activity, resulting into a further 
increase in ROS production and oxidative damage, contribut-

ing for further mitochondrial dysfunction [57]. Non-
functional mitochondria may be eliminated by autophagy, a 
cellular process involving the degradation of non-functional 
cellular components. Several studies have proposed that 
ROS may be also involved in the induction of cellular auto-
phagy, eliminating non-functional and oxidative modified 
structures, including organelles [67, 68]. 

 In situations of mild oxidative stress, mitochondrial ROS 
production may also be beneficial. For example, during a 
brief episode of cardiac ischemia/reperfusion, ROS can con-
tribute for pre-conditioning of the myocardium, making the 
heart more resistant to longer periods of ischemia and reper-
fusion [69]. Furthermore, when at low levels, mitochondria 
ROS may also act as a signaling molecules in various intra-
cellular processes [70], activating and improving cellular 
antioxidant defenses. 

1.4. Mitochondria and Cell Death 

 Until recent years, scientists believed that cell death was 
a passive and a degenerative process. Cells would only die 
when injured by external factors, such as physical agents 
(mechanical action, temperature, radiation or magnetic ef-
fects), chemicals (alcohol, drugs or detergents) or biological 
agents (viral, bacterial and parasitic infections). It is now 
known that cell death can occur under different processes, 
the most characterized of which being apoptosis, or pro-
grammed cell death, and necrosis. 

 During necrosis cells suffer from damage that results in 
increased volume, aggregation of chromatin, disorganization 
of the cytoplasm, loss of plasma membrane integrity and 
overall cell disruption. During necrosis, most of the cell 
contents are released, causing damage to neighboring cells, 
local inflammatory reactions and also irreversible alterations 
in the affected tissue and/or organ [71]. Although necrosis is 
considered a response against passive cellular injury, recent 
studies suggest that the phenomenon can also be regulated. 
In this process of cell death, several studies have shown 
several alterations in mitochondrial function. Cell death by 
necrosis can occur due to activation of the MPT that com-
promises ATP production, since the mitochondrial inner 
membrane becomes freely permeable to protons leading to 
the uncoupling of oxidative phosphorylation (OXPHOS). 
The F1Fo-ATP synthase can reverse its activity and hydro-
lyze ATP in order to maintain the mitochondrial membrane 
potential ( m), resulting into a further decline of intracel-
lular ATP concentrations [34]. 

 Unlike cell retraction observed in apoptosis, cell swelling 
occurs during necrosis due to alterations in the cytoskeleton 
and inhibition of the Na

+
/K

+ 
pump, causing the loss of the 

selective permeability of the membrane [72]. It has been 
described that the loss of homeostasis during necrosis in-
volves the cell respiratory system (mitochondria), the diges-
tive enzymatic system (lysosomes) and the cell membranes, 
which seem to have a crucial role for the establishment of 
irreversible lesions in the cell [72]. 

 Apoptosis (Fig. 3) requires the interaction of many fac-
tors and involves the activation of a group of cysteine prote-
ases called “caspases” (cysteine-dependent aspartate-specific 
proteases), forming a complex cascade of events that connect 
the initiating stimuli to the final termination of the cell. 
Caspases are categorized into initiators (caspase-2,-8,-9,-10), 
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effectors or executioners (caspase-3,-6,-7) and inflammatory 
(caspase-1,-4,-5) [73, 74]. In general, two partly interde-
pendent routes may lead to apoptosis, the extrinsic and in-
trinsic pathways [75, 76]. In the extrinsic pathway, also 
known as “death receptor pathway”, apoptosis is triggered 
by ligand-induced activation of death receptors at the cell 
surface (such as the tumor necrosis factor receptor (TNF), 
CD95/Fas, and TRAIL death receptors). The intrinsic path-
way is generally characterized by intracellular apoptotic 
stimuli, with mitochondria having a leading role in the proc-
ess, either by acting as initiators or propagators of the signal 
[77, 78]. One of the early events leading to apoptosis is the 
formation of the cytosolic apoptosome composed of Apaf-1, 
procaspase 9 and mitochondrial cytochrome c [77, 79]. 

 The important role of mitochondria in the control of cell 
death is now widely accepted. Upon different apoptotic 
stimuli, mitochondria release different proteins such as cyto-
chrome c, Smac/DIABLO and the AIF (apoptotic-inducing 
factor), which contribute to the apoptotic phenotype [80]. 
Protein release from mitochondria is complex and includes 
the oligomerization on the outer mitochondrial membrane of 
the pro-apoptotic proteins Bax and Bak, which form a chan-
nel permeable to cytochrome c. Nevertheless, despite the 
initial assumption that the MPT is only involved in necrosis, 
it appears that PTP opening is a strong candidate to mediate 
Ca

2+
-dependent induction of apoptosis [78, 81]. In vitro 

studies performed by using HeLa cells [82] showed that 
apoptotic stimuli can induce the release of Ca

2+
 from the ER 

and the uptake by mitochondria. Eventually, mitochondria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Simplified scheme of the intrinsic and extrinsic pathways for apoptosis. Programmed cell death in response to cytotoxic stress or 

extracellular stimulus can occur via extrinsic (receptor-mediated) and intrinsic (mitochondria-dependent) pathways. These two routes can 

interact with each other at the mitochondrial level, which leads to signal intensification. Apoptosis is dependent on ATP levels and is charac-

terized by several morphological cell alterations, such as cell shrinkage and nuclear DNA fragmentation. In the intrinsic pathway, several 

“death signals” (ROS, DNA damage, excessive mitochondrial calcium influx, etc) promote the release of cytochrome c and other pro-

apoptotic factors, including the apoptosis factor (AIF) from the intermembrane space, by two basic mechanisms: one involves opening of the 

permeability transition pore (PTP), leading to mitochondrial swelling and burst of the outer membrane. The second mechanism involves the 

formation of pores in the outer membrane by pro-apoptotic proteins, including Bax. Several clinically drugs activate cell death pathways, 

some of which involve a direct effect on mitochondria. Legend for figure: IMM – inner mitochondrial membrane, OMM – outer mitochon-

drial membrane, IMS – intermembrane space, PTP – permeability transition pore, CsA – cyclosporin A. 
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swell and fragment, releasing cytochrome c in the process. 
These changes were prevented by Bcl-2 expression as well 
as by experimental conditions that prevented the rise in cyto-
solic Ca

2+
 [83]. The alteration of the Ca

2+
 signal reaching 

mitochondria and/or the combined action of apoptotic agents 
or pathophysiological conditions (i.e. oxidative stress) can 
induce a profound alteration of the organelle structure and 
function [82, 84]. Zamzami and collaborators found that 
mitochondrial fragmentation during apoptosis was closely 
related with the collapse of the mitochondrial membrane 
potential ( m). The collapse of m was considered a 
point of no return in the death cascade [85], with the integ-
rity and function of outer mitochondrial membrane regulated 
by proteins of the Bcl-2 family [86, 87]. 

 Bcl-2 family members regulate mitochondrial outer 
membrane permeabilization resulting in the release of cyto-

chrome c, Smac/DIABLO and Omi/HtrA2 and subsequent 
caspase activation. The Bcl-2 family includes pro- and anti-
apoptotic proteins [88] with anti-apoptotic proteins, includ-
ing Bcl-2 or Bcl-XL, inhibiting the function of pro-apoptotic 
proteins, such as Bax or Bak. An important subgroup of pro-
apoptotic Bcl-2 members is the ‘BH3-only’ proteins (Bik, 
Bid, Bim, Bad, Puma) which have a pro-apoptotic role by 
either activating pro-apoptotic proteins (Bax and Bak) or 
inhibiting anti-apoptotic members (Bcl-2, Bcl-XL). The 
mechanisms by which the pro-apoptotic Bcl-2 family mem-
bers regulate the permeabilization of the outer mitochondrial 
membrane remains controversial [89]. 

2. Drug-Induced Mitochondrial Toxicology 

 The first part of the present review addressed basic as-
pects of mitochondrial physiology which can be altered by 
different cellular conditions or by drug treatments. Identifi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Mitochondria as a mediator of drug-induced toxicity. A) OXPHOS systems, the mitochondrial permeability transition (MPT) and 

mtDNA are the major targets of drug-induced mitochondrial dysfunction. The induction of apoptosis by anti-cancer drugs such as tamoxifen, 

doxorubicin or flutamide has been observed in humans and laboratory animals. The mechanism appears to include PTP induction and oxida-

tive stress. Other class of drugs such as the local anesthetics bupivacaine and lidocaine, as well as NSAIDs also interfere with proteins in-

volved in OXPHOS, inducing uncoupling of respiration in some cases. Antiretroviral therapeutic using zalcitabine and lamivudine, among 

others, interfere with mitochondrial DNA polymerase gamma, which is responsible for mtDNA replication. Legend for figure: DOX – 

doxorubicin, VDAC – voltage-dependent anion channel, NRTIS - nucleoside reverse transcriptase inhibitors, ANT – adenine nucleotide 

translocator, mtDNA – mitochondrial DNA, PTP – permeability transition pore. 
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cation of mitochondria as a primary or secondary target of 
drug-induced toxicity may help us to better understand the 
mechanism of action of a drug and open new perspectives 
for its application (Fig. 4, Table 1). The use of mitochondria 
for testing drug safety can also provide a mean of screening 
many prodrugs or chemical molecules which may be mito-
chondrial toxicants in many different types of tissues. Mito-
chondrial toxicity is most frequently evaluated in the cardiac, 
hepatic and renal tissue, although studies in the brain and 
testis are also commonly found. Molecular mechanisms of 
mitochondrial effects of some drugs, including a few harbor-
ing FDA (US Food and Drugs Administration) “Black Box” 
warnings for hepatotoxicity and cardiovascular toxicity will 
be described next. 

2.1. Mitochondrial Cardiovascular Toxicity 

 In some cases, the clinical applications of a drug is com-
promised due to the cardiotoxicity associated with its ad-
ministration. Mitochondrial dysfunction is occasionally as-
sociated with the observed cardiotoxicity. For example, 
combinations of nucleoside reverse transcriptase inhibitors 
(NRTIs), prescribed during Acquired Immune Deficiency 
Syndrome (AIDS) therapy, interfere with mtDNA replication 
[90, 91]. Due to the similarities with substrates for the mito-
chondrial enzyme DNA polymerase gamma, NRTIs also 
inhibit the enzyme [92], which may result into a decrease in 
mtDNA copy number. NRTIs were also demonstrated to 
directly interfere with mitochondrial bioenergetics, as inhibi-
tion of mitochondrial respiration, decreased membrane po-
tential and decreased calcium accumulation were all ob-
served in isolated cardiac mitochondria after treatment with 

different NRTIs [91]. Zidovudine (AZT) is the most well 
known NRTI and it is characterized as a mitochondrial poi-
son. Competitive inhibition of thymidine phosphorylation 
[93, 94], induction of superoxide anion formation [95, 96] 
and inhibition of the adenine nucleotide translocator [97] are 
some effects observed when isolated mitochondria are incu-
bated with AZT and other NRTIs. This particular family of 
compounds is also able to inhibit the regulation of mito-
chondrial complex I by cyclic adenosine monophosphate 
(cAMP) which may explain disturbances in the 
NADH/NAD

+
 ratio, generation of free radicals and increase 

in lactate observed in patients treated with this class of drugs 
[98]. 

 Local anesthetics, which inhibit reversible sodium influx 
through voltage-gated sodium channels in neuronal cells 
[99], and which cause analgesia and paralysis after local 
application, can also induce cardiac toxicity if the exposure 
is systemic and in excessive quantities. Two examples of 
local anesthetics are bupivacaine and lidocaine. Bupivacaine 
is a local anesthetic used during small surgeries and adminis-
trated by epidural injection. However, when administrated in 
higher dosages, bupivacaine induces hypotension, bradycar-
dia, arrhythmias and/or cardiac arrest [100]. Mitochondria 
also appear to be a target for the action of bupivacaine in the 
heart muscle [101]. Uncoupling of cardiac mitochondrial 
oxidative phosphorylation through a protonophore-like 
mechanism [101] was found to be dependent on the mito-
chondrial respiration state [102]. Bupivacaine acts as a pro-
tonophoretic uncoupler during state 4 respiration while in-
ducing a change in the proton pump stoichiometry, or de-
coupling, during state 3 respiration [102]. Higher concentra-

Table 1. Examples of Drugs with Black Box Warnings for Mitochondrial Toxicity 

 

Cardiovascular Toxicity Hepatic Toxicity Renal Toxicity 

- Nucleoside reverse transcriptase inhibitors (NRTIs) 

- Zidovudine (AZT) 

- Bupivacaine 

- Lidocaine 

- Thiazolidinediones (TZD) 

- Doxorubicin (DOX) 

- Sorafenib 

- Daunorubicin 

- Epirubicin 

- Idarubicin 

- Celecoxib 

- Diclofenac 

- Ibuprofen 

- Indomethacin 

- Mefenamic acid 

- Meloxicam 

- Naproxen 

- Piroxicam 

- Sulindac 

- Atenolol 

- Pioglitazone 

- Rosiglitazone 

- Isoniazid 

- Valproic acid 

- Tamoxifen 

- Flutamide 

- Lamivudine 

- Zidovudine (AZT) 

- Zalcitabine 

- Phenoformin 

- Metformin 

- Nefazodone 

- Abacavir 

- Didanosine 

- Nevirapine 

- Tenofovir 

- Stavudine 

- Ketoconazole 

- Divalproex Sodium 

- Doxorubicin (DOX) 

- Cysplatin 

- Gentamicin 

- Cyclosporin A 

- Ifosfamide 

- Statins 

- Tenofovir 

The most frequent targets in drug-induced mitochondrial dysfunction are the heart, liver and kidneys, although other organs can also be affected. The present table describes several 

clinically used drugs whose mechanisms of toxicity are described to involve disturbance of mitochondrial physiology. Refer to text for further details on mechanisms of action. 
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tions of bupivacaine also inhibit the mitochondrial respira-
tory chain, with consequent decrease in mitochondrial ATP 
synthesis [103, 104]. Complex I appears to be the main tar-
get [103] for bupivacaine action. No stereospecific effects of 
bupivacaine enantiomers were observed in the inhibition of 
complex I activity or uncoupling of oxidative phosphoryla-
tion [105]. 

 Lidocaine is normally used as a dental and topic local 
anesthetic. In certain circumstances, lidocaine may also be 
used as an antiarrhythmic compound during myocardial 
ischemia [106], although an excessive exposure to lidocaine 
results in hypotension, bradycardia and/or cardiac arrest 
[107] (Fig. 5B). Lidocaine appears to interfere with cardiac 
mitochondrial function, inducing an increase in state 4 oxy-
gen consumption [108], a non-competitive and partial inhibi-
tion of ATP synthase activity [109] and also an inhibition of 
the activity of the mitochondrial lactate dehydrogenase 
[110]. Lipophilicity and membrane stabilizing activity of 
lidocaine may justify the effects observed in ATP synthase 
and lactate dehydrogenase activity [110]. Furthermore, an 
impairment of mitochondrial oxidation mediated by mito-
chondrial KATP channels was also observed in ventricular 
myocytes after exposure to lidocaine [111]. 

 Thiazolidinediones (TZD), also known as glitazones, are 
a class of oral antihyperglycemic compounds that increases 
insulin-stimulated glucose removal and which have been 
used as an adjunctive therapy for diabetes mellitus [112, 
113]. TZDs lower glucose levels in models of insulin resis-
tance without elevating pancreatic insulin production, which 
justifies its denomination as insulin sensitizers [114]. How-
ever, studies reveal that TZDs may also increase the risk of 
heart failure [115], which limit their clinical application. 
Once again, mitochondrial dysfunction appears to accom-
pany TZD toxicity. Disruption of NADH oxidation at mito-
chondrial complex I is one consequence of TZD action, 
although the toxicity effect may also be the basis for the 
pharmacological benefits [116]. In a larger scale, the inhibi-
tion of complex I activity can lead to ATP depletion, oxida-
tive stress and ultimately cell death [117]. 

 The number of patients subjected to chemotherapy has 
been increasing nowadays, with the anthracycline doxorubi-
cin (DOX) being one of the most potent antineoplastic 
agents. In fact, anthracyclines are among the most active and 
broad-spectrum antineoplastic agents used in the treatment 
of several cancers [118]. However, their use is associated 
with significant side effects, of which cardiotoxicity is the 
most important. Clinically, the cardiotoxicity is expressed as 
a dose-dependent and cumulative cardiomyopathy and ulti-
mately in high mortality risk [119]. The risk of cardiotoxicity 
is higher in individuals with a previous history of cardiomy-
opathy, or mediastinal irradiation with previous heart disease 
[120]. Due to cardiac toxicity, the clinical application of 
DOX and similar compounds is limited by cumulative, dose-
related, progressive myocardial damage that may lead to 
congestive heart failure [121, 122]. Thus, a balance between 
the beneficial (i.e., anticancer) and the risk of cardiac toxic-
ity should be attained by the clinician. Besides DOX, daun-
orubicin (DNR) is another well known anthracycline. The 
only difference between DOX and DNR is that the side chain 
of DOX terminates with a primary alcohol, whereas that of  
 

DNR terminates with a methyl group. The minor difference 
reflects on a different spectrum of activity of DOX and DNR 
against different types of cancer [122]. The ultrastructural 
features of anthracycline-induced cardiomyopathy, include 
the loss of myofibrils, dilation of the sarcoplasmic reticulum, 
microtubule damage, cytoplasmic vacuolization, mitochon-
drial swelling and increased number of lysosomes [123, 
124]. Several mechanisms explain the cardiotoxicity induced 
by DOX and related molecules, but the exact mechanism and 
the metabolic consequences are still not clear. Some mito-
chondrial hypothesis to explain the cardiac toxicity of DOX 
have been proposed: oxidative stress associated with the 
DOX redox-cycling, mitochondrial damage and consequent 
deterioration of myocardial energy, deregulation of mito-
chondrial and cellular Ca

2+
 homeostasis and disruption of 

mitochondrial gene expression [125]. Biochemical and 
physiological data strongly suggests that DOX is primarily 
toxic to the heart muscle through increased formation of 
ROS [126], which oxidizes proteins [127], nucleic acids 
[128] and stimulates lipid peroxidation [129], thus altering 
the integrity of the cell membrane [126, 130-132]. Data from 
the literature indicates that cardiac mitochondria are espe-
cially damaged by DOX-induced oxidative stress [118, 133-
135]; in fact, the cardiac tissue is particularly susceptible to 
ROS due to reduced levels of enzymatic antioxidants de-
fenses when compared with other tissues [118].. DOX-
induced oxidative stress can also be part of the mechanism of 
increased MPT which has been implicated in mitochondrial 
and cell dysfunction induced by DOX [136-141]. Biochemi-
cal and biophysical measurements in cardiac mitochondrial 
preparations showed that DOX quinone moiety was reduced 
by mitochondrial complex I originating superoxide anion by 
a redox-cycling mechanism [142, 143], which implicates 
cardiac mitochondria as the origin and the target of DOX-
induced cardiotoxicity (Fig. 5A). Published data also showed 
the association of a cardiac-selective exogenous NADH 
dehydrogenase with mitochondrial complex I, which would 
participate in the transfer of electrons to DOX, promoting the 
formation of ROS through DOX redox-cycle [144, 145]. 
Attempts to find new anthracyclines with lower toxicity than 
daunorubicin and doxorubicin resulted in the discovery of a 
new generation of anthracyclines: epirubicin and idarubicin. 

 The list of compounds currently used in clinical therapy 
that present cardiac toxicity as a side effect is vast. In this 
past section, only a few examples where evidence for the 
role of mitochondria as mediator of toxicity exists were 
presented. It is expected that tissues with higher energy de-
mand, such as the cardiac muscle, will be first to suffer from 
chemical-induced mitochondrial dysfunction. 

2.2. Mitochondrial Hepatic Toxicity 

 Hepatotoxicity is defined as liver injury caused by drugs 
or chemicals and it can be accompanied by clinical symp-
toms such as fever or jaundice [146]. However, such drugs 
only cause toxicity if administered at high doses or alterna-
tively at low doses but in hepatic compromised patients. The 
present section will focus on some examples of hepatoxi-
cants which are known to affect mitochondrial bioenergetics. 

 Isoniazid, also called isonicotinyl hydrazine, is the first 
anti-tuberculosis medication used in the treatment of  
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Fig. (5). Two selected drugs which present cardiac mitochondrial toxicity, the antineoplastic doxorubicin (DOX) and the anesthetic lido-

caine. A) DOX causes a dose-dependent cardiomyopathy by a mechanism that appears to involve increased mitochondrial oxidative stress in 

the heart tissue, resulting in MPT induction and overall mitochondrial dysfunction, which can in some cases compromise cardiomyocyte 

survival. Inhibited mitochondrial respiration, increased MPT induction and decreased mitochondrial ATP synthesis after DOX treatment will 

disturb, among other cell processes, the maintenance of ionic homeostasis and heart contractility. B) Lidocaine-induced mitochondrial dys-

function. Lidocaine has been described to interfere with the function of several mitochondrial proteins including the ATP synthase, the mito-

chondrial lactate dehydrogenase (LDH) and mitochondrial KATP channels. Disturbance of mitochondrial oxidation of substrates and inhibi-

tion of the mitochondrial ATP synthase can result into decreased cardiac ATP concentration and consequent loss of ion homeostasis, which 

can explain cardiac rhythm disturbances observed in some patients. 
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mycobacterial infection. The molecule is metabolized in the 
liver via acetylation and dehydrazination [147], with the N-
acetylhydrazine metabolite being responsible for the hepato-
toxic effects by causing several symptoms including nausea, 
vomit, dark urine, fatigue, pain, melancholy and weakness. 
The interaction with cytochrome P450 system and increased 
oxidative stress have been associated with mitochondrial 
permeability alterations [133, 148]. 

 Valproic acid is an antiepileptic drug that can provoke 
hepatotoxicity when used in inappropriate doses. The mole-
cule is metabolized in the liver, via mitochondrial -
oxidation and gluocoronic acid conjugation, producing mul-
tiples metabolites. Valproic acid is activated and binds to 
reduced acetyl-CoA, which allows its translocation to the 
mitochondrial matrix, and the consequent inhibition of sev-
eral mitochondrial enzymes and decreased fatty acid -
oxidation [149]. 

 Tamoxifen is a non-steroidal anti-estrogen agent, which 
has been successfully used as a post-operative adjuvant ther-
apy for breast cancer [150]. Tamoxifen is generally well 
tolerated with few side effects, especially when used at a 
typical dose of 10 mg twice daily [150]. Reports of ta-
moxifen-induced hepatotoxicity [150] may be explained by 
results obtained on isolated liver mitochondria. One particu-
lar study observed that tamoxifen and/ or estradiol lead(s) to 
mitochondrial failure by acting on the flavin mononucleotide 

(FMN) site of mitochondrial complex I [151]. The data pro-
vided mechanistic bases to understand the multiple cytotoxic 
effects of tamoxifen and also why tamoxifen-resistant breast 
cancer can revert to tamoxifen-sensitive with the use of es-
tradiol at the apropriate time. Tamoxifen (25 μM) alone 
induced a significant increase in hydrogen peroxide produc-
tion and state 4 respiration. In addition, a significant de-
crease in the respiratory control ratio and in the transmem-
brane electric potential were also observed. All of the delete-
rious effects induced by tamoxifen were highly exacerbated 
in the presence of estradiol [151]. Tamoxifen-induced inhibi-
tion of topoisomerases, mitochondrial DNA depletion and 
also the triggering of steatosis in mouse liver was also previ-
ously demonstrated [152]. The study demonstrated that ta-
moxifen is electrophoretically accumulated inside hepatic 
mitochondria, where it acutely impairs -oxidation and respi-
ration. It has also been demonstrated that tamoxifen can 
decrease fat removal from the liver and steatosis, despite a 
secondary down-regulation of hepatic fatty acid synthase 
expression [152]. Another report confirmated that tamoxifen 
may cause toxicity through a mitochondrial mechanism since 
it demonstrated tamoxifen-induced oxidative stress and mi-
tochondrial apoptosis via the stimulation of mitochondrial 
nitric oxide synthase [153]. Interestingly, the report showed 
that tamoxifen increased intramitochondrial Ca

2+
 and stimu-

lated NO synthase activity in mitochondria from rat liver and 
human breast cancer MCF-7 cells. In the same study, ta-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Basic scheme of the drug development process involving mitochondria as an important marker for drug-induced toxicity. The thick-

ness of each arrow exemplifies the number of different molecules in each evaluation stage. Drug toxicity on mitochondria is proposed as the 

bottleneck step in decision-making. When facing a compound that presents mitochondrial toxicity, the industry must face a difficult choice 

whether to drop the molecule altogether from further assays or in alternative use other in vitro and in vivo models. 
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moxifen was confirmed to inhibit mitochondrial respiration, 
induce cytochrome c release and increase mitochondrial lipid 
peroxidation and tyrosine nitration of mitochondrial proteins. 
The enzymatic activity of succinyl-CoA:3-oxoacid CoA-
transferase was decreased and mitochondrial aggregation 
was augmented [153]. 

 Flutamide (2-methyl-N-[4-nitoro-3(trifluoromethyl) 
phenyl]propamide) is a non-steroidal antiandrogen which 
behaves as a competitive agonist of the androgen receptor, 
being considered a good treatment for prostate cancer when 
used in combination with luteinizing hormone-releasing 
hormone agonists or in orchiectomy [154]. Flutamide-
induced hepatic dysfunction is considered to be a conse-
quence of its biotransformation by cytochrome P450. The 
resulting electrophilic metabolites bind to microsomal pro-
teins leading to hepatitis. A higher incidence of hepatotoxic-
ity was found in Japanese patients, the difference being at-
tributable to ethnic differences in the frequency of genetic 
polymorphism in drug metabolizing enzymes [154]. The 
complete mechanism of flutamide-induced hepatotoxicity 
has not yet been precisely elucidated. Studies with rat liver 
mitochondria incubated with 50 μM flutamide indicated that 
this drug inhibited respiration, mainly by decreasing com-
plex I activity [155]. Higher concentrations of flutamide (1 
mM) decreased ATP levels in isolated male rat hepatocytes 
[155]. The authors concluded that flutamide is toxic to rat 
hepatocytes as a result of cytochrome P450-mediated forma-
tion of electrophilic metabolites, which also contributed to 
the inhibitory effect of flutamide on mitochondrial respira-
tion and ATP formation [155]. 

 Besides cardiotoxicity (see above), hepatotoxicity is also 
one of the most serious complications of highly active 
antiretroviral therapy (HAART). A wide range of nucleoside 
analogs used in Human Immunodeficiency Virus (HIV) 
treatment exhibits a delayed clinical toxicity limiting their 
usage. As for the heart, the toxicity of nucleoside analogs 
may be related to mitochondrial toxicity, mediated by the 
DNA mitochondrial polymerase gamma. Among the anti-
HIV drugs in clinical use, two are modified cytosine analogs, 
such as Zalcitabine (ddC) and Lamivudine ((-)3TC) [156]. 
Feng et al. (2001) performed structure/function relationships 
of mitochondrial DNA polymerase inhibitors and demon-
strated that the D-isomer of Lamivudine (+3TC) is a more 
potent inhibitor of human mitochondrial DNA Pol  than the 
(-) isomer, the difference being related with tighter binding 
and faster incorporation rate into the DNA double helix, 
which leads to greater toxicity [156]. AZT (3’-Azido-3’-
deoxythymidine), a thymidine analogue, inhibits the viral 
reverse transcriptase, which blocks the life-cycle of HIV and 
slows the progression of the disease [93]. When given for 
long time periods and at high doses, AZT is known to cause 
toxicity in many tissues, including the liver. The results 
showed that in isolated rat liver mitochondria, the phos-
phorylation of thymidine to TMP exhibit higher Vmax and km 
than in heart mitochondria. AZT is phosphorylated to 
AZTMP, but no further derivatives were detected. Another 
study [157] demonstrated that AZT treatment resulted in 
metabolic disruption (increased lactate and superoxide pro-
duction) and increased liver hepatoma HepG2 mortality with 
decreased proliferation, while mtDNA remained unchanged 
or even increased. Zalcitabine (ddC) caused pronounced 
mtDNA depletion in HepG2 cells but not in myoblast H9c2 

cells and increased cell mortality, but no metabolic disrup-
tion, in either cell type [157]. 

 Of relevance for hepatic mitochondrial toxicity is the 
existence of a cytochrome P450 system (CYP) in mitochon-
drial membranes, which can be regulated by phosphorylation 
[158]. Mitochondrial CYP systems have been overlooked 
when considering the mechanisms of toxicity of several 
xenobiotics, because their real function is still a subject of 
debate [159]. Nevertheless, some studies indicate that it is 
the activity of the mitochondrial CYP isoforms that increase 
the toxicity of some xenobiotics, including dioxins [160]. If 
demonstrated that mitochondrial CYP actively participate in 
the liver and in other tissues in drug conversion processes, 
the use of inhibitors is a two-edged sword, since the degree 
of mitochondrial toxicity of the parent compound vs metabo-
lites should be first evaluated. 

2.3. Renal Mitochondrial Toxicity 

 Apoptosis has an important role not only in the physio-
logical processes of kidney growth and remodeling but also 
in various renal diseases and drug-induced nephrotoxicity. 
Apoptosis in the kidney is a double-edged sword because not 
only it leads to tissue loss and dysfunction but also contrib-
utes to eliminate intoxicated cells and to control proliferative 
responses [161]. 

 Regarding anti-neoplastic renal toxicity, two compounds 
are considered classic examples: doxorubicin (DOX, see 
above) and cisplatin. The toxicity of DOX on mitochondria 
was shown to involve release of cytochrome c and activation 
of caspase-9 in rat proximal tubular cells [162]. Nephrotox-
icity is also a severe consequence of aggressive therapy with 
cisplatin [163]. This chemotherapeutic agent accumulates in 
cells in all nephron segments but it is especially found in S1 
and S3 segments of the proximal and distal tubules [164]. 
Cisplatin toxicity appears to involve inhibition of protein 
synthesis, mitochondrial injury and DNA damage causing 
blockage of DNA replication and gene transcription due to 
the formation of single and double strand DNA breaks. Cis-
platin treatment results in renal mitochondrial translocation 
of the pro-apoptotic molecule Bax [165] and activation of 
the initiator caspases-8, -9, -2, and executioner caspase-3 in 
cultured tubular cells and in in vivo models [166, 167]. It 
was demonstrated that cisplatin-induced renal apoptosis is 
mediated by p53 and caspase 3-activation independently of 
caspase 8 and 9 [168]. Hydroxyl radicals were found respon-
sible for cisplatin-induced apoptosis as hydroxyl radical 
scavengers inhibited cytochrome c and caspase activation 
[169]. When renal collecting duct-derived cells were incu-
bated with inhibitors of the mitochondrial respiratory chain 
or ATP-synthase, cisplatin-induced apoptosis was strongly 
enhanced showing that intact mitochondria are essential to 
prevent cisplatin-induced apoptosis [170]. Interestingly, it 
was shown that cisplatin-induced renal cell death is mediated 
by the mitochondrial protein Omi/HtrA2 [171]. 

 Aminoglycoside antibiotics including gentamicin are 
widely used in the treatment of gram-negative infections. 
Gentamicin is able to alter mitochondrial respiration, causing 
state 4 stimulation and state 3 inhibition [172]. It is known 
that gentamicin leads to the formation of hydrogen peroxide 
by renal cortical mitochondria; also, radical scavengers and 
iron chelators provided functional and histological protection 
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against renal failure in gentamicin treated rats [173]. Gen-
tamicin has been shown to release iron from renal cortical 
mitochondria. This was supported by in vitro studies in 
which iron chelators protected against gentamicin acute renal 
failure [174]. The results strongly support the importance of 
hydroxyl radicals or a similar oxidant in gentamicin-induced 
renal failure. Gentamicin-induced mitochondrial dysfunction 
involves the release of cytochrome c and the activation of 
caspase-3 [175], which can be prevented by overexpression 
of Bcl-2. Cytosolic gentamicin can act on mitochondria by a 
direct effect or indirectly by inhibiting Bax proteosomal 
degradation. The later was demonstrated by an increase of 
ubiquitinated Bax, which was correlated with increase bond-
ing of gentamicin to the ß type 9 subunit of the proteosome 
[161]. 

 Cyclosporin A has been used as the major advance in 
transplantation, enhancing graft and patient survival; its use, 
however, is restrained by nephrotoxicity. Chronic cy-
closporin A nephrotoxicity, characterized by tubular atrophy 
and interstitial fibrosis with progressive renal impairment, 
contributes to chronic kidney problems [161]. Apoptosis 
induced by cyclosporin A on tubular epithelial cells is re-
lated to the translocation of Bax to mitochondria as Bax 
antisense oligodeoxynucleotides prevented cyclosporin A-
induced apoptosis [176]. It was also previously documented 
that cyclosporin A-induced nephrotoxicity is related to an 
alteration of Ca

2+
 intracellular homeostasis [177], including 

increased Ca
2+

 accumulation into the matrix and delay of 
efflux [178], as well as increased ROS production [179]. 

3. Mitochondria as a Traditional Bio-Sensor for Toxico-
logical Studies 

 The present section is aimed at the description of isolated 
mitochondrial fractions as an in vitro model for studying 
xenobiotic toxicity. Most studies were performed in research 
laboratories by using mitochondrial fractions from different 
sources, especially the liver, and were performed in a low 
throughput manner, with only a few compounds tested per 
day. Nevertheless, there was already a general understanding 
that mitochondria could be a reliable, inexpensive bio-sensor 
to gather preliminary data on drug-induced toxicity. 

3.1. Traditional Methodology 

 Various analytical techniques can be employed to inves-
tigate mitochondrial function in vitro, including the use of 
absorbance spectroscopy to assess the redox state of mito-
chondrial cytochromes, fluorescent calcium dyes (such as 
Calcium-Green 5N), measurement of ATP levels, assessment 
of reactive oxygen species (ROS) production, and measure-
ments of mitochondrial membrane potential ( ) and oxy-
gen consumption. One of the most informative techniques 
for assessing mitochondrial function is the screening of mi-
tochondrial oxygen consumption [180-184]. Detected 
changes in mitochondrial function after the addition of a test 
chemical could be correlated to its toxic effects. Polarogra-
phy using the Clark-type oxygen electrode [185] has been 
the main technique for measuring pO2 and hence establish 
oxygen consumption, and is still widely used in the labora-
tory [186-188]. Although experimental approach has proven 
very useful, the methodology is associated with a number of 
inherent limitations. These include the invasive nature of 
measurement, intrinsic oxygen consumption by the elec-

trode, sensitivity to mass exchange (stirring requirements), 
sterility and reuse issues, electrode poisoning and signal drift 
[120]. 

 The measurement of mitochondrial protonmotive force 
( p) is another important end-point for mitochondrial func-
tion. All quantitative methods to measure p and its compo-
nents rely directly or indirectly on the measurement of the 
equilibrium distribution of positively charged probes across 
the mitochondrial inner membrane. It is important to main-
tain a low probe concentration, otherwise its movement 
across the membrane will have a significant effect on the 
gradient that is being measured [185]. The accumulation of 
the probe molecules is monitored by following some appro-
priate change in absorbance or fluorescence, by the use of 
radiolabels, or by measurement of the external concentration 
with ion-selective electrodes. Distribution of tetraphenyl-
phosphonium cations (TPP

+
) can also be monitored with 

electrodes that report the extramitochondrial concentration. 
From the change in internal concentration and the volume of 
the mitochondrial matrix it is possible to calculate the in-
tramitochondrial concentration, and hence the  value. But 
to obtain p, both  and pH should be measured. It is 
sometimes convenient to avoid the need to measure pH by 
clamping it to zero, so that p is equivalent to . Some of 
the inherent limitations are quite the same as those of the 
Clark type oxygen-electrode [185]. However, the primary 
limitations in the context of toxicity assessment within drug 
discovery are the low sample throughput and the lack of 
flexibility and automation associated with electrode-based 
systems [189]. 

 Mitochondrial ROS production can be assessed by load-
ing mitochondria with dyes, which, by reacting with radical 
species, can produce fluorescent derivatives (e.g. reduced 
xanthene dyes such as dichlorohydrofluorescein) [190]. This 
approach facilitates analysis of ROS providing an insight 
into the activity of the ETC, but can be limited due to the 
nonspecific nature of product formation. In addition, it has 
been noticed that fluorescent potential-sensitive probes 
themselves may interfere with mitochondrial function [93, 
190, 191]. 

 Another type of mitochondrial function end-point studied 
by traditional methodology is mitochondrial calcium reten-
tion capacity. Calcium Green-5N is a fluorescent dye that is 
used to assess Ca

2+
 retention capacity of isolated mitochon-

dria [192]. Other mitochondrial calcium probes exist and can 
be used on a spectrophotometer or fluorimeter [193, 194]. 
The use of probes to measure ion movement is always trou-
bled because of the possibility of artifacts arising from in-
complete organelle loading, toxicity of the probe itself or 
even damage from the excitation light. One way of avoiding 
some of those problems is by using calcium-selective elec-
trodes [195], although problems inherent to the use of elec-
trodes still exist (see above). 

 The ability of mitochondria to swell under a wide variety 
of conditions, including PTP induction, is a property which 
has been the subject of intensive investigation for more than 
a decade [196, 197]. Light scattering of mitochondrial sus-
pensions has become the technique of choice to detect mito-
chondrial size change [198]. This technique, however, has 
certain limitations. First, this technique cannot provide in-
formation on the situation in situ. Second, robust isolation of 
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mitochondria in potassium-free sucrose medium probably 
damages mitochondrial membranes, disrupting contact sites 
and leading to dramatic matrix contraction [199]. Changes in 
mitochondrial light scattering may not always reflect 
changes in matrix volume. A recent study demonstrated that 
light scattering can give positive results when no changes are 
seen by isotope techniques, and suggested that light scatter-
ing might be sensitive to conformational changes of the 
mitochondrial adenine nucleotide carrier [200]. Moreover, 
the results of several fluorescent microscopy studies in situ 
do not fully support results obtained earlier by light scatter-
ing [201-206]. On the other hand, the microscopy techniques 
have their disadvantages. Limited spatial resolution of actual 
fluorescence microscopy precludes 3D imaging of submi-
cron scale cellular compartments. Electron microscopy pro-
vides the necessary resolution, but does not enable the study 
of functioning mitochondria; besides, the fixation procedure 
itself affects mitochondrial volume. 

 There are other methods to measure mitochondrial toxic-
ity that have been used in early screening of compounds, 
including measurement of mitochondrial dehydrogenase 
activities using Alamar Blue, determination of ATP produc-
tion using the luciferin-luciferase luminescent assay [207] or 
the assessment of mitochondrial membrane potential using 
flow cytometry [208]. The problem inherent with most of the 
methods above is that the amount of test compounds to study 
each day is limited, which increases the span of time re-
quired for correctly assessing the safety of a family of com-
pounds. 

3.2. Validity of the Use of Mitochondria as an In vitro Bio-

sensor 

 The widespread use of mitochondria as a toxicological 
test was initiated at the end of the 80’s, when phosphorylat-
ing submitochondrial particles were used as in vitro monitors 
of water quality [182], although many molecules had been 
already tested on isolated mitochondrial fractions. Among 
the different techniques used to investigate mitochondrial 
toxicity the TPP

+
-electrode was one of the most used even in 

alternative systems as synaptosomes [209] or yeast mito-
chondria [210]. Another experimental protocol used in envi-
ronmental toxicology was the use of reverse electron transfer 
which allowed for a sensitive quantification of acute toxicity 
by measuring the rate of NAD

+
 reduction [182]. The correla-

tion between drug concentrations that altered enzyme func-
tion or membrane stability in electron transport submito-
chondrial particles and plasma concentrations associated 
with whole organism toxicity suggested that such mitochon-
drial tests could be helpful to use in the human or environ-
mental risk assessment. Tests with submitochondrial parti-
cles were easier, faster and cheaper than whole animal test 
and culture analysis. By comparing mitochondrial data with 
serum drug concentrations, it was possible to partially vali-
date the use of mitochondria as a bio-sensor to assess the 
human health risks related to the exposure to a chemical 
agent [211]. In addition, alterations of mitochondrial respira-
tion could be another marker for mitochondrial toxicity. 
Mitochondria are highly sensitive to ions such as calcium 
and iron. False toxicity assessments would result if these 
ions are present with the test compound. Because of this, 
another mitochondrial system was developed. Yeast, which 
has higher life-time than mitochondria, can be easily har-

vested without damage to the mitochondrial respiratory 
chain and are not affected by the presence of calcium and 
iron ions. A dissolved oxygen electrode was used to assess 
toxicity by monitoring alterations in the respiratory rate of 
yeast cells. Despite its capacity to screen contaminants in the 
environment due to its quickness and short price, it is less 
sensitive than isolated mitochondria to indicate a toxic re-
sponse [212]. 

 The use of mitochondrial electron transport enzymes for 
preliminary drug safety tests permitted the prediction of 
chemical effects for a large variety of species because of the 
high conservation of these proteins during evolution. The 
analytical protocols are easily performed and only require a 
spectrophotometer, pH meter and a household refrigerator 
[211]. Isolated mitochondria and further preparation of sub-
mitochondrial particles was also fairly easy, furthermore it 
was possible to freeze mitochondria or submitochondrial 
particles at different temperatures for a future use. Although 
several function are lost during freezing (no generation of 
membrane potential is a serious drawback), toxicity of a 
certain drug on the activity of a complex of the MRC would 
still be possible to analyze. The method could be also used to 
assess the percentage of inhibition of the respiratory chain by 
a certain toxic substance found in water [213]. 

 From its use as a toxicological bio-sensor to a promising 
large-scale drug safety in vitro model, only a short jump was 
necessary, but that same jump meant the appearing of new 
fast track, high-throughput methods to evaluate thousands of 
compounds in a very short time. 

4. Mitochondria as a Drug Safety Bio-sensor: The New 
Experimental Strategies 

 Since 2006, the FDA approved the fewest number of 
drugs in the past 24 years, with only 19 new drugs being 
accepted. Above 75 new and revised “black box” warnings 
appeared since 2004, according to the report of The Wall 
Street Journal (published online July 2

nd
, 2008). 

 Apparently, drug safety is more and more an issue of 
concern for many pharmaceutical companies. The toxico-
logical effects of several drugs are only detected at a large 
phase III trial, the clinical phase of drug safety assessment 
and development. This is obviously a serious problem not 
only for patient safety but also for pharmaceutical companies 
which see more frequent FDA Black Box warnings in their 
labels, not mentioning that some may see their pharmaceuti-
cals withdrawn from the market. 

 For many pharmaceutical companies, drug safety as-
sessments are still made fairly late in the drug discovery 
process. However, it is clear that safety testing should be one 
of the first steps in the selection of lead compounds, espe-
cially when a great variety of compounds exist to support the 
creation of structure-activity relationships (SAR). The adop-
tion of newer in vivo, in vitro and in silico tools and the use 
of new and promising technologies must be the priority for 
pharmaceutical companies in order to increase drug safety 
[9]. 

 Despite the extensive use of isolated mitochondrial frac-
tions by several research groups as a model for the toxico-
logical action of several molecules, the industry kept its low 
interest in the use of such in vitro model to predict drug 
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toxicity. The change in opinion came when it was demon-
strated that several pharmaceuticals had to be withdrawn 
from the market due to intrinsic mitochondrial toxicity, thus 
causing an enormous economical burden in the companies 
and decreasing the people trust in how pharmaceutics safety 
is assessed [9]. Furthermore, it soon became clear that mito-
chondrial effects were part of the pharmacological mecha-
nism of action of several pharmaceuticals, one example of 
which being glitazones, which act to decrease blood glucose 
levels [214]. A growing body of evidence suggests that inhi-
bition of mitochondrial complex I can be part of their 
mechanism of action [214]. On the other hand, the capacity 
of some natural compounds (such as berberine) to induce the 
permeability transition pore and apoptosis can enable its 
usage as potential anti-cancer drugs [125, 215, 216]. 

 In order to prevent such dramatic and negative effects of 
drugs on mitochondria, a wide range of cell lines are used to 
evaluate pre-clinical drug toxicity. However, despite of the 
presence of metabolic active mitochondria, cells are grown 
under enriched glucose culture media and produce ATP 
mainly through glycolysis, and not through OXPHOS. Oxy-
gen consumption in these cells is low and cells are resistant 
to xenobiotics that impair mitochondrial function. By replac-
ing media glucose with galactose, Marroquin et al. created 
an experimental model capable of detecting mitochondrial 
injury [189]. After the substrate alteration, cells must use 
oxidative phosphorylation in order to obtain ATP, becoming 
more susceptible to toxicants that inhibit or uncouple mito-
chondria [189]. 

 High-throughput methods designed to evaluate mito-
chondrial toxicity of a certain molecule would allow the 
construction of a database, where a certain mitochondrial 
toxic effect could be attributed to common structural mo-
tives. Theoretical methods (viz. quantitative structure-
activity relationships, QSARs) based on data from com-
pounds with established mitochondrial toxicity could permit 
the design of novel compounds with decreased mitochon-
drial toxicity. Once the precise mechanism of drug mito-
chondrial toxicity is known, structural modifications in the 
molecule can be performed in order to alter its physical-
chemistry properties, although still maintaining the desired 
pharmacological action. Several high-throughput screening 
methods are now available to industry R&D to investigate 
the toxicity of the thousand of new molecules that appear 
every year. One particular example is the small-scale im-
munopurification of cytochrome c oxidase which can be 
used to investigate both direct effects of molecules on the 
activity of the isolated enzyme and to evaluate long-term 
effects on cytochrome c oxidase expression [217], which is 
particularly useful because many toxic molecules act by 
hindering mitochondria genetics. Immunocapture of mito-
chondrial Complexes I-V can also allow the precise identifi-
cation of the site of action of a determined compound, as 
opposed to an “average” effect on the entire respiratory chain 
[218]. The feasibility of the present method was confirmed 
by testing molecules with well known sites of action, includ-
ing classical inhibitors of the respiratory chain [218]. 

 Fluorescent dyes that report  can also be adapted to 96 
(or higher) well formats [219], although none of the assays is 
conclusive whether a compound is causing inhibition, un-
coupling or induction of the MPT. Also, as described else-

where, one golden standard to evaluate mitochondrial func-
tion is the measurement of oxygen consumption. The normal 
protocol in a research laboratory is to test several concentra-
tions of a test compound in the same preparation and repeat 
the experiment in 3 or more independent preparations. How-
ever, the conventional polarographic method to measuring 
mitochondrial oxygen consumption is not satisfactory to 
high sample automation. In order to test a full range of com-
pounds, the development of novel techniques was almost 
mandatory. Mitochondrial oxygen consumption optimized 
for multiwell plate reader detection using phosphorescent 
oxygen-sensitive probes is an important advance as it allows 
to simultaneously measure all the samples in a 96-well plate 
[190, 220]. In fact, it has been described that the method 
allows for the measurement of 200 compounds/day using 
one concentration or alternatively generate IC50 values for 
approximately 25 compounds. Such technique has been 
successful in the assessment of mitochondrial toxicity of 
fibrates, statins and of the hepatotoxicants nefazodone, tra-
zodone, and buspirone and has been described equally effec-
tive if used in cells, isolated mitochondria, enzymes, tissues 
and organisms [190, 220]. High-throughput measurements of 
respiratory complex activities and mitochondrial mtDNA 
replication and protein synthesis are also now possible using 
immunocapture technology, radiolabeled deoxynucleotide 
triphosphates (dNTPs) and S-methionine incorporation [221, 
222]. 

 Also, as described above, opening of the calcium-induced 
PTP can be a sensitive and early marker of mitochondrial 
dysfunction [139]. Although not widely used to measure the 
toxicity of novel compounds, high throughput methods using 
a multi-well plate are available and can be used when re-
quired to investigate if a certain molecule triggers mitochon-
drial dysfunction through decreasing mitochondrial calcium 
tolerance [223]. 

 Besides organelle and cell studies, animal models that 
better reveal mitochondrial toxicity are also being developed. 
One such model is the manganese superoxide dismutase 
(MnSOD) knockdown mouse that is more sensible in detect-
ing drug-induced mitochondrial impairment. Several other 
transgenic animal models have been generated with a pheno-
type that includes mitochondrial damage, such as mice with 
deficiencies in uncoupling proteins, mitochondrial transcrip-
tion factor A (tfam), glutathione peroxidase-1, -ghitamyl 
transpeptidase or in the ANT [224]. 

 The available diagnostic procedures for assessing mito-
chondrial damages are biopsy and histopathology which are 
invasive medical procedures. Non-invasive or minimally 
invasive technologies are being developed such as metabolic 
intermediates containing non-radioactive 

13
C atoms that can 

be orally administrated with the rate of 
13

CO2 exhalation 
monitored using isotope ratio mass spectrometry. 

5. Can We Use Mitochondrial Research to Increase Drug 
Safety? 

 The logical answer to the question is “Yes, we can and 
we should”. From the previous sections, it is perfectly clear 
that mitochondria are critical components of cell physiology 
and that several clinically used drugs harbor toxic effects on 
mitochondria in different target and non-target organs. It is 
also clear that the pharmaceutical industry now has the tools 
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to investigate in a more throughput manner the direct interac-
tions between different molecules and mitochondrial models. 
Identifying mitochondrial toxicity as soon as possible in the 
drug development process increases the likelihood that toxic-
ity during clinical practice will be avoided. Depending on the 
targeted disease, severe in vitro mitochondrial impairment 
may be enough to abandon a promising or nascent drug. 
Pharmaceutical companies have also now a new dilemma, 
which is to know how much of the supposedly mitochondrial 
toxicity is a component of the pharmacological effect. Just to 
cite one example, it has been demonstrated that metformin, 
an anti-diabetic agent, inhibit mitochondrial complex I, 
which appears to be part of its pharmacological mechanism 
[214]. 

 On the other hand, it may be a difficult choice to discard 
compounds showing a certain degree of mitochondrial toxic-
ity in in vitro tests but with a very significant pharmacologi-
cal effect. Pharmaceutical companies may choose to push the 
compound forward for further in vivo assays in order to also 
identify ways of decreasing undesirable mitochondrial toxic-
ity. Different pharmacotherapeutic strategies can be used to 
decrease mitochondrial toxicity. The cardiac toxicity of 
doxorubicin (DOX) is a classical example. One possibility to 
decrease drug-induced mitochondrial toxicity would be by 
improving drug targeting, reducing the amount of drug that 
reach non-target organs. One particular example of this strat-
egy is the use of pegylated liposomal DOX, which has a 
distinct pharmacokinetic profile characterized by an ex-
tended circulation time and a reduced volume of distribution 
[225]. The alternative formulation was also, in fact, found to 
decrease the incidence of cardiac toxicity [225], although 
studies are still lacking in order to understand if cardiac 
mitochondrial toxicity is also minimized. Optimizing the 
dosage regimen is also attractive, as lower, although still 
pharmacologically effective dosages may decrease mito-
chondrial accumulation of lipophilic drugs in some tissues. 
Another possibility is the co-administration of mitochondrial 
protective agents, one example of which being the preventive 
role of the beta-adrenergic antagonist carvedilol on DOX-
induced cardiac mitochondrial dysfunction [226]. Once in 
the clinic, drugs with mitochondrial liabilities require in-
creased vigilance, especially if several pharmaceuticals are 
used at the same time [9]. 

 The refinement of different methodologies results into 
higher success rates in the isolation of functional mitochon-
drial fractions from different organs, which can be used to 
assess mechanisms of tissue-specific drug-induced mito-
chondrial toxicity. Nevertheless, studies with isolated mito-
chondria lack the complexity associated with experiments in 
intact cells, in whole organs or even in in vivo studies. Nev-
ertheless, it is also true that the use of isolated mitochondrial 
fractions allows pinpointing precise sites of action of the 
molecule on mitochondria. In a perfect world, the perfect 
drug safety assessment would correlate data in isolated mito-
chondria with data gathered in intact cells and in in vivo (Fig. 
4). 

 One important point in this entire discussion regards 
what can be gained by using mitochondria as a bio-sensor to 
investigate drug safety. One particular example: nefazodone, 
an anti-depressant. This drug was withdrawn from the mar-
ket in 2004, after several reports of serious hepatotoxicity 

[227, 228]. Would the use of mitochondria as predictors of 
drug safety helped in avoiding the entry of the drug in the 
market? The answer is, maybe so. Dykens et al. demon-
strated that nefazodone is highly toxic to isolated liver mito-
chondria, human hepatocytes and HepG2 cells, showing a 
clear mitochondrial toxicity even when cell lines were used 
[229]. If an initial assessment of mitochondrial toxicity had 
been done, it is very unlikely that nefazodone would have 
entered further clinical trials. 

 Industry-sponsored studies investigating drug-induced 
mitochondrial toxicity are know becoming more numerous. 
Examples include anti-depressants [229], anti-hyperglycemic 
agents [230], tyrosine kinase inhibitors [231] or thiazolidin-
ediones, fibrates and statins [232], among others (reviewed 
in [9]). More industry R&D will for sure follow the same 
example in order to identify, as early as possible, mitochon-
drial toxicity of new agents under development. 

 To further complicate things, idiosyncratic drug toxicity 
is also a problem during drug development. Host-dependent 
drug-toxicity is not easily predictable during in vitro assays 
or during most clinical trials. Industry is now also focusing 
on a possible mitochondrial role on the mechanism behind 
idiosyncratic drug toxicity. One example is trovafloxacin, 
whose idiosyncratic toxicity was proposed to involve mito-
chondrial damage [233]. In an industry-sponsored study, 
unique gene changes induced by trovafloxacin and involved 
in mitochondrial damage were detected [233]. 

 It is now apparent that mitochondrial toxicology has 
become an area of interest to the industry, since a primary 
assessment of mitochondrial toxicity of a range of com-
pounds can be performed in a fast and relatively inexpensive 
way, avoiding some later human toxicity problems that may 
arise during subsequent testing stages or even during clinical 
use. We should expect to see in the future an increasing 
number of pharmaceutical companies establishing protocols 
to assess mitochondrial toxicity of novel molecules under 
study in a fast and inexpensive way. Some companies will 
focus more on investigating direct drug-induced mitochon-
drial dysfunction, others will rather measure drug-induced 
alterations in mitochondrial-relevant genes. Whatever the 
chosen strategy is, the final outcome is the prediction of drug 
safety based on a mitochondrial end-point. 
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