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Abstract: This paper describes a numerical model developed to predict the full-range 
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nonlinearities are considered. The strain increment in unbonded tendon, at any 

deformed state, is computed from the elongation of the entire tendon between end 

anchorages. The unbonded prestressing contributes to the concrete beam by 

equivalent loads, which would be updated continuously during the solution process. 

The analysis reproduces the experimental results of continuous beam specimens with 

favourable agreement. Some important aspects of behaviour of the continuous beams 

are examined. 
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1. Introduction 

In an unbonded prestressed concrete beam, there is no strain compatibility 

between unbonded tendons and the surrounding concrete, so that the change in the 

strain in unbonded tendons is member dependent rather than section dependent. Over 

past decades, numerous simplified approaches or empirical/semi-empirical equations 

for computing the stress in unbonded tendons have been proposed, including some 

recent studies by He and Liu [1], Yang and Kang [2], Lee and Kim [3], and Harajli 

[4,5]. The determination of the accurate stress in unbonded tendons should be based 

on the deformation of the entire tendons between anchorages, and an iterative 

procedure needs to be applied in the analysis. Alkhairi and Naaman [6] proposed an 

analytical model in which the change in strain in unbonded tendons was calculated by 

integrating the curvature in concrete at the level of the unbonded prestressing tendons 

between end anchorages. This analytical method or similar methods of analysis [7,8] 

can predict the response of simply supported beams up to failure, but may not be able 

to handle continuous beams which are quite common in engineering practice. 

More general numerical methods of analysis, mostly the finite element method 

analysis, have also been reported. Some investigators [9,10] developed solid-truss 

models in which the concrete member was modeled by solid elements and the 

unbonded tendon was modeled by truss elements. Due to a large number of degrees of 

freedom, this model may have some limitations when applied to the analysis of large 

structures. For prestressed concrete beams, the beam element models have been 

popular for their merits of computational efficiency and accuracy. Allouche et al. [11] 
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described a numerical model which used the finite beam element method 

incorporating an iterative moment-curvature approach to compute the stress in 

unbonded tendons. The model can take care of continuous rectangular beams 

subjected to one-point, uniform or third-point loading, but it neglected the nonlinear 

geometric effects of the structure which may play an important role in the behaviour 

of slender beams such the ones used for unbonded post-tensioned beams. Moon and 

Burns [12], Ariyawardena and Ghali [13], Barbieri et al. [14], Vu et al. [15] have also 

devoted their works to the development of numerical models for unbonded 

prestressed concrete beams. However, few of the models have been applied to the 

analysis of continuous beams prestressed with unbonded tendons. 

This paper describes a numerical method for geometric and material nonlinear 

analysis of continuous prestressed concrete beams with internal unbonded tendons 

over the entire loading process up to failure. The analysis is also capable of simulating 

the time-dependent behaviour of such beams under service conditions. The numerical 

model is validated by comparing the model predictions with experimental results for 

continuous test beams. In addition, the proposed model is used to evaluate some 

important aspects of behaviour of the continuous beams, including the evolution of 

curvatures and neutral axis depths, the development of support reactions and bending 

moments, and the growth of time-dependent deformations. 

 

2. Finite element formulation 

Fig. 1 shows a plane beam element with two end nodes i and j, by which the local 
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coordinate system (x, y) is defined. The node points are at the centroid of the concrete 

section. Each node has three degrees of freedom, namely, axial displacement u, 

transverse displacement v, and rotation θ. Assuming that a plane section remains plane 

after bending and that the shear deformation is negligible, the axial strain ε at any 

fibre of a concrete section is defined by [16] 
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where the second term of the right side represents the large displacement effect. 

Assume u is a linear function and v is a cubic polynomial. According to the 

updated Lagrangian description, the element equilibrium equations for short-term 

loading are as follows (inclusion of long-term or time-dependent effects is to be 

discussed in Section 4): 

 T 1 2d d ( + )de e e e e e P K u K K u   (2) 
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where e
P  is the element equivalent nodal loads; eu  is the element nodal 

displacements; T

e
K  is the element tangent stiffness matrix which consists of the 

material stiffness matrix 1

e
K  and the geometric stiffness matrix 2

e
K ; l is the length 

of the beam element before deformation; and 

11 ci ci sj sj

i j

d E A E A     (6a) 

12 ci ci ci sj sj sj

i j

d E y A E y A     (6b) 

2 2

22 ci ci ci sj sj sj

i j

d E y A E y A     (6c) 

 ci ci sj sj

i j

N A A      (7) 

where the summation symbol signifies that the concrete section is divided into a 

number of layers to employ a layered approach and the subscript ci represents each 

concrete layer and sj represents each bonded reinforcement layer; E is the tangent 

modulus for materials; A corresponds to area and σ corresponds to stress. 

A load control or displacement control incremental method is used to solve the 

structure equilibrium equations, which are assembled in the global coordinate system 

from contributions of all elements. For each increment step, the Newton-Raphson 

iterative algorithm is employed to eliminate the out-of-balance loads: 

 load pres    R P Q P P Q   (8) 

where Q  is the structure internal resisting loads; and P  is the structure equivalent 

nodal loads which consists of two components, namely, loadP  due to external loads 

and presP  due to unbonded prestressing. The obtainment of presP  is to be discussed 

in the following section. 

 



 6 

3. Numerical treatment of unbonded tendons 

The contribution of unbonded tendons to the concrete beam is made by 

transforming the prestressing force into equivalent nodal loads acting on the finite 

element model. It is to be noted that the equivalent loads of unbonded prestressing 

used in the current analysis are different from the conventional equivalent loads of 

bonded prestressing. For the equivalent load method of bonded prestressing, the 

effective prestress fpe is converted into the equivalent loads and then the prestressing 

steel are considered as ordinary bonded reinforcement with yield strength of 

( py pef f ) and ultimate strength of ( pu pef f ), where fpy and fpu are the yield stress 

and ultimate strength of prestressing steel, respectively. For unbonded prestressing, 

however, the preceding method is no longer applicable due to strain incompatibility 

between the unbonded tendons and the surrounding concrete. In this analysis, the 

equivalent loads of unbonded prestressing are obtained from the transformation of the 

current prestressing force updated consecutively during the solution process. 

The unbonded prestressing tendon can be considered as an assemblage of a series 

of tendon segments, each of which spans a beam element. Whatever the original 

shape of the tendon is, as long as the length of the beam element is sufficiently small, 

the corresponding tendon segment can be approximated as a straight-line segment 

[17]. The length of the tendon segment at any deformed state can be expressed as 

 2 2( ) ( )p pj pi pj pil X X Y Y      (9) 

where ( piX , piY ) and ( pjX , pjY ) are the global coordinates of the tendon segment 

joints pi and pj, respectively. As shown in Fig. 2, the joints pi and pj of the tendon 
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segment are related to the corresponding nodes i and j of the beam element by 

 0 0sin cosg

pi i i i iX X e e     ; 0 0cos sing

pi i i i iY Y e e      (10a) 

 0 0sin cosg

pj j j j jX X e e     ; 0 0cos sing

pj j j j jY Y e e      (10b) 

 0 0 0cos ( ) /j iX X l   ; 0 0 0sin ( ) /j iY Y l     (11) 

in which ( iX , iY ) and ( jX , jY ) are the global coordinates of the beam element 

nodes i and j, respectively; ( 0iX , 0iY ) and ( 0jX , 0jY ) are the global coordinates, at 

the original undeformed state, of the beam element nodes i and j, respectively; ie  

and je  are the eccentricities of unbonded tendons at nodes i and j, respectively; g

i  

and 
g

j  are the rotations at nodes i and j, respectively; and 0  is the original angle 

between the global coordinate axis and the local one. 

As illustrated in Fig. 2, the global coordinates of the beam element nodes at any 

deformed state are determined by 

 0

g

i i iX X u  ; 0

g

i i iY Y v    (12a) 

 0

g

j j jX X u  ; 0

g

j j jY Y v    (12b) 

in which g

iu  and 
g

ju  are the global X-displacements at nodes i and j, respectively; 

g

iv  and 
g

jv  are the global Y-displacements at nodes i and j, respectively. 

Combining Eqs. (9)-(12), the tendon segment length can be expressed as a 

function of the global nodal displacements (X, Y displacements and rotation) of the 

beam element. In other words, the tendon segment length, at any deformed state, can 

be determined in terms of the global nodal displacements. The global nodal 

displacement increments, and thereby the global nodal displacements, are obtained by 

solving the structure equivalent equation during the iterative procedure. 
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The length of the tendon segment at the original undeformed state is: 

 2 2

0 ( )p j il l e e     (13) 

Assume that the friction forces between the unbonded tendon and the duct are 

negligible. Therefore, the strain in the unbonded tendon is constant over its full length, 

and the strain increment in the tendon, above the original state, can be calculated from 

the elongation of the tendon between two end anchorages: 

 0 0( ) /p p p pl l l       (14) 

where the summation is made for all tendon segments. 

The total strain in unbonded tendons is then obtained from 

 0p p p      (15) 

where 0p  is the original tendon strain. 

Substituting the strain p  into the constitutive relationship for unbonded 

prestressing tendons yields the stress p . For prestressing steel, the stress-strain 

relationship may be expressed using the Menegotto and Pinto equation [18] as 

follows: 

 
1/
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

 
  

  

  (16) 

where Ep is the modulus of elasticity of prestressing steel; fpy is the yield stress; and K, 

Q and R are the empirical parameters. 

Multiply the stress p  by the tendon area pA  to obtain the prestressing force 

pN . It is to be noted that for a time-dependent analysis, the tendon relaxation should 

be considered in the calculation of the tendon stress or force (to be discussed in the 

next section). When the prestressing force in unbonded tendons is known, as shown in 
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Fig. 3, its contribution to the element equivalent nodal forces is obtained by 

 T{ cos sin cos cos sin cos }e

pres p i jN e e        F   (17) 

where   is the angle between the tendon segment and the longitudinal axis of the 

beam element. As shown in Fig. 3, 

 sin ( ) /i j pe e l     (18) 

The element equivalent nodal loads e

presP  due to prestressing are exactly the 

opposite of the equivalent nodal forces indicated by Eq. (17). The structure equivalent 

nodal loads due to unbonded prestressing are assembled from the contribution of all 

the tendon segments by 

 
T e

pres presP T P   (19) 

where T  is the displacement transformation matrix, which would be varying 

continuously during the solution process in accordance with the continuous change of 

the direction of the local coordinate system. 

According to Eq. (15), the value of the tendon strain at the original undeformed 

state is required for the calculation of the current strain in unbonded tendons. Also, the 

original stress in unbonded tendons would be applied for the analysis of prestress 

transfer. Due to elastic compression, the stress in tendons after the prestress transfer is 

generally smaller than the original value. The tendon stress after the prestress transfer 

is referred to as the effective prestress, the value of which is usually known. The 

original tendon stress (strain) can be determined according to the effective prestress 

by the trial-and-error method as follows: (1) estimate approximately a value of the 

original tendon stress, and then transform it into equivalent nodal loads; (2) analyze 
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the beam and, when the analysis is completed, check the difference between the 

tendon stress calculated and the effective prestress; (3) adjust the original tendon 

stress according to this stress difference, and the process is repeated until the 

difference vanishes. 

 

4. Time-dependent analysis 

The workability of a prestressed concrete structure after a long period of time is 

subject to unavoidable loss due to time-dependent effects such as creep and shrinkage 

of concrete and relaxation of prestressing tendons. The time-dependent behaviour of 

prestressed concrete structures under service conditions is a major interest for 

researchers and engineers. 

The total concrete strain at time t, ( )c t , may be expressed as follows: 

 ( ) ( ) ( ) ( )m cr sh

c c c ct t t t        (20) 

where ( )m

c t , ( )cr

c t  and ( )sh

c t  are the mechanical strain, creep strain and 

shrinkage strain, respectively.  

The shrinkage strain is independent of the applied stress and can be determined 

conveniently according to design codes, while creep is associated with the history of 

the applied stress. Assuming that there is a linear relationship between creep and the 

applied stress, which is generally true under service conditions, the creep strain due to 

the applied stress that gradually changes with time can be expressed by applying the 

principle of superposition as follows: 

 
0

0 0

( )
( ) ( ) ( , ) ( , )

t
cr c
c c

t
t t C t t C t d

 
   




 

   (21) 
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where 0( )c t  and ( )c   is the initial stress applied at time t0 and the stress applied 

at time τ, respectively. ( , )C t   is the creep compliance, defined as the creep strain at 

time t caused by a unit stress applied at time τ. The form of the creep compliance 

adopted in this study is as follows [19]: 

 
( )

1

( , ) ( )[1 ]k

m
r t

k

k

C t e
    



    (22) 

where m, ( )k   and kr  are the empirical parameters, which can be determined 

according to experimental data. The advantage of this form is its efficiency in 

simulating the history of the applied stress. 

The time is divided into a number of small intervals. By utilizing the above form 

of the creep compliance, the creep strain increment at time interval nt  ( 1n nt t   ), 

cr

n , is given by 

 1 1/2( ) ( ) ( , )cr cr cr

n c n c n n n n nt t C t t             (23) 

in which tn-1/2 represents the middle time between time tn-1 and time tn; n  is the 

stress increment at time interval nt ; and 

 
1

(1 )k n

m
r t

n kn

k

e  



    (24) 

where kn  is obtained from the following recursive formula: 

 1 1 /2

( 1) 1 ( 1) 1/2( )k n k nr t r t

kn k n n k ne t e       

       (25a) 

 1 0 0( ) ( )k c kt t     (25b) 

By applying the virtual work principle, the time-dependent incremental 

equilibrium equations, at time interval nt , for a beam element are determined as 

follows: 
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 1 2( ) ( ) ( + )e e cr e sh e e e

n n n n      P P P K K u   (26) 

T( ) { 0 0 }e cr

n ci ci ni ci ci ci ni ci ci ni ci ci ci ni

i i i i

E A E y A E A E y A         P  (27a) 

T( ) { 0 0 }e sh sh

n n ci ci ci ci ci ci ci ci ci ci

i i i i

E A E y A E A E y A       P   (27b) 

where e

nP  is the equivalent nodal load increments due to external loads and 

unbonded prestressing; ( )e cr

nP  and ( )e sh

nP  represent the equivalent nodal load 

increments due to concrete creep and concrete shrinkage, respectively; sh

n  is the 

shrinkage strain increment; e

nu  is the nodal displacement increments; the form of 

the material stiffness matrix 1

e
K  is a modification of 1

e
K  by replacing the 

coefficients 11d , 12d  and 22d  in Eq. (5a) with the coefficients 11d , 12d  and 22d , 

respectively; the form of the geometric stiffness matrix 2

e
K  expressed by Eq. (5b) is 

also used here. 

 11 ci ci sj sj

i j

d E A E A     (28a) 

 12 ci ci ci sj sj sj

i j

d E y A E y A     (28b) 

 2 2

22 ci ci ci sj sj sj

i j
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E t
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 
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  (29) 

In the calculation of the tendon stress, which would be transformed into 

equivalent loads as described previously, the prestress loss due to tendon relaxation 

should be considered. In this study, the relaxation of prestressing steel, pr , is 

computed based on the following equation [20]: 

 
00

0

log( )
( 0.55)

10

pr p

p py

t

f

 



 
     (30) 

in which (τ – t0) is the time in hours after stressing. This equation is subject to the 
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condition that 0p  (original stress immediately after stressing) is the only applied 

stress and the tendon length is kept constant. In a prestressed concrete beam, the 

applied stress would be affected by some causes such as prestress transfer, the 

application of external loads, creep and shrinkage of concrete. Therefore, the original 

stress used to calculate the relaxation at each time interval should be modified 

according to the change in the applied stress due to these causes. The total relaxation 

at time tn is obtained by summing up the relaxation at all time intervals. 

 

5. Application 

5.1 Continuous test beams and analysis model 

In an experimental programme at the structural laboratory of Hunan University 

[21], a series of continuous beams post-tensioned with internal unbonded tendons 

were tested to failure. Five of the beams, designated as YLA1, YLA2, YLB2, YLC1 

and YLC2 are used to calibrate the proposed model. The dimensions and steel layouts 

are shown in Fig. 4. The beams were of a rectangular section with width of 150 mm 

and depth of 300 mm, and were continuous over two spans (4800 mm each span). 

Both spans were under third-point loading. The layout of the unbonded tendons was 

kept constant for all beams and was defined by the following equations: 

* 5 *2 *2.5297 10 0.1006y x x    for 0 ≤ x
*
 ≤ 1988 mm  (31a) 

* 5 *2 *3.0518 10 0.1214 20.7y x x     for 1988 mm < x
*
 ≤ 4320 mm  (31b) 

* 4 *2 *1.4817 10 1.4225 3313.9y x x      for 4320 mm < x
*
 ≤4800 mm  (31c) 

where x
*
 is the distance to the end support of the beams; and y

*
 is the distance 
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between the tendon line and the centroidal axis of the beams. The tendon lines outside 

the end supports were straight lines tangent to the tendon curve represented by Eq. 

(31a) at x
*
 = 0. 

The unbonded prestressing steel consisted of 15 mm seven-wire strand having 

ultimate strength, yield strength and elastic modulus of 1941 MPa, 1680 MPa and 

1.97 GPa, respectively. The longitudinal nonprestressed reinforcement consisted of 12, 

16 or 18 mm deformed steel bars having yield strengths of 361, 384 and 364 MPa, 

respectively. The shear reinforcement consisted of 10 mm stirrups with spacing of 150 

mm in the outer shear spans and of 200 mm in the flexural spans for all beams, while 

the shear reinforcement in the inner shear spans consisted of 10 mm stirrups with 

spacing of 150 mm for Beams YLA1 and YLA2, 100 mm for Beam YLB2 and 80 mm 

for Beams YLC1 and YLC2. The amount of nonprestressed steel (As1, As2, As3 and 

As4), the concrete strength '

cf  and the effective prestress pef  for the beams are 

given in Table 1. 

In the finite element idealization, the concrete beam is idealized as 38 beam 

elements, and the cross section of a beam element is subdivided into 10 concrete 

layers and 2 steel layers each of which represents the top or bottom steel bars, as 

shown in Fig. 5. The unbonded tendon is also divided into 38 segments corresponding 

to the beam elements. The material models adopted are as follows: the Scott et al. 

model [22] is adopted for concrete in compression while the bilinear elastic-softening 

model [23] is adopted for concrete in tension (Fig. 6(a)); the Menegotto and Pinto 

model [18] is adopted for prestressing steel (Fig. 6(b)); and the elastic-perfectly 
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plastic model is adopted for nonprestressed steel (Fig. 6(c)). During the analysis, 

when the concrete strain at the critical section reaches the ultimate compressive strain, 

the beam is assumed to be crushed. 

5.2 Comparisons between computational and experimental results 

According to the model prediction, all the beams analyzed fail by crushing of 

concrete at the span critical section. Prior to failure, the beams experience sequentially 

four typical phases, namely, first cracking at the centre support, second cracking at the 

span critical section, first yielding (of nonprestressed steel) at the centre support, and 

second yielding at the span critical section. The predicted failure mode, as well as the 

typical phases experienced, is consistent with the experimental observation. 

Fig. 7 compares the predicted load-deflection responses with the experimental 

results for the test beams. It can be seen that, for Beams YLB2, YLC1 and YLC2 

which had coincident experimental values between left and right spans, the 

computational and experimental results are in good agreement. For Beams YLA1 and 

YLA2, the numerical prediction agrees favorably with the experimental results for the 

left span, which, however, were not well coincident with those for the right span. 

Fig. 8 shows the comparisons between numerical and experimental results 

regarding the load versus stress increase in unbonded tendons for the test beams. The 

experimental values of the tendon force were read from the load cells placed at the 

left and right stressing ends, while there existed some reading disparities between the 

left and right cells as can be observed in Fig. 8. It is seen that, at the initial loading 

stage, the analysis overestimates the stress increase in unbonded tendons, attributed to 
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that the friction loss, which is rather important for the small stress increment 

developed at this stage, is neglected in the analysis. After cracking, the tendon stress 

increases quickly, and therefore the influence of the friction loss gradually diminishes. 

In the post-elastic range, the results obtained from the analysis agree well with the 

experimental results, as shown in Fig. 8. 

5.3 Evolution of curvatures and neutral axis depths 

Fig. 9 shows the curvature evolution at the span critical section and centre support 

section with the applied load for the three continuous beams having different amounts 

of nonprestressed steel (YLA2, YLB2 and YLC1). It can be observed that, before 

yielding at the span critical section, the curvature at the centre support develops faster 

than that that at the span critical section, while it is opposite after yielding. It is also 

seen that, with increasing amount of nonprestressed steel, the ultimate load increases 

obviously, while the curvature ductility gradually decreases. 

Under the prestressing force and self-weight (nil live load), there is a small 

hogging (sagging) curvature at the span critical section (centre support). At this state, 

the neutral axis lies someplace at the top (bottom) half of the span critical section 

(centre support). With the application and increase of the live load, the hogging 

(sagging) curvature at the span critical section (centre support) gradually vanishes, 

and then sagging (hogging) curvature begins to appear and develop. Accordingly, the 

neutral axis at the span critical section (centre support) moves upward (downward) to 

a place far above (below) the top (bottom) fibre, and suddenly jumps to a place far 

below (above) the bottom (top) fibre and then move upward (downward). Fig. 10 
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shows the evolution of neutral axis depths at the span critical section and centre 

support section, after the neutral axis enters the outermost tensile fibre, with the 

applied load. It is seen that, before yielding at the span critical section, the neutral axis 

at the span critical section moves slower than that at the centre support. After yielding, 

the neutral axis at the span critical section moves rapidly, much faster than that at the 

centre support. It is also seen that the neutral axis depth increases as the amount of 

nonprestressed steel increases. 

5.4 Development of support reactions and bending moments 

Fig. 11 shows the development of the reactions at end and centre supports with the 

applied load. Both the actual and elastic values are illustrated. The actual values are 

obtained from the nonlinear computer analysis proposed in this study, while the 

elastic values are obtained from an elastic analysis. It can be seen from the figure that 

the actual values are identical to the elastic ones at the initial loading up to cracking. 

Thereafter, the actual values begin to deviate from the elastic ones due to 

redistribution of internal forces. Because the first cracking appears at the centre 

support, on cracking the internal forces are redistributed towards the critical region in 

the span. As a consequence, the actual reactions grow faster at the end support while 

slower at the centre support, as shown in Fig. 11. The reaction evolution stabilizes 

until the yielding of nonprestressed steel over the centre support, which leads to a 

further growth (diminution) of the rate of increase in the actual reactions at the end 

support (centre support). When the nonprestressed steel at the span critical section 

begins to yield, the internal forces turns to be redistributed towards the centre support, 



 18 

thereby resulting in a diminution (growth) of the rate of increase in the actual 

reactions at the end support (centre support). It is also observed that the difference 

between the actual reaction and elastic value is less obvious for higher amount of 

nonprestressed steel. The above observations are consistent with another experimental 

study [24]. 

Fig. 12 shows the development of the bending moments, obtained from the 

nonlinear and elastic analyses, at the span critical section and centre support with the 

applied load. It is seen that, similar to the actual reaction evolution, the actual moment 

evolution during the whole loading process is mainly controlled by three phases, 

namely, first cracking, first yielding and second yielding. Due to redistribution of 

moments, the load-moment relationship losses its linearity on first cracking, which 

causes a diminution (growth) of the rate of increase in moments at the centre support 

(span critical section). This change in the moment evolution is accentuated by first 

yielding, and later alleviated by second yielding. The degree of moment redistribution 

can be expressed as: 1 / eM M   , where M is the actual moment in the inelastic 

range, and Me is the elastic moment. It can be observed that the degree of moment 

redistribution decreases as the amount of nonprestressed steel increases. At the 

ultimate limit state, the values of β for YLA2, YLB2 and YLC1 are respectively 

27.5%, 22.5% and 19.1% at the centre support, and -12.7%, -10.8% and -9.5% at the 

span critical section. 

5.5 Growth of time-dependent deformations 

A time-dependent analysis is conducted taking into account the creep and 
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shrinkage of concrete and the relaxation of prestressing steel. The values of the creep 

parameters defined in Eq. (22) and the time-dependent modulus of elasticity of 

concrete, recommended by Zhu [19] for preliminary design of large concrete dams, 

are slightly modified for the current analysis: m = 2; 0.45

1( ) 0.69(1 9.2 ) / ( )E     , 

r1 = 0.05; 0.45

2( ) 1.56(1 1.7 ) / ( )E     , r2 = 0.005; 
0.340.4

0( ) (1 )E E e    , where 

E0 is a constant, the value of which is 1.4 times the instantaneous modulus of 

elasticity at age of 28 days. The concrete shrinkage model recommended by MC10 

[25] is adopted. It is assumed that the tendons were tensioned to an original 

prestressing force and then anchored to the concrete beam at concrete age of 28 days. 

At zero live load (self-weight load is considered), the growth of the upward 

deflection (camber) at midspan and axial shortening from day 28 to day 600 due to 

time-dependent effects for the three beams is illustrated in Fig. 13. It can be observed 

that after prestress transfer, the camber increases very quickly at early age and tends 

to stabilize about 40 days later. The increase in axial shortening is also rapid at early 

age, and becomes rather slow after several hundred days. It is also observed that the 

nonprestressed steel has important influence on the development of time-dependent 

deformations, particularly of the beam camber. A higher amount of nonprestressed 

steel registers lower increases in the camber and axial shortening. At a service load of 

60 kN, the growth of the downward deflection at midspan and axial shortening for the 

three beams is shown in Fig. 14. The instantaneous deflections of the beams due to 

the live load are 3.4 ~ 3.7 mm, while the instantaneous axial shortenings are not 

noticeable, as can be seen in Fig. 14. Similar to the case of nil live load, the 
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time-dependent deformations of the beams under live loading develop rapidly at first, 

while the development slows down with time. At given age, the higher the amount of 

nonprestressed steel, the lower the deflection and axial shortening. 

 

6. Conclusions 

A numerical model based on the finite element method is developed to predict the 

complete nonlinear response of continuous concrete beams prestressed with internal 

unbonded tendons. The model is also capable of predicting the long-term service-load 

behaviour of such beams due to concrete creep, concrete shrinkage and tendon 

relaxation. The finite element formulation is established using the layered 

Euler-Bernoulli beam theory. According to the updated Lagrangian description, the 

stiffness matrix consists of the material stiffness matrix, which represents the material 

nonlinear effect, and the geometric stiffness matrix, which represents the large 

displacement effect. The tendon strain increment, above the reference strain, is 

computed from the elongation of the entire tendon between end anchorages. This 

increment is added to the reference strain to obtain the current total strain, and thereby 

the tendon stress and prestressing force. The contribution of unbonded tendons to the 

concrete beam is made by transforming the current prestressing force into equivalent 

nodal loads acting on finite element model. The time-dependent effects, including 

concrete creep, concrete shrinkage and tendon relaxation, are introduced in the model, 

where concrete creep is modeled assuming a linear creep law and utilizing an efficient 

form of creep compliance. 
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The nonlinear model is verified with the experimental results of some continuous 

unbonded prestressed concrete beam specimens available in literature. Comparisons 

between the computational and experimental results show that the numerical analysis 

reproduces well the experimental load-deflection response and stress increase in 

unbonded tendons over the entire loading range up to failure. Some important aspects 

of behaviour of the continuous beams are evaluated using the proposed model. The 

analysis shows that the amount of nonprestressed steel significantly affects the 

behaviour of continuous beams, including the curvature, neutral axis depth, moment 

redistribution and the time-dependent deformations. 
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Table 1 Design parameters of test beams [21] 

Beam 

As1 

(mm
2
) 

As2 

(mm
2
) 

As3 

(mm
2
) 

As4 

(mm
2
) 

'

cf  

(MPa) 

pef  

(MPa) 

YLA1 

452.4 

(4Ø12) 

226.2 

(2Ø12) 

226.2 

(2Ø12) 

226.2 

(2Ø12) 

34.9 1083 

YLA2 

452.4 

(4Ø12) 

226.2 

(2Ø12) 

226.2 

(2Ø12) 

226.2 

(2Ø12) 

36.7 1196 

YLB2 

603.2 

(3Ø16) 

508.9 

(2Ø18) 

226.2 

(2Ø12) 

603.2 

(3Ø16) 

33.0 1193 

YLC1 

763.4 

(3Ø18) 

763.4 

(3Ø18) 

226.2 

(2Ø12) 

763.4 

(3Ø18) 

37.1 1169 

YLC2 

763.4 

(3Ø18) 

763.4 

(3Ø18) 

226.2 

(2Ø12) 

763.4 

(3Ø18) 

33.2 1205 

 



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Sketch of beam element 
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Fig. 2 Relationship between beam element nodes and tendon segment joints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

ie
je

pN



i j

pi

pj

x

y

pN

Beam element node

Tendon segment joint

 

Fig. 3 Contribution of unbonded prestressing force to element nodal loads 
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Fig. 4 Details of test beams [21] 
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Fig. 5 Finite element model of the test beams 
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Fig. 6 Stress-strain diagrams for materials: (a) concrete; (b) prestressing steel; (c) 

nonprestressed steel 
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Fig. 7 Comparisons between predicted load-deflection response and experimental 

results for the test beams 
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Fig. 8 Comparisons between predicted tendon stress increase and experimental results 

for the test beams 
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Fig. 9 Curvature evolution for the continuous beams 
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Fig. 10 Neutral axis depth evolution for the continuous beams 
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Fig. 11 Support reaction evolution for the continuous beams 
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Fig. 12 Moment evolution for the continuous beams 
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Fig. 13 Time-dependent deformations for the continuous beams under zero live load 
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Fig. 14 Time-dependent deformations for the continuous beams under live loading 




