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Abstract

It has been argued that in late-onset Alzheimer's disease a disturbance in the control of neuronal glucose metabolism consequent to
impaired insulin signalling strongly resembles the pathophysiology of type 2 diabetes in non-neural tissue. The fact that mitochondria are the
major generators and direct targets of reactive oxygen species led several investigators to foster the idea that oxidative stress and damage in
mitochondria are contributory factors to several disorders including Alzheimer's disease and diabetes. Since brain possesses high energetic
requirements, any decline in brain mitochondria electron chain could have a severe impact on brain function and particularly on the etiology
of neurodegenerative diseases. This review is primarily focused in the discussion of brain mitochondrial dysfunction as a link between
diabetes and Alzheimer's disease.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder
characterized by a selective neuronal cell death associated
with two hallmark pathological lesions: the intracellular
neurofibrillary tangles (NFTs) and extracellular amyloid
deposits in the form of senile plaques. The etiological events
leading to AD pathogenesis are unclear. Although age and
the inheritance of predisposing genetic factors appear to play
a major role, more recent evidence suggests that the
development and progression of AD is subject to a wide
variety of both environmental and genetic modifiers [1,2].
There is no single gene that accounts for AD heritability,
despite some clues that have been provided by genetic
analysis of the rare cases of early-onset familial AD which
are caused by missense mutations in the amyloid β precursor
protein (AβPP) and presenilin-1 and -2 genes. The vast
⁎ Corresponding author. Center for Neuroscience and Cell Biology,
Institute of Biochemistry — Faculty of Medicine, University of Coimbra,
3004-504 Coimbra, Portugal. Tel.: +351 239820190; fax: +351 239826798.

E-mail address: catarina@cnc.cj.uc.pt (C.R. Oliveira).

0022-510X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jns.2007.01.017
majority of late-onset AD cases are sporadic in origin.
Mutations and polymorphisms in multiple genes are likely to
contribute to sporadic AD pathogenesis together with non-
genetic factors. The specific accumulation of neurotoxic
amyloid-β (Aβ) [3] derived from the post translational
proteolysis of AβPP [4] in the central nervous system (CNS)
appears to represent a major pathological step in the
evolution of AD [5]. AD has been thought to occur due to
the accumulation of aggregated neurotoxic Aβ appearing in
specific brain regions (hippocampus and cerebral cortex),
triggering an inflammatory response, neuronal cell death and
gradual cognitive decline [5].

Diabetes mellitus is a heterogeneous metabolic disorder
characterized by hyperglycemia. In type 1 diabetes, which
generally develops at a young age, the principal defect is an
auto-immune-mediated destruction of pancreatic cells,
leading to insulin deficiency. In type 2 diabetes the principal
defect is insulin resistance, leading to a relative insulin
deficiency .The islest of Langerhans in type 2 diabetes is
characterized by β-cell loss [6,7] and islet amyloid derived
from islet amyloid polypeptide (IAPP) [8–10], a protein
coexpressed and secreted with insulin by β-cells. Similarly
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to Aβ peptide, IAPP spontaneously forms into amyloid
aggregates in an aqueous environment [11]. Furthermore, it
has been reported that degeneration of pancreatic islets is
also associated with NFTs formation (for review see [12]).
Similarly to AD, the incidence of type 2 diabetes strongly
increases with age. Altogether these findings implicate a
close biological relationship between type 2 diabetes and
AD.

In addition to complications that affect the eyes, kidneys,
heart, blood vessels and nerves, diabetes mellitus is
associated with damage to the CNS and cognitive deficits
[13,14]. Impairment of learning and memory has been
documented in both type 1 and type 2 diabetes. CNS deficits
range from moderate to severe, depending on the quality of
glycemic control, and involve mainly verbal memory and
complex information processing [15–17].

Furthermore, it has been shown that insulin affects several
brain functions including cognition and memory, and several
studies have established links between insulin resistance,
diabetes mellitus and AD [18]. Recent evidence indicates
that insulin regulates the metabolism of Aβ and tau proteins
[19–21]. Hoyer [22] was the first to suggest that desensi-
tization of the neuronal insulin receptors and signalling
events in AD, leads to a reduction in acetylcholine and a
corresponding decrease in cerebral blood flow. These abnor-
malities result in chronic and increasing deficits in brain
oxidative metabolism.

Due to the increasing number of data demonstrating a
connection between diabetes and AD, efforts have been
developed to elucidate the exact mechanism(s) underlying
this connection. Although both disorders possess several
overlapping features, mitochondrial dysfunction is one of the
most relevant rendering mitochondrion an important target
of scientific research. This review starts by given an over-
view about the involvement of insulin signal transduction in
AD pathophysiology followed by the discussion of glucose/
energetic metabolism deficiency in this disease. The last part
of this review culminates with the discussion of mitochon-
drial dysfunction as a link between diabetes and AD.

2. Insulin and Alzheimer's disease pathophysiology

Abnormalities in insulin metabolism, pertinent to type 2
diabetes, are among the central factors thought to mecha-
nistically influence the onset of AD via their influence on
synthesis and degradation of Aβ. For example, there is
evidence indicating that insulin itself may significantly
promote extracellular amyloidogenic Aβ peptides through
mechanisms that involve the acceleration of AβPP/Aβ
trafficking from the trans-Golgi network, a major cellular
site for Aβ generation, to the plasma membrane [21].
Additionally, recent studies have indicated that certain signal
transduction pathways downstream of the insulin receptor,
may also promote the generation of Aβ peptides by modu-
lating the cleavage of the parent AβPP at the γ-secretase site
[23], a site determinant of Aβ amyloidogenicity. Although
this evidence tentatively suggests that type 2 diabetes might
play an important role in AD through mechanisms that
involve Aβ peptide generation, alternate studies suggest that
insulin may also provoke amyloid accumulation by limiting
Aβ degradation via direct competition for the insulin-
degrading enzyme (IDE). IDE is a zinc-metallopeptidase
that preferentially cleaves proteins with a propensity to form
β-pleated sheet-rich amyloid fibrils [24,25], such as Aβ
peptides [26,27]. This relationship of IDE with Aβ is
supported by recent evidence indicating that IDE activity in
the brain is negatively correlated with Aβ content [26,27],
and that IDE expression is decreased in the AD brain [28,29].

Furthermore, it has been reported that Aβ40 and Aβ42
reduce insulin binding and insulin receptor autophosphor-
ylation. The reduction in binding seems to be caused by a
decrease in the affinity of insulin to the insulin receptor,
which suggests that Aβ is a direct competitive inhibitor of
insulin binding and action [30].

Recently, Steen and collaborators [31] demonstrated the
existence of extensive abnormalities in insulin and insulin-
like growth factor type I and II (IGF-I and IGF-II) signalling
mechanisms in AD brains. These abnormalities were
associated with reduced levels of insulin receptor substrate
(IRS) mRNA, tau mRNA, IRS-associated phosphotidylino-
sitol 3-kinase, and phospho-Akt (activated), and increased
glycogen synthase kinase-3β activity and AβPP mRNA
expression. The strikingly reduced CNS expression of genes
encoding insulin, IGF-I, and IGF-II, as well as the insulin
and IGF-I receptors, led the authors to suggest that AD may
represent a neuro-endocrine disorder that resembles diabetes
mellitus. In addition, the same research group demonstrated
that insulin and insulin-like growth factor expression and
function deteriorate with progression of AD being these
effects linked to brain reductions in acetylcholine [32].
Therefore, the authors proposed the term, “Type 3 Diabetes”
to reflect this pathogenic mechanism of neurodegeneration.

Furthermore, insulin has been shown to regulate the
phosphorylation state of tau protein by regulating the activity
of phosphorylating enzymes. Insulin concentration deficit
increases the activity of glycogen synthase-3 kinase [33],
which was found to cause tau hyperphosphorylation [19].
ATP acts in similar way, reduction of ATP activates both
protein kinases erk36 and erk40 [34], which in turn causes
tau hyperphosphorylation [35].

These data provide clear evidence that the metabolism of
AβPP, Aβ degradation and tau protein phosphorylation are
under control of insulin signal transduction.

3. Glucose/energetic metabolism deficiency in
Alzheimer's disease

Normal brain function requires a steady supply of energy
substrate to carry out all of its cellular and molecular needs.
Glucose is the primary source of fuel for any energy-
demanding activity in brain that together with oxygen is
delivered by the circulation for the metabolic chores that
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keep brain cells healthy [36]. When glucose delivery to the
brain stops, catastrophic neurological consequences or even
death can develop. There is increasing amount of evidence
suggesting that insulin present in CNS is a regulator of
central glucose metabolism, similar to that observed in the
periphery, even if it is considered that glucoregulation is not
the main function of insulin in the brain (for review see [37]).

Early and severe abnormalities of cerebral glucose
metabolism parallel worsening of the symptoms of dementia
[38,39]. Late-onset AD is associated with glucose abnor-
malities distributed over all cortical areas, and particularly in
parietotemporal and frontal association cortices [40,41]. This
hypometabolism in the cerebral cortex is particularly
pronounced in structures with both high glucose demands
and insulin sensitivity (for review see [42]).

Recently, Kim et al. [43] reported that glucose hypome-
tabolism of early onset AD patients is much greater in
magnitude and extent than that of late onset patients, though
both groups are similar in dementia severity. When the
authors compared the decline of glucose metabolism with the
Clinical Dementia Rating (CDR) stage, the slope was steeper
in early onset than in late onset AD suggesting that the
greater hypometabolism in early onset patients is required to
reach the same severity of dementia.

These abnormalities in cerebral glucose utilization
include a diminished activity of key enzymes involved in
intermediary metabolism notably the activity of glutamine
synthetase, creatine kinase, aconitase, pyruvate dehydroge-
nase and α-ketoglutarate dehydrogenase [44–46]. These
enzymes are highly susceptible to oxidative modification
and are altered by exposure to a range of pro-oxidants [47].
Reduced pyruvate dehydrogenase activity results in a de-
creased level of acetyl-CoA, and together with the dimin-
ished activity of choline acetyltransferase, the synthesis of
acetylcholine in the presynaptic neuron is markedly reduced
[48]. In this respect, it is noteworthy that the degeneration of
the cholinergic system correlates with the progression of
mental disturbances in patients with AD [49]. A decreased
concentration of acetyl-CoA may also decrease the forma-
tion of intracellular cholesterol [50]. Cholesterol is the main
sterol in membranes and is important for normal cell func-
tion. Cholesterol levels are markedly decreased in brain
membranes and in the cerebrospinal fluid of AD patients
[51–53]. Another decisive pathophysiological consequence
of the markedly perturbed glucose metabolism is a decrease
in ATP production from glucose by around 50% in the
beginning of sporadic AD [54]. A fall in ATP formation in
the sporadic AD brain has also been demonstrated by other
investigators [55,56]. This energy deficit may compromise
ATP-dependent processes in a hierarchical manner [57]
including cellular and molecular mechanisms.

The most consistent defect in mitochondrial electron
transport enzymes in AD has been a deficiency in cyto-
chrome oxidase. There are several reports indicating a
reduced cytochrome oxidase activity in AD platelets [58,59]
and in post mortem brain tissue from patients with AD,
particularly in neurofibrillary tangle-bearing neurons
[60,61]. Previous studies have also demonstrated a perikar-
yal accumulation of cytochrome oxidase protein, immuno-
localized to cytosol by immunoelectron microscopy in the
face of reduced numbers of intact mitochondria. These
results suggested that enhanced degradation of mitochondria
occurs in AD, leaving behind lysosomal detritus containing
non-functioning mitochondrial components [62]. Studies
with cybrid cells demonstrated that deficits in cytochrome
oxidase in AD platelets could be transferred to Rho cells,
which retain the cytochrome oxidase deficit [63,64].
Additionally the resulting cybrid cells showed markedly
increased free radical production, impaired intracellular
calcium buffering, elevated basal cytosolic calcium concen-
tration, and enhanced sensitivity to inositol 1,4,5-triphos-
phate-mediated calcium release [63,64]. Recently, Crouch
and colleagues [65] found that Aβ42 specifically inhibited
cytochrome oxidase of human mitochondria in a dose-
dependent manner this effect being dependent on the pres-
ence of Cu2+. Altogether these data indicate that mitochon-
dria dysfunction is a relevant event occurring in AD
pathophysiology.

4. Mitochondrial dysfunction as a trigger of neuronal
degeneration and death

Although the brain represents only 20% of the body
weight; it receives 15% of cardiac output and accounts for
20% of total body oxygen consumption. This energy require-
ment is largely driven by neuronal demand for energy to
maintain ion gradients across the plasma membrane that is
critical for the generation of action potentials. This intense
energy requirement is continuous; even brief periods of
oxygen or glucose deprivation result in neuronal death.

Mitochondria are increasingly recognized as subcellular
organelles that are essential for generating the energy that
fuels normal cellular function while, at the same time, they
monitor cellular health in order to make a rapid decision
(if necessary) to initiate a programmed cell death. As such,
the mitochondria sit a strategic position in the hierarchy of
cellular organelles to continue the healthy life of the cell or to
terminate it. These organelles are essential for neuronal
function because the limited glycolytic capacity of these cells
make them highly dependent on aerobic oxidative phos-
phorylation for their energetic needs. However, oxidative
phosphorylation is a major source of endogenous toxic free
radicals, including hydrogen peroxide (H2O2), hydroxyl
(HOU) and superoxide (O2

U−) that are products of normal
cellular respiration [66]. With the inhibition of electron
transport chain, electrons accumulate in complex I and co-
enzyme Q, where they can be donated directly to molecular
oxygen to give O2

U− that can be detoxified by the mito-
chondrial manganese superoxide dismutase (MnSOD) to
give H2O2 that, in turn, can be converted to H2O by
glutathione peroxidase (GPx). However, O2

U− in the presence
of nitric oxide (NOU), formed during the conversion of
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arginine to citrulline by nitric oxide synthase (NOS), can
originate peroxynitrite (ONOO−). Furthermore, H2O2 in the
presence of reduced transition metals can be converted to
toxic HOU via Fenton and/or Haber Weiss reactions.
Inevitably, if the amount of free radical species produced
overwhelms the neuronal capacity to neutralize them,
oxidative stress occurs, followed by mitochondrial dysfunc-
tion and neuronal damage. Reactive species generated by
mitochondria have several cellular targets including mito-
chondrial components themselves (lipids, proteins and
DNA). The lack of histones in mitochondrial DNA
(mtDNA) and diminished capacity for DNA repair render
mitochondria an easy target to oxidative stress events.

Mitochondria also serve as high capacity Ca2+ sinks,
which allow them to stay in tune with changes in cytosolic
Ca2+ loads and aid in maintaining cellular Ca2+ homeostasis
that is required for normal neuronal function [67–69].
Conversely, excessive Ca2+ uptake into mitochondria has
been shown to increase ROS production, inhibit ATP
synthesis, release cytochrome c, and induce mitochondrial
permeability transition [70–72]. The mitochondrial perme-
ability transition (MPT) is defined as the sudden increase of
inner mitochondrial membrane permeability to solutes of
molecular mass less than 1500 Da [73,74]. Strong evidence
now exists that the MPT is due to the opening of a
nonselective megachannel (estimated to be 2–3 nm in
diameter) [75,76]. Because the chemiosmotic theory is based
on the inner membrane being impermeable to solutes that are
not specifically transported, MPT would collapse the
mitochondrial membrane potential (ΔΨm) and uncouple
the electron transport system from the production of ATP.
Additionally MPT results in mitochondrial swelling and
can lead to the release of proapoptotic proteins. Importantly,
Ca2+, Pi, oxidative stress, and low inner membrane potential
promote the onset of MPT, whereas cyclosporin A (CsA),
Mg2+, ADP, and the existence of a high membrane potential
oppose the onset [74,77].

Mitochondrial dysfunction and the resulting energy
deficit trigger the onset of neuronal degeneration and death.

5. Mitochondrial impairment links diabetes toAlzheimer's
disease

Increased oxidative stress has been implicated in the
pathology of several diseases including diabetes and AD
[78,79]. Evidence from the literature indicates that there is an
increase in oxidative stress in human [80] and experimental
diabetes [81,82] and a decrease in the antioxidant capacity
[83,84].

Oxidative damage in rat brain is increased by experimen-
tally induced hyperglycemia [85]. Schmeichel et al. [86]
suggested that oxidative stress leads to oxidative injury of
dorsal root ganglion neurons, mitochondria being a specific
target. Recently, we observed that brain mitochondria
isolated from streptozotocin (STZ) diabetic rats, a model of
type 1 diabetes, possess a lower content of coenzyme Q9
(CoQ9) indicating a deficit in antioxidant defenses in
diabetic animals and, consequently, an increased probability
of oxidative stress occurrence [87]. The reduced form of
CoQ may function as an antioxidant, protecting membrane
phospholipids and serum low-density lipoprotein from lipid
peroxidation by quenching lipid radicals or lipid peroxida-
tion initiating species and, it also protects mitochondrial
membrane proteins and DNA from free radical-induced
oxidative damage [88–90].

Diabetes and AD are associated with impaired glucose
utilization, deficits in mitochondrial activity and metabolic
dysfunction [91–93]. Inhibition of cellular energy produc-
tion has been shown to reduce or abolish both insulin
secretion and action [94]. In addition, the decrement in
oxidative phosphorylation (OXPHOS) efficiency is related
to a loss in the control of glucose homeostasis as evidenced
by the increase in tissue and blood lactate levels, as well as
by the change in glucose tolerance. Cybrid cells constructed
from individuals with maternally inherited diabetes exhibited
lactic acidosis, poor respiration and marked defects in
mitochondrial morphology and respiratory chain complex I
and IV activities [95].

Diabetes mellitus leads to functional and structural
changes in the brain, which appear to be most pronounced
in the elderly. Furthermore, increased age is associated with
insulin resistance [96]. Increasing data support the idea that
mitochondrial function declines with aging and in age-
related diseases such as diabetes and AD [92,97]. Data from
our laboratory show the existence of an age-related impair-
ment of the respiratory chain and an uncoupling of OXPHOS
in brain mitochondria isolated from Goto-Kakizaki (GK)
rats, a model of type 2 diabetes [98]. Furthermore, we also
show that aging exacerbates the decrease in the energetic
levels promoted by diabetes [98]. The maintenance of
OXPHOS capacity is extremely important in the brain since
about 90% of the ATP required for the normal functioning of
neurons is provided by mitochondria. Because CNS depends
so heavily on ATP production, the inhibition of OXPHOS
will affect this system before any other system. For example,
CNS requires a large amount of ATP for the transmission of
impulses along the neural pathway, thus mitochondrial
function impairment will result in neurodegeneration and
loss in neuronal metabolic control [92,97].

ΔΨm, which normally accounts for 80% of the proton-
motive force, contributes for the high degree of reduction of
the matrix NADPH/NADP+ pool and, in turn, this pool helps
to maintain the matrix glutathione pool in the reduced state.
We observed that the maintenance of ΔΨm in mitochondria
isolated from STZ rats is correlated with the unchanged
content of reduced glutathione (GSH) [87]. GSH is abundant
in mitochondria and is a first-line defense in the cellular
antioxidant system. Baydas et al. [99] reported that although
STZ diabetic rats present higher levels of lipid peroxidation
in hippocampus, cortex and cerebellum as compared to
control rats, no significant alterations are found in GSH
levels in the same brain regions.
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As previously discussed, mitochondria are also important
cytoplasmic Ca2+ buffers since they avoid the increase of
Ca2+ above a critical value termed “set-point”. In oxidative
stress conditions, a sustained increase in intracellular Ca2+

concentration occurs [100] and the cytosolic Ca2+ levels play
a role in the modulation of several intracellular signalling
pathways, including protein kinase C-α and calmodulin-
dependent signalling [101], which have also been implicated
in apoptotic processes. The cytosolic Ca2+ level can be
increased by ROS in various cell types through the mobi-
lization of intracellular Ca2+ stores and/or through the influx
of extracellular Ca2+ [102]. The maintenance of Ca2+

homeostasis represents a major expenditure within neurons
and, through respiratory control mechanisms, is tightly
coupled to the rates of OXPHOS and the generation of
ROS. We observed that diabetes decreases the capacity of
mitochondria to accumulate Ca2+, a favourable intracellular
environment for MPT opening [87,98]. Furthermore, our
data are in agreement with the “Calcium hypothesis” which
first proposes that among the many biochemical and
histological changes involved in brain aging and in age-
related diseases, Ca2+ alteration is a central defect
[103,104]. Accordingly, we observed that brain mitochon-
dria of GK rats present an age-related susceptibility to Ca2+,
indicating that aging predisposes the diabetic rats' mito-
chondria to the opening of MPT. The MPT opening might
be also associated with osmotic swelling of mitochondria
leading to structural changes of these organelles. Indeed, in
peripheral nerves of diabetic humans, the existence of
mitochondrial ballooning and disruption of internal cristae
is observed, although this is localized to Schawnn cells and
is rarely observed in axons [105]. Similar structural
abnormalities in mitochondria have been described in
Schawnn cells of galactose-fed rats [105] and dorsal root
ganglion neurons of long-term STZ diabetic rats [106]. One
current hypothesis is that high glucose concentrations
induce elevated levels of OXPHOS, resulting in damaging
amounts of ROS that lead to changes in mitochondrial
structure and function [107].

Accumulating evidence suggests that mitochondrial
dysfunction is intimately associated with AD pathophysiol-
ogy. Furthermore, Lustbader et al. [108] reported that Aβ
interacts with Aβ-binding dehydrogenase (ABAD) in
mitochondria obtained from AD patients and transgenic
mice brains, which suggests that ABAD is a direct molecular
link from Aβ to mitochondrial toxicity. More recently, the
same group reported that ABAD enhances Aβ-induced cell
stress via mitochondrial dysfunction [109]. Another study
also showed that Aβ is present in mitochondria and, in the
presence of copper, inhibits cytochrome oxidase [65]. AβPP
has also been associated with the outer mitochondrial
membrane [110]. Furthermore, it has been shoen that an
IDE isoform, which regulates Aβ levels, is targeted to
mitochondria [111]. There is also evidence that β-secretase is
present in these organelles [112]. In addition, we have
demonstrated that a functional mitochondria is required for
Aβ-induced neurotoxicity, as investigated using ρ+ and ρ0
mitochondrial DNA depleted cells [113].

Studies from our laboratory show that Aβ inhibits the
respiratory chain complexes and reduces ATP levels in PC12
cells [114,115]. We also showed that Aβ40 and Aβ25-35
impair the respiratory chain, uncouple OXPHOS, decrease
the energetic levels and exacerbate the susceptibility of
isolated brain mitochondria to MPT opening [87,98,116].
However, we observed that Aβ exacerbates Ca2+ -induced
opening of MPT without inducing the permeability per se
[117,118]. Recently, we observed that CoQ10 treatment
attenuates the decrease in OXPHOS efficiency induced by
Aβ40 [116]. CoQ10 is a key component of the mitochondrial
electron transport chain (ETC) that not only serves as the
electron acceptor for complexes I and II of the ETC but is
also a potent antioxidant. Indeed, recent findings from our
laboratory show that CoQ10 treatment avoids the increase in
H2O2 production induced by Aβ40 [116]. Previously, in
vitro studies have shown that Aβ-mediated cell death in both
neuronal and non-neuronal cells is mediated in part by the
increase in cellular H2O2 [119] and that catalase has a pro-
tective role as an H2O2-degrading enzyme [120]. Further-
more, we observed that several other antioxidants (vitamin
E, idebenone, and reduced glutathione), melatonin and
nicotine showed protective effects by improving the activity
of the respiratory chain complexes and maintaining ΔΨm
and cellular energetic levels [113].

Recent findings [121] indicate that insulin is a major
regulating factor of mitochondrial OXPHOS in human
skeletal muscle. Previously, Boirie and collaborators [122]
reported that insulin selectively stimulates mitochondrial
protein synthesis in skeletal muscle and activates mito-
chondrial enzyme activity. However, a direct stimulatory
action on ATP production was not shown. Our results are
in accordance with these data because although we do not
observe any significant change on ATP content, insulin
treatment increases mitochondrial OXPHOS efficiency
[87]. In this line, Gustafsson et al. [123] reported that
(IGF-1) protects from hyperglycemia-induced oxidative
stress and neuronal injuries by regulating ΔΨm, possibly
by the involvement of uncoupling protein 3 (UCP3).
Similarly, Huang et al. [124] reported that insulin prevents
depolarization of the mitochondrial inner membrane in
sensory neurons of type 1 diabetic rats. Furthermore,
insulin was capable to increase mitochondrial antioxidant
defenses (CoQ9 content) that had been reduced by
diabetes. Growing evidence suggests the importance of
insulin and (IGFs) in intracellular antioxidant status by
playing a pivotal role in protein kinase B-mediated
expression of Bcl2 protein, that prevents the escape of
ROS by opposing the oxidative-stress-induced pro-apo-
ptotic action of Bax [125]. Another study showed that pre-
treatment of cells with IGF-1 suppresses H2O2-induced
apoptosis by subsequent inhibition of Bax expression
[125,126]. Recently, Duarte et al. [127] reported that
insulin protects cortical neurons against oxidative stress
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this effect being due to the modulation of glutathione
redox cycle.

Our data also indicate that insulin is capable to increase
the capacity of mitochondria to accumulate Ca2+ suggesting
a role of insulin in Ca2+ homeostasis. Moreover, it has been
shown that insulin modulates the cellular clearance of Aβ
[21] and IGF-1 protects neurons against its neurotoxic effects
[128]. Recently, Rensink and colleagues [129] reported that
insulin inhibits Aβ-induced cell death in cultured human
brain pericytes. In accordance, our data indicate that insulin
treatment also protects against mitochondrial injury induced
by Aβ40 [87].

Data discussed above are consistent with the view that
diabetes-related mitochondrial dysfunction is exacerbated by
aging and/or by the presence of neurotoxic agents, such as
Aβ, suggesting that diabetes and aging are risk factors for the
neurodegeneration induced by these peptides. An association
between diabetes and AD has long been recognized. Here we
presented evidence that the association between diabetes and
AD signifies a common underlying pathology, in this case,
mitochondrial dysfunction. However, we also showed that
mitochondrial dysfunction can be avoided/reduced by
insulin and antioxidants. Although insulin does not affect
basal mitochondria function, in the presence of Aβ insulin
prevents a drastic decline in mitochondrial OXPHOS
efficiency and avoids an increase in the oxidative stress,
improving and/or preserving the function of neurons under
adverse conditions. Given the importance of mitochondria as
primary source of oxidative stress in AD and diabetes, the
use of antioxidants may also be useful. However, the broad
occurrence of both diseases, the non-regenerative nature of
the CNS and the fact that AD diagnosis often does not occur
until late in disease progression, suggest that the ideal
antioxidant should be used as prophylactic treatment in aged
population.
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