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Mitochondrial content reflects oocyte variability
and fertilization outcome
Teresa Almeida Santos, Ph.D.,a Shahy El Shourbagy, M.D.,b and Justin C. St. John, Ph.D.b

a Serviço de Genética Médica do Departamento de Medicina Materno-fetal, Genética e Reprodução Humana dos Hospitais da
Universidade de Coimbra and Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal; and b Mitochondrial and
Reproductive Genetics Group, Medical School, University of Birmingham, Birmingham, United Kingdom

Objective: To determine the content of mitochondrial DNA (mtDNA) in oocytes from a range of patients with
fertilization success and failure.
Design: Analysis of mtDNA content in fertilized and unfertilized oocytes and embryos by real-time polymerase
chain reaction (PCR).
Setting: University hospital infertility and research center.
Patient(s): Fifty-four women seeking treatment for infertility.
Intervention(s): None.
Main Outcome Measure(s): A total of 142 fertilized and unfertilized oocytes were classified into three main
groups. Group I consisted of 35 fertilized oocytes from 21 patients; group II, 65 unfertilized oocytes from 36
patients; and group III, 42 degenerate oocytes from 23 patients. Mitochondrial DNA content was determined by
SYBR Green real-time PCR-based assay.
Result(s): The mean mtDNA copy number for the fertilized oocytes was 250,454, whereas for the unfertilized
group it was 163,698. There were significant differences for mtDNA copy number between the male factor and
female factor infertility unfertilized oocytes and between the unexplained infertility and female factor infertility
groups. The mean copy number for the degenerate oocyte group was 44,629, which was significantly different
from the other subdivisions in this group.
Conclusion(s): Mitochondrial DNA content is critical to fertilization outcome and serves as an important marker
of oocyte quality, explaining some cases of fertilization failure. (Fertil Steril� 2006;85:584–91. ©2006 by
American Society for Reproductive Medicine.)
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any factors affect the fertilizability of an oocyte. In addi-
ion to male and female infertility, there is considerable
nexplained or idiopathic infertility. Some of these cases
ight be explained by the failure of an oocyte to reach an

ppropriate level of maturity by the time it reaches meta-
hase II. For example, Eppig et al. (1) have proposed a
ytoplasmic factor, mitosis-promoting factor, as a key regu-
ating factor, whereas others have proposed protein kinase C
2) and mitogen-activating protein kinase activities (3). After
yperstimulation protocols and before fertilization programs,
ocytes are assessed according to morphological criteria for
uitability, including cytoplasmic arrangement (4).

Mitochondria are key players in cytoplasmic activity, pro-
iding, among other biochemical factors, adenosine triphos-
hate. Before the process of fertilization, mitochondria are
ispersed throughout the cytoplasm and are dormant (5).
fter fertilization, however, each stage of cleavage necessi-
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ates that these highly dynamic organelles cluster around the
ucleus to fuel cell division (6–8). After division, they
isperse through the cytoplasm until the next round of cleav-
ge. Consequently, these organelles are vital to subsequent
mbryonic development.

Intrinsically linked to mitochondrial function is mitochon-
rial DNA (mtDNA). This 16.6-kb double-stranded circular
enome encodes 13 of the proteins of the electron transfer
hain associated with the process of oxidative phosphoryla-
ion. Unlike somatic cells, each oocyte mitochondrion has
nly a single copy of this genome (9, 10), which suggests
hat it is representative of mitochondrial number. Indeed,
hroughout oogenesis and oocyte maturation, oocyte copy
umber is expanded from only 10 mitochondria at the pri-
ordial follicle stage to significantly larger numbers in ma-

ure oocytes (11). However, the probable large differences
bserved are due to inter-oocyte variability, highlighted by
wo studies reporting mean mtDNA copy numbers of
38,000 (12) and 314,000 (13) in unfertilized oocytes. A
ore recent study demonstrated that the average copy num-

er from 113 oocytes that failed to fertilize ranged from
0,000 to 598,000, with a mean of 193,000 copies (14).

This considerable exponential clonal expansion of mito-

hondria seems to discontinue once the oocyte has reached
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etaphase II and oocyte expansion and development have
rrested (11). It is further discontinued in the fertilized
ocyte, which tends not to increase copy number until after
mplantation (10, 15), though a recent finding suggests an
arly but brief window of mtDNA postfertilization replica-
ion (16). Consequently, each round of cleavage will result in
ach newly formed blastomere possessing fewer copies of
he genome and hence mitochondria. This would suggest that

critical number of mitochondria are required for postfer-
ilization events, especially given that the inability to trigger
ranscription and replication of mtDNA after implantation
ompromises fetal development, resulting in offspring har-
oring mtDNA-mediated cardiomyopathy or failing to sur-
ive in utero (15). Consequently, those oocytes possessing
ow mtDNA copy number are likely to be compromised
efore or after fertilization.

Here we report an investigation of whether mtDNA copy
umber influences fertilization outcome. In this instance, we
nalyzed the number of mitochondria present in oocytes that
ailed to fertilize, in oocytes that successfully fertilized, and
n oocytes that degenerated either before or after fertiliza-
ion. We have incorporated oocytes resulting from male and
emale factor infertility and from idiopathic infertility.

ATERIALS AND METHODS
iological Material
he unfertilized human oocytes and nontransferable em-
ryos for mtDNA quantification were used from consenting
atients undergoing fertility treatments involving both IVF
nd intracytoplasmic sperm injection (ICSI), according to
ppropriate institutional review board guidelines of the Uni-
ersity Hospitals of Coimbra specific to the assisted repro-
uctive technology program. The use of chaotic, highly
ragmented embryos and abnormally fertilized oocytes was
onsidered appropriate because these were not suitable for
reatment purposes. None of the investigators had any con-
ict of interest.

varian Stimulation Protocol
ach patient underwent the long down-regulation protocol.
he GnRH agonist buserelin (0.6 mg/day SC) was started in

he midluteal phase of the previous cycle (day 21), as deter-
ined by serum E2 and P concentrations for 12–14 days until

ituitary ovarian down-regulation was reached (i.e., E2 con-
entration �50 pg/mL). Follicular growth was stimulated by
SH (Metrodin HP; Serono, Bari, Italy) or recombinant FSH
Gonal-F [Serono] or Puregon [Organon, Oss, The Nether-
ands]) (150–300 IU/day IM). This commenced after ade-
uate down-regulation and continued by daily injections
ccording to individual endocrine and ovarian ultrasonic
esponse until at least one 18-mm-diameter follicle was
bserved. Ovulation was induced with hCG (Pregnyl, Or-
anon; 5,000 IU IM). Oocyte retrieval followed 34–36 hours

ater by ultrasound-guided transvaginal probe. e

ertility and Sterility�
VF and ICSI Protocols
perm for IVF and ICSI were prepared from ejaculated
emen by passage through colloidal silica gradients (three
ayers of 40%, 70%, and 90%, or just one layer of 40% in
ases of severe oligoasthenoteratospermia). Seminal fluid
as removed by centrifugation for 15 minutes at 1,800 � g

nd removal of the supernatant. After the addition of 5 mL of
arle’s medium (Gibco BRL, Paisley, Scotland) and further
entrifugation for 10 minutes at 1,800 � g, the supernatant
as discarded, and sperm cells were allowed to migrate at
7°C for 10–60 minutes in IVF medium. Before the ICSI
rocedure, the sperm suspension was diluted in a 10% poly-
inylpyrrolidone solution (Sigma Chemical, St. Louis, MO).

Cumulus cells were removed by incubation in 25 IU
yaluronidase (Choay, Sanofi Synthelabo, Paris, France) and
ntermittent pipetting. Oocytes were placed in 5-�L drops of
VF media with one drop of the sperm suspension and one
rop of polyvinylpyrrolidone. Before oocyte injection, each
otile sperm was immobilized by squeezing the tail between

he bottom of the dish and the microinjection pipette. Microin-
ection was performed in IVF medium (Medicult, Jyllinge,
enmark) under mineral oil (Sigma Chemical) with holding

nd microinjection pipettes (Laboratoire CCD, Paris, France).

Insemination by IVF of the cumulus-intact oocytes was
erformed with a mean of 100,000 selected sperm cells.
njected and inseminated oocytes were cultured in IVF me-
ium at 37°C in 5% CO2, and fertilization was assessed after
6–18 hours. Cleavage was evaluated after a further 24
ours of in vitro culture. When extrusion of the second polar
ody and pronuclear formation were not observed at 48
ours, oocytes were considered unfertilized.

lassification of the Oocyte Samples
n all, 142 intact fertilized and unfertilized oocytes, zygotes,
nd embryos were analyzed. “Intact” was defined as the
ntire oocyte, zygote, or embryo. These were divided into
hree main groups: group I, fertilized oocytes (n � 35 from
1 patients; mean age [range], 32 [24–38] years); group II,
nfertilized oocytes (n � 65 from 36 patients, aged 32
24–40] years); and group III, degenerate oocytes (n � 42
rom 23 patients, aged 31 [24–37] years).

In group I, fertilized oocytes were subdivided into three
ubgroups: group IA comprised 15 arrested two-pronuclei
2PN) zygotes collected from 7 patients; group IB, which
ncluded abnormally fertilized (3PN) zygotes or embryos,
omprised 10 3PN zygotes, 1 4PN, and 3 3PN six-cell
mbryos collected from 10 patients; group IC comprised 6
ormally fertilized embryos (with abundant fragmentation)
ollected from 4 patients. Group I was further divided ac-
ording to the cause of infertility, based on either male or
emale factor infertility. The male factor infertility group (group
D, n � 17) comprised 6 abnormally fertilized zygotes (5 3PN
nd 1 4PN), 3 abnormally fertilized embryos (six-cell 3PN

mbryos from a 3PN zygote), 6 2PN arrested normally fertil-
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zed zygotes, and 2 normally fertilized embryos with abundant
ragmentation. The female factor infertility group (IE, n � 18)
omprised 5 3PN zygotes, 9 2PN arrests, and 4 normally
ertilized embryos with fragmentation.

Group II (unfertilized) included both IVF- and ICSI-
reated oocytes that were deemed unfertilized when no pro-
uclei or second polar bodies were observed after 48 hours
f culture after insemination or microinjection. Group IIA
male factor infertility) comprised 24 unfertilized oocytes
btained from 15 patients (aged 32 [24–40] years). Fertili-
ation failure arose from severe sperm defects, such as those
atients classified as having severe oligoasthenozoospermia.
ocytes were deemed to be of fertilizable quality and did not

xhibit characteristics of cytoplasmic fragmentation or cyto-
lasmic maturation failure. Some of these oocytes were part
f a larger cohort from which it was decided to inseminate
alf of the oocytes and microinject the other half.

Group IIB (unexplained infertility) comprised 12 unfertil-
zed oocytes obtained from 6 patients diagnosed as idiopathic
ith unassociated female or male factor defects. Oocytes were
ature and of fertilizable quality with no cytoplasmic defects.
roup IIC (female factor infertility) comprised 29 unfertilized
ocytes obtained from 15 patients. Female infertility was
iagnosed as due to endometriosis, polycystic ovary, ele-
ated LH level, or anovulation. All oocytes were insemi-
ated with normal sperm.

In group III (degenerate oocytes), 42 oocytes were ob-
ained from 23 patients and were classified as degenerate
ither before or after IVF or ICSI procedures. They charac-
eristically exhibited darkened cytoplasms.

NA Extraction
ach intact oocyte, zygote, or embryo was placed in individual
.0-mL cryovials (Sarstedt International, Rio de Mouro, Portu-
al) and stored at �20°C until DNA extraction. Oocytes, zy-
otes, or embryos were thawed, and 20 �L of autoclaved sterile

2O was added. The samples were then subjected to freeze–
haw disruption, as previously described (17, 18).

eal-Time Polymerase Chain Reaction Analysis
o determine the original starting copy number for each
ocyte or embryo, the samples were subjected to quantifi-
ation by real-time polymerase chain reaction (PCR). An
xternal standard of 158-bp PCR product was generated, as
reviously described (14). Standards were purified with a
ommercial kit (QIAquick Gel Extraction Kit Protocol
DNA]; Qiagen, London, United Kingdom) according to the
anufacturer’s protocol. They then underwent spectropho-

ometry (Ultrospec 2000; Pharmacia Biotech, Hitchin, United
indsom), and 10-fold dilutions were prepared. As previously
escribed, 1 ng of 158 PCR product comprises 5.8 � 109

olecules of double-stranded DNA (14).

The master mix for each real-time PCR contained the

ollowing (total volume of 18 �L): 1� PCR buffer (Bio- e

586 Santos et al. Mitochondria in oocytes and embryos
ine, London, United Kingdom), 25 mmol/L deoxynucleo-
ide triphosphate (Bioline), 50 mmol/L MgCl2 (Bioline),
.5 �mol/L of each primer (D41 [nucleotide 3254–3277]:
ga aag gac aag aga aat aag g; D56 [nucleotide 3126–3147]:
tg taa agt ttt aag ttt tat gcg), 0.25 U SYBR Green, and 2 U
ioTaq DNA polymerase, supplemented with sterile water.
wo microliters of each total DNA sample was added to indi-
idual wells of a 96-well PCR plate (Abgene, Cambridge,
nited Kindom), to which 18 �L of the master mix was

dded. The reactions were preformed with the iCycler iQ
eal Time Detection System (Bio-Rad Laboratories, Her-
ules, CA). The reaction conditions were 1 cycle at 95°C for
minutes, followed by 94°C for 30 seconds, 58°C for 30

econds, and 72°C for 30 seconds, for 50 cycles. All reac-
ions were run in triplicate and repeated on three separate
ccasions. The data obtained were analyzed with Microsoft
xcel (Microsoft, Redmond, WA).

The iCycler software generated a standard curve using
ve 10-fold serial dilutions for each set of PCR reactions for

he sought-after mtDNA target, using the primer pair D41
nd D56. The starting copy number of mtDNA for each
ample was determined by comparing the fluorescence in-
ensity of the standards with the intensity of the unknown
amples and adjusting for the 10� dilution factor. Melt
urves were analyzed for any incidence of nonspecific prim-
ng. All PCR reactions were run on DNA gels to confirm the
bsence of primer dimerization.

tatistical Analysis
tudent’s t-test and one-way analysis of variance were per-
ormed on mtDNA copy number after logarithmic transfor-
ation of the data. All analyses were performed with com-
ercial software (Minitab 13.1; Minitab, State College, PA).

ESULTS
n all, we analyzed 142 DNA samples from 54 patients with
arying causes of infertility. These DNA samples were iso-
ated from individual intact oocytes that either fertilized or
ailed to fertilize or were degenerate before or after insem-
nation. Each of the DNA samples was then subjected to
eal-time PCR analysis to determine the number of mtDNA
enomes per oocyte and whether an association existed
etween the number of mitochondria per oocyte and fertili-
ation outcome. Each DNA sample was quantified against
nown standards, generated as described in Materials and
ethods. Figure 1 is an example of the standard curves used

o determine the number of copies present in individual
ocytes, whereas Figure 2 demonstrates primer specificity
hrough melt curve analysis, indicating that PCR products
ere not artifacts resulting from, for example, primer dimer-

zation. The absence of primer dimerization was confirmed
y gel electrophoresis (data not shown).

Group I (fertilized oocytes) consists of 35 zygotes or

mbryos collected from 21 patients (mean age [range], 32

Vol. 85, No. 3, March 2006
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24–38] years) with a mean mtDNA copy number of
50,454 � 29,730 (Table 1). This group of fertilized oo-
ytes was subdivided into three groups on the basis of
heir development in culture (Table 2). The 2PN arrested
ygotes (group IA, n � 15) had a mean copy number of
65,260 � 126,853, whereas the abnormally fertilized

FIGURE 1

Real time PCR. Amplification of standards used to de
fertilized, unfertilized, and degenerate oocytes. React
Methods.” Legend: negative (blue); 1 in 10 dilution (p
1 in 10,000 dilution (purple); and 1 in 100,000 dilution

Santos. Mitochondria in oocytes and embryos. Fertil Steril 2006.

FIGURE 2

Melt curve analysis. Melt curves were constructed fo
had occurred in any reactions by performing Sybr Gr
55–93°C. Any reactions perceived to contain misprim
Santos. Mitochondria in oocytes and embryos. Fertil Steril 2006.

ertility and Sterility�
ocytes (group IB, n � 14) had a mean copy number of
06,000 � 174,513. For the normally fertilized group
group IC, n � 6), the mean mtDNA copy number was
33,833 � 217,655. This represented a significant differ-
nce for the mtDNA copy number between the three
roups (P�.02).

ine the number of mitochondria in a series of
conditions are described in the “Materials and
1 in 100 dilution (yellow); 1 in 1,000 dilution (aqua);
rk red).

ing each reaction to determine whether mispriming
fluorescence reactions at temperatures between
were repeated to eliminate doubt.
term
ion
ink);
(da
llow
een
ing
587
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Group I was subdivided according to male or female
actor as the cause of infertility. No significant difference
as observed between these two groups (Table 3; P�.05).
he mean mtDNA copy number for the male factor group

group ID) was 247,694 � 137,397, compared with 253,061
209,978 for the female factor group (group IE). However,

he pregnancy rate was higher in group ID (five pregnancies
n 12 patients, 41.7%) than in group IE (one pregnancy in 8
atients, 12.5%).

For the unfertilized oocyte group (group II, n � 65 from
6 patients, aged 32 [24–40] years) the mean mtDNA copy
umber was 163,698 � 20,192. However, there was also
onsiderable inter-oocyte variation (14,100 to 700,000 cop-
es; Tables 1 and 4), even within individual cohorts. Com-
ared with the mean of 250,454 � 29,730 in fertilized
ocytes for group I, the difference between the two groups
as significant (P�.002; Table 1). A comparison of group

IA (male factor infertility; 218,883 � 207,258 mean
tDNA copies) with group IIC (female factor infertility;

03,528 � 102,332 mean mtDNA copies) revealed a signif-
cant difference (P�.02). We also compared the mtDNA
ean copy number for group IIB (unexplained infertility;

98,742 � 142,095 copies) with that of group IIC (103,528
102,332 copies), which difference was also statistically

ignificant (P�.005; Table 4). However, the difference in
ean mtDNA copy number between groups IIA and IIB was

ot statistically significant (P�.05; Table 4).

The number of mtDNA genomes in the degenerate oocyte
roup (group III; n � 42; 44,629 � 40,729) was statistically

TABLE 2
Mitochondrial DNA copy number in fertilized ooc
and normally fertilized oocytes).

Oocyte type No. of oocytes

Arrested 2PN 15
Abnormally fertilized 3PN 14
Normally fertilized 6
Note: Values are means � SD.
a P�.02 vs. both other groups.

TABLE 1
Mitochondrial DNA copy number for fertilized an

Group No. of oocytes

Fertilized 35 250,
Unfertilized 65 163,
Note: Values are means � SD.
a P�.002 vs. unfertilized group.

Santos. Mitochondria in oocytes and embryos. Fertil Steril 2006.
Santos. Mitochondria in oocytes and embryos. Fertil Steril 2006.

588 Santos et al. Mitochondria in oocytes and embryos
ignificantly different from the number in each of the other
hree infertility groups: IIA, P�.001); IIB, P�.001; IIC,
�.001 (Table 4). However, analysis of all the embryos

evealed that there was no effect of age on mtDNA copy
umber. For those patients aged �30 years, 30–35 years,
nd �35 years, mean mtDNA copy number was 254,133

281,806, 223,499 � 261,954, and 149,658 � 222,064
opies, respectively (P�.05). Surprisingly, there was no
ignificant difference in mean mtDNA copy number between
hose patients aged �33 years (229,885 � 280,790) and
hose aged �33 years (194,201 � 250,640). This is the
efining age breakpoint for the acceptability of donors in
any assisted reproductive technology programs and for the

ncrease observed in the decline of embryo quality and
mplantation capacity.

ISCUSSION
t is evident from our data that a very strong association
xists between the number of mitochondria, based on the
umber of mtDNA genomes present, and fertilization out-
ome. This seems to be independent of whether the oocyte
hows normal patterns of division after fertilization (i.e.,
aintaining 2PN status) or fertilizes abnormally, resulting in

PN status. We noted, however, that there is a significant
ifference in the mean mtDNA copy number for the types of
ertilized oocytes analyzed, as shown in Table 2. Conse-
uently, it would seem that normally fertilized oocytes are
urther distinct in their requirements for mitochondria.

(arrested 2PN, abnormally fertilized oocytes,

Mean Minimum Maximum

5,260 � 126,853a 26,800 477,000
6,000 � 174,513a 100,000 700,000
3,833 � 217,655a 130,000 700,000

fertilized oocytes.

ean Minimum Maximum

� 29,730a 26,800 700,000
� 20,192 14,100 700,000
ytes

16
30
33
d un

M

454
698
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The cause of infertility related to male or female factor
nfertility is again a key indicator of the importance of
itochondrial function during fertilization. As described by
eynier et al. (14), we confirm that a significant difference in
tDNA copy number exists between male and female factor

nfertility–sourced oocytes for those that failed to fertilize.
hese differences can be explained by severe sperm defects
resent in the male subfertility group accounting for fertili-
ation failure and are certainly supported by the lack of a
ignificant difference for mtDNA copy number observed in
he fertilized oocytes for these groups. Equally important, it
eems that oocyte degeneration is clearly marked by the lack
f oocyte mitochondria (group III) and, when challenged
ither by maturation protocols after superovulation protocols
r fertilization, these oocytes fail. We have previously ar-
ued that superovulation protocols will produce a consider-
ble number of poor-quality oocytes for fertilization (19)
ecause they supersede the natural selection mechanisms
ssociated with oogenesis, such as atresia. Such events are
esigned to prevent these oocytes from being ovulated.

Our data are contrary to the recent finding by May-
anloup et al. (20), that the mean copy number of mitochon-
rial genomes was significantly lower in women with ovar-
an insufficiency compared with women with a normal
varian profile. Although this emphasizes the need for a

TABLE 3
Mitochondrial DNA copy number in fertilized ooc

Cause of infertility No. of oocytes

Male factor 17 2
Female factor 18 2
Note: Values are means � SD.
There was no significant difference between groups.

Santos. Mitochondria in oocytes and embryos. Fertil Steril 2006.

TABLE 4
Mitochondrial DNA copy number in unfertilized o
degenerate oocytes.

Cause of infertility No. of oocytes

Male factor 24 21
Female factor 29 10
Unexplained 12 19
Degenerate 42 4
Note: Values are means � SD.
a P�.05 vs. unexplained group.
b P�.02 vs. female factor group.
c P�.005 vs. unexplained group.
d P�.001 vs. other three groups.
Santos. Mitochondria in oocytes and embryos. Fertil Steril 2006.

ertility and Sterility�
inimal number of mitochondrial genomes for normal ovar-
an development, it suggests that these findings are limited to
atients with a particular ovarian profile. Our data suggest
hat this is consistent in ovaries from a variety of women,
ndependent of whether their infertility relates to male or
emale factors. Indeed, atresia in oocytes could arise through
ither mtDNA depletion or through mtDNA deletions. Both
mbryos and oocytes possess variable numbers of mtDNA
earrangements (21, 22). This could account for the subse-
uent embryo development failure that led to the inception
f cytoplasmic transfer, the supplementation of recipient
ocytes with donor cytoplasm containing mitochondria (23).

Our data clearly indicate that there is a developmental
ailure restricting the clonal expansion of mtDNA molecules
uring oogenesis. To this extent, the expansion of mtDNA
opy number has been described in cattle, with a 45-fold
ncrease from the primordial cell to preovulating oocytes
24). Clinically, this lack of mtDNA replenishment would
esemble mtDNA depletion syndromes. These have been
ssociated with two key nuclear-encoded mtDNA transcrip-
ion and replication factors that regulate mtDNA copy num-
er: mitochondrial transcription factor A (TFAM) (25) and
olymerase � (26). Low levels of TFAM expression are
ssociated with, for example infantile mitochondrial myop-
thy (27), familial mtDNA-associated liver disease (28),

characterized by cause of infertility.

Mean Minimum Maximum

694 � 137,397 26,800 482,000
061 � 209,978 34,500 700,000

tes, characterized by cause of infertility, and

Mean Minimum Maximum

83 � 207,258a,b 25,600 700,000
28 � 102,332c 14,100 440,000
42 � 142,095 42,600 578,000
29 � 40,729d 10,000 187,000
ytes

47,
53,
ocy

8,8
3,5
8,7
4,6
589
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atal childhood myopathy (29), skeletal muscle and mito-
hondrial encephalomyopathy disorders (30), and ocular my-
pathy, exercise intolerance, and muscle wasting (31).

The extent of TFAM control over mtDNA replication is
ecisive during mouse spermatogenesis, in which it is ex-
ressed up to the late spermatocyte/early spermatid stage.
fter this, it is then expressed as an alternative isoform,

acking the mitochondrial targeting sequence (32). Conse-
uently, there is a 10-fold reduction to approximately 70–80
tDNA copies per sperm (33). Indeed, the abnormal regu-

ation of this strict developmental process is reflected in
hose subfertile men requiring assisted reproductive treat-
ent, who consequently have significantly greater numbers

f mtDNA copy number than fertile men (34). This reduction
n mtDNA copy number has been suggested as a mechanism
or restricting sperm mtDNA transmission after fertilization
32) and would thus be supported by the up-regulation observed
n oocyte mtDNA copy number.

The regulation of TFAM expression is a precise phenom-
non associated with early embryonic development. Mito-
hondrial DNA copy number remains unchanged until at
east the blastocyst stage (9, 10, 35), with each newly divided
lastomere possessing fewer copies of the genome after each
tage of embryonic division owing to there being no active
tDNA replication (see St. John et al. [36, 37] for review).
ecently, the report of a small window of replication (16)
ight suggest that, for those oocytes with borderline copy

umber, a mechanism exists for partial rescue to bring the
ppropriate number of mitochondria above the fertilization
hreshold. However, blastomeres give rise to the inner cell
ass that generate fetal tissue and are harvested to generate

ndifferentiated embryonic stem cell lines. This therefore
ecessitates that sufficient mtDNA be present for subsequent
etal development.

The precarious balance between the presence of the ap-
ropriate mtDNA copy number and subsequent fetal devel-
pment is exemplified by outcomes associated with TFAM
nockout mice. Homozygous TFAM knockout embryos
xhibit severe mtDNA depletion and abolished oxidative
hosphorylation. They proceed through implantation and
astrulation but die before embryonic day 10.5 (15). In
ontrast, heterozygous offspring present with mtDNA-de-
leted cardiomyopathy (38). Consequently, the low levels of
itochondria we have identified would be unlikely to provide

ufficient mitochondria for fetal development because many of
he inner cell mass cells would be depleted. Furthermore, in-
ufficient numbers of mitochondria would be present to orches-
rate the dynamic roles played by mitochondria during embry-
nic cellular division (6–8) and would likely trigger apoptosis
ue to inadequate adenosine triphosphate synthesis (39).

In many ways, loss of PolG, the polymerase unique to
tDNA replication, produces similar severe clinical conse-

uences. This is perhaps best exemplified by its association
ith progressive external ophthalmoplegia (40). Further-

ore, PolG activity can be severely inhibited by highly

590 Santos et al. Mitochondria in oocytes and embryos
ctive antiretroviral therapy (HAART), used to reduce HIV
oad. Some of these regimens result in the generation of
arge-scale mtDNA deletions in mouse liver after azidothymi-
ine administration (41). In sperm samples from HIV-positive
en receiving HAART, we reported the accumulation of
tDNA deletions after 6 to 12 months of administration (42).

Similar occurrences have been reported in cell culture
xperiments on somatic cells (43) and can be mimicked
hrough the administration of ethidium bromide to cell cul-
ures (44). Dominant negative PolG expression (45) and
argeted disruption of the exonuclease region of the gene
46) also induce an mtDNA depletion phenotype. The latter
tudy also results in male infertility. PolG also possesses a
eries of CAG repeats, with the common allele consisting of
0 repeats. A recent study analyzing samples from cohorts of
en throughout Europe has indicated an association between

he absence of the common, 10-CAG-repeat allele and male
ubfertility (47).

Consequently, the clonal expansion of mtDNA through
ogenesis (48) would suggest that for natural fertilization
utcomes, a default mechanism exists that prevents those
ocytes with insufficient numbers of mitochondria from suc-
essfully fertilizing. The maintenance of oocytes in metabol-
cally supportive cultures might increase fertilization rates
ut could account for those women who have partial suc-
essful embryonic development but are then characterized
y embryonic arrest. The introduction of donor oocyte cyto-
lasm has enhanced fertilization outcome for these women but
aises several major moral and ethical issues (19, 49). These
nclude the possibility of bimaternal inheritance (50, 51) and
evelopmental abnormalities (52). This very much matches
oncerns related to chromosomal nondysjunction (53).
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