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Abstract
Pneumocystis jirovecii causes severe interstitial pneumonia (PcP) in immunosuppressed patients. This multicentre study assessed the

distribution frequencies of epidemiologically relevant genetic markers of P. jirovecii in different geographic populations from Portugal, the

USA, Spain, Cuba and Mozambique, and the relationship between the molecular data and the geographical and clinical information, based

on a multifactorial approach. The high-throughput typing strategy for P. jirovecii characterization consisted of DNA pooling using

quantitative real-time PCR followed by multiplex-PCR/single base extension. The frequencies of relevant P. jirovecii single nucleotide

polymorphisms (mt85, SOD110, SOD215, DHFR312, DHPS165 and DHPS171) encoded at four loci were estimated in ten DNA pooled

samples representing a total of 182 individual samples. Putative multilocus genotypes of P. jirovecii were shown to be clustered due to

geographic differences but were also dependent on clinical characteristics of the populations studied. The haplotype DHFR312T/SOD110C/

SOD215T was associated with severe AIDS-related PcP and high P. jirovecii burdens. The frequencies of this genetic variant of P. jirovecii

were significantly higher in patients with AIDS-related PcP from Portugal and the USA than in the colonized patients from Portugal, and

Spain, and children infected with P. jirovecii from Cuba or Mozambique, highlighting the importance of this haplotype, apparently

associated with the severity of the disease and specific clinical groups. Patients from the USA and Mozambique showed higher rates of

DHPS mutants, which may suggest the circulation of P. jirovecii organisms potentially related with trimethoprim-sulfamethoxazole

resistance in those geographical regions. This report assessed the worldwide distribution of P. jirovecii haplotypes and their

epidemiological impact in distinct geographic and clinical populations.
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Introduction
Pneumocystis jirovecii pneumonia (PcP) is a major concern among
human immunodeficiency virus (HIV) -infected persons and

non-HIV-infected persons who are undergoing immunosup-
pressive treatments related to malignancies, connective tissue

diseases or organ transplantation [1–3]. Pulmonary coloniza-
tion with P. jirovecii in patients presenting with diverse levels of

immunodeficiency, primary respiratory disorders, or even in
the immunocompetent general population, is also an important
epidemiological issue, especially in terms of transmission [4–9].

Although a culture system to propagate P. jirovecii in vitro was
developed in 2014, it still needs to be validated, disseminated

and shown to be cost-effective for diagnostic purposes [10]. In
the absence of a well-established culture system to isolate and

maintain live organisms, previous efforts were made to un-
derstand the patterns of transmission so as to develop methods

of detection, intervention, characterization and management
for P. jirovecii [11–19]. Recently, the de novo assembly of the

P. jirovecii genome was published, opening the way to solve
some critical issues, such as the identification of nutritional
supplements for the development of reliable and cost-effective

culture in in vitro systems, and detection of new targets for
development of anti-PcP drugs and vaccines [20]. The multiplex

amplification of genomic P. jirovecii DNA associated with single
base extension (SBE) and DNA pooling was reported to be a

reliable alternative high-throughput DNA sequencing tech-
nique, allowing the calculation of the single nucleotide poly-

morphism (SNP) allele frequencies in a large number of samples
[21,22]. DNA pooling is a reliable and time-saving method for
genotyping screenings, in which equal amounts of DNA from a

large number of individual samples are pooled and the SNP
allele frequencies are estimated [21].

In the last two decades, several P. jirovecii DNA regions
were studied and specific SNPs associated with parameters of

P. jirovecii infection were identified [2,3,14–18,23–25]. The
mitochondrial large subunit ribosomal RNA (mtLSUrRNA) is a

conserved multicopy gene with a central role in basic meta-
bolic mechanisms during translation, providing peptidyl

transferase activity to the mitochondrial ribosome
[11,14,18,19,22]. Genetic variations at base 85 of the
mtLSUrRNA gene were recognized to be potentially associated

with high P. jirovecii burden levels and unfavourable follow up
of infection [21,22]. The dihydropteroate synthase (DHPS) and

dihydrofolate reductase (DHFR) genes encode for two
P. jirovecii central enzymes in the folate synthesis. Significant

associations between the SNP at bases 165 and 171 of DHPS
and the use of sulfa drugs for PcP prophylaxis [2,15,17,25] or

failure of both trimethoprim-sulfamethoxazole treatment [26]
© 2016 European Society of Clinical Microbiology and Inf
and trimethoprim-sulfamethoxazole or dapsone prophylaxis

[3], were reported. Additionally, P. jirovecii may evolve under
pressure from DHFR inhibitors, such as trimethoprim or py-

rimethamine, and mutations in this gene may contribute to
drug resistance [23,24,27]. The SNP at position 312 was

associated previously with PcP infection burden [18]. Super-
oxide dismutase (SOD) is involved in the protective mecha-
nisms of P. jirovecii against reactive oxygen radicals produced

by alveolar macrophages or neutrophils [22,28]. The major
genetic variations of the SOD locus (bases 110 and 215) are

reported to be at linkage disequilibrium and associated with
severity of PcP episodes [18,21,22,28].

This report is the first multicentre P. jirovecii molecular study
in different geographic populations from four different conti-

nents. The aims were: to evaluate the distribution frequencies
of specific genetic markers in four P. jirovecii loci, in populations
from five different geographic origins (Portugal, the USA, Spain,

Cuba and Mozambique), including important genomic regions
involved in basic metabolic mechanisms, such as the

mtLSUrRNA, SOD, DHFR and DHPS and to epidemiologically
assess the relationship between the molecular data and the

geographical and clinical information.
Materials and Methods
Subjects and data
A cohort of 182 respiratory specimens tested previously and

found to be positive for P. jirovecii by real-time quantitative PCR
(qPCR) were included in the study. Specimens included bron-

choalveolar lavage fluids and induced sputa (adult patients) or
nasopharyngeal swabs (children) collected during routine diag-

nostic procedures/clinical care in five different geographical
locations (multicentre study). In each healthcare/diagnostic
centre, data were collected using standardized data collection

forms. The present study had the approval of the Institutional
Review Boards/Ethical Committees from the involved in-

stitutions. The clinical and demographic data are summarized in
Table 1.

Pneumocystis jirovecii burden was quantified in the 70 AIDS-
related PcP episodes from Portugal by scoring the number of

cysts observed by applying the semi-quantitative method of
indirect immunofluorescence staining with monoclonal anti-

bodies (MonoFluoTM kit P. jirovecii; Bio-Rad, Marnes-la-
Coquette, France) and designated as low/moderate (one to
three cysts in one field at × 1000) in 38 cases, and as heavy

(four or more cysts in one field at × 1000) in 32 cases. Follow
up was possible in 53 of the 90 Portuguese patients with PcP. A

follow up was considered positive when the patient showed a
ectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 22, 566.e9–566.e19



TABLE 1. Clinical information and demographic data of the groups of patients involved in the study

Country
(area)

Patients
n

Mean age
(range) years

Male to
female
sex ratio

Sampling collection,
month year

Type of
respiratory
sample

Immune status
n

Pneumocystis
jirovecii detection Clinical data

Portugal
(Lisbon)

108 40 (18–79) 1.78:1 March 2004
February 2012

88 BAL
20 IS

88 HIV (+)
20 HIV (−)a

Microscopy (IF/mAb)
and nPCR

90 microscopically
confirmed PcP
(70 HIV (+),
20 HIV (−));
18 microscopically-
negative for PcP,
positive by nPCR
(other pulmonary
diseases)

USA (San
Francisco,
CA)

30 Unvailableb Unvailableb February 2004
December 2012

13 BAL
17 IS

30 HIV (+) Microscopy (modified
Giemsa stain,
Diff-Quik) and nPCR

Microscopically
confirmed PcP
receiving mechanical
ventilation and
accompanying
sedation

Mozambique
(Maputo)

22 3 months
(1–3 months)

1.75:1 November 2006
October 2007

22 NP swabs 9 HIV (+)
6 HIV (−)
severely
malnourished
7 Unknownc

Microscopy (Giemsa
stain) and nPCR

Microscopically
negative for PcP,
positive by nPCR
presenting cough,
fever and distressd

Spain (Seville) 12 51 (18–87) 3:1 January 2006
July 2013

7 BAL
5 IS

7 HIV (+)
5 HIV (−) COPD

Microscopy (Giemsa
stain) and nPCR

Microscopically negative
for PcP, positive by
nPCR colonized by
P. jirovecii and diagnosed
with other pulmonary
diseases than PcP

Cuba (Havana) 10 5 months
(1–10 months)

0.25:1 July 2013
August 2013

10 NP swabs 10 HIV (−) Microscopy (Giemsa
stain) and nPCR

Microscopically-negative
for PcP, positive by
nPCR presenting cough,
fever and respiratory
secretionsd

Abbreviations: HIV (+), HIV-positive patients; HIV (−), HIV-negative patients; BAL, bronchoalveolar lavage; IS, induced sputum; IF/mAb, indirect immunofluorescence staining with
monoclonal antibodies; nPCR, nested PCR directed to P. jirovecii mtLSU rRNA gene; NP, nasopharyngeal; COPD, chronic obstructive pulmonary disease.
aSix patients with neoplasia, five organ transplantation recipients and nine patients with no available data to establish the immune status.
bAdult patients hospitalized with microscopically confirmed PcP without demographic information.
cPatients with no available data to establish immune status.
dYoung children infected with P. jirovecii, presenting respiratory symptoms. Due to the low sensitivity of the NP swab, detection of P. jirovecii was possible only by nPCR.
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favourable response to anti-P. jirovecii therapy and survived for
at least 4 weeks after the diagnosis of PcP. Negative follow up

was established either when there was a negative response to
anti-P. jirovecii therapy (failure to improve clinically after
administration of the drug for more than 10 days) or when the

patient died during a PcP episode [18,21].

DNA pooling
After collection, the samples from the five cohorts were pro-
cessed and immediately stored at −20°C for further analysis. All

specimens were subjected to DNA extraction using the Qiamp
kit (Qiagen, Hilden, Germany). Molecular detection of P. jirovecii
was performed by nested-PCR (nPCR) directed to the P. jirovecii

large subunit mitochondrial rRNA (mtLSUrRNA) gene [7,12,29].
All respiratory specimens were confirmed to be positive for

P. jirovecii by qPCR targeting the kexin-like serine protease
(KEX1) gene of P. jirovecii [13,21].

Pneumocystis jirovecii DNA pools were planned based on
geographical origin and clinical data. DNA quantification of each

individual respiratory specimen was achieved using the qPCR
targeting the KEX1 gene of P. jirovecii. The assay was performed in

the 7300 Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA), using the TaqMan® Gene Expression with minor
© 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier
groove binder probes FAM™ dye-labelled (Applied Biosystems):
2 min at 50°C, 10 min at 95°C and 50 amplification cycles of 15 s

at 95°C and 1 min at 60°C using a 9-μL DNA sample, 1× Taq-
Man® Gene Expression Master Mix (Applied Biosystems), 1×
TaqMan® Gene Expression Assay (forward primer 50-
CAACCCTGTTCCAATGCCTAA-30, reverse primer 50-CAA-
CACCGATTCCACAAACAGT-30 and minor groove binder

probe 50-TGCTGGTGAAGTAGCTGCCGTTCGA-3’; Applied
Biosystems), in a 20-μL reaction volume. The baseline was taken

from cycles three to 15 and the threshold was set at 0.02. The
amount of P. jirovecii DNA present in each individual sample was

calculated applying the standard P. jirovecii DNA pattern curve
CT = −3.4323 log10 [KEX1] + 20.3610, in which CT is the

quantification cycles and [KEX1] is the concentration of the
KEX1 fragments (ng/mL). This standard curve represents the
relationship between P. jirovecii KEX1 gene fragment concentra-

tion and qPCR CT values, previously estimated using serial di-
lutions of KEX1 PCR product suspensions quantified by the

PicoGreen dsDNA quantification reagent method [13,21].
The respiratory specimens were diluted (1: 20) and the

respective CT values were estimated and converted into P. jirovecii
DNA concentration (ng/mL) using the standard curve. The con-

centration of KEX1 gene copies (copies/μL) was derived from the
Ltd. All rights reserved, CMI, 22, 566.e9–566.e19
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PicoGreen dsDNAquantification reagentmethod andKEX1DNA

fragment molecular weight (229 091.67 g/mol). As the KEX1 is a
nuclear single-copy gene, the number of copies per microlitre

corresponds to the P. jirovecii genome concentration. The average
genome concentrations (P. jirovecii genomes/μL) of the pooled

P. jirovecii samples were PT1 2.89 × 106, PT2 8.74 × 106, PT3
2.00 × 106, PT4 1.69 × 106, PT5 7.59 × 106, PT6 2.51 × 106, USA
1.42 × 107, MOZ 1.74 × 107, SPA 1.85 × 107 and CUB 1.13 × 109.

Equivalent amounts of DNA (1 × 10−5 ng) from each of the
individual samples were proportionally combined in the cor-

responding pool, according to geographical origin and/or clinical
data, as follows.

Portugal Pool 1 (PT1). Thirty-eight respiratory specimens from
HIV-positive adult patients with AIDS-related PcP (positive

microscopy, positive nPCR), presenting low/moderate parasite
burden.

Portugal Pool 2 (PT2). Thirty-two respiratory specimens from

HIV-positive adult patients with AIDS-related PcP (positive
microscopy, positive nPCR), presenting high parasite burden.

Portugal Pool 3 (PT3). Eighteen respiratory specimens from
HIV-positive adult patients PcP-negative (negative microscopy,

positive nPCR) with other pulmonary diseases, colonized by
P. jirovecii (subclinical infection).

Portugal Pool 4 (PT4). Twenty respiratory specimens from
HIV-negative adult patients with PcP (positive microscopy,

positive nPCR).
Portugal Pool 5 (PT5). Thirty-five respiratory specimens from

HIV-positive adult patients with PcP, presenting clinical

improvement (positive follow up).
Portugal Pool 6 (PT6). Eighteen respiratory specimens from

HIV-positive adult patients with PcP who failed to improve
clinically or died during the PcP episode (negative follow up).

USA Pool. Thirty respiratory specimens from HIV-positive
patients with severe AIDS-related PcP (positive microscopy,

positive nPCR).
Mozambique Pool. Twenty-two respiratory specimens from

infants infected with P. jirovecii, presenting respiratory symp-

toms (negative microscopy, positive nPCR).
Spain Pool. Twelve respiratory specimens from HIV-positive

and HIV-negative adult patients colonized by P. jirovecii, pre-
senting with other respiratory diseases than PcP (negative mi-

croscopy, positive nPCR).
Cuba Pool. Ten respiratory specimens from HIV-negative

young children infected with P. jirovecii, presenting respiratory
symptoms (negative microscopy, positive nPCR).

Genotyping
The P. jirovecii DNA pools were studied using the multiplex-
PCR (MPCR)/SBE technique (in triplicate), as described previ-

ously [21,22]. Four P. jirovecii hot spots (mtLSUrRNA, SOD, DHFR
© 2016 European Society of Clinical Microbiology and Inf
and DHPS) were simultaneously amplified using an MPCR (T1

Thermocycler; Biometra, Göttingen, Germany), as follows:
10 min at 95°C, followed by 45 amplification cycles of 1 min at

95°C, 1 min 60°C and 1 min at 72°C, and a final extension of
10 min at 72°C, using 4 μL DNA sample, 2.5 U AmpliTaq Gold

DNA polymerase (Applied Biosystems), 1.5 × reaction buffer
(75 mM KCl, 15 mM Tris–HCl (pH 8.3); Applied Biosystems),
0.5 mM deoxynucleoside triphosphates (dNTPs) (Applied Bio-

systems), 4 mM MgCl2 (Applied Biosystems), 0.01 μg/μL bovine
serum albumin (Sigma–Aldrich, Cleveland, OH, USA), 0.75 μL

dimethylsulphoxide (DMSO) (Sigma–Aldrich), 0.5 μM of
mtLSUrRNA primers (pAZ102-X and pAZ102-E), 1.4 μM of

SOD primers (MnSODFw and MnSODRw2), 0.7 μM of DHPS
primers (DHPSFw1 and DHPSRv1), and 1.4 μM of DHFR

primers (FR 208 and FR 1018), in a 50-μL reaction volume.
Except for DHPSFw1 (50-CGATGGGGGTGTTCATTCA-
TATG-30) and DHPSRv1 (50-GCCTTAATTGCTTGTTCTG-
CAACC-30), all primers were described previously
[11,16,19,21–23,29].

The MPCR products (10 μL) were incubated with shrimp
alkaline phosphatase (2 U) (USB Corporation, Cleveland, OH,

USA) and exonuclease I (4 U) (USB Corporation) for 1 h at 37°
C (20 μL reaction volume). After inactivation of the enzymes

(15 min at 96°C), 5 μL of treated MPCR products were used in
the SBE reaction (15 μL reaction volume): 1 min at 90°C, fol-

lowed by 45 SBE cycles of 10 sec at 90°C and 20 sec 45°C,
using 4 μL SNPStart Master Mix (GenomeLab SNPStart primer
extension kit; Beckman Coulter, Brea, CA, USA) and SBE-TAG

probes (2.7 μM DHFR312, 0.3 μM mt85, 0.6 μM DHPS165, 1.2
μM SOD215, 2.1 μM SOD110, 0.9 μM DHPS171) (Eurofins

Genomics, Ebersberg, Germany). Except for DHPS165 (50-
GGATAAATATCTAACACCGTGCGTGTTGACTATTATTG

ATATTGGTGGGCAGTCT-30) and DHPS171 (50-CCAAAGT
TCTCAATGCTGCTTGCTGTTCTTGAATGGGGGGTCGT

TGACGACGACATCTATAGAAACAACATSTGAACCAG-30,
in which S corresponds to Deoxyinosine), all SBE-TAG probes
were described previously [22]. The SBE products were treated

with shrimp alkaline phosphatase (0.5 U) for 1 h at 37°C, fol-
lowed by enzyme inactivation (15 min at 96°C). The MPCR/SBE

products were analysed in a CEQ 8000-XL (Beckman Coulter)
[21].

The MPCR/SBE-DNA pooled products were characterized
through length discrimination (nucleotides, nt) provided by the

SBE-TAG probes (35 nt DHFR312, 47 nt mt85, 55 nt
DHPS165, 64 nt SOD215, 75 nt SOD110, 82 nt DHPS171) and

identified by the fluorescence-labelled ddNTPs (D1-red
adenine, D2-black cytosine, D3-green guanine and D4-blue
thymine). A reference positive control (GenomeLab SNPStart

primer extension kit; Beckman Coulter) with four control
peaks (29 nt D2-black cytosine, 35 nt D1-red adenine, 36 nt
ectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 22, 566.e9–566.e19
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D3-green guanine and 50 nt D4-blue thymine) was run in each

SBE assay. The average normalized relative frequencies of the
SNP alleles in each DNA pool sample were calculated by

dividing the maximum height values of fluorescence peaks
observed in the SBE products by the reference fluorescence

values of the positive control.

Data analysis
To overcome the failure of normality necessary for the appli-

cation of Student’s t-test, the Kruskal–Wallis non-parametric
test was used to analyse the differences in the SNP frequency

distribution variation across the pools. The significance level
considered in all the statistical tests was 0.05 [21,22].

The most representative multilocus genotypes (MLG) (SNP
frequencies >32% for mt85 and 50% for the remaining SNP) of
each pool were analysed and a dendrogram was computed

using the software CLUSTAL W2 multiple sequence alignment
(version 2.0.12).
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DNA pooling
According to the Kruskal–Wallis test, the median Cq values
and genomes concentration were statistically different between

several pools: PT1 versus PT2 (p 0.011); PT2 versus PT3 (p
<0.001); PT2 versus PT4 (p <0.001); PT3 versus PT5 (p 0.002);

PT3 versus MOZ (p 0.004); PT4 versus PT5 (p <0.001); PT4
versus USA (p 0.003); PT4 versus MOZ (p <0.001); PT4 versus

SPA (p 0.035); PT4 versus CUB (p 0.011).

Genotyping
In all, 182 pulmonary specimens divided into ten DNA pools

were analysed for the epidemiological distribution of P. jirovecii
genotypes in distinct geographic regions and among patients

presenting with different clinical conditions. The six SNP,
located in the four genetic loci studied, were successfully

characterized by the Multiplex-SBE/DNA pooling method in all
DNA pools. Fluorescence peaks with 35 nt (DHFR312), 47 nt

(mt85), 55 nt (DHPS165), 64 nt (SOD215), 75 nt (SOD110)
and 82 nt (DHPS171) were detected in the SBE reactions and
the average normalized relative frequencies of each SNP allele

were estimated (Table 2, Fig. 1). Data analysis demonstrated
several significant statistical differences in the frequency distri-

bution of SNP among pools from different geographic origins
and with distinct parameters of infection (Table 3).

The relationships between the most relevant putative MLG
identified in the pools studied were analysed applying the

neighbour joining method. The most representative putative
MLG (SNP frequencies >32% for mt85 and 50% for the
© 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 22, 566.e9–566.e19



FIG. 1. Graphic representation of Pneumocystis jir-

ovecii single nucleotide polymorphism alleles relative

frequencies among the different pools studied. Radar

charts were drawn with axes for each single nucle-

otide polymorphism (represented from the centre to

the periphery) and a scale in the range of 0-100%

(10% intervals).
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TABLE 3. Multiple comparisons of the Pneumocystis jirovecii

single nucleotide polymorphisms frequency distribution

variation across the pools studied

SNPs Multiple comparison analysis (p values)a

mt85A PT1 vs. PT2 (0.0042); PT2 vs. SPA (0.0011);
SPA vs. MOZ (0.0053)

mt85C PT1 vs. PT2 (0.0442); PT1 vs. PT6 (0.0061); PT3 vs. PT6 (0.032);
PT2 vs. SPA (0.0451); PT6 vs. SPA (0.0131)

mt85T PT3 vs. PT5 (0.0462); USA vs. CUB (0.0353)
DHPS165A/G PT1 vs. USA (0.0191); PT2 vs. USA (0.0131);

PT3 vs. USA (0.0021); USA vs. SPA (0.0083)
DHPS171C/T NSb

DHFR312T/C PT2 vs. PT3 (0.012); PT3 vs. USA (0.0151)
SOD110T/C USA vs. CUB (0.0093)
SOD215C/T PT2 vs. CUB (0.0321); USA vs. CUB (0.0093)

Abbreviations: PcP, Pneumocystis jirovecii pneumonia; PT1, AIDS-related PcP
Portuguese patients with low/moderate parasite burden; PT2, AIDS-related PcP
Portuguese patients with high parasite burden; PT3, HIV-positive PcP-negative
Portuguese patients with other pulmonary diseases, colonized by P. jirovecii; PT4,
HIV-negative Portuguese patients with PcP; PT5, Portuguese patients with PcP
presenting positive follow-up; PT6, Portuguese patients with PcP presenting
negative-up; USA, AIDS-related PcP patients from USA; MOZ, Mozambican infants
infected with P. jirovecii, presenting respiratory symptoms; SPA,
immunocompromised Spanish patients colonized by P. jirovecii, presenting other
respiratory diseases than PcP; CUB, HIV-negative young children infected with
P. jirovecii, presenting respiratory symptoms.
aFor the multiple comparisons of the pools, the p values presented are the adjusted
p values (Bonferroni correction) that took into consideration the number of
comparisons, i.e. the adjusted p value = p value k(k – 1)/2, with k = 10 the number
of pools to be compared is 45. The multiple comparisons were performed
considering three groups of pools: (1) All ten pools; (2) only the six Portuguese
pools; (3) only the four foreign pools.
bNS, not significant, p >0.05.
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remaining SNP) were considered in the construction of a

specific dendrogram (Fig. 2) in which three major clusters were
identified: cluster A with MLG from Spain (SPA-A, SPA-B),

Cuba and Portugal (PT1-A, PT3); cluster B with MLG from
Portugal (PT1-B, PT2, PT4, PT5, PT6); cluster C with MLG

from Mozambique and USA (USA-A,B,C,D).
Discussion
To our knowledge, this is the first report on P. jirovecii

mtLSUrRNA and DHPS gene variability in Mozambique, DHFR
gene variability in Mozambique, Cuba and Spain, and SOD gene
variability in the USA, Mozambique and Spain. The results

strengthen the hypothesis that both geographic distances and
clinical parameters have direct impact in the distribution of the

genetic subtypes of P. jirovecii as demonstrated in Figs. 1 and 2.
In the Portuguese pools, data on genome concentrations

are consistent with P. jirovecii burden, with the pool PT2
(AIDS-related PcP patients with high parasite burden) pre-

senting the highest P. jirovecii genome concentration. The high
concentration of P. jirovecii genomes detected in the pools

from Cuba and Mozambique suggests that both populations
were infected with high burdens of P. jirovecii, which was not
initially detected, probably due to the low sensitivity and

difficulty in reading of the microscopic diagnostic method
using Giemsa staining [30].
© 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier
mtLSUrRNA
In Portugal, mt85C has been reported as the most frequent
allele of the SNP mt85 among HIV-positive patients with PcP

(mt85C 58.0%–63.0%, mt85A 26.0%–43.0% and mt85T
18.0%–22.0%, time period 1997–2007) [12,18,19,22]. In the

present study, except for the pool PT1, the Portuguese pools
demonstrated mt85A as the most frequent allele. The allele
mt85C was statistically associated with the pool PT1 (Tables 2

and 3). This finding is similar to previous reports, in which
low/moderate P. jirovecii burden was more frequently observed

among respiratory specimens with mt85C, whereas high bur-
dens were more frequently detected in respiratory specimens

with mt85A or mt85T [18,19,21]. The differences observed
between the present and previous data may be the result of the

different time periods of the studies (2004–2013 and
1997–2007, respectively).

In the USA, the distribution pattern of mt85 (mt85C 31.5%,

mt85A 61.1% and mt85T 7.4%) was similar to previous studies
(mt85C 42.9%–43.9%, mt85A 36.7%–50.0% and mt85T

7.1%–9.3%, in a population of PcP patients, time period
1986–1999) [14,31], particularly in San Francisco, with mt85C

25.0%, mt85A 50.0% and mt85T 7.0% (mixed genotypes 18.0%)
(in HIV-positive patients) [14]. In the AIDS-related PcP patients

from San Francisco, the distribution pattern of mt85 is relatively
stable in different time periods (2004–2012 and 1995–1998).

Pools from Mozambique and Cuba showed similar distribu-
tion patterns of mt85 (mt85C 16.5%, mt85A 72.5%, mt85T
10.9% and mt85C 11.4%, mt85A 63.0%, mt85T 25.7%, respec-

tively). Two recent Cuban studies, in a population of children
colonized by P. jirovecii (both time periods 2010–2013)

demonstrated analogous distribution patterns of mt85, with
mt85C 18.0%–31.0%, mt85A 56.0%–68.0% and mt85T

25%–37% [5,6]. The similarity between the results from
Mozambique and Cuba may be due to the fact that both pools

were constituted by populations of young children infected with
P. jirovecii and presenting analogous clinical parameters.

Since 2003, several studies in Spain demonstrated mtLSUrRNA

variation patterns (mt85C 40.0%–55.1%, mt85A 10.1%–18.2%
and mt85T 25.0%–36.7% in the general population, in HIV-

positive patients with PcP, and in HIV-negative patients with
other concomitant pulmonary disorders, between 1995 and

2008) [4,8,9,12]. Except for the general population study (mt85C
and mt85A both most prevalent), mt85C was the most prevalent

allele in all the other populations, followed by mt85T and mt85A.
The present data showed a change in the allelic distribution of

mt85 in Seville, Spain, particularly an increase of the mt85A.
These differences appear to be more related to the periods in
which the populations were studied (2006–2013 in the present

study, and 1995–2008 in the earlier studies) than with the
characteristics of the population, since the studies of Montes-
Ltd. All rights reserved, CMI, 22, 566.e9–566.e19



FIG. 2. Dendrogram showing the relationships between the Pneumocystis jirovecii putative multilocus genotypes (MLG) from different geographic

origins, constructed on the base of the four polymorphic markers (mtLSUrRNA, DHPS, DHFR and SOD) and demonstrating that genetic differences

between clusters associated mainly with geographic differences, but also with the clinical set up in the different pools. Dendrogram was computed using

the software CLUSTAL W2 multiple sequence alignment (version 2.0.12). The most representative putative MLG of P. jirovecii in the pools (single

nucleotide polymorphism frequencies higher than 32% for mt85 and 50% for the remaining single nucleotide polymorphism) studied were as follows:

PT1-A: mt85C/DHPS165A/DHPS171C/DHFR312T/SOD110T/SOD215C
PT1-B, PT2, PT4, PT5, PT6: mt85A/DHPS165A/DHPS171C/DHFR312T/SOD110T/SOD215C

PT3: mt85A/DHPS165A/DHPS171C/DHFR312C/SOD110T/SOD215C
USA-A: mt85A/DHPS165A/DHPS171C/DHFR312T/SOD110C/SOD215T
USA-B: mt85A/DHPS165A/DHPS171T/DHFR312T/SOD110C/SOD215T

USA-C: mt85A/DHPS165A/DHPS171T/DHFR312T/SOD110C/SOD215C
USA-D: mt85A/DHPS165A/DHPS171C/DHFR312T/SOD110C/SOD215C

MOZ: mt85A/DHPS165A/DHPS171T/DHFR312T/SOD110T/SOD215C
SPA-A: mt85A/DHPS165A/DHPS171C/DHFR312T/SOD110T/SOD215C

SPA-B: mt85C/DHPS165A/DHPS171C/DHFR312T/SOD110T/SOD215C
CUB: mt85A/DHPS165A/DHPS171C/DHFR312T/SOD110T/SOD215C
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Cano et al. [4] and Esteves et al. [12] focused on Spanish pop-
ulations similar to those in the present study.

DHPS
In Portugal, a decline of DHPS gene mutation frequencies has
been documented since the beginning of the 2000s. Frequencies

of 24.7% DHPS165G and 22.5% DHPS171T were detected in a
population of HIV-positive and HIV-negative patients with pul-

monary disorders, between 1994 and 2001, in which DHPS
mutations were more frequent in the time period 1994–1997

(33%) than in 1998–2001 (9%) (p 0.022) [32]. More recently,
the proportion of mutant DHPS alleles in a population of HIV-

positive patients was 7.0% DHPS165G and 9.0% DHPS171T,
between 2001 and 2007 [19]. The decline of DHPS mutant al-
leles among the HIV-positive patients (pools PT1, PT2 and PT3,

time period 2004–2012) may be attributed to the lack of
exposure to trimethoprim-sulfamethoxazole in this population,

after the decreased use of sulfa prophylaxis due to widespread
use of potent combination antiretroviral therapy in Europe, in

the late 1990s [2,12,32]. However, in the HIV-negative patients
with PcP (pool PT4), the frequencies of DHPS mutants,
© 2016 European Society of Clinical Microbiology and Inf
especially DHPS165G, appeared to be slightly higher than the
ones reported in the HIV-positive patients. The reason for this

observation is unclear. One possible explanation is that these
groups are clinically distinct, reflecting different trimethoprim-

sulfamethoxazole exposure, which may have an impact on the
genetic variability of the DHPS locus in P. jirovecii [33,34].

In the USA, since 1998, several studies have reported DHPS

mutations per PcP cases ranging from 26% to 81%, describing
high overall frequencies of DHPS165G and DHPS171T in

different time periods (7.4%–77.3% and 22.2%–59.4%, respec-
tively, from 1976 to 2001 [3,14,15,17,31,35]), especially in San

Francisco (65.0% DHPS165G, 64.0% DHPS171T) [18]. In this city,
several reports consistently described overall high frequencies of

mutations in the DHPS gene (87.0%, 1995–1998 [14]; 81.5%,
1996–1999 [17]; 81.4%, 1997–2002 [15]). The high frequencies
of DHPS mutants in the US pool (Fig. 1) is of concern and may

reflect trimethoprim-sulfamethoxazole exposure of the AIDS-
related PcP population and increased of sulfa-induced mutants,

especially after the mid-1990s [3,14,23].
In the early 2000s, several studies described low frequencies

of DHPS mutations in African countries neighbouring
ectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 22, 566.e9–566.e19
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Mozambique (DHPS165G 7.1% and DHPS171T 0% in Zimbab-

wean AIDS-related PcP patients, 1992–1993 [36]; DHPS165G
1.9% and 10.0%, DHPS171T 1.9% and 6.7% in South African

adult patients with PcP and in HIV-infected children, respec-
tively, 2000–2003 [37,38]). The low frequencies were attrib-

uted to the lack of exposure to trimethoprim-sulfamethoxazole
in the populations studied [37,39]. However, in South Africa
rates of DHPS165G 44.0% and DHPS171T 41.1% were reported

in HIV-infected adult patients suspected of having PcP (time
period 2006–2007) [38]. The results of the present study

showed similar high prevalence of DHPS mutants in Mozambi-
can infants with P. jirovecii infection in an overlapping time

period (2006–2007). In this region of southeastern Africa, the
differences in the percentage of P. jirovecii DHPS mutations may

be due to different time periods of study, reflecting the
increased widespread empirical use of trimethoprim-
sulfamethoxazole, the mainstay of PcP treatment and prophy-

laxis regimens in sub-Saharan Africa, in the late 2000s [38]. But
it can also be attributed to an increased awareness by clinicians

leading to higher rates of diagnosis and subsequently higher
detection rates of DHPS mutations.

In contrast to the USA and Mozambique, pools from Spain
and Cuba showed low frequencies of DHPS mutants (Fig. 1). In

Spain, the reported frequencies of DHPS mutants vary from 0%
in the general population [8] to 15% for both DHPS165G and

DHPS171T in HIV-positive and HIV-negative patients with pul-
monary disorders [12]. One study involving HIV-negative pa-
tients with chronic pulmonary disease colonized by P. jirovecii

showed frequencies of DHPS165G 21.4% and DHPS171T 14.3%
(time period 2001–2002) [7]. Another study in AIDS-related

PcP patients, detected frequencies of DHPS165G 16.1% and
DHPS171T 12.8% (time period 2001–2003) [4]. These differ-

ences may be due to the lack of exposure to trimethoprim-
sulfamethoxazole in the general population, when compared

with AIDS-related PcP patients, who are more likely to be
treated with that drug combination in prophylactic or thera-
peutic doses.

In Cuba, a recent study showed a frequency of 12.0% for
both DHPS165G and DHPS171T in young children with

whooping cough, colonized by P. jirovecii (between 2010 and
2013) [6]. This distribution pattern is consistent with the pre-

sent results in Cuban HIV-negative young children infected with
P. jirovecii, in a coincident time period (2013). The detection of

low frequencies of DHPS mutations in Cuban children is most
probably due to the lack of exposure of this specific population

to trimethoprim-sulfamethoxazole.

DHFR
In Portugal, DHFR312T was the most prevalent DHFR allele, as

has been found in previous studies [18,19,21]. The frequency of
© 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier
DHFR312C in AIDS-related PcP patients (PT1 and PT2) was

similar to those previously found in Portuguese HIV-positive
patients (21%–25%, 1997–2007 [19]; and 10%, 2001–2008

[21]). DHFR312C frequency was considerably higher in HIV-
positive patients colonized by P. jirovecii (PT3) and HIV-

negative PcP patients (PT4) that normally present lower
P. jirovecii burdens than AIDS-related PcP patients (Fig. 1,
Tables 2 and 3). The difference observed may be due to the

recently reported association between DHFR312T and higher
P. jirovecii burdens, also found in the present study (p 0.01) [18].

A very low frequency of DHFR polymorphic sequences was
reported in the PcP patients from the USA, between 1985 and

1998 (2.7%) [23]. In the present study, the frequency of
DHFR312C in the US patients was 14.8%. The reason for this

increase is not obvious. It may eventually reflect the selective
pressure of trimethoprim-induced polymorphisms caused by
the increased widespread use of trimethoprim-

sulfamethoxazole in the USA after the mid-1990s, or it may
be linked to the association between DHFR312T and the higher

P. jirovecii burdens normally found in AIDS-related PcP patients.
Similar distribution patterns of DHFR312 were observed

between the pools from Mozambique, Spain and Cuba. In a
retrospective study from South Africa, DHFR312C was not

observed in a heterogeneous population of patients with pul-
monary disorders (2000–2003) [39]. In Mozambique, the high

levels of DHFR polymorphic sequences detected in the present
study may reflect the increased widespread empirical use of
trimethoprim-sulfamethoxazole in the late 2000s and the se-

lective pressure of trimethoprim-induced polymorphisms.

SOD
In the present study, the distribution pattern of the SOD
polymorphic sequences in the Portuguese population

(SOD110C 8.8%–46.4% and SOD215T 8.0%–38.6%, time-
period 2004–2012) was identical to a previous report on
P. jirovecii multilocus genotyping in pooled DNA samples [21].

The highest frequencies of SOD110C (46.4%) and SOD215T
(38.6%) were observed in the PT2 pool, supporting the hy-

pothesis that the genotype SOD110C/SOD215T is linked to
higher P. jirovecii burdens [18,21].

The US pool (AIDS-related PcP, most receiving mechanical
ventilation) showed the most distinct distribution pattern of the

SOD alleles (SOD110C 64.9%, SOD215T 50.6%). Again, the alleles
SOD110C and SOD215T were statistically associated with this
pool (Table 3), supporting also the relationship between the

genotype SOD110C/SOD215T and more virulent PcP episodes.
The distribution patterns of the SOD alleles were similar

among the pools from Mozambique (SOD110C 13.4%,
SOD215T 12.6%), Spain (SOD110C 14.6%, SOD215T 8.6%) and

Cuba (SOD110C 2.9%, SOD215T 2.4%). The pool from
Ltd. All rights reserved, CMI, 22, 566.e9–566.e19
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Mozambique showed frequencies lower than those found in a

previous study in Zimbabwean AIDS-related PcP patients, in
2004 (SOD110C 33.3%, SOD215T 33.3%) [28]. A possible

explanation of this difference is related to the distinct clinical
populations studied, reflecting the possible association between

more virulent PcP episodes, reported in Zimbabwe, and the
genotype SOD110C/SOD215T.

Low frequencies of SOD110C and SOD215T were observed

in the pools from Spain and Cuba. However, in a recent study
involving young Cuban children with whooping cough, colo-

nized by P. jirovecii, the frequencies of SOD110C and SOD215T
(time period 2010–2013) were much higher, 42.0% and 71%,

respectively [6]. The reason for this discrepancy is not obvious.
We hypothesize that this difference is due to distinct sample

sizes (190 respiratory specimens in the previous report and ten
in the present study) biasing the results, and/or to different
underlying concomitant pulmonary diseases, in both Cuban and

Spanish colonized populations. The low frequencies of
SOD110C and SOD215T alleles are usually associated with more

virulent PcP episodes.
The relationships between the most frequent P. jirovecii pu-

tative MLG detected in the different pools studied pointed out
that clusters are mainly due to the geographic differences but

also dependent on clinical characteristics of the populations
studied (Fig. 2). MLG from pools corresponding to colonized

patients from Portugal and Spain were grouped in the same
cluster (cluster A). Also, the MLG from the pool from Cuba
(infants infected with P. jirovecii) was included in this cluster but

with a higher phylogenetic distance. The majority of the MLG
detected in the Portuguese pools were clustered, corresponding

to PcP cases (cluster B). Pneumocystis jirovecii from the USA and
Mozambique were related in the same cluster because of the

DHPS mutations present in both MLG (cluster C). However,
within this cluster the MLG from Mozambique (infants infected

with P. jirovecii) was considerably distant from the four major
MLG detected in the pool from the USA (severe AIDS-related
PcP cases).

The observation of different dihydropteroate synthase
(DHPS) alleles in and between P. jirovecii populations carries

epidemiological implications related to transmission patterns,
sulfa drug exposure and geographical distribution of specific

genotypes [14,15,17]. In general overview, patients living in the
USA and Mozambique presented higher rates of DHPS mutants,

which is clearly depicted in Fig. 1. This fact suggests that the
circulation of P. jirovecii haplotypes may be potentially related to

trimethoprim-sulfamethoxazole resistance in those geograph-
ical regions. The high frequencies of DHFR312T and SOD110C/
SOD215T detected in patients with AIDS-related PcP from

Portugal and the USA endorse the importance of these genetic
© 2016 European Society of Clinical Microbiology and Inf
variants of P. jirovecii, which were already associated with the

virulence or severity of the disease (Table 3) [18,21]. Consid-
ering the present data, P. jirovecii with the haplotype DHFR312T/

SOD110C/SOD215T is likely to be associated with more severe
AIDS-related PcP cases and high P. jirovecii burdens as demon-

strated in the pools from patients with severe PcP from
Portugal (PT2) and the USA.
Conclusion
Geographic location and clinical parameters of the groups of
patients studied as well as the time-period in which the samples
are obtained, were confirmed as determinant epidemiological

factors of P. jirovecii infection. The present study demonstrates
that the multifactorial approach to PcP studies is a powerful

high-throughput methodology for large-scale screening of
P. jirovecii SNP of epidemiological relevance. These results

convey a more complete picture of the worldwide distribution
of P. jirovecii haplotypes and assess their epidemiological impact

in different geographic populations of patients.
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