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Abstract

We continue the development of the homological theory of quan-
tum general linear groups previously considered by the first author.
The development is used to transfer information to the representation
theory of quantised Schur algebras. The acyclicity of induction from
some rank-one modules for quantised Borel-Schur subalgebras is de-
duced. This is used to prove the exactness of the complexes recently
constructed by Boltje and Maisch, giving resolutions of the co-Specht
modules for Hecke algebras.

1 Introduction

In [SY12] the last two authors constructed characteristic free projective
resolutions of the Weyl modules for the classical Schur algebra. Then,
using the Schur functor, obtained resolutions by permutation modules
of the co-Specht modules for the symmetric group. This last result
allowed them to prove Conjecture 3.4 of Boltje and Hartman [BHI1I].
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1 INTRODUCTION

The key ingredients of [SY12] are the use of the normalised bar res-
olution in the context of Borel-Schur algebras and Woodcock’s Theo-
rem [Wo094b]|, which reduces the construction of projective resolutions
for Weyl modules to the construction of projective resolutions for rank-
one modules for the Borel-Schur algebra. The original motivation of
the present paper was to extend the results of [SY12] to the context of
quantised Schur algebras and Hecke algebras. This is easily achieved
once one has a quantised version of the generalization of Woodcock’s
theorem given in [SYT2].

Fix positive integers n and r, a commutative ring R and an invert-
ible element ¢ in R. Consider the quantised Schur algebra Sg 4 (n,7)
and the quantised positive Borel-Schur algebra ngq (n,7). For each
partition A = (A1,...,A,) of r there is a rank-one module R) for
S;tf’q (n,r). The induced module

Rq . _
W, 7.= SR.q (n,r) ®SE () Ry

is the Weyl module associated with A. Following [SY12], we work in the
category of SE q (n,r)-modules and use the normalised bar resolution
to construct a projective resolution of Ry. Next we apply the induction
functor Sg 4 (n,r) ®si ( to this resolution and obtain a complex

B of finite length

n,r)

R,q R,q R,q
o= By = Byy = W =0,

where each B,f’f is a projective Sg 4(n,r)-module.
To show that this complex is exact we use Theorem which is
the quantised version of Woodcock’s Theorem. So Bf”’)? is a projective

resolution of the quantised Weyl module Wf ' and it is simple to see
that this resolution is universal, that is

R, ~ pZit
B*,)\ = B*,)\ ®z R’

where Z =7 [t, t_l] is the universal quantization ring.

Write Hp,q for the Hecke algebra over R associated with the sym-
metric group X,. In [BM12], Boltje and Maisch constructed, for each
composition A = (A1,...,A,) of 7, a complex C?‘ of left Hp q-modules
and proved that it is exact in degrees 0 and —1. Specializing to ¢ = 1,
C? coincides with the complex constructed in [BHII]. Suppose that A
is a partition of . Then the last module in (2\ is the dual of the Specht
module S* over Hr,. It was proved in [SY12] that in this situation
upon specializing to ¢ = 1 the resulting complex is exact. It is natural
to conjecture that the same should be true for an arbitrary gq.

Returning to our setting, we choose n > r and fix A a partition of
r into at most n parts. We apply the Schur functor

F: Sgq(n,r)-mod — Hp -mod

to our resolution Bf’f and obtain an exact complex F' (Bf’f) which

we prove to be isomorphic to 5;\ This proves the exactness of (2\
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We approach the quantisation of Woodcock’s Theorem, as described
above, via the representation theory of the quantum general linear
group G(n) of degree n, introduced in [DD9I]. In fact we take this
opportunity to develop the homological theory previously considered
in [Don96] and [Don98|. The focus here is on a comparison between
the homological algebra in the category of polynomial modules and in
the full category of modules for the quantum group. We work over an
arbitrary field K and non-zero parameter ¢ € K.

Let B(n) be the negative Borel (quantum) subgroup of G. We
prove in particular that the derived functors of induction Riindggzg
take polynomial modules to polynomial modules, Corollary 7.7. Fur-

thermore we show that if V' is a homogeneous polynomial B(n)-module
bV
the tensor product is not commutative in the category of modules for
a quantum group. However, we show that if L and M are B-modules
and L is one dimensional then the B-module L ® M and M ® L are
isomorphic, Proposition 7.1. Using this property and a Koszul reso-
lution we show that the polynomial part of the coordinate algebra of
B(n) is acyclic for the induction functor. This leads to the fact that
the derived functors of induction applied to a polynomial B(n)-module
are the same whether computed in the polynomial category or the full
module category, Theorem 7.5. Kempf’s Vanishing Theorem for rep-
resentations of quantum groups, when expressed in the polynomial
category, is essentially the quantised version of Woodcock’s Theorem,
over a field. Some further work is needed to expressed this in terms
of the acyclicity theorem for induction over Schur algebras, over an
arbitrary coefficient ring, mentioned above, Theorem 8.4.

Though not needed for the application to resolutions we also take
the opportunity to give the generalisation to the quantum Borel sub-
group B(n) of another theorem of Woodcock, [W0092], Theorem 7 and
[Woo94a] (see also [Woo97T] for related material obtained by working
with global bases). This theorem asserts that the extension groups be-
tween polynomial B(n)-modules of the same degree whether calculated
in the polynomial category or the full B(n)-module category are the
same, Theorem 5.2. We approach the quantised version by considering
the derived functors of the functor pol, which takes a B(n)-module
to its largest polynomial submodule. Though in detail it looks quite
different it is in spirit rather close to the approach of [Wo092], and we
gratefully acknowledge the influence of this unpublished work.

The organization of the present paper is as follows. We first study
the homological results for quantum G(n) and its negative Borel sub-
group. Then we use this to obtain the quantised version of Woodcock’s
Theorem, Theorem [8:4] In the last part of the paper we construct uni-
versal projective resolutions for quantised Weyl modules. Using these
resolutions, we prove the exactness of Boltje and Maisch complexes for
dominant weights.

of degree r then Rind =0 for all ¢ > r, Lemma 6.2. In general
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2 Restriction and induction of comodules

We fix a field K. For a vector space V over K we write V* for the
linear dual Homg(V,K) and if W is also a vector space over K we
write simply V ® W for the tensor product V ®@g W. We write idx for
the identity map on a set X.

For a coalgebra A = (A, d4,€4) over K we write Comod(A) for the
category of right A-comodules and write comod(A) for the category
of finite dimensional right A-comodules. We recall for future use the
definition of the coefficient space of an A-comdodule. Let V = (V| 1)
be a right A-comodule and let {v; : ¢ € I}, be a K-basis of V. The
coefficient space cf(V) is the K-span of the elements f;; € A defined
by the equations

7(vs) = Z'Uj ® fji
jel
for ¢ € I. (This space is independent of the choice of basis. For further
properties see [GreT6].)

Let B = (B, dp,€p) also be a coalgebra and suppose ¢: A — B is

a coalgebra map. Recall that for V' = (V,7) € Comod(A) we have

do(V) = (V, (idy ® ¢) o ) € Comod(B).

If f: V — V'’ is a morphism of right comodules then the same map
f:V — V' is also a morphism of B-comodules. In this way we have
an exact functor ¢p: Comod(A4) — Comod(B), with ¢o(f) = f, for
f a morphism of A-comodules. We call ¢y the ¢-restriction (or just
restriction) functor.
More interestingly perhaps, we have the ¢-induction functor

#°: Comod(B) — Comod(A). This is described in [Don80], Section 3,
and we briefly recall the construction and some properties. If X is a
K-vector space (possibly with extra structure) we write | X|® A for the
vector space X ® A regarded as an A-comodule with structure map
idy ®04. Let (W, u) € Comod(B). The set of all s € W ® A such that

(p®ida)(s) = (idw ® (¢ ®ida) 0 da)(s) eEWRB® A

is an A-subcomodule of [W|® A, which we denote ¢°(W). If f: W —
W' is a morphism of B-comodules then the map f ® id4 restricts
to an A-comodule map ¢°(f): ¢°(W) — ¢°(W’). In this way we
obtain a left exact functor ¢°: Comod(B) — Comod(A). Let V =
(V,A) € Comod(A) and W = (W,u) € Comod(B). We have a
natural isomorphism Homp(¢o(V), W)) — Homa(V,¢°(W)), taking
o € Homp(¢go(V),W)) to & = (e ®ida) o A.

Suppose now that A is finite dimensional. We consider the dual
algebra S = A* = Homg(A,K). Given a right A-comodule V' with
structure map 7: V — V ® A we may also regard V' as a left S-module
with action v = (idy ® a)7(v). If #: V. — V' is a morphism of right
A-comodules then, regarding V and V' as left S-modules, 6: V — V'
is also a morphism in the category of left S-modules. In this way
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we have an equivalence between the categories of finite dimensional
right A-comodules and of finite dimensional left S-modules. For finite
dimensional right A-comodules V, V' this equivalence of categories in-
duces a K-linear isomorphism Ext’y(V, V') — Exts(V,V’) in each de-
gree 1.

If S is a K-algebra and V is a left (resp. right) A-module then the
linear dual V* is naturally a right (resp. left) S-module. Now suppose
¢: A — B is a morphism of finite dimensional K-coalgebras and let
T = B*. The linear dual ¢*: T — S is a K-algebra map. Now A is
naturally an (S, .S)-bimodule with left action ca = (idy ® a)d4(a) and
right action a8 = (8 ® ida)d(a), for a € A, o, € S. We view an
S-module also as a T-module via ¢*.

We have the natural linear isomorphism n: V@ A — (V* @ A*)*.
The tensor product V* @7 A* is a quotient of (V* ® A*) and we thus
identify (V* @p A*)* with a subspace of (V* @ A*)*. From the defini-
tions one checks that an element y of V ® A lies in ¢%(V) if and only
if n(y) lies in (V* @ A*)*. The map 7 restricts to an isomorphism of
left A-modules

'V — (V* @p AY)*.

It follows that the derived functors of ¢° are given as follows.

Proposition 2.1. Let ¢: A — B be a morphism of finite dimensional
coalgebras over K. Then for V € comod(B) we have

R'¢°V = (Torf" (V*, A*))*
fori>0.

3 The quantum polynomial algebra in n?

variables

We shall work with the quantum general linear groups defined in
[DD91]. We briefly recall the construction and some properties, start-
ing with the construction of the quantum polynomial algebra. We fix
n > 1. Let R be a commutative ring and let ¢ € R. We write Ag 4(n)
for the R-algebra given by generators c;;, 1 < 7,5 < n, and relations:

CirCis = CisCir, for 1 <id,r, s <m;
CjrCis = qCisCjr, for 1 <i < j<n,1 <r<s<ny
CjsCir = CirCjs — (¢ — 1)eiscjr, for 1 <i<j<n,1<r<s<n.

We call the elements c¢;; the (¢,7) coordinate elements of Ag 4(n).
Since the relations are homogeneous, Ag ,(n) has an R-algebra grad-
ing Ar,q(n) = @,>0 Ar,q(n,r) in which each coordinate element has
degree 1. Then by [DD91], Theorem 1.1.8 the elements

mi1 M1z Min M21 m
ety et eyt e,
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with mq1,...,Mp, > 0, form an R-basis of Ag4(n). We make this
slightly more formal.

Let » > 0. As in [Gre07], we write I(n,r) for the set of maps
i: {1,...,7} = {1,...,n}. We identify ¢ € I(n,r) with the sequence
(41,...,4,) in the obvious way. For i,j € I(n,r) we write ¢;; for the
product ¢;,j, ...¢;5,.. We write ¢ < j if ¢ < jg, forall 1 < a <7,
and write ¢ < j if ¢ < j and ¢ # j. We write Y (n,r) for the set of all
pairs (i,7) € I(n,r) such that i; < --- <4, and whenever, for some
1 <a <r, we have i, = 7,41 then j, < jo+1. We write Y (n) for the
disjoint union of the sets Y'(n,r), r > 0.

Lemma 3.1. The elements c;j, with i,j € Y(n) form an R-basis of
Apq(n) and, for r > 0, the elements c;;, with i,j € Y(n,r), form an
R-basis of Agr,q(n,7).

We write I for the ideal of A 4(n) generated by all ¢;;, with 1 <
i < j < n. We leave it to the reader to check (by an easy induction
argument using the defining relations) the following result.

Lemma 3.2. The ideal I has R-basis c;j, with (i,j) € Y(n,r) for
some r and i, < jo, for some 1 <a <r.

We set A(n) = A(n)/I. For f € A(n) weset f = f+1 € A(n).
For 7 > 0, we write Y (n,r) for the set of all (i,j) € Y(n,r) such
that i > j. We set Y (n) = (J,>q Y (n,7). As an R-module we have
Apq(n) = I & D, where D 27@(173-)6?(71)30@- Hence we have the

following.

Lemma 3.3. Ag,(n) has R-basis ¢;j, (i,j) € Y(n), and, for r >0,
ARrq(n,r) has R-basis ¢;j, (i,7) € Y(n,r).

4 Quantum general linear groups

Let K be a field. The category of quantum groups over K is the dual
of the category of Hopf algebras over K. More informally, we shall
use the expression “G is a quantum group over K” to indicate that we
have in mind a Hopf algebra over K, which we will denote K[G] and
call the coordinate algebra of G. By the expression “6: G — H is a
morphism of quantum groups (over K)” we indicate that G and H are
quantum groups and that we have in mind a Hopf algebra morphism
from K[H] to K[G], which we call the comorphism of § and denote 6*.
We shall say that a quantum group H is a (quantum) subgroup of a
quantum group G over K to indicate that K[H] = K[G]/Iy for some
Hopf ideal Iy of K[G], which we call the defining ideal of H in G. If H
is a quantum subgroup of the quantum group G then by the inclusion
map i: H — G we mean the quantum group homomorphism such that
i*: K[G] — K[H] is the natural map.

Let G be a quantum group over K. By the category of left G-
modules we mean the category of right K[G]-comodules. We write
Mod(G) for the category of left G-modules and mod(G) for the cat-
egory of finite dimensional left G-modules. For VW € Mod(G) and
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i > 0 we write Extg(V, W) for Extiq(V,W). Let H be a quan-
tum subgroup of G. Then we have the induction functor ind$ =
¢°: Mod(H) — Mod(G), where ¢ = i* is the comorphism of the in-
clusion map i: H — G. The functor indg is left exact so we have the
derived functors R'ind% : Mod(H) — Mod(G), for i > 0.

We work with the quantum coordinate algebra Ag 4(n) of the pre-
vious section, now taking R = K and ¢ # 0. We write X, for the
symmetric group on {1,2,...,r}, for r a positive integer. To simplify
notation we will omit K and ¢ in subscript in the objects defined in
the previous section, where confusion seems unlikely.

By [DD91], Theorem 1.4.2, A(n) has a unique structure of a bialge-
bra with comultiplication §: A(n) — A(n)®A(n) and counit e: A(n) —
K, satisfying

3(eig) =Y cir®cry,  elci) =8y
r=1

for 1 <4, < n and where §;; is the Kronecker delta.
The quantum determinant

d= Z sgn(ﬂ')cl,ﬂ'(l)clm@) -+ Cnom(n)
TEY,
is a group-like element of A(n). Here sgn(m) denotes the sign of a
permutation 7. Furthermore, we have c;;d = qi_jdcij for 1 <4,5<nm
(see [DDII1l Section 4]). It follows that we can form the Ore locali-
sation A(n)q. The bialgebra structure on A(n) extends to A(n)q and
indeed the localisation A(n)q is a Hopf algebra. We write G(n) for the
quantum group with coordinate algebra K[G(n)] = A(n)q.

We write B(n) for the quantum subgroup whose defining ideal Iy,
is generated by all ¢;;, with 1 < i < j < n. We write T'(n) for the
quantum subgroup whose defining ideal is generated by all ¢;; with
1 <4,7 <nandi# j. The inclusion map A(n) — K[G(n)] gives
rise to an injective map A(n) — K[B(n)] by which we identify A(n)
with a subbialgebra of K[B(n)]. A G(n)-module V is called polynomial
(resp. polynomial of degree r) if cf(V)) < A(n) (resp.cf(V) < A(n,r))
and a B(n)-module M is called polynomial (resp. polynomial of degree
r) if cf (M) < A(n) (resp.cf(V) < A(n,7)). We shall often identify a
polynomial G(n)-module (resp. B(n)-module) with the corresponding
A(n)-comodule (resp. A(n)-comodule).

We shall also need the parabolic (quantum) subgroups containing
B(n). We fix a string a = (a1, . .., an,) of positive integers whose sum
is n. We let I(a) be the ideal of k[G(n)] generated by all ¢;; such that
1<i<j<aqora+---+a <i<j<a+- -+ a4 for some
1 < r < m. Then I(a) is a Hopf ideal and we denote by P(a) the
quantum subgroup of G(n) with defining ideal I(a). Thus we have
P(1,1,...,1) = G(n) and P(n) = B(n). For 1 < i < m we shall write
P; for the “minimal parabolic” P(a), where a = (1,1,...,2,1,...,1)
(with 2 in the ith position).

We now introduce certain combinatorial objects associated with the
representation theory of G(n) and its subgroups, following [Don96].
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We set X(n) = Z"™. We shall write §,,, or simply §, for (n — 1,n —
2,...,1,0) € X(n). For 1 <i<n wesete =(0,...,0,1,0,...,0)
(with 1 in the ith position). We have the dominance order < on X (n):
for A= (A1, o, An) = (11, oy pin) we write A pif Ay + -+ X <
w1+ Fp, forT<i<n,and A\y +---+ Xy = p1 + -+ pn-

We write X (n) for the set of all A = (Ay,...,\,) € X(n) with
A1 > -+ > A,. Elements of X(n) will sometimes be called weights
and elements of Xt (n) called dominant weights. We write A(n) for
the set of polynomial weights, i.e., the set of A = (A1,...,\,) € X(n)
with all \; > 0, and write A*(n) for the set of dominant weights,
Le.,, XT(n)A(n). We define the degree of a polynomial weight A\ =
(A1y...An) by deg(A) = A1 + -+ -+ Ay For r > 0 we define A(n,r) C
A(n) to be the set of all polynomial weights of degree r (or compositions
of r). We define the length, len(\), of a polynomial weight A to be 0 if
A =0 and to be the number of non-zero entries of A if A # 0.

For A = (A1,..., ) € X(n) we have a one dimensional B(n)-
module Ky: the comodule structure map 7: Ky — K, ® k[B(n)] takes
veKytov@(ch...ehn +1p(n)). Weregard K, also as a T'(n)-module
by restriction.

The modules Ky, A € X (n), form a complete set of pairwise non-
isomorphic irreducible T'(n)-modules. For a T'(n)-module V' we have
the weight space decomposition V = @yex(n)V?*, where V* is a direct
sum of copies of Ky, A € X(n).

For A € X(n) the induced module indggngA is non-zero if and

only if A € X*(n). We set V(\) = indj;")Ky, for A\ € X*(n). The
socle L(A) of V() is simple. The modules L(\), A € Xt (n), form a
complete set of pairwise non-isomorphic irreducible G(n)-modules and
the modules L(\), A € AT(n), form a complete set of pairwise non-
isomorphic irreducible polynomial G(n)-modules. We will write D for
the determinant module, i,e., the (one dimensional) left G(n)-module
L(,...,1).

Let 1 < i <mn. Let A = (A1,...,A\n) € X(n) and suppose that
m = A — Aiz1 > 0. We define V;(A) = indyVKy. Then V;() has
weights A — r(e; — €;41), 0 < 7 < m, each occurring with multiplicity
one (see [Don96], p251).

We shall need that a G(n)-module whose composition factors have
the form L(\) with A € AT (n) (resp. A € AT (n,r)) is polynomial (resp.
polynomial of degree 7). Given the results of [Don96] this follows from
the arguments in the classical case in [Don86]. We make this explicit.

Let 7 € X T (n). We say that a G(n)-module V belongs to 7 if each
composition factor of V' belongs to {L(A\)| A € ©}. For an arbitrary
G(n)-module we write O, (V) for the largest G(n)-submodule of V
belonging to . Regarding K[G(n)] as the left regular G(n)-module
we define A(m) = Or(K[G]). Then, by the arguments for the classical
case, [Don8&6], Section 1.2, one has the following.

Lemma 4.1. A(7) is a subcoalgebra of K[G(n)] and a G(n)-module V
belongs to m if and only if cf(V) < A(r).

In the case 7 = AT (n,r), 7 > 0, we have A(w) = A(n,r), see
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[Don96], p263, and taking 7 = A*(n), since AT (n) = (J,5q At (n,7),
we have A(m) = A(n). Hence the above lemma gives:

Lemma 4.2. A G(n)-module V is polynomial (resp. polynomial of de-
gree r) if and only if each composition factor of V' belongs to {L(\) | X €
At(n)} (resp. {L(\)|X € At(n,r)}).

Remark 4.3. We note that if M is a polynomial B-module then
indgM is a polynomial G-module. It is enough to check this for M
finite dimensional since induction commutes with direct limits. By the
left exactness of induction and the Lemma 4.2 it is enough to check
this for M one dimensional. So we may assume that M = Ky for
some A € A(n). But now we have

: G _ V()‘)7 Zf)‘ € A+(n);
5l = {o, if A ¢ A*(n)

and, in particular, indgM s polynomial.

5 Extensions of B-modules and polynomial
B-modules

Though it is not needed for the application to resolutions of modules for
the Borel-Schur algebras, we take this opportunity to put on record the
quantised version of [Wo097, Theorem 7] giving that, for homogeneous
polynomial B(n)-modules, the extension groups Ext’(V,X) are the
same whether calculated in the module category of the Borel-Schur
algebra or the full B(n)-module category. Though the proof given here
looks rather different it is similar at key points to that of Woodcock in
the classical case, [W0092] and we gratefully acknowledge the influence
of [Wo092|. A later proof was given in [Wo094a] using the deep theory
of cohomology of line bundles on Schubert varieties due to van der
Kallen, [vdK89] and related results are to be found in the later work
[Wo097] using the theory of global bases.

In this section we adopt the following notation. We put B = B(n),
A= A(n) and A, = K[Gn1,Em2,-- -5 Cmml)s Tm = Cmms Ym = Coty 5
for 1 <m <n. For o = (aq,...,a,) € A(n) we put 2% = z{* ... 20"
and y* = y{"'...y%". We write simply d for the restriction of the
determinant to the quantum subgroup B(n), i.e., d = x1...2,.

We have A = A; ® --- ® A, and it is easy to check that

A1, forl<m<mn;

K, form=1

as B(n)-modules.
We shall need the following result.

Lemma 5.1. Let A € A(n) and suppose 1 < m < n is such that
Am # 0. Let Z be a polynomial B-module such that for each weight
of Z, we have iy, = pimy1 = -+ = pn, = 0. Then we have

Exty(Ky, Z® Api1 @--- @ Ap) =0
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for all i > 0. In particular, we have
Ext’y(Ky, A/z, A) = 0
for alli > 0.

Proof. Suppose not and let i be minimal for which the lemma fails.
Since Ext%(Ky, —) commutes with direct limits, the lemma fails for
some finite dimensional Z and by the long exact sequence we may
assume that Z = K, for some p € A(n), with iy, = pimq1 = -+ =
tn =0. Now K, ®A;,11®---® A, has socle K, K[z 41, . .., 2] and
so for each weight v of the socle we have v,,, = 0. Since A, # 0 there
can be no non-zero image of Ky in the socle of K, ® Ap11 ® --- ® Ay
and therefore Homa (Ky, K, ® Apy1 @ - @ Ay) = 0. Thus we must
have i > 0.

Now we have a short exact sequence of A-comodules (or polynomial
B-modules)

02K, - 4® - ®A4,1—=0Q—=0

and for each weight v of A1 ®---®A,,_1, and hence Q, we have v,,, = 0.
Tensoring with A, 11 ® - -+ ® A,, we obtain the short exact sequence

0_>KH®Am+1®"'®An_>A1®"'®Am,1®Am+1®-~-®An
2QRAn1®---®A, —0.

But now A1 ®---® App—1 @ A1 ®- - - ® A, is an injective A-comodule
(since it is a direct summand of A, viewed as the right regular comod-
ule) so we get

Ext’y (K, K, @ Ap1 @ @ Ap) = Exty 'Ky, Q@ A1 @ @ Ay)

from the long exact sequence. This is 0, by the minimality of ¢, and so
we are done. O

We now consider the functor pol : Mod(B) — Comod(A), taking
X € Mod(B) to the largest polynomial submodule of X. For a mor-
phism 6: X — X’  of B-modules, pol (6): pol (X) — pol(X’) is the
restriction of 6.

For V € Comod(4), X € Mod(B), since the image of any B-
module homomorphism from V to X is contained in pol (X), we have
Homp(V, X) = Hom4(V,pol (X)). Thus we get a factorisation of left
exact functors

Homp(V,—) = Homy (V, —) o pol.

Moreover, pol (K[B]) = A and it follows that pol takes injective B-
modules to injective A-comodules. Thus, for V' € Comod(4), X €
Mod(B), we have a Grothendieck spectral sequence, with second page
ExtY (V, R7pol X), converging to Ext’(V, X). In particular, if & > 0
and R’pol (X) = 0 for all 0 < j < k, then we have the 5-term exact
sequence

0 — Ext® (V, pol X) — Ext%(V, X) — Hom(V, R*pol X)

1
— Ext"™(V, pol X) — Exth™(V, X). o
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Theorem 5.2. (i) Let X be a polynomial B-module. Then we have
Ripol (X) =0, for all i > 0.

(i) If V is also a polynomial B-module then the above spectral
sequence degenerates and we have Ext’y(V, X) = Exth(V, X), for all
i>0.

Proof. For k > 0 we prove by induction the statement P(k): for all
polynomial B-modules V', X’ we have Ripol X’ =0 forall 0 < i < k
and Ext’y (V', X') = Exty(V/, X'), for all 0 < i < k.

Note that P(1) is true since Homa(V’, X') = Homp(V’, X’) for
polynomial B-modules V', X’. We now assume P(k) and deduce P(k+
1).

We claim that RFpol A = 0. Assume, for a contradiction, that this
is not the case. Then the B-socle of R¥pol A is not zero so we have
Hompg(Ky, R¥pol A) # 0 for some A € A(n). Dimension shifting, using
the short exact sequence

0—-A—K[B]—K[B]/JA—0

gives Ext¥ 1 (Ky, K[B]/A) # 0. Now K[B] has an ascending exhaustive
filtration A Cd A Cd2AC--- and Ext%_l(K)\, —) commutes with
direct limits so we must have Ext®; 1 (Ky,d=*A/A) # 0 for some s > 0.
Hence we have Ext’ 1 (Ky,y*A/A) # 0, for some o € A(n). We choose
a,B € Aln) with 8; < ay, for 1 < i < n, and with deg(a) — deg(8)
minimal subject to the condition Ext’]“;l(KA,yaA/yBA) # 0. Note
that in fact we must have deg(a)) = deg(8) + 1 since if v € A(n) with
Bi <7 < ay, for all 4, then we get a short exact sequence

0— gﬂA/yﬁA — yaA/yBA —y*AJ/y"A — 0
and so we must have
Exth 1Ky, v A/yP A) # 0 or Exth 1Ky, y*A/y7 A) # 0.

Thus we have o« = 8 + €,,, for some 1 < m < n. Hence we have
Exth 1 (Ky, y?tem A/yP A) # 0 and so

Exty; 'Ky ® Kppe,,, Kgge,, ® (y° T A/yP A)) # 0.

Thus we have Ext% (K, A/x,,A) # 0, where v = A+  + €,,. By
the inductive hypothesis, we have

Ext" 1 (K,, A/, A) = Exth (K, A/z,A) # 0

and this contradicts Lemma 5.1. Hence we have R*pol A = 0. Since
RFpol commutes with direct limits we also have RFpol Z = 0, where
Z is a direct sum of copies of the right regular comodule A. Let X’ be
any polynomial B-module. Then X’ embeds in a direct sum of copies
of A, via the comodule structure map. Thus we have a short exact
sequence 0 =+ X’ — Z — Y — 0, where Z is a direct sum of copies of
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A and Y is a polynomial B-module. Now the derived functors of pol
give the exact sequence

RF1polY — R*pol X’ — R*pol Z = 0.

But also, we have R¥~!polY = 0, from the inductive hypothesis, so
that RFpol X’ = 0.

Now for V/, X’ € Comod(A) the 5-term exact sequence gives an
isomorphism Ext¥ (V’, X") — Ext%(V’, X’). This completes the proof
of P(k+1). Hence P(k) is true for all k. Thus we have Ripol X =0
for all ¢ > 0. This proves (i).

(ii) follows from (i).

O

Corollary 5.3. A B-module is polynomial if and only if all its weights
are polynomial.

Proof. If V' is a polynomial B-module then V embeds, via the comod-
ule structure map, into a direct sum of copies of A(n) and it follows
that all weights of V' are polynomial. To prove that a B-module V
with all weights polynomial is polynomial it suffices, by local finite-
ness, to consider the case in which V is finite dimensional. If V is
one dimensional then it is isomorphic to Ky, for some A € A(n), and
hence polynomial. Suppose now that V' has dimension bigger than
one and let L be a one dimensional submodule. We may assume in-
ductively that V/L is polynomial. We have a natural isomorphism
Extly(,)(V/L, L) = Extp(V/L, L), by the theorem and it follows that
every extension of V/L by L arises from an A(n)-comodule, in partic-
ular V' is polynomial. O

Let r > 0. We define the negative (quantised) Borel-Schur algebra
S~ (n,r) to be the dual algebra of A(n,r). We now obtain the quantised
version of a theorem of Woodcock, [Wo092], Theorem 7.

Corollary 5.4. Let V' and X be polynomial B-modules which are ho-
mogeneous of degree r. Then we have Ext—(, 1 (V, X) = Extp(V, X),
for alli > 0.

n,r)

Proof. We have
Extis— (0 (V, X) = Ext'y,, o (V, X) = Exty, (V, X) = Extp(V, X).

O

6 A vanishing theorem for polynomial
modules

To save on notation we shall abbreviate G(n), B(n),T(n) to G, B,T
where confusion seems unlikely.

We shall need a bound for the vanishing of R'ind$Kjy, for A € A(n).
We do this by an inductive argument using the function b that we

12
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now introduce. For each A € A(n) we shall define a non-negative
integer b(\). We define b on A(n,r), for r > 0 by descending induction
on the dominance order. If X\ is dominant or if A; — A1 = —1 for
some 1 < j < n we set b(A\) = 0. In particular this defines b(\) for
A= (r0,...,0). If X € A(n,r) is not of the form already considered
then we have A\; — A1 = —m;, with m; > 2, for some 1 < j <n. We
define

bJ(A) = Hl&X{b()\ + t(ﬁj — €j+1)) ‘ 0<t< mj} + 1.
and
b(A) = min{b;(\)| 1 < j < n, A, — A1 < —2}. (2)
By an easy induction one sees that if A = (A1,..., A, 0,...,0) with

A,y Am # 0 then b(A) = b(u), where p = (A — 1,..., A —
1,0,...,0).

Lemma 6.1. For A € A(n) we have b(A) < deg(A) —len(\).

Proof. Since A(1) consists of dominant weights the result holds for
n = 1. Suppose that it is false and let n be minimal for which it fails.
Let A € A(n) be a counterexample of smallest possible degree . If
A= (A1, Am,0,...,0) with Aq,..., Ay, # O then

b(A) =bA —1,...,A,—1,0,...,0)
<deg(A1 —1,...,A\n—1,0,...,0)
—len(A\1 —1,...,An —1,0,...,0)
=deg(\) —m —len(A\; — 1,..., A — 1,0,...,0)
< deg(A) — m = deg(A) — len(\).
Hence there exists some 1 < j < n such that \; = 0, A\j;1 > 0. If
Aj+1 = 1 then b(A) = 0 and A is not a counterexample. Hence we have
Aj+1 =m > 2. But now we have
b(N) < b;()
= max{b()\ + t(Ei — €i+1) |0 <t < m} + 1.
We consider pt = A+ t(e; — €;41) with 0 < t < m. Note that p has
entry ¢t # 0 in the jth position and entry Aj 41—t > A1 —(m—1) =1
in the (j+ 1)st position. Moreover, A and y agree in all positions other

than j and j 4+ 1. Hence we have len(u) = len(\) 4+ 1. Moreover, y is
greater than A, in the dominance order. Hence we have

b(p) < deg(p) — len(u) = deg(A) — len(A) — 1

e, b(u) +1 < deg(N) —len(N).
Since this is true for all y of the form A4#(e; —€;11) with 0 < t < m,
from (2)), we have b(\) < deg(A) — len(\).
O

Lemma 6.2. (i) For A € A(n) we have R'indSKy = 0 for alli > b()\),
and hence for i > deg(X) > 0.

(i) If V is a polynomial B-module of degree r then Riindgv =0
fori>r.

13
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Proof. (i) We argue by induction on b(A). If b(A\) = 0 then either A is
dominant or A; — Aj41 = —1 for some 1 < j < n, and RiindgKA =0
for ¢ > 0, [Don96], Theorem 3.4 and Lemma 3.1, (ii), and the result
holds. So suppose b(A) > 0 and the result holds for all 4 € A(n) with
b(p) < b(A). We have b(A) = b;j(A) + 1 for some 1 < j < n with
Aj — Ajy1 = —m, m > 2. Consider the module V(X + (m — 1)(¢; —
€j+1) +0). Writing pp = X+ (m — 1)(e; — €j41) + § we have

i — pjp1 =—m+2(m—1)+1=m—1.

Hence Vj(A+(m—1)(€e;—€j4+1)+0) has weights A+ (m—1)(e;—€j41)4+0,
A+ (m—2)(e; —€41)+0, ..., A+ 0, each occurring with multiplicity
1. Hence the module V;(A+ (m —1)(¢; — €41 + ) ® K_;5 has bottom
weight A and we have a short exact sequence of B-modules

0Ky = ViA+me —€j41)+9) @K s - Q = 0. (3)

where @ has weights A+ i(e; — €j41), with 1 <i <m — 1.

Now we have Riind/K_s = 0 for all i, by [Don96], Lemma 3.1 (i)
and so by the tensor identity and [Don96], Proposition 1.3 (iii), we
have

Riind}) (V;(A+ (m —1)(ej — €j41) +0) @ K_g) =0

for all <. By the spectral sequence arising from the transitivity of
induction, [Don96|, Proposition 1.2, we get RUind%(V;(A + m(e; —
€j+1) +0) ® K_5) = 0 for all . Hence from we get Riind$K, =
Ri1ind$§Q.

But a weight v of ) has the form A+t(ej—¢€;41), with1 <t <m—1,
and b(rv) < b(A) — 1. So that for ¢ > b(\) we have i — 1 > b(v) and
hence Ri_lindgKV = 0, by the inductive hypothesis. Since this holds
for all weights of @, i.e., for all composition factors K, of @, we get
Ri=1ind%Q = 0, from the long exact sequence, and hence Rind§Ky =
0

(ii) This follows from (i) and the long exact sequence.

O

7 Kempf vanishing for quantised Schur al-
gebras

At this point we introduce the natural left G-module for use later in this
section. We write E for the K-vector space with basis eq, ..., e,. Then
E is a G-module via the comodule structure map 7: £ — E ® K[G]
defined by 7(e;) = Z?:l ej ® cji, 1 <4 < n. We shall also need the
symmetric powers S”E and exterior powers \" E of E. We recall the
construction from [DDI1] and [Don98]. Let T(E) be the tensor algebra
@®,>0FE®". Thus T(F) is a graded K-algebra, in such a way that each
e; € E has degree 1. The ideal generated by all e;e; —eje;, 1 <i,5 <
n, is homogeneous and is a G-submodule, so the (usual) symmetric
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algebra S(E) inherits a grading S(E) = @,>S"(EF) and each S"(FE)
is a G-submodule of S(E). Also, the ideal of T'(E) generated by the
elements ef7ekel +qerer, 1 < i <n, 1 <k <l <n,is homogeneous
and a G-submodule and we write A\(E) for the quotient algebra. Thus
A(E) inherits a grading A\(E) = @,>0 A" (F) and each A\"(E) is a
G-submodule.

For i = (i1,...,4,) € I(n,r) we write ¢; for ¢;, ® --- Q@ e; € E®"
and ¢é; for the image of e; in \"(E). The module A\"(E) has basis é;,
with ¢ € I(n,r), running over all maps with 41 > -+ > 4,.

Proposition 7.1. (i) Let 1 < r < n and let L, be the simple B-
module with weight €.. Then for any B-module M the K-linear map
Om: ML, — L. @M given by

pm®@1) =g lem

for a = (a1,...,an) € X(n) and m € M®, is a B-module isomor-
phism.

(i) For any B-module M and one dimensional B-module L the
B-modules M @ L and L @ M are isomorphic.

Proof. (i) Certainly ¢ is a linear isomorphism so it remains to show
that it is B-module homomorphism. We shall call a B-module M
admissible if ¢,; is a B-module homomorphism. So the point is to
show that all B-modules are admissible. Note also that admissibility is
preserved by isomorphism. Let M and N be B-modules. Then the map
drmoN: MON®L — Lo M® N factorizes as (¢ @idy)o (idy @ dn)
so that admissibility is preserved under tensor products.

Suppose now that M is a submodule of N. Then the map ¢n: N®
L, — L. ® N restricts to ¢py: M ® L, - M ® L,.. Thus if N is
admissible then so is M. Similarly, if N is admissible then so is the
quotient N/M. By the local finiteness of B-modules it suffices to prove
that finite dimensional B-modules are admissible.

We now prove that all G-modules are admissible. Note that if M
is one dimensional then the twisting map 6: M ® L, — L, ® M, given
by (m®1) = (l®m), for I € L., m € M, is a B-module map and
¢pr 18 a scalar multiple of #. Hence one dimensional B-modules are
admissible. Now if M is any finite dimensional G-module then D®"®@ M
is polynomial for some r > 0. Hence M is isomorphic to a module of
the form Z ® N, where Z is the dual of D®" and N is polynomial.
Hence it suffices to prove that finite dimensional polynomial modules
are admissible.

Note that if M = My & --- & M,, for G-modules M, ..., M; then
Onm = dar, B -+ D P, so that if each M; is admissible then so is M.
Now if M is a polynomial G-module then, for some r > 0, we may
write M = My & - -+ & M, where M, is polynomial of degree r, for
0 < r < s. Hence it suffices to prove that for each r, all polynomial
G-modules of degree r are admissible.

We now check that the natural module E is admissible. Let Z be
the subspace of K[B] spanned by the elements ¢,;¢qr, 1 < i < n. It
is seen from the defining relations that Z is also spanned by C.Cp;,
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1 < i < n. We fix a non-zero element [y of L,.. The subspace Z
is a left B-submodule of K[B] and we have B-module isomorphisms
0:E® L. — Z, n: L. ® E — Z satisfying 6(e; ® ly) = €niCrr and
N(lp ® €;) = CrpCpi, for 1 < i < n.

Hence we have an isomorphism ¥ = n'o6: E® L, - L, ® E.
We consider first the case r = n. The element ¢,, commutes with the
elements ¢,; and ¥: F ® L, — L, ® FE is the twisting map, taking
ey = lg®e;, for 1 < i < n. The map ¢ is ¢y and hence is
a homomorphism. Now suppose that » < n. For 1 < ¢ < r we have
0(ei®lo) = CniCrr = qCrrCni = N(glo®e;) and hence P(e;®lo) = qlo@e;.
For i > r we have 6(e; ® lg) = GprCni = CniCrr (from the defining
relations) and so O(e; ® lp) = n(lop ® e;). We have shown that the
B-module homomorphism ¢: E ® L, — L. ® E is given by

qlo®e;, f1<i<mr
vle @ lo) {lo R e, if r <i<n.
Thus ¥ = ¢ and therefore ¢ is a B-module homomorphism.

Since the class of admissible modules is closed under taking tensor
products and quotients we get that the jth symmetric power S7E is
admissible for all 7 > 0. Now we get that for any 8 = (81,...,0,) €
A(n) the module SPE = S/E ® ... ® S E is admissible. But these
modules SPE are injective in the category of polynomial G-modules
and every finite dimensional polynomial G-module embeds in a direct
sum of copies of the modules S°E, [Don98]|, Section 2.1. Hence every
finite dimensional polynomial module is admissible and hence all G-
modules are admissible.

The left regular B-module K[B] is admissible since it is the image
of the restriction homomorphism K[G] — K[B]. Hence a direct sum of
copies of K[B] is admissible. Let M be a B-module. Then the structure
map 7: M — M ® K[B] embeds M into a direct sum of copies of the
left regular B-module and hence M is admissible. This complete the
proof of (i).

(ii) We have L = K}, for some A € A(n). If A = 0 there is nothing
to prove. If A # 0 and A € A(n) we may write A = p + €, for some
1 <r<nandpeA(n). Then we have Ky =K, ® L, so we get

Ka@M=K,®L ®M~K,®M®L,

by part (i) and now it follows by induction on degree that Ky ® M is
isomorphic to M ® K. Finally, if A = u — 7, where u,7 € A(n), then
we have that

K, Kx@ M=K, M=M®K,
~ MoK, 3Ky 2K, ® M ®K,.

So we have that K, ® Ky ® M is isomorphic to K, ® M ® K, and
tensoring on the left with the dual of K. gives the desired result.
O
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Corollary 7.2. Lett > 1. Let V; be a polynomial B-module of degree
rj, for 1 < j <t and let M; be a G-module for 1 < j <t+1. Then
we have

RindG (M, @ Vi ®@ - @ My @V, ® My11) =0
fori>mry 4+

Proof. By the long exact sequence we may assume that each V; is one
dimensional. Then by the Proposition M1 @ V1 ®:-- @ M, @V, ® My is
isomorphic to M®V, where M = M1 ®---QM 1 and V =Vi®---QV,;
and so the result follows from the tensor identity and Lemma 6.2(ii).

O
Remark 7.3. Recall (or check, by dimension shifting) that if m > 0
and
0—-X, - X, 1= —=>Xg—>M-—=0
s an ezact sequence of B-modules such that ledG =0 for all i >

m+7j then RllndBM =0 for alli > m. In particular zf RzmdBX- 0
for alli > j then RiindgM =0 for alli>0.

Proposition 7.4. We have

, - A if i = 0;
R'ind§A(n) = (), 1 =
0, ifi > 0.
Proof. We first consider the case i = 0. The natural map 7: A(n) —
A(n) gives rise to a G-module map 7: A(n) — ind%A(n), given by

=Y w(f)@f

i=1

where dgiq)(f) = ity fi ® fi € A(n) ® K[G]. Now if 7(f) = 0 then
applying ex(p) ® idg(g) we get

m m

OZZEK[B]’IT (f)f ZGK[G (f)fi=T.

i=1 i=1

Hence 7 is injective. Now the inclusion A(n) of K[B] gives rise to an
injective G-module homomorphism ind%A(n) — ind$K[B] = K[G].
Moreover, indgﬁ(n) is polynomial, by Remark 4.3, so that this map
goes onto A(n). Hence we have a composition of injective G-module

homomorphisms ~
A(n) = indGA(n) — A(n).

But now, restricting to degree r we get an injective homomorphism
A(n,r) — A(n,r) and since A(n,r) is finite dimensional this map is
surjective, for all 7 > 0. Hence the composite A(n) — indGA(n) —
A(n) is surjective and the second map ind%A(n) — A(n) is a G-module
isomorphism.
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We now suppose i > 0. Let A, be the subaglebra of A(n) gener-
ated by the elements ¢,1,...,¢q.. Then A, is a B-submodule and the
multiplication map 4; ®---® A4,, — A(n) is a B-module isomorphism.

Let 0 < m < n and let V,, be the B-submodule of E spanned
by e;, with m < 7 < n. Let V =1V,,. For r > 0 we write /\TV
for the subspace of \" E spanned by é;, with i € I(n,r), iy, > m
for 1 < a < r. Since this is the image of the B-submodule V& of
E®" under the natural map E®” — A" E we have that \"V is a B-
submodule of E®". Similarly we have that the ideal J, say, of S(E)
generated by V' is a B-submodule. We write S(E/V) for the K-algebra
and B-module S(E)/J. We write S"(E/V) for the rth homogeneous
component of S(E/V).

Let U,, be the B-submodule of A(n) spanned by Cn1,. .., Cmm.-
Now we have a B-module homomorphism §: E — U,,, sending e; to
Cmi, for 1 < ¢ < m, and to 0 for m < i < n. Then 0 induces a
B-module isomorphism S(E/V;,) — A,,. Hence we have

A2  SHEM) -0 S(E/V,). (4)
r=ri+--+rn

By [Don96], Lemma 3.3(ii), we have that, for > 0, the K-linear
map ¢: \"E = E® /\7"_1 E, given by

a=1

for € I(n,r) with iy > --- > i, (where 4, indicates that i, is omitted)
is a G-module homomorphism. Combining these maps with the mul-
tiplication maps £ ® S*(E) — S**1(E), b > 0, (also G-module maps)
in the usual way, for a > 0, we obtain the Koszul resolution

0>AE—- >N E®S2E—E®S'E— S"(E)— 0.

By restricting the maps in the above we obtain, in the usual way, the
Koszul resolution (cf.[Jan03] IT 12.12 (i)])

0= AV == ANV, ® 5V,
— = SYE) — SY(E/V,,) — 0.

Tensoring all such together, for 1 < m < n, we obtain a resolution
Y=Yy STEV) @8 (E/V,) =0

where each term Y, is a direct sum of modules of the form M; ®
Z1® - ® M ® Z; with each M; a G-module and each Z; polynomial
of degree d;, say, di +--- 4+ dy = s. Now from Corollary 7.2, we
have that R'ind$Y, = 0 for i > s and hence by Remark 7.3 we have
RY(S™(E/V})®---®8™(E/V,)) = 0 for all i > 0. Hence by (@) above
we have Riind§ A(n) = 0, for all i > 0.

O
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Theorem 7.5. Let ¢: A(n) — k[B] and ¢: A(n) — k[G] be the in-
clusion maps. Let w: A(n) — A(n) be the restriction map. Then, for
V € Comod(A(n)), we have R'ind%(¢oV) = ¢RIV for all i > 0.

Proof. If M is a polynomial B-module then indgM is a polynomial G-

19

module, by Remark 4.3. Hence we have ind§o¢ = 19on®: Comod(A(n)) —

Mod(G). We write F = ind§ o ¢y = 9 o 7°. Now ) is exact
so we have RF'V = ¢oR‘7°V. An injective A(n)-comodule is a di-
rect summand of a direct sum of copies of the left regular comodule
A(n). So it follows from the Proposition that ¢ takes injective
objects to indg—acyclic objects. Hence we have a Grothendieck spec-
tral sequence, with second page Riindg o RV ¢oV converging to R*FV.
But ¢ is exact, so the spectral sequence degenerates and we have
RIFV = Rind$(¢oV) = o R'7OV.

O

Remark 7.6. Slightly less formally, identifying Comod(A(n)) with the
full subcategory of B-modules whose objects are the polynomial modules
and identifying Comod(A(n)) with the subcategory of G-modules whose
objects are the polynomial modules, we have R'7°V =2 RiindgV for a
polynomial B-module V.

The Theorem [7.5] has the following corollary, generalising Remark
4.3, but which may also be proved by a straightforward dimensional
shifting argument.

Corollary 7.7. If V is a polynomial B-module then RiindgV s a
polynomial G-module, for all i > 0.

However, the main point of the discussion is to demonstrate the
following result, which follows from Kempf’s Vanishing Theorem for
G, as in [Don96], Theorem 3.4.

Corollary 7.8. (Kempf Vanishing for polynomial modules.) Let m: A(n) —

A(n) be the restriction map. For A € AT (n) we have

RO, — {V(M, ifi=0
0, ifi > 0.

Let 7(r): A(n,r) — A(n,r) be the restriction of 7. Now 7 =
@2 m(r): A(n) = &2 yA(n,7) — A(n,r). If V € Comod(A(n)
then we may write V uniquely as V = @;2, V(r), where V(r) €
Comod(A(n,r)) (or less formally, V(r) is polynomial of degree r). It
follows that R'n%V = @y, Rim(r)°V (r). Hence we get:

Corollary 7.9. (Kempf Vanishing for homogeneous polynomial mod-
ules.) Let r > 0 and let w(n,r): A(n,r) = A(n,r) be the restriction
map. For A € AT (n,r) we have

V(\), ifi=0;

Ri , OK —
m(n,r) Ko {0, ifi>0.
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Let S(n,7) = A(n,r)* and S~(n,r) = A(n,r)*. Then from Propo-
sition 2.1 we get :

Corollary 7.10. (Kempf Vanishing for Schur algebras) For A € AT (n,r)
we have

VO, ifi=0;

S7(n,r) *
Tor" K%, S(n,r)) = .
ot (K3, S(n, ) {07 ifi > 0.

(Here K} denotes the right S~ (n,r)-dual module of Kj.)

8 General coefficient rings

We shall work with Schur algebras over general coefficient rings. We
will use the universal coefficient ring Z2 =7 [t, t_l]. First we consider
the Schur algebra Sg(¢).+(n, ) over the field of rational functions in the
parameter t. We define Sz 4(n,r) to be

{€ € Sow),e(n,7) |E(f) € Z for all f e Az(n,r)}

which, by Lemma 3.1, is a Z-form of Sg)(n,7). For an arbitrary
commutative ring and a unit g in R we define, by base change via the
ring homomorphism from Z to R, taking t to ¢, the R-algebra

Srqe(n,r) =R®z Sz ,(n,r).

It is easy to check that, for R a field and ¢ a unit in R this is
consistant with our earlier definition, i.e., that the homomorphism Z —
R, taking t to ¢ induces an isomorphism Ag 4(n,7)* — R®z Sz (n,r).

In the same way we define the negative (quantised) Borel-Schur sub-
algebra Sp  (n,r) of Sk ¢(n,r). We define Sow), J(n,r) = Agey e (n,7)*.
The coalgebra ZQ(t),t(n,r) has a Z-form Az(n,r) spanned as a Z-
module by the elements ¢;; g(s),¢, with 4, j € I(n,r). We define Sz 4(n,r)
to be

{§ €5 Q(t) t(n,r) |§(f) € Z for all f c Zzﬂf(n’f/‘)}

which, by Lemma 3.3 is a Z-form of S@(t) ,(n,r). For an arbitrary
commutative ring and a unit g in R we define, by base change via the
ring homomorphism from Z to R taking ¢t to ¢, the R-algebra

Spqn,r)=R®z Sz ,(n,r).

It is easy to check that, for R a field and ¢ a unit in R this is consistent
with our earlier definition, i.e., that the homomorphism Z — R, taking
t to ¢ induces an isomorphism Ag,q(n,7)" = R®z Sz ,(n,7).

The positive Borel-Schur algebra Sﬁ p (n,r) is defined in an analo-
gous way. We define A&t) ((n) = Ag,+(n)/I, where [ is the ideal of
Ag(t),+(n) generated by the elements c;; with 1 < j <4 < n. Then
Aa( 5, ,(n) has a natural coalgebra grading

+
Q(t)t @A t)t n,r)
r>0
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For every nonnegative r we define S&t) ,(n,7) to be the Q(t)-algebra
dual of A&t),t(n,r). We write A;t(n,r) for the image of Az (n,r)
under the natural map Agw)(n,7) — A&t) (n,7). Then A}’t(n, r) is

a Z-form of Aa( (n,r) and we define S;t(n, ) to be

t),t
{¢€e S&t)yt(n,r) |£(f) € Zforall f e A}’t(n,r)}.

For an arbitrary commutative ring and a unit ¢ in R we define, by
base change via the ring homomorphism from Z to R taking ¢ to ¢,
the R-algebra

Sﬁq(n,r) =R®z Sg,t(n,r).

We identify S  (n,7) and SE,q(n, r) with R-subalgebras of Sg 4(n,7)
in the obvious way.

We now generalise Corollary 7.10 to an arbitrary commutative
ground ring from a general result. This is presumably well known
but we include it here since we were unable to find a suitable refer-
ence. For an algebra S over a commutative ring R and maximal ideal
M of R with residue field K = R/M we write Sk for the K-algebra
K ®p S obtained by base change. Further, if D is a left (resp. right)
S-module we write Dx for the left (resp.right) Sx-module K ®p D
obtained by base change.

Proposition 8.1. Let R be a commutative Noetherian ring. Let S be
an R-algebra which is finitely generated and projective as an R-module.
Let D be a right S-module and E a left S-module. Suppose that D and
E are finitely generated and projective as R-modules. Suppose further
that for each maximal ideal M of R we have

Tor?*(Dx, Ex) = 0
for alli >0 (where K= R/M ). Then we have
Tor? (D, E) =0
for alli > 0.

Proof. We first make a reduction to the case in which R is local. So
we first assume the result in the local case. Let M be a maximal ideal
of R and K = R/M. Then we have the Ry algebra Sj; obtained
by localising at M. The Ry module Dy; (resp. Ey) obtained by
localisation is naturally a left (resp. right) Sy;-module. Also, for i > 0,
we have the localisation Tor? (D, E)y of the R-module Tor? (D, E).
Moreover, by (the argument of) [Mat70], (3.E), we have

Tor? (D, E)a = Tory™ (Day, Enr) (5)
and

Tor*®r5M (K @ Dps, K ® Eyy) = Tort™ Dy, Ex) = 0
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for i > 0. Thus, for ¢ > 0, we get Torf(D,E)M = 0 for all maximal
ideals. Since Toris (D, E) is a finitely generated R-module, this implies
Tor? (D, E) = 0.

We now assume that R is local with maximal ideal M and K =
R/M. We make a reduction to the case i = 1. Suppose that Tory (D, E)
is zero for all D, E as above but that the result is false. We choose
i > 1 as small as possible such that Torf(D, E) # 0 for some D, E as
above. We choose an epimorphism from a finitely generated projec-
tive S-module P onto E and consider the corresponding short exact
sequence of S-modules

0—->N—-P—FE—D0.

Then N is finitely generated and projective as an R-module. Hence
we have a short exact sequence of Sg-modules

00— Nk —-Pxk — FExg—0

with Pk projective. Hence we have

Tory (D, N) = Tor{,, (D, E) and Tory*(Dg, Ni) = Tor{

741(Dx, Ex)

for j > 1. So by the minimality of i we have Tor; (D, N) = 0 and
therefore also Tor; (D, E) = 0, a contradiction.

Hence it suffices to prove that Tor; (D, E) = 0 for all D, E satisfying
the hypotheses. We now consider the right exact functor F from the
category of finitely generated S-modules to K-spaces, F(X) = Xk ®g,
FEx. Note that F factorizes: F is isomorphic to G o H, where H is
a functor from S-modules to Sg-modules, H(X) = Xk and G is a
functor from the category of Sg-modules to K-spaces G(Y) = Y ®g, Ex.
Moreover, the functors G and H are right exact and H takes projective
S-modules to projective Sg-modules. Hence, for X € mod(S), there
is a Grothendieck spectral sequence with second page (L;G o L;H)X
converging to (L.F)X. Taking X = D, since D is projective as an
R-module we have (L;H)D = 0 for all j > 0. Hence the spectral
sequence degenerates and we have (L; F)D = (L;G)(H(D)) for all i >
0. Hence we have (L;F)D = Tor* (D, Fx), and from the hypotheses,
(L;F)D =0 for all i > 0.

But also, for a right S-module X we have F(X) = Xk ®s, Fx =
K®r(X®gFE). This gives another factorisation: JF is the composite Po
Q, where Q is the functor from right S-modules to R-modules, Q(X) =
X ®s E and P is the functor from R-modules to K-spaces P(Y) =
K®grY. For X projective, X ®g E is a projective R-module. Hence,
for X a right S-module, there is a Grothendieck spectral sequence,
with second page (L;P o L; Q)X converging to (L,F)X. In particular
(see [Wei94], Corollary 5.8.4), we have the 5-term exact sequence

(L2F)X = (L2P)(Q(X)) = P(L1Q(X))
- (L1 F)X — (LP)Q(X) — 0.

22



8 GENERAL COEFFICIENT RINGS

Taking X = D we obtain the exact sequence

Tory* (D, Ex) — Torf(K, D ®g E) — K @ Tor{ (D, E)
— Tory (Dy, Ex) — Torl (K, D @5 E) — 0.

But TorZSIK(D]K7 Ex) =0, for i > 0, and so Torf‘(K,D@S E) = 0. Hence
D ®pg F is a projective R-module, see [Mat70], Section 18, Lemma 4.
Hence Tor¥(K,D ®g E) = 0 and hence K ®p Tor? (D, E) = 0, and
hence Tor{ (D, E) = 0.

O

Let R be a commutative ring with Noetherian subring Ry. Let
¢: X — Y be an Ry-module homomorphism. It is easy to check (and
we leave this to the reader) that if for every subring R’ of R containing
Ry which is finitely generated over Ry, the R’-module homomorphism
¢r: R ®p, X = R ®p, Y is injective then the R-module homomor-
phism ¢r: X — Yr (obtained by base change) is injective.

Lemma 8.2. Let R be a commutative ring and let Ry be a Noetherian
subring. Let S be an Rg-algebra, finitely generated and projective as
an Rg-module. Let M be a right S-module and N a left S-module
and suppose that M and N are finitely generated and projective over

Ry. If TorfR’ (Mg/,Ng/) =0 for all i > 0, and all subrings R’ of R
containing Ry and finitely generated over Ry, then TorfR(MR7 Ngr)=0
for all i > 0.

Proof. Choose an S-module surjection P — N, where P is a finitely
projective S-module and let

0—-H—-P—>N=0 (6)

be the corresponding short exact sequence. Then we have that
Mpr ®s;. Nrw — Hpr @s,,, Pre, is injective, i.e.,

R' ®p, (M ®@r, H) = R ®gr, (M ®p, P)

is injective (whenever R’ is a subring of R finitely generated over Ry,
since TorfR' (Mp/, Ng') = 0). Hence we have that

R®g, (M ®g, H) = R®g, (M ®r, P)

is injective, i.e., Mr ®s,, Nrp = Hgr ®gs, Pr is injective and therefore
Tor{® (Mg, Ng) = 0. Now for i > 1 it follows that Tor>® (Mg, Ng) = 0
using @ and dimension shifting. O

Let A € A(n,r). Then we have the one dimensional module Ky
for the quantised Borel subgroup B(n) over K = Q(¢). Thus K is
naturally aleft S, ;(n,r)-module and we obtain an Sy  (n,7)-module
R, free of rank one over R, by base change. We write R} for the right
Sr.q(n,7)-module dual of Ry. Similarly we construct an Sj (n,7)-
module, also denoted Ry, free of rank one over R.
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Theorem 8.3. Let R be a commutative ring and let q be a unit in R.
Let A € AT (n,r). Then we have

S

R,q(M5T)
Tor,

(B3, SRrq(n,7)) =0
for alli > 0.

Proof. The result for R Noetherian follows from Corollary 7.10 and
Proposition 8.1 and the result for general R follows from Lemma 8.2.
O

We shall also give the version of this result for the positive Borel-
Schur algebra. Suppose J is an anti-automorphism of a ring S and
that S has subrings S~ and S interchanged by J. Given a right S~-
module (resp. left) M we write M for the same group M regarded as
a left (resp.right) ST-module with action zm = mJ(z) (resp.mz =
J(z)m), m € M, x € ST. Note that if M is S, regarded as a right
S~-module via right multiplication, then M7 is S regarded as a left
S*-module via left multiplication. Similarly if M is S, regarded as
a left S~-module via left multiplication, then M7 is S regarded as a
right ST-module via right multiplication. If M is a right S™-module
and N is a left S~-module then we have

Tor® (M,N) = Tor’ (N7, M)

for all 7 > 0.

Recall that, by [Don98], pg. 82, we have an involutary anti-auto-
morphism J of the Schur algebra Sk 4(n,r) over a field K. For i €
I(n,r) we write d(i) for the number of pairs (a,b) such that 1 < a <
b <r and i, < ip. Then, for i,j € I(n,r), we have

Cji(f)qd(j) = Cij(J(g))qd(i)

(see [Don98|, p83) and clearly J is determined by this property. Taking
K = Q(t) and ¢ = ¢, it is easy to check that J preserves Sz ((n,r)
and interchanges Sz ,(n,7) and S% ,(n,7). Hence J induces, for a
general commutativevring R and unit q € R, an anti-automorphism,
which we also denote J, of Sg 4(n, ) which interchanges Sp  (n,7) and
Sﬁq(n, r). Moreover, for A € A(n, ), starting with the left S}%q(’n, r)-
module Ry, we have that (R})7 is the left S}"q(n,r)—module, also

denoted by R). Thus from Theorem 8.3 we get our quantised version
of Woodcock’s Theorem.

Theorem 8.4. Let R be a commutative ring and let q be a unit in R.
Let A\ € AT (n,r). Then we have

S;rq(mr)

Tor, (Sr,q(n,7), R\) =0

for alli > 0.
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Recall that Ags,¢(n,r) has basis { ¢;; | (i,7) € Y(n,r)}. Let

{fij | (7’7]) € I(n,r)}

be the dual basis of Sy (n,7), that is

17 1= i/a ] = j/
0, (i,5")eY(n,r), (i,5) # (@,5').

Then it is straightforward that {&;;|(é,5) € Y(n,r)} is a Z-basis of
Sz i(n,r). We will also denote by the same symbol &;; the image of
&; in S 4(n,7) under base change. For A € A(n,r), we will write &
for §(x),1(0)-

Note that in Section 2 of [Don98] there is used a slightly different
parameterisation of the set {&; | (4,5) € Y(n)}. As we will refer the
results of [Don98], we will explain this in more detail. Let U be the
subset of I(n,r) x I(n,r) of pairs (I (\),j) such that j;3 > -+ > jx,,
Ja+1 = o0 = Ga+a, and so on. Now for every A € A(n,r), there is a
permutation m € X of order 2 such that (I()\),5) € Y (n, ) if and only
if (1(N\),jmx) € U. Since the generators ¢, and ¢, commute for any
band V', we have ¢;(x),; = ¢i(x),jx,- Thus we get for any (i,7) € Y(n,r)
and (i, ") € U that

&ij(cw g7) = {

1, =14, j=75"nm,
(e i) = Eui (it irm ) =
Sialev) = & (evgm) {0, otherwise.
Therefore §;; in our notation corresponds to &; jr, in the notation
of [Don98g].
Using the above identification, from [Don98], page 38, for A, pu €
A(n,r) we obtain

gija 1€ )\, ] € W,
0, otherwise.

Ex&ijéu = {

Moreover, 1 = 3 \ca(n,r §x Is an orthogonal idempotent decomposi-
tion of the identity.
Similarly to Lemma 3.2, we have that the kernel of the projection

I+ Ageeye(n,r) — Aa(t)yt(n,r)
has basis
{cij|(i,7) € Y(n,r) but not 7 < j}.

Thus for any (4, j) € Y(n,r) such that i < j, we get that the restriction
of &; to Ker(f) is zero. Therefore we can consider ;; as an element of
S&t)i(n, r)= Ag(t)’t(n7 r)*. Using a dimension argument we get that

{&ii (i) €Y(n,r), i <j} (7)
is a Q(t)-basis of S&t) ,(n, 7). Obviously, it is also a Z-basis of S;t(n, r)
and, by base change, an R-basis for any Sﬁq(n, r).
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We now recall the normalised bar construction. Note that this is a
special case of the construction described in Chapter IX, §7 of [ML63]
and its detailed treatment can be found in Section 3 of [SY12].

Let S be a ring with identity and S’ a subring of S. We assume
that there is an epimorphism of rings p: S — S’ that splits the natural
inclusion of S’ into S. Write K for the kernel of p. Then K is an
S’-bimodule.

For every S-module M we define the chain complex
B, (8,8, M) = (B (5,5, M) ,di)k>-1

as follows:
B_1(S,8",M)=M, By(S,S ,M)=S®M,

By (8,8, M)=5®K® @ M, Yk >1,
k
d, = (—=1)'ds: By, (S,8', M) = B_1 (5,5, M),
t=0

where all the tensor products are over S’ and the S-module homomor-
phisms dy:: By (5,8, M) — Br_1 (5,8, M), k > 0,0 <t < k are
given by

doo (s @ m) = sm

dio (8@ R R OM ) =851 RS Q-+ QS @M

dit (@81 Q- QM) =R+ Q8541 Q--@m, 1 <t<k-—1
Ak, (551 Q- QRs5, QM) =5R51 Q-+ Q Skp_1 & sgm, k> 0.

The complex (B (S, 5", M) ,d) is exact and is called the normalised bar
resolution of M over S. Now we specialize this construction to the
case of the quantised Borel-Schur algebra.

Define
L=Lr,= P Rau= P R&

(1,1)€Y (n,r) AEA(n,T)

and
J=TJre= &P R&;.
(2,7)€Y (n,r)
i<j

Then L J = SRq(n T).

Proposition 8.5. The R-module Lg 4 is a split subalgebra ofSE’q(n, T)
and Jr.q is a split ideal of S§ ,(n,r).

Proof. 1t is obvious that Lg 4 is a subalgebra of S;F’q(n, ).
Now, we will check that Jg, is an ideal of S% (n,). By a base

change argument, it is enough to check that Jz , is an ideal of S‘Zﬁt(n7 7)
and this can be reduced to showing that Jg)(n,7) is an ideal of

S&t)’t(n, ).
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Let (i,7), (¢/,7") € Y(n,r) such that ¢ < j and ¢’ < j'. Then the
coefficient of £ in the expansion of the product &; ;& j in the basis
of SQ(t ,(n,7) is given by

(&5&57) (@) Z & (@o.n) &gt (Craony) s
hel(n,r)
where ¢;; denotes the image of ¢;; under the epimorphism
Ageey,e(n,r) = A o), J(n, 7).
Thus €x),, # 0 and €, (x) # 0 imply that [(A) < h < I(X). Hence
(& i) @ovany) = &g @oyamy) &g @ovamy) »

which is zero, if ¢ # j or i’ # j'. This proves that the product &; ;& ;v
lies in T 00 i &, € T or &,y € Toe),- 0

For any A € A(n,r) we can apply the normalised bar construction
to Sﬁq(n, r), L, and the rank-one module Rj.

Denote B, (SE,q(nw)J, RA) by B,i)\ for k > —1. We get
BY| =Ry, Bf, =54,(nr) @ Ry,

By =54, (nr) oL T® @L Ry, k> 1.
For any p € A(n,7), M € mod-L and N € L-mod, we have
(M @1, RE,) ®r (R, @1 N) = M ®;, RE, @1, N.
Thus

M@, N=Me,Le, N =) (MarRE,) @r (RS, @1 N)
HEA

=~ P M¢, @r &N

HEA
since M ®r, R, = M¢, and RE, ®r N =2 ¢,N. Hence

B(;F,A = @ SIJE,q (TL, 7“) f,u @R fuRA
pEA

=Sk, (n,1)Ex @R Ry = S (n,7) &x,

since £, Ry = 0 unless u = . Further

1%

Bj, o, Spq (M1)€ @R E TEu> @R - -
p D EA

QR §um T &ty ®r &y R
As {&;](i,7) €Y (n,r), i < j}isan R-basis of J, we get that £, &,
is zero, unless p> 7. If p> 7, then §,J&; has an R-basis

{&il(i,4) €Y (n,r), i<j, jeriecu}.
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Thus for every k > 1 we can write

@ St (7)€ @E,0TEum ® -+ @ & Tén,

TSI RNTICOISY

1%

+
By \

where ® means ®g. Note that B,j » is zero for k sufficiently large.
Given p> A, we define Qz (A, i) to be the set of all sequences

(i, 50, (@R, W)
of elements in Y (n,r) such that i) € u, j*) € X\, and
i < i i) < ) B < R

where j ~ i means that ¢ and j have the same content. Then we have
isomorphisms of S3; o(n, r)-modules

qu(n,T)f,\, k=0 ( )
7 #Q7 (\p) 8
@ub)\ (SE,Q (na T) §u) ¥ s k > 1.

So we get the following result

12

+
By

Theorem 8.6. Let A\ € A(n,r). Then the complex B:,\ 18 a projective
resolution of Ry over SE’q(n, ).

Now consider A € A*(n,r). The Weyl module associated with X is
Wy = Sgq(n,7) ®S;1q(n,r) R
By Theorem@, Ry is an acyclic module for the functor Sg ,® g+ ()
R,q ’

—. Therefore B, \ := Sg q(n, r)®5; (n T)B;L)\ is a projective resolution
() T,

of Wy. Moreover, since
SR,Q(”? r) ®S;,q(n77‘) S;%q (n’ r) = SR,q(na T)’
we get the following theorem.
Theorem 8.7. Let A € AT (n,r). Define the complex By as follows:
B_1x =Wy, Box = Sgq(n,m)éx,

and for k > 1, we set By to be

@ Srq(n,7) 00 @R & T @R -+ @R §uom Téa-

MO
M u B eA(n,r)

Define dy to be the canonical projection of Sg q(n,r)éx on Wy, and for
k > 1 define di: By x — Bir_1,x to be the R-linear extension of the
map

k-1
ToR Ty QT »—>Z(—l)taﬁ()@---@xtxt“®---®xk.
t=0

Then By is a projective resolution of Wy over Sgq4(n,r).

28
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We will show now that B) is stable under base change. Our resolu-
tions for a moment will get additional indices to emphasize dependence
on Rand g € R. Let R and R’ be commutative rings, 0: R — R’ aring
homomorphism, ¢ € R and ¢’ := 6(q) € R’ invertible elements. Since
Sr.q(n,7) ©r R’ = Spi 4(n,7) and B, are free S q(n,r)-modules for
k > 0, we get that (B,SA ®r R, k>0) and (BF,, k> 0) are isomor-
phic complexes. Moreover, from the commutative diagram with exact
IO A

d d
BfYy or R ——= B, or R —> W@z R ——0

|

R dy R do ’
By By W 0,

it follows that BffA ®gr R and Bf:';\ are isomorphic also in degree —1.

9 The Hecke algebra and resolutions of co-
Specht modules

In this section we will use the notation of [DJ86] but will denote by
Ing (o) the length of o € X,. The Hecke algebra H = Hpg 4 associated
with X, over R is free as an R-module with basis { T, | o € X}, where

TT. — Tso, if Ing(so) = Ing(o) + 1
T T + (g—1)T,, otherwise,

for o, s € 3, with Ing(s) = 1.

In [BM12] Boltje and Maisch constructed for every composition A
of r a chain complex af‘ of H-modules. These complexes are lifting
to the g-setting of the corresponding R¥,-module complexes described
in [BHTI]. It was proved in [SY12], that C7 is a permutation resolution
of the co-Specht modules Hompg(S*, R) for ¢ = 1 and \ a partition of
r. In this section we will prove a similar result for any invertible ¢ in
R.

Choose any n > r, and let

w=(1,...,1,0,...,0) € A(n,r)
u=(1,2,...,7r) € I(n,r).
Then (see [Don98|, Section 0.23])

{Suun [ ™€ T0}

is an R-basis of £,Sg,¢(n, 7)€, and

ngR,Q(na r)gw —H
fu,uﬂ' — Tﬂ'*l
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is an isomorphism of R-algebras. Therefore we have the Schur functor

F: Sgq(n,r)-mod — H-mod
Vi &LV

Applying F to the resolution By of Wy with A € AT (n,r), we obtain
an exact sequence F' (B,). It is our aim to prove that F'(B)) and )
are isomorphic chain complexes of H#-modules. This will prove that the
complexes C are resolutions of the co-Specht modules Homg(S*, R)
over H.

We start by reminding to the reader some facts on Hecke alge-
bra. Denote by 3 the standard Young subgroup corresponding to the
composition A. By [DJ86, Lemma 1.1] each right coset of ¥y in X,
contains a unique element of minimal length, the distinguished coset
representative of Xy in X,.. We denote by D), the set of these elements.
Given two compositions A and p, we also define D)y, = Dy N D;l. By
[DJ86, Lemma 1.6] the set Dy, is a system of ¥5-X, double coset
representatives in .

Recall that, for A € A(n,r), we write I(A) for the multi-index
(121,222 n*»). Then every element of Y (n,r) is of the form (I ()\), 5)
for some A € A(n,r) and j € I(n,r). It is easy to see (cf. [DD9I]
pp. 24-25]), that for given A, p € A(n,r), there is a bijective corre-
spondence

{(UN),4) € V(1) 15 € u} = D (9)

defined as follows. For a given pair (I()\), j) the set

{res [lwr " =4}

is a ¥,-orbit, and thus contains a unique distinguished element d of
D;'. We define d as the representative of ¥x\d¥,, in Dy .

For A € A(n,r), define zy := > T, and M?* := z,H. Then
TED N

Homgy, (M*, M*) has an R-basis

{WQJL‘dGEl)My}v

where

gpg"”(:zzu) = Z Tr, d € Dy,.
TEXNANAE,

Theorem 3.2.5 and Corollary 3.2.6 in [DD91] say that there is an alge-
bra isomorphism

Srq(n,r) = @  Homy(M*, M) (10)
wAEA(n,T)

A,
&0, et

where the correspondence (I()\), j) — d is given by @
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Denote by T (A, ) the set of all A-tableaux with content p and by
T72(A, 1) the set of all row semistandard A-tableaux with content pu.

Write
1 2 .M
T A +1 AM+2 .0 oo L ALt
Mt A1+ 1 r

and for each i € I(n,r), let T} be the A-tableaux

7;1 ig i>\1
T)\ _ I, +1 I 4+2 .- [DVES
)
7;)\1+_,,)\n71+1 ZT

Recall that (i,7) € Y(n,r) if and only if ¢; < ip < --- < 4, and
Jv < Juy1 if iy, = d,41, 1 < v <r —1. Therefore there is a bijective
correspondence
{UN).g) eY(nr)|jent—T"(\u
(N, 4) = T}

that in combination with @ induces the bijection
Daye & T (A ). (11)

Boltje and Maisch say that a A-tableaux in 7 (A, u) is ascending if, for
every a € N, the ath row of this tableau contains only entries which
are greater than or equal to a. They denote the set of all ascending
elements of 7" (A, ) by T"(\, ). One has T (\, u) # @ if and only
if 4 < A, if and only if Tl)(‘“) € T"(\, ). Notice that for j € I(n,r),
the A-tableau Tj)‘ is ascending if and only if I (\) < j. Therefore we
have a bijective correspondence
Y ()" ={0N).)eYmr)licnm () <it>T" (A\p
(1), 9) = T,

Denote by D;\\’“ the image of Y'(A, u)" in Dy, under the correspon-
dence @ Boltje and Maisch define for each p < A

Homf, (M*, M*) := P Rg)™ C Homy (M", M?).
dED;\,u

Then under the isomorphism , Hom?, (M*, M) corresponds to

@ RE () ,5-

AN He(2umn

But, since

{&0.5 | (1N, 5) € Y (n,1), 1(N) < j, A€ A}
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is an R-basis of SE,q(n,r) and for any v, 7 € A(n,r)

gij7 ifiey,jET
Sbiilr = {0, otherwise,
we get that Homf, (M*, M*) corresponds to £,S; (n,7)€,. We saw
previously that Sg,q(n, r) =L@ J. Butif A> u, we have £, L€, = 0.
Hence Hom%, (M*, M) corresponds to £, &, if At p.

Next we define the Boltje-Maisch complex (2‘ We will restrict
ourselves to the case when A is a partition of r. For every right H-
module N the R-module Hompg (N, R) has the structure of a left H-
module given by

(he)(n) 1= =(nh),
where h € H, ¢ € Homg(N, R), and n € N. So given an R-module
N’, the R-module Hompg (N, R) ® g N’ can be viewed as an H-module
via
hie@n') = (he) @ n/,
where h € H, e € Homg(N,R), and n’ € N'.
For each A € A™(n,r), Boltje and Maisch define a complex

d():\,(A)—l
—

~\ A di(x) A di A dé\ A
Cr: 0= Chny — Copny-1 = 0y — C2; =0
in the following way:

C*, = Homp(S*, R),

e @  Homg (M*",R) ®g Homj (M*” ™)

ST SIRSTOISY
p D, u B eA(n,r)

®p - @ Homfy (M, M+").

k-1
The differential d3 : Cp — C}_; is given by the sum Y (—1)*dy;, where
=0
fork>1and 1 <t<k-—1, weset
dro(e®@ 1 ® -+ @ k) =1 ® P2+ @ Pi,
det(E@P1® @ Pp) =R P @ @ P11 @+ @ P,

and do: Hompg(M*, R) — Hompg(S*, R) is defined to be the restriction
on S*.

Let us consider the resolution By of Wy. Applying the Schur func-
tor to By we obtain the exact sequence F(B)), where

F(By)-1 =& Wy, F(Bx)o = §wSR,q(n, )&,
and for k > 1 the H-module F(B))y is given by

@ §uSq(n, 7)€, OR € T @R -+ @R &0 T

AEISIRSTOISY
P p B eA(n,r)

(12)
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Notice that, for 1 € A(n,r) the subspace &,S4(n, 7)€, corresponds un-
der to Homy (MH*, M*). But M* = z,H = H, since X, is the
trivial group and z, = Y cx Tx = Tia. Thus &,Sr,q(n,7)§, corre-
sponds under to Homy (M*,H). Here we have that Homg (M*, H)
is a ‘H-module by

(hap)(m) = hap(m),

where h € H, m € M*, and ¢ € Homy (M*, H).
Thus we can write

F(By)o = Homy (M*, ),

F(By)k = @ Home(M”(l),H) ®r Hoqu_L(M“(Q)

PESTOISY
p e u ™ A (n,r)

(k)

@R - ®p Homf, (M>, M*),

and the differentials d in F'(B)) are the sums Zf;ol(—l)tdkt, where
the maps di; are defined analogously to .

We will prove that F'(B,) is isomorphic to the complex C?‘ in non-
negative degrees. Since F'(B,) is exact and (2‘ is exact in the degrees 0
and —1 by [BM12, Theorems 4.2 and 4.4 ], the isomorphism in degree
—1 will follow.

To prove that F(By); = Cp for k > 0, we start by showing that
there is an isomorphisms of H-modules

& Homy (M*, H) — Hompg(M", R)

such that for allv € A(n,r), ¢ € Homy (M*,H), ¢ € Homy (M, M*),
we have §, (Yp) = Fu(¥)e.

We will prove this in a more general setting. Let *: H — H be the
anti-automorphism of H given by T — T} = T,-1. Let M be any
right H-module. By [DJ86, Theorem 2.6] there is an isomorphism of
R-modules

Hompg (M, R) — Homy (M, H)
PP,

where

p(m) = > q " p(mT;)T,.
oEYX,

The inverse of this isomorphism is the map
Homy, (M, H) — Hompg (M, R)
v,
where t)(m) is the coefficient of Tiq in the expansion

Y(m) = Z a1y, as € R.

oEYX,
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Consider the symmetric associative bilinear form f: H @ H — R
(IDJ86, Lemma 2.2 and proof of Theorem 2.3]) given by

gmel@)  if g =1

f(TayTﬁ) = {0

, otherwise.
Note that we have

F(> 5T, Ta) = aia(Tia; Tia) = aia-
ocEX,

Thus for m € M we get ¥(m) = f((m), Tiq). We will prove that
¥ — 1 is an H-module homomorphism. Recall that Hompg (M, R)
is a left H-module by (hp)(m) = @(mh), where h € H, m € M,
¢ € Homp(M, R), and Homy, (M, H) is a left H-module by (ht)(m) =
hip(m), where h € H, 1 € Homy (M, H), m € M.

Proposition 9.1. The map
S Homy (M, H) — Homp (M, R)

) 1) (3

where P(m) = f(Y(m),Tia) for m € M, is an isomorphism of H-
modules.

Proof. Given h € H, 4, € Homy (M, H), and m € M, we have

Ip(m) = f ((hp)(m), Tia) = f(hp(m), Tia) = f(h,(m)Tia)
= [(hp(m)) = f(P(m), h) = f(Tia,p(m)h) = f(Tia, (mh))

= f(W(mh), Tia) = (mh) = (h)(m).

O

Proposition 9.2. Let M and N be right H-modules. Then the fol-
lowing diagram is commutative

Homy, (M, H) ® Homy (N, M) 2% Homp(M, R) ® Homy (N, M)

Homy (N, H) Sy Homp(N, R).

Proof. Let ¢: N — M, v»: M — H be homomorphisms of right #-
modules. Then for all n € N

Yo(n) = f¥e(n), Ta) = F((e(n), Tia) = P((n)) = be(n).

Thus 1% = 1/;<p. O
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Returning to our setting we will abbreviate §y= to §,. For each
k > 0 define the map 7 : F(By)r — Ci,x to be the direct sum

T = @ 3#(1)®id®~-~®id.
PSSRSO
M u®eA(n,r)

Then 74 is an isomorphism of H-modules for £ > 0. From Proposi-
tion we get that for every k > 1

di,0Tk = Th—1dk 0.
Moreover it is obvious that for all k > 1 and 1 <t <k
A 1T = Th—1dg 1

Thus for all & > 1 we have dp7, = 7x—1di. This shows that 7 =
(Tk)k>1 is a chain transformation between the truncated complexes
F(B))s0 and Csg.x. Since every 7 is an isomorphism of H-modules,
we get that F'(B)) and 5* » are isomorphic in non-negative degrees as
promised. The existence of an isomorphism in degree —1 follows from
the commutative diagram with exact rows

F(By)1 —2~ F(By)o -2 F(W)) —=0

I
Tli Toi 3!
N

e} Q—2 g 0.

Thus we proved

Theorem 9.3. Let A be a partition of r. Then the complezes C:f‘ and
F (By) are isomorphic. In particular, C} is an exact complex.
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